WorldWideScience

Sample records for surface temperature retrieval

  1. Surface emissivity and temperature retrieval for a hyperspectral sensor

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  2. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  3. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  4. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    NARCIS (Netherlands)

    Chen, F.; Yang, S.; Su, Zhongbo; Wang, K.

    2016-01-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible

  5. Letter to the EditorRetrieval of land surface temperature from combined AVHRR data

    Directory of Open Access Journals (Sweden)

    H. Fischer

    Full Text Available Accurate retrievals of land surface temperature (LST from space are of high interest for studies of land surface processes. Here, an operationally applicable method to retrieve LST from NOAA/AVHRR data is proposed, which combines a split-window technique (SWT for atmospheric correction with a Normalised Difference Vegetation Index threshold method for the retrieval of land surface emissivity. Preliminary results of LST retrievals with this "combined method" are in good agreement with ground truth measurements for bare soil and wheat crops. The results are also compared with results from the same SWT but using emissivities from laboratory measurements.Key words. Meteorology and atmospheric dynamics (radiation processes; instruments and techniques – Radio science (remote sensing

  6. Bayesian Estimation for Land Surface Temperature Retrieval: The Nuisance of Emissivities

    CERN Document Server

    Morgan, J A

    2004-01-01

    An approach to the remote sensing of land surface temperature is developed using the methods of Bayesian inference. The starting point is the maximum entropy estimate for the posterior distribution of radiance in multiple bands. In order to convert this quantity to an estimator for surface temperature and emissivity with Bayes' theorem, it is necessary to obtain the joint prior probability for surface temperature and emissivity, given available prior knowledge. The requirement that any pair of distinct observers be able to relate their descriptions of radiance under arbitrary Lorentz transformations uniquely determines the prior probability. Perhaps surprisingly, surface temperature acts as a scale parameter, while emissivity acts as a location parameter, giving the prior probability P(T,emissivity|K)=const./T dT d(emissivity). Given this result, it is a simple matter to construct estimators for surface temperature and emssivity. Monte Carlo simulations of land surface temeprature retrieval in selected MODIS ...

  7. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network

    Science.gov (United States)

    Tan, Kun; Liao, Zhihong; Du, Peijun; Wu, Lixin

    2017-03-01

    A method for the retrieval of land surface temperature (LST) from the two thermal bands of Landsat 8 data is proposed in this paper. The emissivities of vegetation, bare land, buildings, and water are estimated using different features of the wavelength ranges and spectral response functions. Based on the Planck function of the Thermal Infrared Sensor (TIRS) band 10 and band 11, the radiative transfer equation is rebuilt and the LST is obtained using the modified emissivity parameters. A sensitivity analysis for the LST retrieval is also conducted. The LST was retrieved from Landsat 8 data for the city of Zoucheng, Shandong Province, China, using the proposed algorithm, and the LST reference data were obtained at the same time from a geosensor network (GSN). A comparative analysis was conducted between the retrieved LST and the reference data from the GSN. The results showed that water had a higher LST error than the other land-cover types, of less than 1.2°C, and the LST errors for buildings and vegetation were less than 0.75°C. The difference between the retrieved LST and reference data was about 1°C on a clear day. These results confirm that the proposed algorithm is effective for the retrieval of LST from the Landsat 8 thermal bands, and a GSN is an effective way to validate and improve the performance of LST retrieval.

  8. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data

    Directory of Open Access Journals (Sweden)

    Baojuan Shan

    2013-01-01

    Full Text Available Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Remote sensing of the Earth’s energy budget, particularly with instruments flown on geostationary satellites, allows for near-real-time evaluation of cloud and surface radiation properties. The persistence and coverage of geostationary remote sensing instruments grant the frequent retrieval of near-instantaneous quasi-global skin temperature. Among other cloud and clear-sky retrieval parameters, NASA Langley provides a non-polar, high-resolution land and ocean skin temperature dataset for atmospheric modelers by applying an inverted correlated k-distribution method to clear-pixel values of top-of-atmosphere infrared temperature. The present paper shows that this method yields clear-sky skin temperature values that are, for the most part, within 2 K of measurements from ground-site instruments, like the Southern Great Plains Atmospheric Radiation Measurement (ARM Infrared Thermometer and the National Climatic Data Center Apogee Precision Infrared Thermocouple Sensor. The level of accuracy relative to the ARM site is comparable to that of the Moderate-resolution Imaging Spectroradiometer (MODIS with the benefit of an increased number of daily measurements without added bias or increased error. Additionally, matched comparisons of the high-resolution skin temperature product with MODIS land surface temperature reveal a level of accuracy well within 1 K for both day and night. This confidence will help in characterizing the diurnal and seasonal biases and root-mean-square differences between the retrievals and modeled values from the NASA Goddard Earth Observing System Version 5 (GEOS-5 in preparation for assimilation of the retrievals into GEOS-5. Modelers should find the immediate availability and broad coverage of these skin temperature

  9. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Xinke Zhong

    2015-06-01

    Full Text Available The surface temperature (ST of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  10. Validation of the modified Becker's split-window approach for retrieving land surface temperature from AVHRR

    Science.gov (United States)

    Quan, Weijun; Chen, Hongbin; Han, Xiuzhen; Ma, Zhiqiang

    2015-10-01

    To further verify the modified Becker's split-window approach for retrieving land surface temperature (LST) from long-term Advanced Very High Resolution Radiometer (AVHRR) data, a cross-validation and a radiance-based (R-based) validation are performed and examined in this paper. In the cross-validation, 3481 LST data pairs are extracted from the AVHRR LST product retrieved with the modified Becker's approach and compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MYD11A1) for the period 2002-2008, relative to the positions of 548 weather stations in China. The results show that in most cases, the AVHRR LST values are higher than the MYD11A1. When the AVHRR LSTs are adjusted with a linear regression, the values are close to the MYD11A1, showing a good linear relationship between the two datasets ( R 2 = 0.91). In the R-based validation, comparison is made between AVHRR LST retrieved from the modified Becker's approach and the inversed LST from the Moderate Resolution Transmittance Model (MODTRAN) consolidated with observed temperature and humidity profiles at four radiosonde stations. The results show that the retrieved AVHRR LST deviates from the MODTRAN inversed LST by-1.3 (-2.5) K when the total water vapor amount is less (larger) than 20 mm. This provides useful hints for further improvement of the LST retrieval algorithms' accuracy and consistency.

  11. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  12. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  13. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  14. A Physically Constrained Calibration Database for Land Surface Temperature Using Infrared Retrieval Algorithms

    Directory of Open Access Journals (Sweden)

    João P. A. Martins

    2016-09-01

    Full Text Available Land surface temperature (LST is routinely retrieved from remote sensing instruments using semi-empirical relationships between top of atmosphere (TOA radiances and LST, using ancillary data such as total column water vapor or emissivity. These algorithms are calibrated using a set of forward radiative transfer simulations that return the TOA radiances given the LST and the thermodynamic profiles. The simulations are done in order to cover a wide range of surface and atmospheric conditions and viewing geometries. This study analyzes calibration strategies while considering some of the most critical factors that need to be taken into account when building a calibration dataset, covering the full dynamic range of relevant variables. A sensitivity analysis of split-windows and single channel algorithms revealed that selecting a set of atmospheric profiles that spans the full range of surface temperatures and total column water vapor combinations that are physically possible seems beneficial for the quality of the regression model. However, the calibration is extremely sensitive to the low-level structure of the atmosphere, indicating that the presence of atmospheric boundary layer features such as temperature inversions or strong vertical gradients of thermodynamic properties may affect LST retrievals in a non-trivial way. This article describes the criteria established in the EUMETSAT Land Surface Analysis—Satellite Application Facility to calibrate its LST algorithms, applied both for current and forthcoming sensors.

  15. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

    Science.gov (United States)

    De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.

    2016-12-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  16. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    Science.gov (United States)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.

  17. Implementation of Globally Simulated Dust within a Physical Sea Surface Temperature Retrievals for Numerical Weather Prediction

    Science.gov (United States)

    Oyola, M. I.; Nalli, N. R.; Lu, C. H.; Joseph, E.; Morris, V. R.; Campbell, J. R.

    2016-12-01

    Aerosols are not the only source of error in sea surface temperature (SST) retrievals; however, it is nontrivial problem that requires attention. Simulation and validation of aerosol in radiative transfer models (RTM) is considered extremely challenging, especially in the infrared (IR); this is because brightness temperatures (BTs) retrievals -which are converted into SSTs- are highly influenced by changes in atmospheric composition. Tropospheric aerosols seem to have a persistent impact that may result in negative SST biases of 1K or more. Several questions arise around this topic, but most importantly: is it even possible to simulate aerosols using a RTM for a SST retrieval application? If so, what are the implications? This works presents the results for the first study to ever attempt to analyze the full potential and limitations of incorporating aerosols within a truly physical SST retrieval for operational weather forecasting purposes. This is accomplished through the application of a satellite sea surface temperature (SST) physical retrieval for split-window and hyperspectral infrared (IR) sensors that allows a better representation of the atmospheric state under aerosol-laden conditions. The new algorithm includes 1) accurate specification of the emissivity that characterizes the surface leaving radiance and 2) transmittance and physical characterization of the atmosphere by using the Community Radiative Transfer Model (CRTM). This project includes application of the NEMS-Global Forecasting System Aerosol Component (NGAC) fields, which corresponds to the first global interactive atmosphere-aerosol forecast system ever implemented at NOAA's National Center for Environmental Prediction (NCEP). SST outputs are validated against a bulk and a parameterized SST derived from operational products and partly against observed measurements from the eastern Atlantic Ocean, which is dominated by Saharan dust throughout most of the year and that is also a genesis region

  18. A Prototype Algorithm for Land Surface Temperature Retrieval from Sentinel-3 Mission

    Science.gov (United States)

    Sobrino, Jose A.; Jimenez-Munoz, Juan C.; Soria, Guillem; Brockmann, Carsten; Ruescas, Ana; Danne, Olaf; North, Peter; Phillipe, Pierre; Berger, Michel; Merchant, Chris; Ghent, Darren; Remedios, John

    2015-12-01

    In this work we present a prototype algorithm to retrieve Land Surface Temperature (LST) from OLCI and SLSTR instruments on board Sentinel-3 platform, which was developed in the framework of the SEN4LST project. For this purpose, data acquired with the ENVISAT MERIS and AATSR instruments are used as a benchmark. The objective is to improve the LST standard product (level 2) currently derived from the single AATSR instrument taking advantages of the improved characteristics of the future OLCI and SLSTR instruments. Hence, the high spectral resolution of OLCI instrument and the dual-view and thermal bands available in the SLSTR instruments have the potential to improve the characterization of the atmosphere and therefore to improve the atmospheric correction and cloud mask. Bands in the solar domain available in both instruments allow the retrieval of the surface emissivity, being a key input to the LST algorithm. Pairs of MERIS/AATSR are processed over different sites and validated with in situ measurements using the LST processor included in the BEAM software. Results showed that the proposed LST algorithm improves LST retrievals of the standard level-2 product.

  19. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  20. Effects of Slope and Aspect Variations on Satellite Surface Temperature Retrievals and Mesoscale Analysis in Mountainous Terrain.

    Science.gov (United States)

    Lipton, Alan E.

    1992-03-01

    Surface temperature retrieval in mountainous areas is complicated by the high variability of temperatures that can occur within a single satellite field of view. Temperatures depend in part on slope orientation relative to the sun, which can vary radically over very short distances. The surface temperature detected by a satellite is biased toward the temperatures of the sub-field-of-view terrain elements that most directly face the satellite. Numerical simulations were conducted to estimate the effects of satellite viewing geometry on surface temperature retrievals for a section of central Colorado. Surface temperatures were computed using a mesoscale model with a parameterization of subgrid variations in slope and aspect angles.The simulations indicate that the slope-aspect effect can lead to local surface temperature variations up to 30°C for autumn conditions in the Colorado mountains. For realistic satellite viewing conditions, these variations can give rise to biases in retrieved surface temperatures of about 3°C. Relative biases between retrievals from two satellites with different viewing angles can be over 6°C, which could lead to confusion when merging datasets. The bias computations were limited by the resolution of the available terrain height data (90 m). The results suggest that the biases would be significantly larger if the data resolution was fine enough to represent every detail of the real Colorado terrain or if retrievals were made in mountain areas that have a larger proportion of steep slopes than the Colorado Rockies. The computed bias gradients across the Colorado domain were not large enough to significantly alter the forcing of the diurnal upslope-downslope circulations, according to simulations in which surface temperature retrievals with view-dependent biases were assimilated into time-continuous analyses. View-dependent retrieval biases may be relevant to climatological analysts that rely on remotely sensed data, given that bias

  1. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    Science.gov (United States)

    Chen, Feng; Yang, Song; Su, Z.; Wang, Kai

    2016-04-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible under a warmer and less humid situation. Significant emissivity variations are presented among the anthropogenic materials in three spectral libraries, which raise a critical question that whether urban LSE can be estimated accurately to meet the needs for LST retrieval. Methods widely used for urban LSE estimation are investigated, including the classification-based method, the spectral-index based method, and the linear spectral mixture model (LSMM). Results indicate that the classification-based method may not be effectively applicable for urban LSE estimation, due mainly to the insignificant relation between the short-wave multispectral reflectance and the long-wave thermal emissivity shown by the spectra. Compared with the classification-based method, the LSMM shows relatively more accurate predictions, whereas, the performance of the LSMM largely depends on the determination of endmembers. Obvious uncertainties in LSE estimation likely appear if endmembers are determined improperly. Increasing the spectra for endmembers is a practical and beneficial means for LSMM when there is not a priori knowledge, which emphasizes the necessity of building a comprehensive spectral library of urban materials. Furthermore, the LST retrieval from a single channel of Landsat 8 is more challenging as compared with the retrieval from the channels of its predecessors-Landsat 4/5/7.

  2. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    Science.gov (United States)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  3. Improved Quality of MODIS Sea Surface Temperature Retrieval and Data Coverage Using Physical Deterministic Methods

    Directory of Open Access Journals (Sweden)

    Prabhat K. Koner

    2016-05-01

    Full Text Available Sea surface temperature (SST retrievals from satellite imager measurements are often performed using only two or three channels, and employ a regression methodology. As there are 16 thermal infrared (IR channels available for MODIS, we demonstrate a new SST retrieval methodology using more channels and a physically deterministic method, the modified total least squares (MTLS, to improve the quality of SST. Since cloud detection is always a part of any parameter estimation from IR satellite measurements, we hereby extend our recently-published novel cloud detection technique, which is based on both functional spectral differences and radiative transfer modeling for GOES-13. We demonstrate that the cloud detection coefficients derived for GOES-13 are working well for MODIS, while further improvements are made possible by the extra channels replacing some of the previous tests. The results are compared with available operational MODIS SST through the Group for High Resolution SST website–the data themselves are originally processed by the NASA Goddard Ocean Biology Processing Group. It is observed the data coverage can be more than doubled compared to the currently-available operational product, and at the same time the quality can be improved significantly. Two other SST retrieval methods, offline-calculated coefficients using the same form of the operational regression equation, and radiative transfer based optimal estimation, are included for comparison purposes.

  4. The new single-channel approaches for retrieving land surface temperature and the preliminary results

    Science.gov (United States)

    Chen, Feng; Yang, Song; Liu, Lin; Zhao, Xiaofeng

    2014-11-01

    Two satellites named HJ-1A and HJ-1B were launched on 6 September 2008, which are intended for environment and disaster monitoring and forecasting. The infrared scanner (IRS) onboard HJ-1B has one thermal infrared band. Currently, for sensors with one thermal band (e.g. Landsat TM/ETM+ and HJ-1B), several empirical algorithms have been developed to estimate land surface temperature (LST). However, surface emissivity and atmospheric parameters which are not readily accessible to general users are required for these empirical methods. To resolve this problem, particularly for HJ-1B, new retrieval methodology is desired. According to proper assumptions, two approaches were proposed, which included the single-channel method based on temporal and spatial information (MTSC) and the image based single-channel method (IBSC). The newly developed methods are mainly for estimating LST accurately from one thermal band, even without any accurate information related to the atmospheric parameters and land surface emissivity. In this paper, we introduce and give preliminary assessments on the new approaches. Assessments generally show good agreement between the HJ-1B retrieved results and the MODIS references. Especially, over sea and water areas the biases were less than 1K while the root mean square errors were about 1K for both MTSC and IBSC methods. As expected, the MTSC method did superiorly to the IBSC method, owning to spatiotemporal information is incorporated into the MTSC method, although more experiments and comparisons should be conducted further.

  5. An enhanced single-channel algorithm for retrieving land surface temperature from Landsat series data

    Science.gov (United States)

    Wang, Mengmeng; Zhang, Zhaoming; He, Guojin; Wang, Guizhou; Long, Tengfei; Peng, Yan

    2016-10-01

    Land surface temperature (LST) is a critical parameter in the physics of Earth surface processes and is required for many applications related to ecology and environment. Landsat series satellites have provided more than 30 years of thermal information at medium spatial resolution. This paper proposes an enhanced single-channel algorithm (SCen) for retrieving LST from Landsat series data (Landsat 4 to Landsat 8). The SCen algorithm includes three atmospheric functions (AFs), and the latitude and acquisition month of Landsat image were added to the AF models to improve LST retrieval. Performance of the SCen algorithm was assessed with both simulated and in situ data, and accuracy of three single-channel algorithms (including the monowindow algorithm developed by Qin et al., SCQin, and the generalized single-channel algorithm developed by Jiménez-Muñoz and Sobrino, SCJ&S) were compared. The accuracy assessments with simulated data had root-mean-square deviations (RMSDs) for the SCen, SCJ&S, and SCQin algorithms of 1.363 K, 1.858 K, and 2.509 K, respectively. Validation with in situ data showed RMSDs for the SCen and SCJ&S algorithms of 1.04 K and 1.49 K, respectively. It was concluded that the SCen algorithm is very operational, has good precision, and can be used to develop an LST product for Landsat series data.

  6. Land Surface Temperature Retrieval from Landsat 8 TIRS - A Case Study of Istanbul.

    Science.gov (United States)

    Bektas Balcik, Filiz; Mujgan Ergene, Emine

    2016-04-01

    Land Surface Temperature (LST) is considered as one of the important parameter to determine negative human population influences like rapid urbanization, destruction of vegetated area, unplanned industrialization, climate change from local to global scale on earth surface. On February 11, 2013 Landsat 8 OLI was launched with two thermal infrared bands that is between 10.60-12.51μm. This innovation on thermal sensors of Landsat 8 TIRS provide a good opportunity to calculate LST using different algorithms such as Split Window Algorithm (SW) and Mono Window Algorithm (MW) with the same TIRS bands. In this study, 21 October 2014 dated Landsat 8 OLI data was used to determine LST of Istanbul using mono window and split window algorithm. The population of the Istanbul was 3 million in the 1970s, 7.4 million in the 1990s, and around 13 million currently. As a result of rapid population growth and unplanned urban expansion in Istanbul, dramatic land cover changes have occurred especially within the past 65 years. Because of this reason it has huge importance to determine LST distribution of the city for sustainable management. Meteorological data used in the study include near- surface temperature and relative-humidity from 15 meteorological stations in Istanbul for the same date and hour of the Landsat 8 OLI sensor image provided (October 21, 10:30AM). The mean near-surface air temperature gathered from meteorological stations was used to verify the final retrieved LST results. The correlation coefficient between LST and the meteorological station derived near-surface temperature was calculated for accuracy verification. To determine the impact of urban components on LST, Index based built up index calculated using remote sensing data. The regression analysis was performed on the relationship between built-up land and LST using various regression models. The derived results were compared to eximine the ability of the selected algorithms.

  7. Algorithm Development for Land Surface Temperature Retrieval: Application to Chinese Gaofen-5 Data

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    2017-02-01

    Full Text Available Land surface temperature (LST is a key variable in the study of the energy exchange between the land surface and the atmosphere. Among the different methods proposed to estimate LST, the quadratic split-window (SW method has achieved considerable popularity. This method works well when the emissivities are high in both channels. Unfortunately, it performs poorly for low land surface emissivities (LSEs. To solve this problem, assuming that the LSE is known, the constant in the quadratic SW method was calculated by maintaining the other coefficients the same as those obtained for the black body condition. This procedure permits transfer of the emissivity effect to the constant. The result demonstrated that the constant was influenced by both atmospheric water vapour content (W and atmospheric temperature (T0 in the bottom layer. To parameterize the constant, an exponential approximation between W and T0 was used. A LST retrieval algorithm was proposed. The error for the proposed algorithm was RMSE = 0.70 K. Sensitivity analysis results showed that under the consideration of NEΔT = 0.2 K, 20% uncertainty in W and 1% uncertainties in the channel mean emissivity and the channel emissivity difference, the RMSE was 1.29 K. Compared with AST 08 product, the proposed algorithm underestimated LST by about 0.8 K for both study areas when ASTER L1B data was used as a proxy of Gaofen-5 (GF-5 satellite data. The GF-5 satellite is scheduled to be launched in 2017.

  8. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  9. Land Surface Temperature retrieval from Sentinel 2 and 3 Missions: a conceptual framework

    Science.gov (United States)

    Sobrino, J. A.; Jimenez-Muñoz, J. C.; Ruescas, A.; Brockmann, C.; Heckel, A.; North, P. R. J.; Remedios, J. J.; Darren, G.; Merchant, C.; Berger, M.; Soria, G.; Danne, O.

    2012-04-01

    Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all the surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. Because of the strong heterogeneity in land surface characteristics such as vegetation, topography and soil physical properties, LST changes rapidly in space as well as in time. An adequate characterization of LST distribution and its temporal evolution, therefore, requires measurements with detailed spatial and temporal frequencies. With the advent of the ESA's Sentinel 2 and 3 series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. In this work we explore the synergistic use of future MSI instrument on board Sentinel-2 platform and OLCI/SLSTR instruments on board Sentinel-3 platform in order to improve LST products currently derived from the single AATSR instrument on board the ENVISAT satellite. For this purpose, the high spatial resolution data from Sentinel2/MSI will be used for a good characterization of the land surface sub-pixel heterogeneity, in particular for a precise parameterization of surface emissivity using a land cover map and spectral mixture techniques. On the other hand, the high spectral resolution of OLCI instrument, suitable for a better characterization of the atmosphere, along with the dual-view available in the SLTSR instrument, will allow a better atmospheric correction through improved aerosol/water vapor content retrievals and the implementation of novel cloud screening procedures. Effective emissivity and atmospheric corrections will allow accurate LST retrievals using the SLTSR thermal bands by developing a synergistic split-window/dual-angle algorithm. ENVISAT MERIS and AATSR instruments and different high spatial resolution data (Landsat/TM, Proba/CHRIS, Terra/ASTER) will be used as a benchmark for the future OLCI

  10. Practical split-window algorithm for retrieving land surface temperature over agricultural areas from ASTER data

    Science.gov (United States)

    Wang, Songhan; He, Longhua

    2014-01-01

    A practical split-window algorithm which involves two parameters (transmittance and emissivity) utilized to retrieve land-surface temperature over agricultural areas from the Advanced Spaceborne Thermal Emission and Reflection Radiometer data is presented. First, by calculating the relationship between thermal radiation intensity and temperature, the Planck function is simplified using exponential function which is applied to deduce the split-window algorithm. Second, how to obtain transmittance from water vapor content and the method for estimating emissivity using normalized difference vegetation index are discussed in detail. Sensitivity analysis demonstrates that the algorithm is not sensitive to these two parameters. Finally, a standard atmospheric simulation method has been used to validate the proposed algorithm, and comparison between the algorithm and the prior study has been carried out. The results indicate that the average accuracy is 0.32 K for the case without error in both transmittance and emissivity, which is better than the prior algorithm. The accuracy is also 0.32 K when the transmittance is computed from the water content by piecewise cubic polynomial fit. The accuracy is about 0.30 K˜0.33 K corresponding to different Pv (Pv is the proportion of vegetation) values, which indicates that this algorithm is suitable for different land surface types over agricultural areas.

  11. Iterative retrieval of surface emissivity and temperature for a hyperspectral sensor

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.

    1997-11-01

    The central problem of temperature-emissivity separation is that we obtain N spectral measurements of radiance and need to find N + 1 unknowns (N emissivities and one temperature). To solve this problem in the presence of the atmosphere we need to find even more unknowns: N spectral transmissions {tau}{sub atmo}({lambda}) up-welling path radiances L{sub path}{up_arrow}({lambda}) and N down-welling path radiances L{sub path}{down_arrow}({lambda}). Fortunately there are radiative transfer codes such as MODTRAN 3 and FASCODE available to get good estimates of {tau}{sub atmo}({lambda}), L{sub path}{up_arrow}({lambda}) and L{sub path}{down_arrow}({lambda}) in the order of a few percent. With the growing use of hyperspectral imagers, e.g. AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. We believe that this will enable us to get around using the present temperature - emissivity separation (TES) algorithms using methods which take advantage of the many channels available in hyperspectral imagers. The first idea we had is to take advantage of the simple fact that a typical surface emissivity spectrum is rather smooth compared to spectral features introduced by the atmosphere. Thus iterative solution techniques can be devised which retrieve emissivity spectra {epsilon} based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  12. Feasibility Study of LANDSAT-8 Imagery for Retrieving Sea Surface Temperature (case Study Persian Gulf)

    Science.gov (United States)

    Bayat, F.; Hasanlou, M.

    2016-06-01

    Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on

  13. FEASIBILITY STUDY OF LANDSAT-8 IMAGERY FOR RETRIEVING SEA SURFACE TEMPERATURE (CASE STUDY PERSIAN GULF

    Directory of Open Access Journals (Sweden)

    F. Bayat

    2016-06-01

    Full Text Available Sea surface temperature (SST is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1 the Operational Land Imager (OLI with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2 the Thermal Infrared Sensor (TIRS with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA. The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band

  14. Validation of S-NPP VIIRS Sea Surface Temperature Retrieved from NAVO

    Directory of Open Access Journals (Sweden)

    Qianguang Tu

    2015-12-01

    Full Text Available The validation of sea surface temperature (SST retrieved from the new sensor Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-Orbiting Partnership (S-NPP Satellite is essential for the interpretation, use, and improvement of the new generation SST product. In this study, the magnitude and characteristics of uncertainties in S-NPP VIIRS SST produced by the Naval Oceanographic Office (NAVO are investigated. The NAVO S-NPP VIIRS SST and eight types of quality-controlled in situ SST from the National Oceanic and Atmospheric Administration in situ Quality Monitor (iQuam are condensed into a Taylor diagram. Considering these comparisons and their spatial coverage, the NAVO S-NPP VIIRS SST is then validated using collocated drifters measured SST via a three-way error analysis which also includes SST derived from Moderate Resolution Imaging Spectro-radiometer (MODIS onboard AQUA. The analysis shows that the NAVO S-NPP VIIRS SST is of high accuracy, which lies between the drifters measured SST and AQUA MODIS SST. The histogram of NAVO S-NPP VIIRS SST root-mean-square error (RMSE shows normality in the range of 0–0.6 °C with a median of ~0.31 °C. Global distribution of NAVO VIIRS SST shows pronounced warm biases up to 0.5 °C in the Southern Hemisphere at high latitudes with respect to the drifters measured SST, while near-zero biases are observed in AQUA MODIS. It means that these biases may be caused by the NAVO S-NPP VIIRS SST retrieval algorithm rather than the nature of the SST. The reasons and correction for this bias need to be further studied.

  15. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and inter-comparison study

    Directory of Open Access Journals (Sweden)

    G. Masiello

    2015-04-01

    Full Text Available A Kalman filter based approach for the physical retrieval of surface temperature and emissivity from SEVIRI (Spinning Enhanced Visible and Infrared Imager infrared observations has been developed and validated against in situ and satellite observations. Validation for land has been provided based on in situ observations from the two permanent stations Evora and Gobabeb operated by Karlsruhe Institute of Technology (KIT within the framework of EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF. Sea surface retrievals have been intercompared on a broad spatial scale with equivalent satellite products (MODIS or Moderate Resolution Imaging Spectroradiometer and AVHRR or Advanced Very High Resolution Radiometer and ECMWF (European Centre for Medium Range Weather Forecasts analyses. Results show that for surface temperature the algorithm yields an accuracy of ≈ ± 1.5 °C in case of land and ≈ ± 1.0 °C in case of sea surface. Comparisons with polar satellite instruments over the sea surface show nearly zero temperature bias. Over the land surface the retrieved emissivity follows the seasonal vegetation cycle and allows to identify desert sand regions because of strong reststrahlen bands of Quartz in the SEVIRI channel at 8.7 μm. Considering the two validation stations, we have that emissivity retrieved in SEVIRI channel 10.8 μm over the gravel plains of the Namib desert is in excellent agreement with in situ observations. Over Evora, the seasonal variation of emissivity with vegetation is successfully retrieved and yields emissivity values for green and dry vegetation that are in good agreement with spectral library data. The algorithm has been applied to the SEVIRI full disk and emissivity maps on that global scale have been physically retrieved for the first time.

  16. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    Science.gov (United States)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    Data analysis of the recent years showed an increase of lake surface water temperature for many lakes around the world. But due to sparse in-situ measurements, which are often not well documented, only satellite data can provide the needed information of the last decades. The importance of lakes for climate research was also highlighted by the Global Climate Observing System (GCOS) defining lakes as Essential Climate Variables (ECVs). Within the frame of a research project funded by the Swiss National Science Foundation a procedure was developed to retrieve lake surface water temperature with high accuracy based on our archived AVHRR data at the University of Bern, Switzerland. The data archive starts in 1985 and is continuously filled with NOAA-/MetOp-AVHRR data received by our antenna resulting in a time series of more than 30 years (WMO definition of a climate period). The data set covering Europe is also used by other teams for climate related studies resulting in improved pre-processing to guarantee precise calibration and geocoding. The first part of our presentation will be dedicated to the quality of the LSWT retrieval comparing various in-situ measurements from lakes in Switzerland with varying sizes (150km2 - 9km2). The quality of the used split-window approach is sensitive to the derived split-window coefficients. The influence of water vapor, view angle, temporal and spatial validity and day vs. night data will be shown. In addition, some information will be presented about the influence of topography and climatic regions (e.g. Scandinavia vs. Greece) on the quality of the LSWT product. Based on these findings compiling time series for different lakes in Europe will be the focus of the second part of our presentation with details of the applied quality assessment to avoid erroneous signals. Hence, some information is given about hierarchical quality checks which are needed to guarantee a dataset without artefacts. Finally, some results of time series

  17. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    MAO KeBiao; SHI JianCheng; LI ZhaoLiang; QIN ZhiHao; LI ManChun; XU Bin

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface temperature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM, the difference of different frequencies can eliminate the influence of water in soil and atmosphere, and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately, the land surface should be at least classified into three types: water covered surface, snow covered surface, and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm, we built different equations for different ranges of temperature. The average land surface temperature error is about 2-3℃ relative to the MODIS LST product.

  18. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between the brightness of all AMSR-E bands and the MODIS land surface tem-perature product indicated that the 89 GHz vertical polarization is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM,the difference of different frequen-cies can eliminate the influence of water in soil and atmosphere,and also the surface roughness partly. The analysis results indicate that the radiation mechanism of surface covered snow is different from others. In order to retrieve land surface temperature more accurately,the land surface should be at least classified into three types:water covered surface,snow covered surface,and non-water and non-snow covered land surface. In order to improve the practicality and accuracy of the algorithm,we built different equations for different ranges of temperature. The average land surface temperature er-ror is about 2―3℃ relative to the MODIS LST product.

  19. Comparison of two split-window methods for retrieving land surface temperature from MODIS data

    Indian Academy of Sciences (India)

    Shaohua Zhao; Qiming Qin; Yonghui Yang; Yujiu Xiong; Guoyu Qiu

    2009-08-01

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in North China Plain. The results show that the max, min and mean errors of Mao method are 1.33K, 1.54K and 0.13K lower than the standard LST product respectively; while those of Sobrino method are 0.73K, 1.46K and 1.50K higher than the standard respectively. Validation of the two methods using LST product based on weather stations shows a good agreement between the standard and Sobrino method, with RMSE of 1.17K, whereas RMSE of Mao method is 1.85K. Finally, the study introduces the Sobmao method, which is based on Sobrino method but simplifies the estimation of atmospheric water vapour content using Mao method. The Sobmao method has almost the same accuracy with Sobrino method. With high accuracy and simplification of water vapour content estimation, the Sobmao method is recommendable in LST inversion for good application in Ningxia region, the northwest China, with mean error of 0.33K and the RMSE value of 0.91K.

  20. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    Directory of Open Access Journals (Sweden)

    O. Stähli

    2013-09-01

    Full Text Available TEMPERA (TEMPERature RAdiometer is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  1. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the surface air temperature and surface humidity is analysed by fitting a polynomial between the two for different regions of the Indian Ocean in different seasons. Taking into account the variation in surface air temperatures, the Indian Ocean is split in 14...

  2. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    Science.gov (United States)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-07-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The infrared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation model of Venus' atmosphere to be used in atmospheric and surface parameter retrieval procedures that fit simulated spectra to the measured data. The surface emissivity can be retrieved from VIRTIS-M-IR measurements in the transparency windows around 1 μm, but it is not easy to derive, since atmospheric influences strongly interfere with surface information. There are mainly three atmospheric model parameters that may affect quantitative results of surface emissivity retrievals: CO_2 opacity, cloud features, and deep atmosphere temperature field. The CO_2 opacity with respect to allowed transitions is usually computed by utilizing a suitable line data base and certain line shape models that consider collisional line mixing. Both line data bases and shape models are not well established from measurements under the environmental conditions in the deep atmosphere of Venus. Pressure-induced additional continuum absorption introduces further opacity uncertainties. The clouds of Venus are usually modeled by a four-modal distribution of spherical droplets of about 75% sulfuric acid, where each mode is characterized by a different mean and standard deviation of droplet size distribution and a different initial altitude abundance profile. The influence of possible cloud mode variations on surface emissivity retrieval results is investigated in the paper. Future retrieval procedures will aim at a separation of cloud mode and surface emissivity variations using different atmospheric windows sounded by

  3. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    Directory of Open Access Journals (Sweden)

    O. Stähli

    2013-03-01

    Full Text Available TEMPERA is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. The instrument operates thermally stabilized inside a lab. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital Fast-Fourier-Transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  4. Cloud clearing techniques over land for land surface temperature retrieval from the Advanced Along Track Scanning Radiometer

    OpenAIRE

    Bulgin, C.E.; H. Sembhi; D. Ghent; Remedios, J.J.; Merchant, Christopher

    2014-01-01

    We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud dete...

  5. Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data

    OpenAIRE

    Coll Company, César; Valor i Micó, Enric; Caselles Miralles, Vicente; Niclòs Corts, Raquel

    2003-01-01

    A methodology for the retrieval of surface temperatures and emissivities combining visible, near infrared and thermal infrared remote sensing data was applied to Digital Airborne Imaging Spectrometer (DAIS) data and validated with coincident ground measurements acquired in a multiyear experiment held in an agricultural site in Barrax, Spain. The Adjusted Normalized Emissivity Method (ANEM) is based on the use of visible and near infrared data to estimate the vegetation cover and model the max...

  6. Advancing the retrievals of surface emissivity by modelling the spatial distribution of temperature in the thermal hyperspectral scene

    Science.gov (United States)

    Shimoni, M.; Haelterman, R.; Lodewyckx, P.

    2016-05-01

    Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.

  7. Land Surface Temperature Retrieval in Wetlands Using Normalized Difference Vegetation Index-Emissivity Estimation and ASTER Emissivity Product

    Science.gov (United States)

    Muro, Javier; Heinmann, Sascha; Strauch, Adrian; Menz, Gunter

    2016-08-01

    Land Surface Temperature (LST) has the potential to act as a continuous indicator of the ecological status of wetlands. Accurate emissivity values are required in order to calculate precise LST. We test two emissivity retrieval methods and their influence on LST calculated from a Landsat 7 image of a highly dynamic wetland in Southern Spain. LST calculated using NDVI (Normalized Difference Vegetation Index) threshold estimations and the ASTER emissivity product are compared. The results show differences of around 0-1 K for most land covers, and up to 3 K for areas of bare soil when Landsat and ASTER images have the same acquisition date. Tests using Landsat and ASTER images from different seasons do not show greater differences between both LSTs. This has important implications for automated LST retrieval methods, such as the one planed by the USGS using Landsat and ASTER emissivity products.

  8. Derivation of Regression Coefficients for Sea Surface Temperature Retrieval over East Asia

    Institute of Scientific and Technical Information of China (English)

    Myoung-Hwan AHN; Eun-Ha SOHN; Byong-Jun HWANG; Chu-Yong CHUNG; Xiangqian WU

    2006-01-01

    Among the regression-based algorithms for deriving SST from satellite measurements, regionally optimized algorithms normally perform better than the corresponding global algorithm. In this paper,three algorithms are considered for SST retrieval over the East Asia region (15°-55°N, 105°-170°E),including the multi-channel algorithm (MCSST), the quadratic algorithm (QSST), and the Pathfinder algorithm (PFSST). All algorithms are derived and validated using collocated buoy and Geostationary Meteorological Satellite (GMS-5) observations from 1997 to 2001. An important part of the derivation and validation of the algorithms is the quality control procedure for the buoy SST data and an improved cloud screening method for the satellite brightness temperature measurements. The regionally optimized MCSST algorithm shows an overall improvement over the global algorithm, removing the bias of about -0.13℃ and reducing the root-mean-square difference (rmsd) from 1.36℃ to 1.26℃. The QSST is only slightly better than the MCSST. For both algorithms, a seasonal dependence of the remaining error statistics is still evident. The Pathfinder approach for deriving a season-specific set of coefficients, one for August to October and one for the rest of the year, provides the smallest rmsd overall that is also stable over time.

  9. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  10. Building a Learning Database for the Neural Network Retrieval of Sea Surface Salinity from SMOS Brightness Temperatures

    CERN Document Server

    Ammar, Adel; Obligis, Estelle; Crépon, Michel; Thiria, Sylvie

    2016-01-01

    This article deals with an important aspect of the neural network retrieval of sea surface salinity (SSS) from SMOS brightness temperatures (TBs). The neural network retrieval method is an empirical approach that offers the possibility of being independent from any theoretical emissivity model, during the in-flight phase. A Previous study [1] has proven that this approach is applicable to all pixels on ocean, by designing a set of neural networks with different inputs. The present study focuses on the choice of the learning database and demonstrates that a judicious distribution of the geophysical parameters allows to markedly reduce the systematic regional biases of the retrieved SSS, which are due to the high noise on the TBs. An equalization of the distribution of the geophysical parameters, followed by a new technique for boosting the learning process, makes the regional biases almost disappear for latitudes between 40{\\deg}S and 40{\\deg}N, while the global standard deviation remains between 0.6 psu (at t...

  11. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  12. Evaluation of Land Surface Temperature Retrieval from FY-3B/VIRR Data in an Arid Area of Northwestern China

    Directory of Open Access Journals (Sweden)

    Jinxiong Jiang

    2015-05-01

    Full Text Available This paper uses the refined Generalized Split-Window (GSW algorithm to derive the land surface temperature (LST from the data acquired by the Visible and Infrared Radiometer on FengYun 3B (FY-3B/VIRR. The coefficients in the GSW algorithm corresponding to a series of overlapping ranges for the mean emissivity, the atmospheric Water Vapor Content (WVC, and the LST are derived using a statistical regression method from the numerical values simulated with an accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. The GSW algorithm is applied to retrieve LST from FY-3B/VIRR data in an arid area in northwestern China. Three emissivity databases are used to evaluate the accuracy of different emissivity databases for LST retrieval, including the ASTER Global Emissivity Database (ASTER_GED at a 1-km spatial resolution (AG1km, an average of twelve ASTER emissivity data in the 2012 summer and emissivity spectra extracted from spectral libraries. The LSTs retrieved from the three emissivity databases are evaluated with ground-measured LST at four barren surface sites from June 2012 to December 2013 collected during the HiWATER field campaign. The results indicate that using emissivity extracted from ASTER_GED can achieve the highest accuracy with an average bias of 1.26 and −0.04 K and an average root mean square error (RMSE of 2.69 and 1.38 K for the four sites during daytime and nighttime, respectively. This result indicates that ASTER_GED is a useful emissivity database for generating global LST products from different thermal infrared data and that using FY-3B/VIRR data can produce reliable LST products for other research areas.

  13. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    Science.gov (United States)

    Heinemann, Sascha; Muro, Javier; Burkart, Andreas; Schultz, Johannes; Thonfeld, Frank; Menz, Gunter

    2016-04-01

    The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between the Earth's surface and the atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to climate change. The current challenge is to reduce the higher deviations during daytime especially for bare areas with a maximum of 5.7 Kelvin. These temperature differences are time and vegetation cover dependent. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, while the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. For bare surfaces during daytime the difference is about 6 Kelvin. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms, by comparing derived LSE/LST data with ground-based measurements

  14. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    Science.gov (United States)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  15. Applications of AMSR-E Measurements for Tropical Cyclone Predictions Part Ⅰ: Retrieval of Sea Surface Temperature and Wind Speed

    Institute of Scientific and Technical Information of China (English)

    Banghua YAN; Fuzhong WENG

    2008-01-01

    Existing satellite microwave algorithms for retrieving Sea Surface Temperature(Sst)and wind(SSW)are applicable primarily for non-raining cloudy conditions.With the launch of the Earth Observing System (EOS)Aqua satellite in 2002,the Advanced Microwave Scanning Radiometer(AMSR-E)onboard provides some unique measurements at lower frequencies which are sensitive to ocean surface parameters under ad-verse weather conditions.In this study,a new algorithm is developed to derive SST and SSW for hurricane predictions such as hurricane vortex analysis from the AMSR-E measurements at 6.925 and 10.65 GHz.In the algorithm,the effects of precipitation emission and scattering on the measurements are properly taken into account.The algorithm performances are evaluated with buoy measurements and aircraft dropsonde data.It is found that the root mean square (RMS) errors for SST and SSW are about 1.8K and 1.9m s(-1),respectively,when the results are compared with the buoy data over open oceans under precipitating clouds (e.g.,its liquid water path is larger than 0.5 mm),while they are 1.1 K for SST and 2.0 ms(-1)for SSW,respectively,when the retrievals are validated against the dropsonde measurements over warm oceans.These results indicate that our newly developed algorithm catl provide some critical surface information for trop-ical cycle predictions.Currently,this newly developed algorithm has been implemented into the hybrid variational scheme for the hurricane vortex analysis to provide predictions of SST and SSW fields.

  16. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  17. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  18. Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data

    Directory of Open Access Journals (Sweden)

    Xiaoying Ouyang

    2014-12-01

    Full Text Available The reliable estimation of spatially distributed Land Surface Temperature (LST is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS onboard the Chinese “Environmental and Disaster Monitoring and Forecasting with a Small Satellite Constellation” (HJ-1B for short for one of the satellites, with ancillary water vapor information from Moderate Resolution Imaging Spectroradiometer (MODIS products (MOD05 and in situ automatic sun tracking photometer CE318 data for the first time. In situ LST data for the period from mid-June to mid-September 2012 were acquired from automatic meteorological stations (AMS that are part of Heihe Watershed Allied Telemetry Experimental Research (HiWATER project. MOD05-based LST and CE318-based LST are compared with in situ measurements at 16 AMS sites with land cover types of vegetable, maize and orchards. The results show that the use of the MOD05 product could achieve a comparable accuracy in LST retrieval with that achieved using the CE318 data. The largest difference between the MOD05-based LST and CE318-based LST is 0.84 K throughout the study period over the Heihe River Basin. The standard deviation (STD, root mean square error (RMSE, and correlation coefficient (R of HJ-1B/IRS vs. the in situ measurements are 2.45 K, 2.78 K, and 0.67, respectively, whereas those for the MODIS 1 km LST product vs. the in situ measurements are 4.07 K, 2.98 K, and 0.79, respectively. The spatial pattern of the HJ-1B/LST over the study area in the Heihe River Basin generally agreed well with the MODIS 1 km LST product and contained more detailed spatial textures.

  19. Regularization for Atmospheric Temperature Retrieval Problems

    Science.gov (United States)

    Velez-Reyes, Miguel; Galarza-Galarza, Ruben

    1997-01-01

    Passive remote sensing of the atmosphere is used to determine the atmospheric state. A radiometer measures microwave emissions from earth's atmosphere and surface. The radiance measured by the radiometer is proportional to the brightness temperature. This brightness temperature can be used to estimate atmospheric parameters such as temperature and water vapor content. These quantities are of primary importance for different applications in meteorology, oceanography, and geophysical sciences. Depending on the range in the electromagnetic spectrum being measured by the radiometer and the atmospheric quantities to be estimated, the retrieval or inverse problem of determining atmospheric parameters from brightness temperature might be linear or nonlinear. In most applications, the retrieval problem requires the inversion of a Fredholm integral equation of the first kind making this an ill-posed problem. The numerical solution of the retrieval problem requires the transformation of the continuous problem into a discrete problem. The ill-posedness of the continuous problem translates into ill-conditioning or ill-posedness of the discrete problem. Regularization methods are used to convert the ill-posed problem into a well-posed one. In this paper, we present some results of our work in applying different regularization techniques to atmospheric temperature retrievals using brightness temperatures measured with the SSM/T-1 sensor. Simulation results are presented which show the potential of these techniques to improve temperature retrievals. In particular, no statistical assumptions are needed and the algorithms were capable of correctly estimating the temperature profile corner at the tropopause independent of the initial guess.

  20. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    Science.gov (United States)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  1. Diurnal and Seasonal Variation of Clear-Sky Land Surface Temperature of Several Representative Land Surface Types in China Retrieved by GMS-5

    Institute of Scientific and Technical Information of China (English)

    WANG Minyan; Lu Daren

    2006-01-01

    The retrieved results in this paper by GMS-5/VISSR thermal infrared data with single time/dual channel Split-Window Algorithm reveal the characteristics of diurnal and seasonal variation of clear-sky land surface temperature (LST) of several representative land surface types in China, including Tarim Basin, QinghaiTibetan Plateau, Hunshandake Sands, North China Plain, and South China. The seasonal variation of clear-sky LST in above areas varies distinctly for the different surface albedo, soil water content, and the extent of influence by solar radiation. The monthly average diurnal ranges of LST have two peaks and two valleys in one year. The characteristics of LST in most land of East Asia and that of sea surface temperature (SST) in the south of Taiwan Strait and the Yellow Sea are also analyzed as comparison. Tarim Basin and Hunshandake Sands have not only considerable LST diurnal cycle but also remarkable seasonal variation.In 2000, the maximum monthly average diurnal ranges of LST in both areas are over 30 K, and the annual range in Hunshadake Sands reaches 58.50 K. Seasonal variation of LST in the Qinghai-Tibetan Plateau is less than those in East Asia, Tarim Basin, and Hunshandake Sands. However, the maximum diurnal range exists in this area. The yearly average diurnal range is 28.05 K in the Qinghai-Tibetan Plateau in 2000. The characteristics of diurnal, seasonal, and annual variation from 1998 to 2000 are also shown in this research.All the results will be valuable to the research of climate change, radiation balance, and estimation for the change of land surface types.

  2. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  3. Retrieving Snow Surface Temperature Based on MODIS Data%基于MODIS数据的雪面温度遥感反演

    Institute of Scientific and Technical Information of China (English)

    周纪; 陈云浩; 李京; 唐艳

    2008-01-01

    On the basis of simplification of the Planck function in a low temperature range,this paper revises the practical split-window algorithm and presents a method for retrieving snow surface temperature (Ts) based on MODIS data in the mid-dle-latitude region.The application of this method in Qinghai Lake region reveals that it is feasible for the retrieval of Ts.Re-sults of correlation analysis indicate that there was strong negative relationship between Ts and altitude.By analyzing three typical areas in which land cover was relatively homogenous,this paper discusses the relationship between Tsand normalized difference snow index (NDSI) and then presents a new concept named "NDSI-Ts space".

  4. A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China

    Directory of Open Access Journals (Sweden)

    Meijun Jin

    2015-04-01

    Full Text Available This paper proposes a practical split-window algorithm (SWA for retrieving land surface temperature (LST from Landsat-8 Thermal Infrared Sensor (TIRS data. This SWA has a universal applicability and a set of parameters that can be applied when retrieving LSTs year-round. The atmospheric transmittance and the land surface emissivity (LSE, the essential SWA input parameters, of the Landsat-8 TIRS data are determined in this paper. We also analysed the error sensitivity of these SWA input parameters. The accuracy evaluation of the proposed SWA in this paper was conducted using the software MODTRAN 4.0. The root mean square error (RMSE of the simulated LST using the mid-latitude summer atmospheric profile is 0.51 K, improving on the result of 0.93 K from Rozenstein (2014. Among the 90 simulated data points, the maximum absolute error is 0.99 °C, and the minimum absolute error is 0.02 °C. Under the Tropical model and 1976 US standard atmospheric conditions, the RMSE of the LST errors are 0.70 K and 0.63 K, respectively. The accuracy results indicate that the SWA provides an LST retrieval method that features not only high accuracy but also a certain universality. Additionally, the SWA was applied to retrieve the LST of an urban area using two Landsat-8 images. The SWA presented in this paper should promote the application of Landsat-8 data in the study of environmental evolution.

  5. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  6. Land Surface Component Temperature Retrieval for Urban Scale Based on ASTER Image%城市尺度组分温度的ASTER数据遥感反演

    Institute of Scientific and Technical Information of China (English)

    郑文武; 曾永年

    2012-01-01

    Land surface component temperature has mote significant physical meaning, and it reflects the actual distribution of temperature more significantly. Meanwhile, its retrieval algorithms have no need for hypothesis that components in pixels have the same temperature. Although the multi-angle retrieval algorithm of component temperature has become mature gradually, its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data. Therefore, based on the existing multi-band remote sensing data, access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing. In this paper, a new algorithm to retrieve land surface component temperature for urban area had been proposed. It took advantage of ASTER data, and evaluated mean emissivity of pixels based on linear spectral unmixing, retrieved atmospheric water vapor content from MODIS NIR bands, and used Newton 's iterative method to obtain atmosphere average temperature. Finally, an experimental study of this algorithm had been conducted and the retrieval result had been validated using some measured data. The results showed that; (1) the results of component temperature retrieval algorithm and split window algorithm of pure pixels have high correlation coefficient and the correlation coefficient of vegetation is the highest; (2) compared with the measured data, biases of the retrieval result ranged between 0. 2 and 1. 4℃, and the vegetation component temperature among different components had the smallest bias value.%为了获取城市尺度组分温度,实现城市水热平衡的高精度反演,探索了一种多波段热红外遥感影像的城市尺度组分温度反演算法.算法选取了植被、土壤和不透水表面等3种组分,并且针对ASTER数据,利用线性混合像元分解方法获取像元平均比辐射率,以MODIS近红外数据

  7. Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas

    Science.gov (United States)

    Yang, Jinxin; Wong, Man Sing; Menenti, Massimo; Nichol, Janet; Voogt, James; Krayenhoff, E. Scott; Chan, P. W.

    2016-12-01

    This study aims to evaluate the effects of urban geometry on retrieval of emissivity and surface temperature in urban areas. An improved urban emissivity model based on sky view factor (IUEM-SVF) was further enhanced to consider all radiance contributions leaving the urban canopy, including (i) emission by all facets within an instantaneous field of view (IFOV); (ii) reflection by all facets of emission from surrounding facets; and (iii) propagation of emitted and reflected radiation with multiple reflections (scattering) within a complex 3D array of urban objects. The effective emissivity derived from IUEM-SVF was evaluated with a microscale radiative transfer and energy balance model: Temperatures of Urban Facets in 3-D (TUF-3D). IUEM-SVF performs well when urban facets have uniform emissivity and temperature; e.g., root mean square deviations (RMSD) are less than 0.005 when material emissivity is larger than 0.80 (ɛ ⩾ 0.80). However, when material emissivities are variable within the observed target, differences of effective emissivity between IUEM-SVF and TUF-3D become larger, e.g., RMSD of 0.010. When the effect of geometry is not considered and a mixed pixel emissivity is defined, the difference is even much larger (i.e. 0.02) and this difference increases with the decrease of sky view factor. Thus, the geometry effect should be considered in the determination of effective emissivity. Effective emissivity derived from IUEM-SVF was used to retrieve urban surface temperature from a nighttime ASTER thermal infrared image. Promising results were achieved in comparison with standard LST products retrieved with the Temperature and Emissivity Separation (TES) algorithm. IUEM-SVF shows promise as a means to improve the accuracy of urban surface temperature retrieval. The effect of thermal heterogeneity on the effective emissivity was also evaluated by TUF-3D, and results show that the thermal heterogeneity cannot be neglected since the RMSD between the effective

  8. Research Prowess in Retrieving Land Surface Temperature Based on Thermal Infrared Remote Sensing Technologies%热红外遥感反演地表温度研究进展

    Institute of Scientific and Technical Information of China (English)

    陈桥驿; 蔡宜泳

    2013-01-01

    介绍在遥感技术支持下用热红外波段反演地表温度的各种方法及其优缺点和适用情况;总结目前通道法反演地表温度的问题所在,引出其研究新方向:组分温度反演;最后,对热红外遥感反演地表温度作出总结和提出展望.%The methods of retrieving land surface temperature based on thermal infrared remote sensing technologies were introduced. The features of the methods and application range were also discussed. The disadvantages in the channel algorithm of retrieving land surface temperature were summarized. The new direction of component temperature retrieving was introduced. Finally, retrieving land surface temperature based on thermal infrared remote sensing temperature was summarized and forecasted.

  9. Comparing robust and physics-based sea surface temperature retrievals for high resolution, multi-spectral thermal sensors using one or multiple looks

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.B.; Szymanski, J.J.; Theiler, J.P.

    1999-04-04

    With the advent of multi-spectral thermal imagers such as EOS's ASTER high spatial resolution thermal imagery of the Earth's surface will soon be a reality. Previous high resolution sensors such as Landsat 5 had only one spectral channel in the thermal infrared and its utility to determine absolute sea surface temperatures was limited to 6-8 K for water warmer than 25 deg C. This inaccuracy resulted from insufficient knowledge of the atmospheric temperature and water vapor, inaccurate sensor calibration, and cooling effects of thin high cirrus clouds. The authors will present two studies of algorithms and compare their performance. The first algorithm they call robust since it retrieves sea surface temperatures accurately over a fairly wide range of atmospheric conditions using linear combinations of nadir and off-nadir brightness temperatures. The second they call physics-based because it relies on physics-based models of the atmosphere. It attempts to come up with a unique sea surface temperature which fits one set of atmospheric parameters.

  10. Comparing Methods for Land Surface Temperature Retrieval over Heterogeneous Land Cover Using Landsat-5 TM Thermal Infrared Data

    Science.gov (United States)

    Windahl, E.; de Beurs, K.

    2014-12-01

    Among other applications, remotely sensed land surface temperature (LST) has become critical for monitoring the surface urban heat island (SUHI) effect in cities across the world. While daily MODIS thermal infrared data is invaluable for examining changes in LST over time, the large 1 km spatial resolution makes studying the spatial patterns of LST in a heterogeneous urban environment difficult. The 120 m spatial resolution of Landsat 4-5 TM, as well the archive of data stretching back to 1982, make Landsat 4-5 TM sensors valuable resources for thermal data, especially in urban areas. However, the difficulty accurately correcting for atmospheric effects with only one thermal band, as well as the necessity for a priori knowledge of land surface emissivity (LSE), mean it is underutilized. Research to determine best practices for deriving LST from Landsat TM data given homogenous, usually vegetated land cover is relatively extensive; however, the accuracy of these methods given heterogeneous land cover is less well known, especially given Land Surface Emissivity (LSE) calculations that often rely heavily on NDVI. In order to determine the best methodology for measuring LST across heterogeneous land cover in the central United States, this study derives LST from Landsat 5 TM band 6 for Oklahoma City and the surrounding countryside on a fall and a spring date using three different methods: no atmospheric correction, the radiative transfer equation, and the mono-window algorithm. With all three methods, the common NDVI-based approach for estimating LSE is used; a fourth LST calculation with no atmospheric correction and an assumed emissivity of one is therefore included as contrast. Using regression analysis, these four LST measurements are compared to air temperatures recorded concurrently by approximately 40 Oklahoma Mesonet stations across the study area, and results are broken down by land cover type to explore potential biases or variations in accuracy.

  11. Lunar surface dielectric constant,regolith thickness, and ~3He abundance distributions retrieved from the microwave brightness temperatures of CE-1 Lunar Microwave Sounder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Lunar regolith parameters, such as physical temperature, thickness and dielectric constant, are important in studying regolith features, distribution of lunar resources and evolution of the Moon. There had been no measurement obtained by lunar-orbit-borne microwave radiometer applied to evaluate the properties of lunar regolith before CE-1 Lunar Microwave Sounder (CELMS) being launched. CEMLS is the first passive microwave radiometer in the world to sound the surface of the Moon. The brightness temperatures (TB) sensed by CELMS include complicated information on the above geophysical parameters. In this paper, algorithms of retrieving dielectric constant, regolith thickness, and 3He content from CELMS brightness temperatures are developed, and the results are compared with those from literature. The results show that the regolith thicknesses are mostly in the range of 4.0-6.0 m, and 43% of them are bigger than 5.0 m. The content of 3He evaluated by retrieved regolith thickness is about 1.03 million tons.

  12. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling

    Directory of Open Access Journals (Sweden)

    Lidia Vlassova

    2014-05-01

    Full Text Available Land Surface Temperature (LST is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global change and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in Mediterranean “dehesa” ecosystem projects LST retrieved from Landsat data is required to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale remotely-sensed data and assess water and carbon balance in ecologically fragile heterogeneous ecosystem of Mediterranean wooded grassland (dehesa. Thus, three methods based on the Radiative Transfer Equation were used to extract LST from a series of 2009–2011 Landsat-5 TM images to assess the applicability for temperature input generation to a Landsat-MODIS LST integration. When compared to surface temperatures simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5 with atmospheric profiles inputs (LSTref, values from Single-Channel (SC algorithm are the closest (root-mean-square deviation (RMSD = 0.50 °C; procedure based on the online Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC shows RMSD = 0.85 °C; Mono-Window algorithm (MW presents the highest RMSD (2.34 °C with systematical LST underestimation (bias = 1.81 °C. Differences between Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained mainly by differences in observation geometry, emissivity, and time mismatch between Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST differences due to greater variations in surface emissivity and thermal contrasts between landcover components.

  13. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data.

    Science.gov (United States)

    Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan

    2014-04-01

    The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.

  14. Retrieval of sea surface temperature and trace gas column averaged from GOSAT, IASI-A, and IASI-B over the Arctic Ocean in summer 2010 and 2013

    Science.gov (United States)

    Payan, Sébastien; Camy-Peyret, Claude; Bureau, Jérôme

    2016-04-01

    The Arctic Ocean is a very important region of the globe in which the effect of climate change can be detected over short time periods. We have used the possibility provided by the three infrared sounders TANSO-FTS on the GOSAT platform, IASI-A, and IASI-B on the MetOp platforms to retrieve the sea surface temperature (Tsurf) and the column averaged mixing ratio of several trace gases (CO2, CH4, N2O, O3) for pairs of nearly coinciding footprints (IFOVs) at small time separations (typically for IASI 46 min and 54 min depending on which satellite has first observed the corresponding scene). A strict filtering based on the AVHRR cloud fraction and the radiance analysis within the GOSAT and IASI footprints lead to a large number of quasi-coinciding IFOVs for which a 1D-var inversion (Tsurf and XCO2 as the main parameters in the state vector, plus scaling factors for the profiles of H2O and O3) has been performed. As an example, we used during retrieval the atmospheric window between 940 and 980 cm-1 (CO2 laser band) for which the sensitivity to the surface is maximum. The statistics of the comparison between IASI-A and IASI-B retrievals is presented and compared to the corresponding Eumetsat L2 products. The months of July and August for the years 2010 and 2013 have been considered since in these Arctic summer conditions the ice pack coverage is reduced. The differences between these two consecutive years is discussed and a comparison with 2010 (for which only IASI-A was in orbit) is confirming that IASI can indeed be used for climate change studies.

  15. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  16. Bandpass-resampling effects for the retrieval of surface emissivity.

    Science.gov (United States)

    Richter, Rudolf; Coll, Cesar

    2002-06-20

    The retrieval of surface emissivity in the 8-14-microm region from remotely sensed thermal imagery requires channel-averaged values of atmospheric transmittance, path radiance, and downwelling sky flux. Band-pass resampling introduces inherent retrieval errors that depend on atmospheric conditions, spectral region, bandwidth, flight altitude, and surface temperature. This simulation study is performed for clear sky conditions and moderate atmospheric water vapor contents. It shows that relative emissivity retrieval errors can reach as much as 3% for broadband sensors (1-2-microm bandwidth) and 0.8% for narrowband instruments (0.15 microm), even for constant surface emissivity. For spectrally varying surface emissivities the relative retrieval error increases for the broadband instrument by approximately 2% in channels with strong emissivity changes of 0.05-0.1. The corresponding retrieval errors for narrowband sensors increase by approximately 3-4%. The channels in the atmospheric window regions with lower transmittance, i.e., 8-8.5 and 12.5-14 microm, are most sensitive to retrieval errors.

  17. Sensitivity of aerosol retrieval over snow surfaces

    Science.gov (United States)

    Seidel, F. C.; Painter, T. H.

    2011-12-01

    Significant amounts of black carbon and dust aerosols are transported to and accumulated in snowpacks of mountain ranges around the globe. The direct climate forcing of these particles is increasingly understood, whereas its indirect radiative forcing due to snow albedo and snow cover changes is still under investigation. In-situ and new remote sensing techniques are used to estimate snowpack properties from local to regional scales. Nevertheless, orbital and suborbital Earth observation data are difficult to analyze due to high spatial variability of the snowpack in rugged terrain. In addition, changes in atmospheric turbidity significantly complicate the estimation of snow cover characteristics and requires prior retrieval of optical and microphysical aerosol properties. Unfortunately, most aerosol retrieval techniques work only over dark surfaces. We therefore present a study on the sensitivity of aerosol optical depth (AOD) retrieval over snow surfaces. Radiative transfer calculations show that the sensitivity to surface spectral albedo depends strongly on the aerosol single scattering albedo (ratio of scattering efficiency to total extinction efficiency). Absorbing aerosol types (e.g. soot) provide a relatively good AOD retrieval sensitivity for very bright surfaces. The findings provide a basis for the development of future techniques and algorithms, which are able to concurrently retrieve snow and aerosol properties using remote sensing data. We explore these sensitivities with synthetic data and a time series of imaging spectrometer data, in situ spectral irradiance measurements, and sunphotometer measurements of AOD in the mountains of the Upper Colorado River Basin, USA. Ultimately, this research is important to map and better understand regional influences of aerosol and climate forcings on the cryosphere and water cycle in mountainous and other cold regions.

  18. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling

    DEFF Research Database (Denmark)

    Vlassova, Lidia; Perez-Cabello, Fernando; Nieto Solana, Hector;

    2014-01-01

    Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global ch...

  19. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling

    DEFF Research Database (Denmark)

    Vlassova, Lidia; Perez-Cabello, Fernando; Nieto Solana, Hector;

    2014-01-01

    Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global...

  20. The potential information in the temperature difference be-tween shadow and sunlit of surfaces and a new way of retrieving the soil moisture

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermal inertia and plant water stress index are oftenadopted to estimate soil moisture available for crops or plants. However, it is not very easy to obtain two temporal temperatures for thermal inertia model and air temperature for the plant water stress mode. Shadows of ground objects are often referred to noise on visible and near infrared remote sensing. But the difference of temperature between shadows and sunlit contains rich information concerning with heat-water status for soil. This paper presented a new way to excavate just by temperature difference usually between shadow and sunlit surface. Experiments validated the ideal. We can adopt thermal camera to measure the differences in the field measurements. However, we must use inversion based on multianglar thermal infrared remote sensing data in airborne and spaceborne. An inverting model was also presented by using Monte-Carlo and the least square method. Results show that this way is feasible.

  1. Study on retrieval model of land surface temperature in Jinghe watershed in arid region%干旱区精河流域地表温度的模型反演研究

    Institute of Scientific and Technical Information of China (English)

    王明霞; 毋兆鹏

    2014-01-01

    Based on Landsat ETM+ image data in Jinghe watershed oasis ,both methods of mono-window algorithm and single-channel algorithm were adopted to retrieve land surface temperature (LST ) in the study area ,and the compari-son between the retrieved results and MODIS temperature products (MODIS LST ) was made .The results showed :(1 ) The retrieved results from these two algorithms were similar each other in overall trend ,and the mean temperature differ-ence of the whole study area was about 2k .(2) The retrieval accuracy could be improved effectively by using modified soil-adjusted vegetation index (MSAVI ) instead of normalized differential vegetation index (NDVI ) to compute land sur-face emissivity ,and the retrieval accuracy of single-window algorithm was higher than that of single-channel algorithm . The correlation coefficients between the retrieved data of these two algorithms and MODIS LST were 0 .925 and 0 .8651 , respectively .(3) In the urban areas ,the correlation coefficient between the retrieved data of single-channel algorithm and MSAVI was 0 .8136 ,being higher than that of mono-window algorithm .Therefore ,the method of single-channel al-gorithm was more suitable for the retrieval research of LST in urban areas in large scale .%以精河流域绿洲为研究区,使用Landsat ETM+数据,采用单窗算法和普适性单通道算法对研究区地表温度进行反演,并将这两种算法的反演结果与研究区MODIS温度产品(MODIS LST )进行比较。结果表明:(1)单窗算法和普适性单通道算法反演的结果总体趋势比较接近,研究区整体的平均温度相差约2k;(2)采用改进型土壤调整植被指数(MSAVI )代替归一植被指数(NDVI )计算地表比辐射率可有效提高反演精度,并且同等条件下单窗算法的反演精度高于普适性单通道算法,两种算法的反演结果与MODIS LST的相关系数分别是0.9255和0.8651;(3)在城镇区域,普适

  2. Data Fusion Between Microwave and Thermal Infrared Radiometer Data and Its Application to Skin Sea Surface Temperature, Wind Speed and Salinity Retrievals

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Method for data fusion between Microwave Scanning Radiometer: MSR and Thermal Infrared Radiometer: TIR derived skin sea surface temperature: SSST, wind speed: WS and salinity is proposed. SSST can be estimated with MSR and TIR radiometer data. Although the contribution ocean depth to MSR and TIR radiometer data are different each other, SSST estimation can be refined through comparisons between MSR and TIR derived SSST. Also WS and salinity can be estimated with MSR data under the condition of the refined SSST. Simulation study results support the idea of the proposed data fusion method.

  3. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method

    Directory of Open Access Journals (Sweden)

    Xiaolei Yu

    2014-10-01

    Full Text Available Accurate inversion of land surface geo/biophysical variables from remote sensing data for earth observation applications is an essential and challenging topic for the global change research. Land surface temperature (LST is one of the key parameters in the physics of earth surface processes from local to global scales. The importance of LST is being increasingly recognized and there is a strong interest in developing methodologies to measure LST from the space. Landsat 8 Thermal Infrared Sensor (TIRS is the newest thermal infrared sensor for the Landsat project, providing two adjacent thermal bands, which has a great benefit for the LST inversion. In this paper, we compared three different approaches for LST inversion from TIRS, including the radiative transfer equation-based method, the split-window algorithm and the single channel method. Four selected energy balance monitoring sites from the Surface Radiation Budget Network (SURFRAD were used for validation, combining with the MODIS 8 day emissivity product. For the investigated sites and scenes, results show that the LST inverted from the radiative transfer equation-based method using band 10 has the highest accuracy with RMSE lower than 1 K, while the SW algorithm has moderate accuracy and the SC method has the lowest accuracy.

  4. VEM on VERITAS - Retrieval of global infrared surface emissivity maps of Venus and expectable retrieval uncertainties

    Science.gov (United States)

    Kappel, David; Arnold, Gabriele; Haus, Rainer; Helbert, Jörn; Smrekar, Suzanne; Hensley, Scott

    2016-04-01

    Even though Venus is in many respects the most Earth-like planet we know today, its surface composition and geology are not well understood yet. The major obstacle is the extremely dense, hot, and opaque atmosphere that complicates both in situ measurements and infrared remote sensing, the wavelength range of the latter often being the range of choice due to its coverage of many spectral properties diagnostic to the surface material's composition and texture. Thermal emissions of the hot surface depend on surface temperature and on spectral surface emissivity. As this emitted radiation wells upward, it is strongly attenuated through absorption and multiple scattering by the gaseous and particulate components of the dense atmosphere, and it is superimposed by thermal atmospheric emissions. While surface information this way carried to space is completely lost in the scattered sunlight on the dayside, a few narrow atmospheric transparency windows around 1 μm allow the sounding of the surface with nightside measurements. The successfully completed VEX ('Venus Express') mission, although not dedicated to surface science, enabled a first glimpse at much of the southern hemisphere's surface through the nightside spectral transparency windows covered by VIRTIS-M-IR ('Visible and InfraRed Thermal Imaging Spectrometer, Mapping channel in the IR', 1.0-5.1 μm). Two complementary approaches, a fast semi-empiric technique on the one hand, and a more fundamental but resource-intensive method based on a fully regularized Bayesian multi-spectrum retrieval algorithm in combination with a detailed radiative transfer simulation program on the other hand, were both successfully applied to derive surface emissivity data maps. Both methods suffered from lack of spatial coverage and a small SNR as well as from surface topography maps not sufficiently accurate for the definition of suitable boundary conditions for surface emissivity retrieval. The recently proposed VERITAS mission

  5. The potential information in the temperature difference be-tween shadow and sunlit of surfaces and a new way of retrieving the soil moisture

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua

    2001-01-01

    [1]Zhang Renhua, A new model for estimating crop water deficiency based on infrared information, Science in China, Ser. B, 1987, 30(4): 413[2]Jackson, R. D., Canopy temperature as a crop water stress indictor, Water Resources Research, 1981, 17 (4): 1133.[3]Price, J. C., Thermal inertia mapping: a new view of earth, Journal of Geophysical Research, 1982, 87: 2582.[4]Kahle A. B., A simple thermal model of earth surface by remote sensing, Journal of Geophysical Research, 1977, 82: 1673.[5]Zhang Renhua, A remote sensing thermal inertia model for soil moisture and it application, Chinese Science Bulletin, 1991, 35: 924[6]Zhang Renhua, Tia Guliang, Determination of emissivity of objects at normal temperature, Chinese Science Bulletin, 1981, 25: 447.[7]Zhang Renhua, Sun Xiaomin, Li Zhaoliang et al., Revealing of major factors in the directional thermal radiation of ground object: a new way for improving the precision of directional radiant temperature measuring and data analysis, Science in China, Ser. E, 2000, 43 (supplement): 34.[8]Su Hongbo, Zhang Renhua, Sun Xiaomin, et al., The thermal model for discrete vegetation and its solution on pixel scale using computer graphics, Science in China, Ser. E, 2000, 43 (supplement): 62.[9]Zhang Renhua, Sun Xiaomin, Su Hongbo et al., A remote sensing model of CO2 flux for wheat and studying of regional distribution, Science in China, Series D, 1999, 42: 325[10]Li Xiaowen, Strahler, A., Geometric-optical bidirectional reflectance modeling of discrete crown vegetation canopy effect of crown shape and mutual shadowing, IEEE, Transactions on Geoscience and Remote Sensing, 1992, 30: 276.

  6. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  7. Semi-empirical Model for Retrieving Land Surface Temperature Based on AMSR-E Data%一种基于AMSR-E的地表温度半经验反演模型

    Institute of Scientific and Technical Information of China (English)

    陈修治; 李勇; 韩留生; 苏泳娴; 陈水森

    2013-01-01

    This paper develops a semi-empirical model for retrieving land surface temperature ( sT ) using AMSR-E data based on the passive microwave radiative transfer equation, in combination with the relation between vegetation depth and MPDI, and that between precipitable water content and land surface temperature. With this model, sT can be easily simulated from the brightness temperatures of AMSR-E 6.9GHz band and 10.7GHz band without any ancillary data. The sT mapping and validation results of China in 2009 prove that the average sT retrieval accuracy reaches about 2.51 (R℃ 2=0.79). It can be considered that the model is a simple and also effective algorithm to retrieve sT with passive microwave remote sensing data.%  基于被动微波辐射传输方程,结合De Jeu建立的透过率与微波极化差异指数的通用关系式,以及Smiths建立的地表温度与大气总可降水量的经验关系,构建了一套基于AMSR-E影像的地表温度半经验反演模型,该模型无需借助其他辅助数据,便可从AMSR-E 6.9GHz和10.7GHz两个波段的亮度温度模拟得到地表温度变量。对2009年我国地表温度进行实例模拟和验证,结果显示,该地表温度模型的平均反演精度达到2.54℃(R2=0.79),是一种简单有效的被动微波遥感地表温度模拟方法。

  8. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  9. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  10. 热红外遥感反演近地层气温的研究进展%Advances in the Study of Near Surface Air Temperature Retrieval from Thermal Infrared Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    徐永明; 覃志豪; 万洪秀

    2011-01-01

    Near surface air temperature is an important environment variable in many earth system models, because it is a key factor in the energy and water exchanges between land surface and atmosphere. Detailed measurements of spatial and temporal variations of near surface air temperature are critical for the effective understanding of climate,hydrology, ecology, agriculture and terrestrial life processes. Traditionally meteorological observation could provide accurateair temperature data at the point scale, but most earth system models need gridded input variables.Satellite remote sensing provides a straightforward and consistent way to observe air temperature at regional and global scales with more spatially detailed information than meteorological data. This paper systematically reviews the air temperature retrieving algorithms for thermal remote sensing data, which include TVX approaches, statistical approaches, neural network approaches and energy balance approaches. The main advantages and limitations of these four methods are also discussed. Finally, the development tendencies of estimating air temperature by remote sensing are pointed out, such as intensive research on thermal radiant transfer model, spatial -temporal scaling of air temperature and improvement of cloud detection.%近地层气温是生态环境的重要因子,是描述地表与大气能量交换与水分循环的关键变量.气象站点观测能够提供点尺度上的准确气温资料,但是大多数地球系统模型需要空间连续的参数来模拟物理过程.遥感提供了比地表气象观测数据更理想的空间异质度信息,为快速获取大尺度的气温时空信息提供了新的途径.主要介绍了目前常用的几种遥感气温估算方法,包括温度-植被指数(TVX)方法、经验统计方法、神经网络方法和能量平衡方法等等,并对这些方法的优、缺点分别进行了评述.最后,指出今后应该加强辐射传输过程的机理研究、气温

  11. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    Directory of Open Access Journals (Sweden)

    Keunchang Jang

    2014-09-01

    Full Text Available Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS provides effective air temperature (Ta retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E for estimating surface level Ta under both clear and cloudy sky conditions in the United States for 2006. The instantaneous Ta retrievals showed favorable agreement with in situ air temperature records from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while root mean square errors (RMSE for the Ta retrievals were 4.58 K and 4.99 K for clear and cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous Ta retrievals from day/night overpasses, and showed favorable agreement with local tower measurements (R2 = 0.88; RMSE = 3.48 K. The results of this study indicate that the combination of MODIS and AMSR-E sensor data can produce Ta retrievals with reasonable accuracy and relatively fine spatial resolution (~5 km for clear and cloudy sky conditions.

  12. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes

    Science.gov (United States)

    Pougatchev, Nikita; August, Thomas; Calbet, Xavier; Hultberg, Tim; Oduleye, Osoji; Schlüssel, Peter; Stiller, Bernd; St. Germain, Karen; Bingham, Gail

    2008-08-01

    The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI) Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The L2 data were validated through assessment of their error covariances and biases using radiosonde data for the reference. The radiosonde data set includes dedicated launches as well as the ones performed at regular synoptic times at Lindenberg station, Germany). For optimal error estimate the linear statistical Validation Assessment Model (VAM) was used. The model establishes relation between the compared satellite and reference measurements based on their relations to the true atmospheric state. The VAM utilizes IASI averaging kernels and statistical characteristics of the ensembles of the reference data to allow for finite vertical resolution of the retrievals and spatial and temporal non-coincidence. For temperature retrievals expected and assessed errors are in good agreement; error variances/rms of a single FOV retrieval are 1K between 800 - 300 mb with an increase to ~1K in tropopause and ~2K at the surface, possibly due to wrong surface parameters and undetected clouds/haze. Bias against radiosondes oscillates within +/-0 5K . between 950 - 100 mb. As for water vapor, its highly variable complex spatial structure does not allow assessment of retrieval errors with the same degree of accuracy as for temperature. Error variances/rms of a single FOV relative humidity retrieval are between 10 - 13% RH in the 800 - 300 mb range.

  13. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  14. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  15. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  16. IASI temperature and water vapor retrievals – error assessment and validation

    Directory of Open Access Journals (Sweden)

    N. Pougatchev

    2009-03-01

    Full Text Available The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The error covariance matrices and biases of the most recent version (4.3.1 of the L2 data were assessed, and the assessment was validated using radiosonde data for reference. The radiosonde data set includes dedicated and synoptic time launches at the Lindenberg station in Germany. For optimal validation, the linear statistical Validation Assessment Model (VAM was used. The VAM uses radiosonde profiles as input and provides optimal estimate of the nominal IASI retrieval by utilizing IASI averaging kernels and statistical characteristics of the ensembles of the reference radiosondes. For temperature temperatures above 900 mb and water retrievals above 700 mb, level expected and assessed errors are in good agreement. Below those levels, noticeable excess in assessed error is observed, possibly due to inaccurate surface parameters and undetected clouds/haze.

  17. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data

    Institute of Scientific and Technical Information of China (English)

    XU; Xiru; (徐希孺); CHEN; Liangfu; (陈良富); ZHUANG; Jiali; (庄家礼)

    2001-01-01

    After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.

  18. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm

    Science.gov (United States)

    Gupta, Pawan; Levy, Robert C.; Mattoo, Shana; Remer, Lorraine A.; Munchak, Leigh A.

    2016-07-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard the two Earth Observing System (EOS) satellites Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air-quality applications. However, the application of MODIS aerosol products for air-quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. This is largely because the urban surface reflectance behaves differently than that assumed for natural surfaces. In this study, we address the inaccuracies produced by the MODIS Dark Target (MDT) algorithm aerosol optical depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS Land Surface Reflectance and Land Cover Type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the continental United States (CONUS). The new surface scheme takes into account the change in underlying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20 %. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sun photometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1 due to the ultra-sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.

  19. Retrieving Atmospheric Temperature Profiles from AMSU-A Data with Neural Networks

    Institute of Scientific and Technical Information of China (English)

    YAO Zhigang; CHEN Hongbin; LIN Longfu

    2005-01-01

    Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions.When an offset of 0.5 K or a noise level of +0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP).It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally,the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.

  20. Towards a surface radiation climatology: Retrieval of downward irradiances from satellites

    Science.gov (United States)

    Schmetz, Johannes

    . The requested retrieval accuracy may be reached with advanced techniques for estimating cloud base height and with the exploitation of correlative data, such as the analysis for numerical weather prediction of fields of temperature and humidity. The use of such data should also be advantageous to physical methods for the shortwave retrieval. Validation studies are compromised by the different nature of single spot surface measurements and area covering satellite retrievals. For physical retrievals employing radiative transfer codes it is recommended to test models against a defined standard.

  1. Skimming the surface. Verbal overshadowing of analogical retrieval.

    Science.gov (United States)

    Lane, Sean M; Schooler, Jonathan W

    2004-11-01

    It has become almost a maxim that "talking through" a problem is advantageous. Contrary to this wisdom, studies from numerous domains have demonstrated that describing one's thought processes or analyzing a judgment may, in some circumstances, actually impair performance. The two experiments reported here built upon prior work by examining the effect of verbalization on the retrieval of analogies. Participants read a series of 16 short stories. Later, they were presented with 8 test stories and indicated whether these stories were analogies of the stories they had read previously. Each test story shared the same deep structure with one prior story and only surface characteristics with another prior story. Half of the participants completed the test while thinking aloud, and half did not think aloud. In both experiments, participants who thought aloud were more likely to retrieve surface matches and less likely to retrieve true analogies than participants who did not verbalize their thoughts during the test.

  2. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru.

  3. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.

  4. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  5. Retrieval of humidity and temperature profiles over the oceans from INSAT 3D satellite radiances

    Indian Academy of Sciences (India)

    C Krishnamoorthy; Deo Kumar; C Balaji

    2016-03-01

    In this study, retrieval of temperature and humidity profiles of atmosphere from INSAT 3D-observed radiances has been accomplished. As the first step, a fast forward radiative transfer model using an Artificial neural network has been developed and it was proven to be highly effective, giving a correlationcoefficient of 0.97. In order to develop this, a diverse set of physics-based clear sky profiles of pressure (P), temperature (T) and specific humidity (q) has been developed. The developed database was further used for geophysical retrieval experiments in two different frameworks, namely, an ANN and Bayesianestimation. The neural network retrievals were performed for three different cases, viz., temperature only retrieval, humidity only retrieval and combined retrieval. The temperature/humidity only ANN retrievals were found superior to combined retrieval using an ANN. Furthermore, Bayesian estimation showed superior results when compared with the combined ANN retrievals.

  6. An algorithm for sea surface temperature retrieval based on TMI measurements.%一种基于TMI观测结果的海表温度反演算法

    Institute of Scientific and Technical Information of China (English)

    王雨; 傅云飞; 刘奇; 刘国胜; 刘显通; 程静

    2011-01-01

    基于星载微波仪器观测结果反演海表温度,能很好地克服云对反演结果的干扰,实现对海表温度全天候的监测.文中利用热带测雨卫星所搭载的微波成像仪的观测结果,建立了一种新的适用于非降水条件下的海表温度反演算法.作为一种半经验统计算法,它以辐射传输方程为基础,通过理论模拟计算,建立海表温度与微波成像仪多通道亮温之间的关系,较好地反演海表温度.该算法最大的特点是选择了合适的5个微波成像仪通道,并通过这5个通道亮温的对数线性组合方式提取海表温度信息,从而有效地避开了其他环境参数对反演结果的影响.海表温度的反演结果与地基浮标观测结果的比较表明,二者间的均值相差0.116 K、均方根误差为0.665 K.在不同的风速、风向及天空状态(有无云)情况下,二者的相关系数均在0.95以上,均值差异小于0.2 K,均方根误差在0.65 K左右.在全球尺度上海表温度的反演结果与现有海表温度产品的比较显示,二者的差异一般不超过1 K,且差异不随其他环境参数发生明显变化;与多年月平均海表温度产品对比研究结果表明,本算法反演获得的海表温度在全球大部分地区(除高风速高水汽区外)与其他海表温度资料的差异在1 K范围以内.上述结果表明,该反演算法不仅适用于实时反演,亦能用于气候尺度研究.%Based on the observations of the microwave instruments on satellites, sea surface temperature (SST) can be accurately obtained regardless of clouds, which is helpful to globally monitor changes in SSTs under any conditions. In this study,a new, as well as simple and accurate, algorithm is proposed for retrieving SSTs in the absence of rain by using the Tropical Rainfall Measuring Mission Microwave Imager (TMI) measurements. Applying a log-linear relationship between the brightness temperatures and the main environmental parameters and

  7. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  8. Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-06

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

  9. Neural Network Based Retrieval of Atmospheric Temperature Profile Using AMSU-A Observations

    Directory of Open Access Journals (Sweden)

    R. K. Gangwar

    2014-01-01

    Full Text Available The present study describes artificial neural network (ANN based approach for the retrieval of atmospheric temperature profiles from AMSU-A microwave temperature sounder. The nonlinear relationship between the temperature profiles and satellite brightness temperatures dictates the use of ANN, which is inherently nonlinear in nature. Since latitudinal variation of temperature is dominant one in the Earth’s atmosphere, separate network configurations have been established for different latitudinal belts, namely, tropics, mid-latitudes, and polar regions. Moreover, as surface emissivity in the microwave region of electromagnetic spectrum significantly influences the radiance (or equivalently the brightness temperature at the satellite altitude, separate algorithms have been developed for land and ocean for training the networks. Temperature profiles from National Center for Environmental Prediction (NCEP analysis and brightness temperature observations of AMSU-A onboard NOAA-19 for the year 2010 have been used for training of the networks. Further, the algorithm has been tested on the independent dataset comprising several months of 2012 AMSU-A observations. Finally, an error analysis has been performed by comparing retrieved profiles with collocated temperature profiles from NCEP. Errors in the tropical region are found to be less than those in the mid-latitude and polar regions. Also, in each region the errors over ocean are less than the corresponding ones over land.

  10. A modified Becker's split window approach for retrieving land surface temperature from the AVHRR and VIRR data%基于AVHRR和VIRR数据的改进型Becker“分裂窗”地表温度反演算法

    Institute of Scientific and Technical Information of China (English)

    权维俊; 韩秀珍; 陈洪滨

    2012-01-01

    为了将基于NOAA-9/AVHRR数据提出的Becker和Li的“分裂窗”地表温度算法成功地应用于长序列NOAA/AVHRR和FY 3A/VIRR数据的地表温度反演,为气候变化研究提供长序列、高精度、高分辨率的地表温度数据集,从辐射传输方程出发,首先利用MODTRA 4.1模式模拟了多种地表和大气状态下的光谱辐亮度数据,并结合AVHRR和VIRR通道4、5的光谱响应函数建立了温度数据集(TS,T4,T5);然后,基于该数据集采用最小二乘法重新计算了Becker和Li算法中的各参数,提出了一个适用于NOAA/AVHRR和FY-3A/VIRR数据的改进型Becker和Li分裂窗地表温度反演算法;并利用改进型算法对2008年4月27日03时12分(世界时)观测的一景覆盖北京地区的NOAA-17/AVHRR数据进行了地表温度的反演,将反演结果与日本东京大学提供的同地区、同时相的MODIS地表温度产品进行了对比分析.结果表明,两种地表温度产品的相关系数为0.88,均方根偏差(RMSD)为2.1K;在两种地表温度差值图像的频率直方图上有69.6%的像元的值在±2K之内,37%的像元的值在±1K之内.%In order to successfully apply the Becker and Li's split window approach, which was proposed based on the NOAA-9 AVHRR data, to estimate the Land Surface Temperature (LST) from the different AVHRRs and VIRR data and further to provide a high-precision, long-time, and high-resolution LST dataset for climate change research, a modified Becker and Li's split widow approach is developed based on the radiative transfer equation in this paper. To begin with, the MODTRAN 4. 1 is used to generate the spectral radiance data under a variety of surface and atmosphere conditions. Then, the temperature dataset (TS,T4,T5) is built by convolving the spectral radiance data with the spectral response functions of channels 4 and 5 of the AVHRRs and VIRR. The parameters of the Becker and Li's split window approach are subsequently recalculated based on

  11. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  12. Retrieving Drill Bit Seismic Signals Using Surface Seismometers

    Institute of Scientific and Technical Information of China (English)

    Linfei Wang; Huaishan Liu; Siyou Tong; Yanxin Yin; Lei Xing; Zhihui Zou; Xiugang Xu

    2015-01-01

    Seismic while drilling (SWD) is an emerging borehole seismic imaging technique that uses the downhole drill-bit vibrations as seismic source. Without interrupting drilling, SWD technique can make near-real-time images of the rock formations ahead of the bit and optimize drilling operation, with reduction of costs and the risk of drilling. However, the signal to noise ratio (SNR) of surface SWD-data is severely low for the surface acquisition of SWD data. Here, we propose a new method to retrieve the drill-bit signal from the surface data recorded by an array of broadband seismometers. Taking advantages of wavefield analysis, different types of noises are identified and removed from the surface SWD-data, resulting in the significant improvement of SNR. We also optimally synthesize seis-mic response of the bit source, using a statistical cross-coherence analysis to further improve the SNR and retrieve both the drill-bit direct arrivals and reflections which are then used to establish a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth. The subsurface images de-rived from these data compare well with the corresponding images of the three-dimension surface seis-mic survey cross the well.

  13. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  14. MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures

    CERN Document Server

    McGuire, P C; Smith, M D; Arvidson, R E; Murchie, S L; Clancy, R T; Roush, T L; Cull, S C; Lichtenberg, K A; Wiseman, S M; Green, R O; Martin, T Z; Milliken, R E; Cavender, P J; Humm, D C; Seelos, F P; Seelos, K D; Taylor, H W; Ehlmann, B L; Mustard, J F; Pelkey, S M; Titus, T N; Hash, C D; Malaret, E R

    2009-01-01

    We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical ...

  15. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  16. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval

    Science.gov (United States)

    Galantowicz, John F.; Moncet, Jean-Luc; Liang, Pan; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    An analysis of land surface microwave emission time series shows that the characteristic diurnal signature associated with subsurface emission in sandy deserts carry over to arid and semi-arid region worldwide. Prior work found that diurnal variation of Special Sensor Microwave/Imager (SSM/I) brightness temperatures in deserts was small relative to International Satellite Cloud Climatology Project land surface temperature (LST) variation and that the difference varied with surface type and was largest in sand sea regions. Here we find more widespread subsurface emission effects in Advanced Microwave Scanning Radiometer-EOS (AMSR-E) measurements. The AMSR-E orbit has equator crossing times near 01:30 and 13 :30 local time, resulting in sampling when near-surface temperature gradients are likely to be large and amplifying the influence of emission depth on effective emitting temperature relative to other factors. AMSR-E measurements are also temporally coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements, eliminating time lag as a source of LST uncertainty and reducing LST errors due to undetected clouds. This paper presents monthly global emissivity and emission depth index retrievals for 2003 at 11, 19, 37, and 89 GHz from AMSR-E, MODIS, and SSM/I time series data. Retrieval model fit error, stability, self-consistency, and land surface modeling results provide evidence for the validity of the subsurface emission hypothesis and the retrieval approach. An analysis of emission depth index, emissivity, precipitation, and vegetation index seasonal trends in northern and southern Africa suggests that changes in the emission depth index may be tied to changes in land surface moisture and vegetation conditions

  17. Retrieval of aerosol optical depth over land surfaces from AVHRR data

    Directory of Open Access Journals (Sweden)

    L. Mei

    2013-02-01

    Full Text Available The Advanced Very High Resolution Radiometer (AVHRR radiance data provide a global, long-term, consistent time series having high spectral and spatial resolution and thus being valuable for the retrieval of surface spectral reflectance, albedo and surface temperature. Long term time series of such data products are necessary for studies addressing climate change, sea ice distribution and movement, and ice sheet coastal configuration. These data have also been used to retrieve aerosol properties over ocean and land surfaces. However, the retrieval of aerosol over land and land surface albedo are challenging because of the information content of the measurement is limited and the inversion of these data products being ill defined. Solving the radiative transfer equations requires additional information and knowledge to reduce the number of unknowns. In this contribution we utilise an empirical linear relationship between the surface reflectances in the AVHRR channels at wavelengths of 3.75 μm and 2.1 μm, which has been identified in Moderate Resolution Imaging Spectroradiometer (MODIS data. Next, following the MODIS dark target approach, the surface reflectance at 0.64 μm was obtained. The comparison of the estimated surface reflectance at 0.64 μm with MODIS reflectance products (MOD09 shows a strong correlation (R = 0.7835. Once this was established, the MODIS "dark-target" aerosol retrieval method was adapted to Advanced Very High Resolution Radiometer (AVHRR data. A simplified Look-Up Table (LUT method, adopted from Bremen AErosol Retrieval (BAER algorithm, was used in the retrieval. The Aerosol Optical Depth (AOD values retrieved from AVHRR with this method compare favourably with ground-based measurements, with a correlation coefficient R = 0.861 and Root Mean Square Error (RMSE = 0.17. This method can be easily applied to other satellite instruments which do not have a 2.1 μm channel, such as those currently planned to

  18. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  19. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  20. Using ARM Data to Evaluate Satellite Surface Solar Flux Retrievals

    Energy Technology Data Exchange (ETDEWEB)

    Hinkelman, L.M.; Stackhouse, P.W.; Young, D.F.; Long, C.N.; Rutan, D.

    2005-03-18

    The accurate, long-term radiometric data collected by Atmospheric Radiation Measurement (ARM) has become essential to the evaluation of surface radiation budget data from satellites. Since the spatial and temporal characteristics of data from these two sources are very different, the comparisons are typically made for long-term average values. While such studies provide a general indication of the quality of satellite flux products, more detailed analysis is required to understand specific retrieval algorithm weaknesses. Here we show how data from the ARM shortwave flux analysis (SFA) value added product (VAP) are being used to assess solar fluxes in the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB), release 2.5.

  1. RETRIEVING ATMOSPHERIC TEMPERATURE FROM NOAA-15 ATOVS MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    吴雪宝; Lydie LAVANANT; 张凤英; 冉茂农; Pascal BRUNEL

    2001-01-01

    This paper describes briefly the sounding capabilities of TOVS/ATOVS onboard the NOAA polar-orbiting meteorological satellites, followed by a more detailed review of the retrieval schemes. The ICI physical retrieval scheme with some adaptations is implemented in our experiment. The analyses of the Chinese regional NWP model are utilized to create a rolling library of initial guess field. Retrieval results validated against both NWP analyses and radiosondes indicate good agreement between ICI retrievals and conventional observations. Preliminary result from the PC-ATOVS Windows display system of NSMC will also be shown.

  2. Polarization Invariants and Retrieval of Surface Parameters Using Polarization Measurements in Remote Sensing Applications

    CERN Document Server

    Shestopaloff, Yu K

    2012-01-01

    Using polarization measurements in remote sensing and optical studies allows retrieving more information. We consider relationship between the reflection coefficients of plane and rough surfaces for linearly polarized waves. Certain polarization properties of reflected waves and polarization invariants, in particular at incident angle of forty five degrees, allow finding amplitude and phase characteristics of reflected waves. Based on this study, we introduce methods for finding dielectric permittivity, temperature and geometrical characteristics of observed surfaces. Experimental results prove that these methods can be used for different practical purposes in technological and remote sensing applications, in a broad range of electromagnetic spectrum.

  3. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  4. Evaluation of BAER surface model for aerosol optical thickness retrieval over land surface

    Directory of Open Access Journals (Sweden)

    Y. S. Chiang

    2012-04-01

    Full Text Available Estimation of surface reflectance is essential for an accurate retrieval of aerosol optical thickness (AOT by satellite remote sensing approach. Due to the variability of surface reflectance over land surfaces, a surface model is required to take into account the crucial factor controlling this variability. In the present study, we attempted to simulate surface reflectance in the short-wave channels with two methods, namely the land cover type dependent method and a two-source linear model. In the two-source linear model, we assumed that the spectral property can be described by a mixture of vegetated and non-vegetated area, and both the normalized difference vegetation index (NDVI, and the vegetation continuous field (VCF was applied to summarize this surface characteristic. By comparing our estimation with surface reflectance data derived from Moderate Resolution Imaging Spectroradiometer (MODIS, it indicated that the land cover type approach did not provide a better estimation because of inhomogeneous land cover pattern and the mixing pixel properties. For the two-source linear method, the study suggested that the use of NDVI as parameterization for vegetation fraction can reflect the spectral behavior of shortwave surface reflectance, despite of some deviation due to the averaging characteristics in our linear combination process. A channel-dependent offset and scalar factor could enhance reflectance estimation and further improve AOT retrieval by the current Bremen AErosol Retrieval (BAER approach.

  5. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  6. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation

    Science.gov (United States)

    Wilber, Anne C.; Kratz, David P.; Gupta, Shashi K.

    1999-01-01

    Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.

  7. Microwave Brightness Temperature and Lunar Son Dielectric Property Retrieve

    Institute of Scientific and Technical Information of China (English)

    J. Wu; D.H. Li; A.T. Altyntsev; B.I. Lubyshev

    2005-01-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer, γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  8. 基于 Landsat-8/TIRS 的红沿河核电基地海表温度反演算法比对%Comparative Study on Sea Surface Temperature Retrieval Methods of Hongyanhe Nuclear Power Plant Based on Landsat-8/TIRS

    Institute of Scientific and Technical Information of China (English)

    张永红; 陈瀚阅; 陈宜金; 朱利; 殷亚秋; 杨红艳; 侯海倩

    2015-01-01

    Based on the images from Landsat-8 thermal infrared sensor in the study area of Hongyanhe nuclear power station, this paper presents a novel approach to revising and data-processing the parameters of sea surface temperature retrival model for the thermal radiative transfer equation algorithm, mono window algorithm and general applicability of single channel algorithm and Qin split window algorithm respectively. The results are compared with the actual measured temperature data for accuracy verification and comparison analysis to seek the best temperature retrieval algorithm in the study area based on the Landsat-8/TIRS data. The results show that the root mean square error of the thermal radiative transfer equation algorithm is within 1K, its retrieval accuracy is the best of all. Qin split-window algorithm is the second one, but its retrieval precision reaches about 3K, retrieval accuracy is worse, and the overall retrieval temperature is also very high. The retrieval precision of the mono-window algorithm and generalized single channel exceeds 3K, its retrieval accuracy are the worst of all, and the overall retrieval temperature are very low. So radiative transfer equation algorithm can be used as the preferred algorithm for Hongyanhe nuclear power plant thermal discharge monitoring.%文章以红沿河核电基地周围海域为研究区,利用 Landsat-8热红外遥感影像(thermal infrared sensor,TIRS),分别对辐射传输方程法、单窗算法、普适性单通道法和 Qin 劈窗算法等四种算法进行海表温度反演模型参数修订与数据处理。通过与实际观测温度数据进行精度验证与比对分析,寻求基于Landsat-8/TIRS 数据的区域最佳温度反演算法。结果表明,辐射传输方程法均方根误差在1K 以内,反演精度最高;Qin 劈窗算法次之,均方根误差达到3K 左右,反演精度较差,整体反演温度偏高;单窗算法和普适性单通道法均方根误差高于3K,

  9. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  10. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  11. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  12. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    Science.gov (United States)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  13. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    Science.gov (United States)

    Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.; Sun-Mack, Szedung; Fleeger, Cecilia; Ayers, J. Kirk; Chang, Fu-Lung; Heck, Patrick M.

    2014-01-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-­-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-­-real time globally from both geostationary (GEO) and low-­-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  14. Study on morning land surface temperature retrieval of Sanjiang Plain using clear sky MODIS data%MODIS数据反演三江平原晴空上午陆表温度比较研究

    Institute of Scientific and Technical Information of China (English)

    孔繁艳

    2012-01-01

    三江平原大面积开垦后区域水热平衡发生变化,晴空上午陆表增温状况在开垦后和未开垦区域之间周年变化表现不同.选择2006~2009年55个时次67个Terra卫星上午降轨MODIS L1B数据集,在黑龙江南岸乌苏里江西岸开垦后农田、黑龙江北岸乌苏里江东岸俄罗斯境内未开垦平坦荒原各选择200个地面数据点,比较分析开垦和未开垦区晴空上午陆表温度(Land surface temperature,LST).结果表明,与未开垦荒原比较,开垦后区域LST年变化表现为两谷一峰:春季解冻后未开垦区有大量枯萎植物覆盖,开垦后区域裸土为主,表现为温度谷;5月下旬至7月中下旬,未开垦区植物大量生长,开垦区农田前期多为裸土或植株矮小,表现为一个很强的温度峰;7月末至8月末农田作物茂密生长,表现为另一个温度谷;9月以后至次年4月份大部分时间为冻土或被冰雪覆盖,开垦区和未开垦区LST差异不明显.%Water and heat balance of Sanjiang Plain has been changed after large area of reclamation. The increasing land surface temperature (LST) in morning of clear sky conditions performs an annual variation between cultivated and uncultivated land. 200 pairs of the sample data points distributed on the south bank of the Heilong River and the west bank of the Wusuli River in China and on the north bank of the Heilong River and the east bank of the Wusuli River in Russian were selected from reclaimed and unreclaimed lands respectively. 67 Terra Satellite descending orbit MODIS L1B granules from 55 days were used in this study. The results indicate that compared with the uncultivated wild land, LST annual variation of the cultivated area exhibits two valleys and one peak that are as follows: The first temperature valley appears after thawing in spring, when uncultivated area were covered with wilted plants while cultivated area are mostly bare land; From late May to mid/late July is a strong

  15. Land Surface Temperature Retrieval from Landsat-8 Data using Split-window Algorithm and Its Application on the Study of Urban Heat Island Effect%基于Landsat-8数据和劈窗算法的地表温度反演及城市热岛效应研究

    Institute of Scientific and Technical Information of China (English)

    宋挺; 段峥; 刘军志; 严飞; 黄君; 吴蔚

    2014-01-01

    Land Surface Temperature (LST)is an important parameter of surface energy balance components.With the rapid devel-opment of satellite remote sensing technology,satellite remote sensing has become an important approach to retrieving LST over large areas.Various satellite-based retrieval algorithms have been proposed,and the Split-Window algorithm has been proved to be a high precision algorithms.In this study,the LST of Wuxi was retrieved from Landsat-8 data with the SW algorithm.The retrieved LST data were further compared with both simultaneous ground measured temperature data and the MODIS LST product.Results showed that the retrieved LST had good accuracy with errors of less than 1 K.Furthermore,the Thermal Field Variance Composite Index computed from the retrieved LST data was used to analyze the spatial distribution of urban heat island.The urban heat island effect was quantified,and the effects of different land cover types on the heat island were also investigated.%陆地表面温度(Land Surface Temperature,LST)是地表能量平衡组分中的一个重要参数。随着卫星遥感技术的快速发展,遥感反演成为获取区域 LST的一个重要手段。目前已有学者提出多种基于遥感数据反演 LST的算法,其中劈窗算法被证明是一种精度较高的算法。基于 Landsat-8卫星30 m空间分辨率的陆地成像仪(OLI)数据和100 m分辨率的热红外传感器(TIRS)数据,采用劈窗算法计算了无锡地区的 LST,并采用地面实测水温数据和同步的 MODIS 温度产品对 Land-sat-8的计算结果进行了验证和对比分析。结果表明:基于 Landsat-8数据和劈窗算法获取的 LST精度较高,误差<1 K。在计算的 LST结果基础上,进一步提取了热场变异指数来分析城市热岛空间分布特征,给出了城市热岛效应的定量化描述,并就不同地表覆盖类型对热岛效应的影响进行了分析。

  16. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  17. Estimating land-surface temperature under clouds using MSG/SEVIRI observations

    NARCIS (Netherlands)

    Lu, L.; Venus, V.; Skidmore, A.K.; Wang, T.; Luo, G.

    2011-01-01

    The retrieval of land-surface temperature (LST) from thermal infrared satellite sensor observations is known to suffer from cloud contamination. Hence few studies focus on LST retrieval under cloudy conditions. In this paper a temporal neighboring-pixel approach is presented that reconstructs the di

  18. Estimating land-surface temperature under clouds using MSG/SEVIRI observations

    NARCIS (Netherlands)

    Lu, L.; Venus, V.; Skidmore, A.K.; Wang, T.; Luo, G.

    2011-01-01

    The retrieval of land-surface temperature (LST) from thermal infrared satellite sensor observations is known to suffer from cloud contamination. Hence few studies focus on LST retrieval under cloudy conditions. In this paper a temporal neighboring-pixel approach is presented that reconstructs the

  19. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].

    Science.gov (United States)

    Tao, Hui-rong; Zhang, Fu-min; Qu, Xing-hua

    2015-07-01

    For no cooperation target laser ranging, the backscattering properties of the long-range and real machined surfaces are uncertain which seriously affect the ranging accuracy. It is an important bottleneck restricting the development of no cooperation ranging technology. In this paper, the backscattering characteristics of three typical machining surfaces (vertidal milling processing method, horizontal milling processing method and plain grinding processing method) under the infrared laser irradiation with 1550 nm were measured. The relation between the surface nachining texture, incident azimuth, roughness and the backscattering distribution were analyzed and the reasons for different processing methods specific backscattering field formed were explored. The experimental results show that the distribution of backscattering spectra is greatly affected by the machined processing methods. Incident angle and roughness have regularity effect on the actual rough surface of each mode. To be able to get enough backscattering, knowing the surface texture direction and the roughness of machined metal is essential for the optimization of the non-contact measurement program in industry. On this basis, a method based on an artificial neural network (ANN) and genetic algorithm (GA), is proposed to retrieve the surface multi-parameters of the machined metal. The generalized regression neural network (GRNN) was investigated and used in this application for the backscattering modeling. A genetic algorithm was used to retrieve the multi-parameters of incident azimuth angle, roughness and processing methods of machined metal sur face. Another processing method of sample (planer processing method) was used to validate data. The final results demonstrated that the method presented was efficient in parameters retrieval tasks. This model can accurately distinguish processing methods and the relative error of incident azimuth and roughness is 1.21% and 1.03%, respectively. The inversion

  20. Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression

    Institute of Scientific and Technical Information of China (English)

    Qin XU; Binbin ZHOU

    2003-01-01

    A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11-20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1-31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 ma m-a). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

  1. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    Science.gov (United States)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  2. Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM

    Science.gov (United States)

    Greybush, Steven J.; Wilson, R. John; Hoffman, Ross N.; Hoffman, Matthew J.; Miyoshi, Takemasa; Ide, Kayo; McConnochie, Timothy; Kalnay, Eugenia

    2012-11-01

    Thermal Emission Spectrometer (TES) retrieved temperature profiles are assimilated into the GFDL Mars Global Climate Model (MGCM) using the Local Ensemble Transform Kalman Filter (LETKF) to produce synoptic maps of temperature, winds, and surface pressure and their uncertainties over the course of a Martian year. Short-term (0.25 sol) forecasts compared to independent observations show reduced root mean square error (to 3-4 K global RMSE for a 30-sol evaluation period during the northern hemisphere autumn) and bias compared to a free running model. Several enhanced techniques result in further performance gains. A 4D-LETKF considers observations at their correct hour of occurrence rather than every 6 h. Spatially varying adaptive inflation and varying the dust distribution among ensemble members refine estimates of analysis uncertainty through the ensemble spread. Enhancing dust and water ice aerosol schemes and the application of empirical bias correction using time mean analysis increments help account for model biases. Full-year experiments using prescribed dust opacities and observed TES dust opacities show that while realistic dust distributions are essential to match observed temperatures with a free run simulation, analyses from data assimilation are more robust with respect to imperfections in aerosol distribution. The data assimilation system described here is being used to generate a new reanalysis of Mars weather and climate, which will have many scientific and engineering applications.

  3. Retrieval of background surface reflectance with BRD components from pre-running BRDF

    Science.gov (United States)

    Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo

    2016-10-01

    Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of

  4. NESDIS Microwave Integrated Retrieval System (MIRS) ATMS Precipitation and Surface Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the NESDIS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  5. Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    杨劲松; 黄韦艮; 周长宝

    2001-01-01

    A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.

  6. On the separate retrieval of soil and vegetation temperatures from ATSR data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Along-Track Scanning Radiometer (ATSR) onboard the EuropeanRemote Sensing satellite (ERS) is presently the only one available to provide quasi-simultaneous thermal infrared measurements at two view angles. Such data represent an opportunity to explore the potential information on the directional observations in the thermal infrared region, in view of the preparation of a new generation of multi-angle satellite sensors. Based on the analysis of one ATSR image, the results of this work indicate that the magnitude of the directional effect on the brightness tempera-ture (ground anisotropic radiance), although quite sensitive to errors in atmospheric conditions, may still be retrieved with acceptable uncertainty. In order to retrieve both vegetation and soil tempera-tures from directional brightness temperatures, it is shown that an appropriate description of the nature and content of the pixel is needed, otherwise this retrieval will be quite uncertain

  7. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  8. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  9. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    Science.gov (United States)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J.

    2015-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Bayesian framework was designed to retrieve the ice sheet internal temperature from UWBRAD brightness temperature (Tb) measurements for the Greenland air-borne demonstration scheduled for summer 2016. Several parameters would affect the ice sheet physical temperature. And the effective surface temperature, geothermal heat flux and the variance of upper layer ice density were treated as unknown random variables within the retrieval framework. Synthetic brightness temperature were calculated by the snow radiation transfer models as a function of ice temperature, ice density, and an estimate of snow grain size in the upper layers. A incoherent model-the Microwave Emission Model of Layered Snowpacks (MEMLS) and a coherent model were used respectively to estimate the influence of coherent effect. The inputs of the radiation transfer model were generated from a 1-D heat-flow equation developed by Robin and a exponential fit of ice density variation from Borehole measurement. The simulated Tb was corrupted with white noise and served as UWBRAD observation in retrieval. A look-up table was developed between the parameters and the corresponding Tb. In the Bayesian retrieval process, each parameter was defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach was applied to make the unknown parameters randomly walk in the parameter space. Experiment results were examined for science goals on three levels: estimation of the 10-m firn temperature, the average temperature integrated with depth, and the entire temperature profile. The 10-m temperature was estimated to within 0.77 K, with a bias of 0.6 K, across the 47 locations on the ice sheet; the 10-m "synthetic true

  10. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  11. A new algorithm for microwave radiometer remote sensing of sea surface salinity and temperature

    Institute of Scientific and Technical Information of China (English)

    YIN; Xiaobin; LIU; Yuguang; WANG; Zhenzhan

    2006-01-01

    The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface temperature, sea surface salinity and incidence angle of observation are investigated. Based on the investigations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.

  12. Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES and SRB Datasets in China

    Directory of Open Access Journals (Sweden)

    Xin Pan

    2015-04-01

    Full Text Available Surface net radiation plays an important role in land–atmosphere interactions. The net radiation can be retrieved from satellite radiative products, yet its accuracy needs comprehensive assessment. This study evaluates monthly surface net radiation generated from the Clouds and the Earth’s Radiant Energy System (CERES and the Surface Radiation Budget project (SRB products, respectively, with quality-controlled radiation data from 50 meteorological stations in China for the period from March 2000 to December 2007. Our results show that surface net radiation is generally overestimated for CERES (SRB, with a bias of 26.52 W/m2 (18.57 W/m2 and a root mean square error of 34.58 W/m2 (29.49 W/m2. Spatially, the satellite-retrieved monthly mean of surface net radiation has relatively small errors for both CERES and SRB at inland sites in south China. Substantial errors are found at northeastern sites for two datasets, in addition to coastal sites for CERES. Temporally, multi-year averaged monthly mean errors are large at sites in western China in spring and summer, and in northeastern China in spring and winter. The annual mean error fluctuates for SRB, but decreases for CERES between 2000 and 2007. For CERES, 56% of net radiation errors come from net shortwave (NSW radiation and 44% from net longwave (NLW radiation. The errors are attributable to environmental parameters including surface albedo, surface water vapor pressure, land surface temperature, normalized difference vegetation index (NDVI of land surface proxy, and visibility for CERES. For SRB, 65% of the errors come from NSW and 35% from NLW radiation. The major influencing factors in a descending order are surface water vapor pressure, surface albedo, land surface temperature, NDVI, and visibility. Our findings offer an insight into error patterns in satellite-retrieved surface net radiation and should be valuable to improving retrieval accuracy of surface net radiation. Moreover, our

  13. High temperature antigen retrieval and loss of nuclear morphology: a comparison of microwave and autoclave techniques.

    Science.gov (United States)

    Hunt, N C; Attanoos, R; Jasani, B

    1996-01-01

    The use of high temperature antigen retrieval methods has been of major importance in increasing the diagnostic utility of immunocytochemistry. However, these techniques are not without their problems and in this report attention is drawn to a loss of nuclear morphological detail, including mitotic figures, following microwave antigen retrieval. This was not seen with an equivalent autoclave technique. This phenomenon was quantified using image analysis in a group of B cell lymphomas stained with the antibody L26. Loss of nuclear morphological detail may lead to difficulty in identifying cells accurately, which is important in the diagnostic setting-for example, when trying to distinguish a malignant lymphoid infiltrate within a mixed cell population. In such cases it would clearly be wise to consider the use of alternative high temperature retrieval methods and accept their slightly lower staining enhancement capability compared with the microwave technique. Images PMID:9038766

  14. [Comparison of performances in retrieving impervious surface between hyperspectral (Hyperion) and multispectral (TM/ETM+) images].

    Science.gov (United States)

    Tang, Fei; Xu, Han-Qiu

    2014-04-01

    The retrieval of impervious surface is a hot topic in the remote sensing field in the past decade. Nevertheless, studies on retrieving impervious surface from hyperspectral image and the comparison of the performances in retrieving impervious surface between hyperspectral and multispectral images are rarely reported. Therefore, The present paper focuses on the characteristics of hyperspectral (EO-1 Hyperion) and multispectral (Landsat TM/ETM+) images and implements a complementary study on the comparison based on the retrieved impervious surface information between Hyperion and TM/ETM+ data. For up to 242 bands of Hyperion image, a further study was carried out to select feature bands for impervious surface retrieving using stepwise discriminant analysis. As a result, 11 feature bands were selected and a new image named Hyperion' was thus composed. The new Hyperion' image was used to investigate whether this band-reduced image could obtain higher accuracy in retrieving impervious surface. The three test regions were selected from Fuzhou, Guangzhou and Hangzhou of China, with date-coincident or nearly coincident image pairs of the used sensors. The linear spectral mixture analysis (LSMA) was employed to retrieve impervious surface and the results were accessed for their accuracy. The comparison shows that the Hyperion image has higher accuracy than TM/ETM+, and the Hyperion' composed of the selected 11 feature bands has the highest accuracy. The advantages of Hyperion in spectral and radiometric resolutions over TM/ETM+ are believed to be the main factors contributing to the higher accuracy. The high spectral and radiometric resolutions of Hyperion image allow the sensor to have higher sensitivity in distinguishing subtle spectral changes of ground objects. While, the highest accuracy the 11-band Hyperion' image achieved is owing to the significant reduction of the band dimension of the image and thus the band redundancy.

  15. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  17. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  18. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  19. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  20. A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIU Chongjian; HUANG Jianping

    2008-01-01

    A three-dimensional variational method iS proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements.To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture.an EOF technique iS used to decompose the temperature and moisture field in a 3-D space.A number of numerical simulations are conducted and they demonstrate that the 3-D method iS less sensitive to the observation errors compared to the 1-D method.When the observation error iS more than 2.0 K.to get the best results.the truncation number for the EOF'S expansion have to be restricted to 2 in the 1-D method.while it can be set as large as 40 in a 3-D method.This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method.Compared to the 1-D method.the rlTLS errors of the 3-D method are reduced by 48%and 36%for the temperature and moisture retrievals,respectively.Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002,the temperature and moisture profiles are retrieved over a region(20°-45°N,100°-125°E)and compared with 37 collocated radiosonde observations.The results show that the retrieval accuracy with a 3-D method iS significantly higher than those with the 1-D method.

  1. A summary of Nimbus-6 temperature retrieval accuracy statistics for DST-5 and DST-6

    Science.gov (United States)

    Hayden, C. M.

    1977-01-01

    Statistics compiled from Nimbus-6 temperature retrievals processed during the 18 August-4 September 1975 DST-5, and the 1 February-4 March 1976 DST-6 are addressed. All statistics were compiled from samples of colocated satellite sounding and radiosonde measurements. The colocation window is 222 km in space and 6 hours in time.

  2. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NARCIS (Netherlands)

    Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR

  3. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  4. Histologic analysis of resorbable blasting media surface implants retrieved from humans: a report of two cases

    OpenAIRE

    Jeong, Kyung-In; Kim, Young-Kyun; Moon, Sang-Woon; Kim, Su-Gwan; Lim, Sung-Chul; Yun, Pil-Young

    2016-01-01

    The purpose of this study is to evaluate the degree of osseointegration of resorbable blasting media (RBM) surface implants retrieved from humans. Three implants in the mandibular molar region that were surface-treated with RBM were retrieved from two patients. The implants were used to manufacture specimens in order to measure the bone-implant contact (BIC) ratio. The BIC ratios of the three implants were found to be an average of 69.0%±9.1%. In conclusion, that RBM surface implants are inte...

  5. Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    NARCIS (Netherlands)

    Timmermans, J.; Verhoef, W.; Tol, van der C.; Su, Z.

    2009-01-01

    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the ev

  6. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  7. Phase retrieval methods for surface x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, D.K.; Harder, R.J.; Shneerson, V.L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Moritz, W. [Institute of Crystallography and Applied Mineralogy, University of Munich, Munich (Germany)

    2001-11-26

    We develop an iterative input-output feedback method for the phasing of surface x-ray diffraction (SXRD) amplitudes that relies on successive operations in real and reciprocal space. We demonstrate its use for the recovery of the real and positive electron density of a surface unit cell from simulated SXRD intensities. We have successfully recovered the entire surface electron density in a case where the two-dimensional surface unit cell is the same as that of the bulk and also in one where the surface unit cell is four times larger than that of the bulk. We show that the exponential modelling algorithm for structure completion derived earlier from maximum entropy theory may be regarded as a special case of an input-output phasing algorithm with a particular form of object-domain operations. (author)

  8. Retrieval of snow Specific Surface Area (SSA) from MODIS data in mountainous regions

    Science.gov (United States)

    Mary, A.; Dumont, M.; Dedieu, J.-P.; Durand, Y.; Sirguey, P.; Milhem, H.; Mestre, O.; Negi, H. S.; Kokhanovsky, A. A.

    2012-05-01

    This study describes a method to retrieve snow specific surface area (SSA) from satellite radiance reasurements in mountainous terrain. It aims at comparing different retrieval methods and at addressing topographic corrections of reflectance, namely slope and aspect of terrain and multiple reflections on neighbouring slopes. We use an iterative algorithm to compute reflectance from radiance of the MODerate resolution Imaging Spectrometer (MODIS) with a comprehensive correction of local illumination with regards to topography. The retrieved SSA is compared to the results of the snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis, over a large domain in the French Alps. We compared SSA retrievals with and without topographic or anisotropy correction, and with a spherical or non-spherical snow reflectance model. The topographic correction enables SSA to be retrieved in better agreement with those from SAFRAN-Crocus. The root mean square deviation is 10.0 m2 kg-1 and the bias is -0.6 m2 kg-1, over 3829 pixels representing seven different dates and snow conditions. The standard deviation of MODIS retrieved data, larger than the one of SAFRAN-Crocus estimates, is responsible for half this RMSD. It is due to the topographic classes used by SAFRAN-Crocus. In addition, MODIS retrieved data show SSA gradients with elevation and solar exposition, physically consistent and in good agreement with SAFRAN-Crocus.

  9. Retrieval of snow Specific Surface Area (SSA from MODIS data in mountainous regions

    Directory of Open Access Journals (Sweden)

    A. Mary

    2012-05-01

    Full Text Available This study describes a method to retrieve snow specific surface area (SSA from satellite radiance reasurements in mountainous terrain. It aims at comparing different retrieval methods and at addressing topographic corrections of reflectance, namely slope and aspect of terrain and multiple reflections on neighbouring slopes. We use an iterative algorithm to compute reflectance from radiance of the MODerate resolution Imaging Spectrometer (MODIS with a comprehensive correction of local illumination with regards to topography. The retrieved SSA is compared to the results of the snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis, over a large domain in the French Alps. We compared SSA retrievals with and without topographic or anisotropy correction, and with a spherical or non-spherical snow reflectance model. The topographic correction enables SSA to be retrieved in better agreement with those from SAFRAN-Crocus. The root mean square deviation is 10.0 m2 kg−1 and the bias is −0.6 m2 kg−1, over 3829 pixels representing seven different dates and snow conditions. The standard deviation of MODIS retrieved data, larger than the one of SAFRAN-Crocus estimates, is responsible for half this RMSD. It is due to the topographic classes used by SAFRAN-Crocus. In addition, MODIS retrieved data show SSA gradients with elevation and solar exposition, physically consistent and in good agreement with SAFRAN-Crocus.

  10. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  11. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  12. The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3

    OpenAIRE

    Ruescas, Ana Belen; Danne, Olaf; Fomferra, Norman; Brockmann, Carsten

    2016-01-01

    Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European Space Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temp...

  13. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  14. The retrieval of land surface albedo in rugged terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2012-01-01

    Land surface albedo may be derived from the satellite data through the estimation of a bidirectional reflectance distribution function (BRDF) model and angular integration. However many BRDF models do not consider explicitly the topography. In rugged terrain, the topography influences the observed s

  15. The retrieval of land surface albedo in rugged terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2012-01-01

    Land surface albedo may be derived from the satellite data through the estimation of a bidirectional reflectance distribution function (BRDF) model and angular integration. However many BRDF models do not consider explicitly the topography. In rugged terrain, the topography influences the observed s

  16. The retrieval of land surface albedo in rugged terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2012-01-01

    Land surface albedo may be derived from the satellite data through the estimation of a bidirectional reflectance distribution function (BRDF) model and angular integration. However many BRDF models do not consider explicitly the topography. In rugged terrain, the topography influences the observed

  17. On the separate retrieval of soil and vegetation temperatures from ATSR data

    Institute of Scientific and Technical Information of China (English)

    LI; Zhaoliang

    2001-01-01

    [1]Kimes, D. S., Idso, S. B., Pinter, P. J. Et al., View angle effects in the radiometric measurement of plant canopy temperature, Remote Sensing of Environment, 1980, 10: 273.[2]Kimes, D. S., Kirchner, J. A., Directional radiometric measurements of row-crop temperatures, International Journal of Remote Sensing, 1983, 4(2): 299.[3]Nielsen, D. C., Clawson, K.L., Blad, B.L., Effect of solar azimuth and infrared thermometer view direction on measured soybean canopy temperature, Agronomy Journal, 1984, 607-610[4]Lagouarde, J.P., Kerr, Y., Brunet, Y., An experimental study of angular effects on surface temperature for various plant canopies and bare soils, Agricultural and Forest Meteorology, 1995, 77: 167.[5]McGuire, M. J., Smith, J. A., Balick, L. K., Modeling directional thermal radiance from a forest canopy, Remote Sensing of Environment, 1989, 27: 169.[6]Kimes, D. S., Smith, J. A., Link, L.E., Thermal IR exitance model of a plant canopy, Applied Optics, 1981, 20(4): 623[7]Kimes, D. S., Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques, Remote Sensing of Environment, 1983, 13: 33.[8]Otterman, J., Brakke, T. W., Susskind, J., A model for inferring canopy and underlying soil temperatures from multi-directional measurements, Boundary-Layer Meteorology, 1992, 61: 81.[9]Fran?ois, C., Ottlé, C., Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared: application on the retrieval of soil and foliage temperatures using two directional measurements, International Journal of Remote Sensing, 1997, 18(12): 2587.[10]Lhomme, J.P., Monteny, B., Amadou, M., Estimating sensible heat flux from radiometric temperature over sparse millet, Agricultural and Forest Meteorology, 1994, 68: 79.[11]Norman, J.M., Kustas, W.P., Humes, K.S., A two source approach for estimating soil and vegetation energy fluxes from

  18. Microwave brightness temperature and thermal inertia - towards synergistic method of high-resolution soil moisture retrieval

    Science.gov (United States)

    Lukowski, Mateusz; Usowicz, Boguslaw; Sagan, Joanna; Szlazak, Radoslaw; Gluba, Lukasz; Rojek, Edyta

    2017-04-01

    Soil moisture is an important parameter in many environmental studies, as it influences the exchange of water and energy at the interface between the land surface and the atmosphere. Accurate assessment of the soil moisture spatial and temporal variations is crucial for numerous studies; starting from a small scale of single field, then catchment, mesoscale basin, ocean conglomeration, finally ending at the global water cycle. Despite numerous advantages, such as fine accuracy (undisturbed by clouds or daytime conditions) and good temporal resolution, passive microwave remote sensing of soil moisture, e.g. SMOS and SMAP, are not applicable to a small scale - simply because of too coarse spatial resolution. On the contrary, thermal infrared-based methods of soil moisture retrieval have a good spatial resolution, but are often disturbed by clouds and vegetation interferences or night effects. The methods that base on point measurements, collected in situ by monitoring stations or during field campaigns, are sometimes called "ground truth" and may serve as a reference for remote sensing, of course after some up-scaling and approximation procedures that are, unfortunately, potential source of error. Presented research concern attempt to synergistic approach that join two remote sensing methods: passive microwave and thermal infrared, supported by in situ measurements. Microwave brightness temperature of soil was measured by ELBARA, the radiometer at 1.4 GHz frequency, installed at 6 meters high tower at Bubnow test site in Poland. Thermal inertia around the tower was modelled using the statistical-physical model whose inputs were: soil physical properties, its water content, albedo and surface temperatures measured by an infrared pyrometer, directed at the same footprint as ELBARA. The results coming from this method were compared to in situ data obtained during several field campaigns and by the stationary agrometeorological stations. The approach seems to be

  19. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  20. Retrieval and validation of stratospheric temperature data from a limb-scanning microwave radiometer

    Science.gov (United States)

    Walter, Deborah Joy

    The measurements taken by the Millimeter Atmospheric Sounder (MAS), flown on the Shuttle in 1992, 1993 and 1994 as part of the ATLAS (Atmospheric Laboratory for Application and Science) missions, are used to estimate stratospheric temperatures. A Bayesian statistical retrieval technique, following Rodgers Optimal Estimation [Rodgers et al., 1976], is used to estimate atmospheric temperature from the measured radiance emitted from O2 around the spectral range of 60 GHz. This approach uses a detailed forward model of the atmosphere and instrument to simultaneously retrieve temperature and pressure profiles assuming hydrostatic equilibrium Concentrating on 10-13 April 1993 (ATLAS 2), the estimates represent a global distribution (70°S-70°N) of atmospheric temperature in the stratosphere (20-65 km). From the formal error analysis the uncertainty of the retrieved temperature estimates was determined to be to be 2-4 K. The inaccuracy is as high as 7 K and as low as 1 K, depending on the altitude. The temperature data accuracy in the lower stratosphere is severely affected by a baseline spectral error. By characterizing the retrieval the vertical resolution of the temperature profile was found to be between 3 and 6 km. Comparisons are made with coincident satellite data: Millimeter Limb Sounder (MLS), Cyrogenic Umb Etalon Spectrometer (CLAES), and Halogen Limb Experiment (HALOE) on board the Upper Atmospheric Research Satellite (UARS). In addition, MAS temperatures are compared to ground-based lidars and radiosondes, along with model-instrument assimilated temperature data products from the National Center for Environmental Prediction (NCEP) and the United Kingdom Meteological Office (UKMO). All of the comparisons show consistently that the MAS data has a warm bias of about 4 K at 50 mbars and 10 mbars. The major contribution of this thesis work is the estimation, error analysis, and validation of the stratospheric temperature; and the development of a technique to

  1. Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

    Directory of Open Access Journals (Sweden)

    Patrick J. McBride

    2013-03-01

    Full Text Available This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (τ, droplet effective radius (re, and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1 the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2 the new spectral technique is more accurate (but still imprecise than a standard approach, in particular for τ between 5 and 60 and re less than approximately 20 μm; and (3 the retrieved cloud properties are dependent on sun angle for clouds of  from 5 to 10 and re < 10 μm, with maximum sensitivity obtained for an overhead sun.

  2. Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

    Science.gov (United States)

    Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava

    2013-01-01

    This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.

  3. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    Science.gov (United States)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  4. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    Science.gov (United States)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  5. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  6. Sea surface temperature for climate from the along-track scanning radiometers

    OpenAIRE

    Embury, Owen

    2014-01-01

    This thesis describes the construction of a sea surface temperature (SST) dataset from Along-Track Scanning Radiometer (ATSR) observations suitable for climate applications. The algorithms presented here are now used at ESA for reprocessing of historical ATSR data and will be the basis of the retrieval used on the forthcoming SLSTR instrument on ESA’s Sentinel-3 satellite. In order to ensure independence of ATSR SSTs from in situ measurements, the retrieval uses physics-based m...

  7. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    Science.gov (United States)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  8. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  9. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    Science.gov (United States)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  10. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...

  11. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO2

    Directory of Open Access Journals (Sweden)

    B. Buchmann

    2010-05-01

    Full Text Available Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2 vertical tropospheric columns (VTCs. Current operational retrievals rely on coarse-resolution reflectance data and do not account for the generally anisotropic properties of surface reflectance. Here we present a NO2 VTC retrieval that uses MODIS bi-directional reflectance distribution function (BRDF data at high temporal (8 days and spatial (1 km×1 km resolution in combination with the LIDORT radiative transfer model to account for the dependence of surface reflectance on viewing and illumination geometry. The method was applied to two years of NO2 observations from the Ozone Monitoring Instrument (OMI over Europe. Due to its wide swath, OMI is particularly sensitive to BRDF effects. Using representative BRDF parameters for various land surfaces, we found that in July (low solar zenith angles and November (high solar zenith angles and for typical viewing geometries of OMI, differences between MODIS black-sky albedos and surface bi-directional reflectances are of the order of 0–10% and 0–40%, respectively, depending on the position of the OMI pixel within the swath. In the retrieval, black-sky albedo was treated as a Lambertian (isotropic reflectance, while for BRDF effects we used the kernel-based approach in the MODIS BRDF product. Air Mass Factors were computed using the LIDORT radiative transfer model based on these surface reflectance conditions. Differences in NO2 VTCs based on the Lambertian and BRDF approaches were found to be of the order of 0–3% in July and 0–20% in November with the extreme values found at large viewing angles. The much larger differences in November are partly due to higher solar zenith angles and partly to the choice of a priori NO2 profiles – the latter typically have more pronounced maxima in the boundary layer during the cold season. However, BRDF

  12. Retrieving the surface axis of the Kuroshio off southern coast of Japan from SST data

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; CHEN Zhuoqi; MA Weiwei

    2007-01-01

    One thousand and forty-nine sea surface isotherm maps during 1990~2000 were used to detect the Kuroshio axis off the coast of Japan. The current axis on the surface cannot be identified by just one indicative isotherm as is commonly done in deep water, but still there are complicated isotherms indicatives of the Kuroshio axis.Three types of isotherms indicatives of the surface axis of the Kuroshio are identified, which are nesting-warm-tongue-indicator, warm-tongue-isotherm-indicator, and isotherm-indicator. The occurrence frequency of NWTI-type is 72%, that of WTII-type is 19.1% and that of Ⅱ-type is 8.9%. The vector-based and raster-based methods were introduced and used to retrieve automatically the Kuroshio paths from SST data. The total retrieving percentage is 74% by the three methods, 52.3% by the vector method, 56.8% by one raster method and 49.6% by another raster method. For the NWTI-type, the total retrieving percentage is 91.3% by the three methods, 64.4% by the vector method, 75.9% by one raster method and 65% by another raster method. Using retrieving results of the Kuroshio axis from SST data,the Kuroshio path detour is analyzed during 1990~2000.

  13. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation

    Science.gov (United States)

    Zhang, B.; Xu, C. L.; Wang, S. M.

    2016-07-01

    The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.

  14. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  15. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  16. On evaluation of ShARP passive rainfall retrievals over snow-covered land surfaces and coastal zones

    CERN Document Server

    Ebtehaj, Ardeshir M; Foufoula-Georgiou, Efi

    2015-01-01

    For precipitation retrievals over land, using satellite measurements in microwave bands, it is important to properly discriminate the weak rainfall signals from strong and highly variable background surface emission. Traditionally, land rainfall retrieval methods often rely on a weak signal of rainfall scattering on high-frequency channels (85 GHz) and make use of empirical thresholding and regression-based techniques. Due to the increased ground surface signal interference, precipitation retrieval over radiometrically complex land surfaces, especially over snow-covered lands, deserts and coastal areas, is of particular challenge for this class of retrieval techniques. This paper evaluates the results by the recently proposed Shrunken locally linear embedding Algorithm for Retrieval of Precipitation (ShARP), over a radiometrically complex terrain and coastal areas using the data provided by the Tropical Rainfall Measuring Mission (TRMM) satellite. To this end, the ShARP retrieval experiments are performed ove...

  17. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  18. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data

    Institute of Scientific and Technical Information of China (English)

    SHAO Weizeng; SUN Jian; GUAN Changlong; SUN Zhanfeng

    2014-01-01

    To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by com-bining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval re-sults by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

  19. Retrieval of sea surface winds under hurricane conditions from GNSS-R observations

    Institute of Scientific and Technical Information of China (English)

    JING Cheng; YANG Xiaofeng; MA Wentao; YU Yang; DONG Di; LI Ziwei; XU Cong

    2016-01-01

    Reflected signals from global navigation satellite systems (GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds. The power of GNSS reflectometry (GNSS-R) signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps (DDMs), whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds. However, the bistatic radar cross section (BRCS), which is strongly related to the sea surface roughness, is extensively used in radar. Therefore, a bistatic radar cross section (BRCS) map with a modified BRCS equation in a GNSS-R application is introduced. On the BRCS map, three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed. Airborne Hurricane Dennis (2005) GNSS-R data are then used. More than 16 000 BRCS maps are generated to establish GMFs of the three observables. Finally, the proposed model and classic one-dimensional delay waveform (DW) matching methods are compared, and the proposed model demonstrates a better performance for the high wind speed retrievals.

  20. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  1. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  2. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  3. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  4. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  5. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  6. Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

    Science.gov (United States)

    Rowe, Penny M.; Cox, Christopher J.; Walden, Von P.

    2016-08-01

    Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continuously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving cloud height with an infrared spectrometer that would be designed for use in remote polar locations. Using a wide variety of simulated spectra of mixed-phase polar clouds at varying instrument resolutions, retrieval accuracy is explored using the CO2 slicing/sorting and the minimum local emissivity variance (MLEV) methods. In the absence of imposed errors and for clouds with optical depths greater than ˜ 0.3, cloud-height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are found to have roughly equivalent high accuracies: at an instrument resolution of 0.5 cm-1, mean biases are found to be ˜ 0.2 km for clouds with bases below 2 and -0.2 km for higher clouds. Accuracy is found to decrease with coarsening resolution and become worse overall for MLEV than for CO2 slicing/sorting; however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them. For expected errors in the atmospheric state as well as both instrument noise and bias of 0.2 mW/(m2 sr cm-1), at a resolution of 4 cm-1, average retrieval errors are found to be less than ˜ 0.5 km for cloud bases within 1 km of the surface, increasing to ˜ 1.5 km at 4 km. This sensitivity indicates that a portable, surface-based infrared radiance spectrometer could provide an important complement in remote locations to satellite-based measurements, for which retrievals of low-level cloud are challenging.

  7. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  8. Adaption of the MODIS aerosol retrieval algorithm by airborne spectral surface reflectance measurements over urban areas: a case study

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2015-07-01

    Full Text Available MODIS retrievals of the aerosol optical depth (AOD are biased over urban areas, where surface reflectance is not well characterized. Since the operational MODIS aerosol retrieval for dark targets assumes fixed spectral slopes to calculate the surface reflectance at 0.47 μm, the algorithm may fail in urban areas with different spectral characteristics of the surface reflectance. To investigate this bias we have implemented variable spectral slopes into the operational MODIS aerosol algorithms of Collection 5 (C5 and C6. The variation of slopes is based on airborne measurements of surface reflectances over the city of Zhongshan, China. AOD retrieval results of the operational and the modified algorithms were compared for a MODIS measurement over Zhongshan. For this case slightly lower AOD values were derived using the modified algorithm. The retrieval methods were additionally applied to MODIS data of the Beijing area for a period between 2010–2014 when also AERONET data were available. A reduction of the differences between the AOD retrieved using the modified C5 algorithm and AERONET was found, whereby the mean difference from 0.31 ± 0.11 for the operational C5 and 0.18 ± 0.12 for the operational C6 where reduced to a mean difference of 0.09 ± 0.18 by using the modified C5 retrieval. Furthermore, the sensitivity of the MODIS AOD retrieval for several surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectances were used as input for the retrieval methods. It is shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types [retrieved AOD = 0.87 (C5]. An overestimation of AOD = 0.99 is found for urban surfaces, whereby the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.

  9. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    Science.gov (United States)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  10. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  11. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  12. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  13. Limiting Factors for Satellite-Based Retrievals of Surface-Level Carbon Monoxide

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Barré, J.

    2015-12-01

    CO is mostly produced in the lower troposphere by incomplete combustion of biomass and fuels. CO oxidation consumes ~75% of the tropospheric OH, which then is not available to remove CH4 and other greenhouse gases. CO oxidation also leads to the production of tropospheric O3. These critical impacts of CO on air quality and climate require accurate determination of the abundance and evolution of CO near the surface.Satellite retrievals would be well-suited to monitor surface CO globally. However, how do they compare to actual surface abundances? Some aspects to be considered include: the vertical sensitivity of retrievals (given by the averaging kernels), or how thick are the atmospheric layers that can be resolved; the vertical correlation length of CO with respect to the thickness of those layers; and the horizontal variability of CO with respect to the instrument's footprint.To investigate these questions we analyze MOPITT retrievals, DISCOVER-AQ and NOAA profiles, as well as WDCGG surface measurements. MOPITT, on board NASA's Terra satellite, has been measuring tropospheric CO since 2000, providing the longest global CO record to date. Its unique multispectral CO product offers enhanced sensitivity to CO near the surface. Vertical profiles of the lower troposphere were acquired during the DISCOVER-AQ airborne campaigns over selected regions of the USA. NOAA's airborne flask sampling program results in a multi-year, multi-seasonal record of vertical profiles from near the surface up to the mid troposphere, acquired over a number of stations, mostly in North America. Long-term, cross-calibrated surface CO data from ground stations worldwide are available through the WDCGG.Statistical analyses of the DISCOVER-AQ and NOAA profiles indicate that surface vertical correlation length varies greatly depending on geographic location. This may explain contrasting results obtained for different ground stations when comparing MOPITT and WDCGG co-located data and timeseries.

  14. Identification and recovery of discontinuous synoptic features in satellite-retrieved brightness temperatures using a radiative transfer model

    Science.gov (United States)

    White, G. A., III; Mcguirk, J. P.; Thompson, A. H.

    1988-01-01

    An attempt is made to recover and identify discontinuous synoptic features from satellite-retrieved brightness temperatures, with attention to near-discontinuities in temperature and moisture that are typically found in fronts and inversions. Efforts are made to ascertain whether the vectors of satellite channel brightness temperatures can be classified according to synoptic source, and whether those sources are amenable to quantification.

  15. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  16. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    Science.gov (United States)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially

  17. Using microwave observations to estimate land surface temperature during cloudy conditions

    Science.gov (United States)

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  18. Surface reflectance retrieval from the intensity data of a terrestrial laser scanner.

    Science.gov (United States)

    Tan, Kai; Cheng, Xiaojun

    2016-04-01

    The intensity data recorded by terrestrial laser scanning systems are considered significant measures of the spectral property of scanned objects. These data can be used in an extensive range of object-based applications. However, the direct retrieval of reflectance from intensity information is infeasible because intensity data are influenced by multiple variables, particularly distance and incidence angle. This study proposes a new method to recover the absolute reflectance value of the scanned surface by eliminating the effects of distance and incidence angle. The Faro Focus3D 120 terrestrial scanner is utilized in the case study. Two sets of experiments are designed to estimate the parameters of the developed model by using Lambertian targets at different reflectance values. With the estimated parameters, the proposed method is applied to recover the reflectance values of natural surfaces. The deviation of the retrieved reflectance values of natural surfaces from the reflectance values measured by a spectrometer is approximately 2.64%. Results show that the proposed method exhibits high accuracy in retrieving reflectance values and can be utilized for actual mapping tasks and geological applications.

  19. A New Optical Surface Measurement Method with Iterative Sparsity-Constrained Threshold Phase Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Niu

    2014-01-01

    Full Text Available Due to its low complexity and acceptable accuracy, phase retrieval technique has been proposed as an alternative to solve the classic optical surface measurement task. However, to capture the overall wave field, phase retrieval based optical surface measurement (PROSM system has to moderate the CCD position during the multiple-sampling procedure. The mechanical modules of CCD movement may bring about unexpectable deviation to the final results. To overcome this drawback, we propose a new PROSM method based on spatial light modulator (SLM. The mechanical CCD movement can be replaced by an electrical moderation of SLM patterns; thus the deviation can be significantly suppressed in the new PROSM method. In addition, to further improve the performance, we propose a new iterative threshold phase retrieval algorithm with sparsity-constraint to effectively reconstruct the phase of wave field. Experimental results show that the new method provides a more simple and robust solution for the optical surface measurement than the traditional techniques and achieves higher accuracy.

  20. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  1. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  2. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  3. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  4. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  5. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; Li, Y.-Y.; Titus, T. N.; Russell, C. T.; Raymond, C. A.; Mittlefehldt, D. W.; Toplis, M. J.; Forni, O.; Sykes, M. V.

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  6. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar.

    Science.gov (United States)

    Verhoest, Niko E C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M Susan; Mattia, Francesco

    2008-07-15

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  7. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  8. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  9. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  10. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR

    Directory of Open Access Journals (Sweden)

    O. M. Christensen

    2014-11-01

    Full Text Available A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode has been activated during June, July and August of 2010, 2011 and 2014, and for latitudes between 50 and 82° N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR. The tomographic retrieval approach used provides water vapour and temperature between 75–90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.5 ppm for water vapour and 3 K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppm in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE on-board the Aeronomy of Ice in the Mesosphere (AIM satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 20 K and water vapour (> 1 ppm, while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data are provided by the OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits are considered. For these

  11. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from Synthetic Aperture Radar 1959

    Science.gov (United States)

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unles...

  12. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  13. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  14. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  15. GHRSST Level 2P Regional 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-B satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time...

  17. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  18. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  19. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-A satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  20. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  1. GHRSST Level 2P Global Skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by EUMETSAT (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  2. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  3. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  4. Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases

    Science.gov (United States)

    Serio, C.; Blasi, M. G.; Liuzzi, G.; Masiello, G.; Venafra, S.

    2017-02-01

    IASI (Infrared Atmospheric Sounder Interferometer) is flying on the European MetOp series of weather satellites. Besides acquiring temperature and humidity data, IASI also observes the infrared emission of the main minor and trace atmospheric components with high precision. The retrieval of these gases would be highly beneficial to the efforts of scientists monitoring Earths climate. IASI retrieval capability and algorithms have been mostly driven by Numerical Weather Prediction centers, whose limited resources for data transmission and computing is hampering the full exploitation of IASI information content. The quest for real or nearly real time processing has affected the precision of the estimation of minor and trace gases, which are normally retrieved on a very coarse spatial grid. The paper presents the very first retrieval of the complete suite of IASI target parameters by exploiting all its 8461 channels. The analysis has been exemplified for sea surface and the target parameters will include sea surface temperature, temperature profile, water vapour and HDO profiles, ozone profile, total column amount of CO, CO2, CH4, N2O, SO2, HNO3, NH3, OCS and CF4. Concerning CO2, CH4 and N2O, it will be shown that their colum amount can be obtained for each single IASI IFOV (Instantaneous Field of View) with a precision better than 1-2%, which opens the possibility to analyze, e.g., the formation of regional patterns of greenhouse gases. To assess the quality of the retrieval, a case study has been set up which considers two years of IASI soundings over the Hawaii, Manua Loa validation station.

  5. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    Science.gov (United States)

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  6. Using Surface Pressure To Improve Tropical Cyclone /Surface Wind Retrievals From SAR

    Science.gov (United States)

    2012-03-19

    Jochen Horstmann of NATO Undersea Research Centre ( NURC ). GD and NURC have developed separate methods for estimating wind directions. The GD and NURC ...Working version of SLP retrieval code, including necessary PBL model developments, that is compatible with GD, NURC and WiSAR file formats (as well as for...installed at NURC and we have been experimenting with Horstmann to determine if it can (or should) be included as an integrated part of the NURC SAR wind

  7. An algorithm for retrieving surface downwelling longwave radiation: A study of interactive physical mechanisms

    Science.gov (United States)

    Zhou, Yaping

    1999-12-01

    In this thesis, a new algorithm for retrieving the surface downwelling longwave flux is developed based on a detailed study of radiation models and observational data. The radiation models used in this study, the Column Radiation Models (CRM) from the National Center for Atmospheric Research (NCAR) community climate model (CCM) version2 and version3 and the Moderate Resolution Transmittance (MODTRAN3) Code, are validated with the CAGEX (CERES/ARM/GEWEX) project version 1.1.2 data taken at the Atmospheric Radiation Measurement (ARM) Program Oklahoma Central Facility. Results show that the accuracy of the radiation model is quite consistent with the models' level of complexity for clear skies. For cloudy skies, the cloud input parameters from various instruments need careful examination and preprocessing. The discrepancy between model calculations and observations can be significantly reduced by choice of input parameters and by tuning the optical properties within the models. Detailed sensitivity tests are conducted on the CCM3CRM to study the effect of atmospheric temperature and water vapor profiles upon the clear sky surface and top of atmosphere outgoing longwave fluxes. The study shows that the surface downwelling longwave flux can be largely determined from only two parameters: the surface upwelling longwave flux and the total precipitable water vapor. Cloudy sky sensitivities are conducted with both CCM3CRM and Modtran3. Both models find the cloud base height to be the most important factor determining the surface downwelling longwave, especially for low clouds. However, when considering partial cloud cases in the real world, column cloud liquid water seems to be a better parameter for the cloudy sky algorithm. The ARM observations at the Oklahoma Central Facility and the Tropical Western Pacific (TWP) Manus Island are used in deriving and validating the algorithm. The observations show similar relations found in the sensitivity tests for both clear skies and

  8. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    WF Feltz; HB Howell; RO Knuteson; JM Comstock; R Mahon; DD Turner; WL Smith; HM Woolf; C Sivaraman; TD Halter

    2007-04-30

    This document explains the procedure to retrieve temperature and moisture profiles from high-spectral resolution infrared radiance data measured by the U.S. Department Of Energy (DOE) Atmospheric Radiation (ARM) Program’s atmospheric emitted radiance interferometer (AERI) instrument. The technique has been named the AERIPROF thermodynamic retrieval algorithm. The software has been developed over the last decade at the University of Wisconsin-Madison and has matured into an ARM Value-Added Procedure. This document will describe the AERIPROF retrieval procedure, outline the algorithm routines, discuss the software heritage, and, finally, provide references with further documentation.

  9. Retrieval of the polarized submarine light field from above surface measurements using polarimetric imaging

    Science.gov (United States)

    Foster, Robert; McGilloway, Anna; Ottaviani, Matteo; Carrizo, Carlos; Gilerson, Alex; El-Habashi, Ahmed; Ahmed, Sam

    2016-05-01

    Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. For two weeks in December 2015, the NOAA NPP-VIIRS Calibration/Validation cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. Additionally, a full Stokes imaging polarimetric camera was used to acquire images and videos of the sea surface and sky during stations at coincident angles with HyperSAS-POL. Polarized remote sensing reflectance is computed for all viewing elevations present in the polarization images, and the results are compared to vector radiative transfer calculations.

  10. Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    2015-01-01

    Full Text Available Land surface temperature (LST is a key parameter in the interaction of the land-atmosphere system. However, clouds affect the retrieval of LST data from thermal-infrared remote sensing data. Thus, it is important to determine a method for estimating LSTs at times when the sky is overcast. Based on a one-dimensional heat transfer equation and on the evolution of daily temperatures and net shortwave solar radiation (NSSR, a new method for estimating LSTs under cloudy skies (Tcloud from diurnal NSSR and surface temperatures is proposed. Validation is performed against in situ measurements that were obtained at the ChangWu ecosystem experimental station in China. The results show that the root-mean-square error (RMSE between the actual and estimated LSTs is as large as 1.23 K for cloudy data. A sensitivity analysis to the errors in the estimated LST under clear skies (Tclear and in the estimated NSSR reveals that the RMSE of the obtained Tcloud is less than 1.5 K after adding a 0.5 K bias to the actual Tclear and 10 percent NSSR errors to the actual NSSR. Tcloud is estimated by the proposed method using Tclear and NSSR products of MSG-SEVIRI for southern Europe. The results indicate that the new algorithm is practical for retrieving the LST under cloudy sky conditions, although some uncertainty exists. Notably, the approach can only be used during the daytime due to the assumption of the variation in LST caused by variations in insolation. Further, if there are less than six Tclear observations on any given day, the method cannot be used.

  11. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    Science.gov (United States)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  12. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  13. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  14. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  15. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  16. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  17. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    , which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.

  18. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  19. On the effective inversion by imposing a priori information for retrieval of land surface parameters

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The anisotropy of the land surface can be best described by the bidirectional reflectance distribution function (BRDF). As the field of multiangular remote sensing advances, it is increasingly probable that BRDF models can be inverted to estimate the important biological or climatological parameters of the earth surface such as leaf area index and albedo. The state-of-the-art of BRDF is the use of the linear kernel-driven models, mathematically described as the linear combination of the isotropic kernel, volume scattering kernel and geometric optics kernel. The computational stability is characterized by the algebraic operator spectrum of the kernel-matrix and the observation errors. Therefore, the retrieval of the model coefficients is of great importance for computation of the land surface albedos. We first consider the smoothing solution method of the kernel-driven BRDF models for retrieval of land surface albedos. This is known as an ill-posed inverse problem. The ill-posedness arises from that the linear kernel driven BRDF model is usually underdetermined if there are too few looks or poor directional ranges, or the observations are highly dependent. For example, a single angular observation may lead to an under-determined system whose solution is infinite (the null space of the kernel operator contains nonzero vectors) or no solution (the rank of the coefficient matrix is not equal to the augmented matrix). Therefore, some smoothing or regularization technique should be applied to suppress the ill-posedness. So far, least squares error methods with a priori knowledge, QR decomposition method for inversion of the BRDF model and regularization theories for ill-posed inversion were developed. In this paper, we emphasize on imposing a priori information in different spaces. We first propose a gen-eral a priori imposed regularization model problem, and then address two forms of regularization scheme. The first one is a regularized singular value decomposition

  20. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  1. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  2. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  3. Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals

    Directory of Open Access Journals (Sweden)

    Alexander Loew

    2012-01-01

    Full Text Available In the course of Soil Moisture and Ocean Salinity (SMOS mission calibration and validation activities, a ground based L-band radiometer ELBARA II was situated at the test site Puch in Southern Germany in the Upper Danube Catchment. The experiment is described and the different data sets acquired are presented. The L-band microwave emission of the biosphere (L-MEB model that is also used in the SMOS L2 soil moisture algorithm is used to simulate the microwave emission of a winter oilseed rape field in Puch that was also observed by the radiometer. As there is a lack of a rape parameterization for L-MEB the SMOS default parameters for crops are used in a first step which does not lead to satisfying modeling results. Therefore, a new parameterization for L-MEB is developed that allows us to model the microwave emission of a winter oilseed rape field at the test site with better results. The soil moisture retrieval performance of the new parameterization is assessed in different retrieval configurations and the results are discussed. To allow satisfying results, the periods before and after winter have to be modeled with different parameter sets as the vegetation behavior is very different during these two development stages. With the new parameterization it is possible to retrieve soil moisture from multiangular brightness temperature data with a root mean squared error around 0.045–0.051 m³/m³ in a two parameter retrieval with soil moisture and roughness parameter Hr as free parameters.

  4. Updated MISR Dark Water Research Aerosol Retrieval Algorithm - Part 1: Coupled 1.1 km Ocean Surface Chlorophyll a Retrievals with Empirical Calibration Corrections

    Science.gov (United States)

    Limbacher, James A.; Kahn, Ralph A.

    2017-01-01

    As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less

  5. Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States

    Directory of Open Access Journals (Sweden)

    M. Xu

    2010-09-01

    Full Text Available Surface noontime spectral ultraviolet (UV irradiances during May-September of 2000–2004 from the total ozone mapping spectrometer (TOMS satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from −3.4% (underestimation to 23.6% (overestimation. Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation. The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O3, and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4–3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions.

  6. Surface height retrieval based on fringe shifting of color-encoded structured light pattern.

    Science.gov (United States)

    Chen, Hui Jun; Zhang, Jue; Fang, Jing

    2008-08-15

    A new method of fringe shifting for color structured pattern projection is presented for three-dimensional (3D) surface height measurement. Temporal encoding of color stripes is combined with locally spatial shifting of multiple fringes to realize image acquisition with a small number of pattern projections. Object topography is retrieved with high resolution by decoding the code word of each fringe with the help of the redundant information provided by the shifting patterns and the encoding patterns in their temporal and spatial neighborhoods. An application to evaluate the shape of a buckled tube demonstrates the effectiveness of the method.

  7. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  8. A protocol for validating Land Surface Temperature from Sentinel-3

    Science.gov (United States)

    Ghent, D.

    2015-12-01

    One of the main objectives of the Sentinel-3 mission is to measure sea- and land-surface temperature with high-end accuracy and reliability in support of environmental and climate monitoring in an operational context. Calibration and validation are thus key criteria for operationalization within the framework of the Sentinel-3 Mission Performance Centre (S3MPC).Land surface temperature (LST) has a long heritage of satellite observations which have facilitated our understanding of land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. These observations have been acquired from a variety of satellite instruments on platforms in both low-earth orbit and in geostationary orbit. Retrieval accuracy can be a challenge though; surface emissivities can be highly variable owing to the heterogeneity of the land, and atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. As such, a rigorous validation is critical in order to assess the quality of the data and the associated uncertainties. The Sentinel-3 Cal-Val Plan for evaluating the level-2 SL_2_LST product builds on an established validation protocol for satellite-based LST. This set of guidelines provides a standardized framework for structuring LST validation activities, and is rapidly gaining international recognition. The protocol introduces a four-pronged approach which can be summarised thus: i) in situ validation where ground-based observations are available; ii) radiance-based validation over sites that are homogeneous in emissivity; iii) intercomparison with retrievals from other satellite sensors; iv) time-series analysis to identify artefacts on an interannual time-scale. This multi-dimensional approach is a necessary requirement for assessing the performance of the LST algorithm for SLSTR which is designed around biome-based coefficients, thus emphasizing the importance of

  9. Surface soil moisture retrievals from remote sensing: Current status, products & future trends

    Science.gov (United States)

    Petropoulos, George P.; Ireland, Gareth; Barrett, Brian

    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth's land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today's world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space.

  10. GHRSST Level 2P Global 1 meter Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  11. GHRSST Level 3C North Atlantic Regional (NAR) subskin Sea Surface Temperature from SNPP/VIIRS (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the North Atlantic Region (NAR) based on retrievals from the...

  12. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  13. Towards a Combined Surface Temperature Dataset for the Arctic from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Dodd, Emma; Veal, Karen; Corlett, Gary; Ghent, Darren; Remedios, John

    2017-04-01

    Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations increasingly confirm these findings, their urgency, and their significance in the Arctic. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. The ATSRs are accurate infra-red satellite radiometers, designed explicitly for climate standard observations and particularly suited to ST observations. ATSR radiance observations have been used to retrieve sea and land ST for a series of three instruments over a period greater than twenty years. This series has been extended with the launch of SLSTR on Sentinel 3, which has the same key design features. We have combined land, ocean and sea-ice ST retrievals from ATSR-2 and AATSR to produce a new ST dataset for the Arctic; the ATSR Arctic combined Surface Temperature (AAST) dataset. The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type will be described. We will establish the accuracy of sea-ice and land-ice retrievals with results from validation against in situ data and comparison with other datasets. Time series of ST anomalies for each surface type will be presented. The time series for open ocean in the Arctic Polar Region shows a significant warming trend during the AATSR mission. Time series for land, land-ice and sea-ice show high variability as expected but also interesting patterns. Overall, our purpose is to present the state-of-the-art for ATSR observations of surface temperature change in the Arctic and hence indicate the confidence we can have in temperature change across all three domains, and in combination.

  14. The Effects of Landcover Pattern on Urban Surface Net Radiation Retrieved by Remote Sensing

    Science.gov (United States)

    Zhao, X.

    2015-12-01

    Taking Xiamen city as the study area, this research retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that: Xiamen's surface net radiation is the maximum in summer, followed by spring, autumn. The surface net radiation in winter is the minimum. Net radiation flux is higher for water and forestland and is lower for built-up land and bare land, etc. The spatial composition of land cover pattern shows significant influence on surface net radiation. The proportion of bare land and the proportion of forest land are effective and important factors which affect the changes of surface net radiation all the year round. But the spatial allocation of land cover pattern has no significant influence on surface net radiation. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. Its total annual explanatory ability is better than the latter. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.

  15. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  16. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  17. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    Science.gov (United States)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  18. Evaluation of ENVISAT ASAR data for sea surface wind retrieval in Hong Kong coastal waters of China

    Institute of Scientific and Technical Information of China (English)

    XU Qing; LIN Hui; ZHENG Quanan; XIU Peng; CHENG Yongcun; LIU Yuguang

    2008-01-01

    The C-band wind speed retrieval models,CMOD4,CMOD-IFR2,and CMODS were applied to retrieval of sea surface wind speeds from ENVISAT(European environmental satellite)ASAR(advanced synthetic aperture radar)data in the coastal waters near Hang Kong during a period from October 2005 to July 2007.The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT(quick scatterometer)wind products.The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s.The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896,respectively.The root mean square errors are the same 1.74m/s.Namely,the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the COastal waters near Hong Kong.

  19. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  20. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  1. Retrieval of Surface and Subsurface Moisture of Bare Soil Using Simulated Annealing

    Science.gov (United States)

    Tabatabaeenejad, A.; Moghaddam, M.

    2009-12-01

    Soil moisture is of fundamental importance to many hydrological and biological processes. Soil moisture information is vital to understanding the cycling of water, energy, and carbon in the Earth system. Knowledge of soil moisture is critical to agencies concerned with weather and climate, runoff potential and flood control, soil erosion, reservoir management, water quality, agricultural productivity, drought monitoring, and human health. The need to monitor the soil moisture on a global scale has motivated missions such as Soil Moisture Active and Passive (SMAP) [1]. Rough surface scattering models and remote sensing retrieval algorithms are essential in study of the soil moisture, because soil can be represented as a rough surface structure. Effects of soil moisture on the backscattered field have been studied since the 1960s, but soil moisture estimation remains a challenging problem and there is still a need for more accurate and more efficient inversion algorithms. It has been shown that the simulated annealing method is a powerful tool for inversion of the model parameters of rough surface structures [2]. The sensitivity of this method to measurement noise has also been investigated assuming a two-layer structure characterized by the layers dielectric constants, layer thickness, and statistical properties of the rough interfaces [2]. However, since the moisture profile varies with depth, it is sometimes necessary to model the rough surface as a layered structure with a rough interface on top and a stratified structure below where each layer is assumed to have a constant volumetric moisture content. In this work, we discretize the soil structure into several layers of constant moisture content to examine the effect of subsurface profile on the backscattering coefficient. We will show that while the moisture profile could vary in deeper layers, these layers do not affect the scattered electromagnetic field significantly. Therefore, we can use just a few layers

  2. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    Science.gov (United States)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  3. Surface Topographical Changes of a Failing Acid-Etched Long-Term in Function Retrieved Dental Implant.

    Science.gov (United States)

    Monje, Alberto; González-García, Raúl; Fernández-Calderón, María Coronada; Hierro-Oliva, Margarita; González-Martín, María Luisa; Del Amo, Fernando Suarez-Lopez; Galindo-Moreno, Pablo; Wang, Hom-Lay; Monje, Florencio

    2016-02-01

    The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined.

  4. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  5. A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite

    Institute of Scientific and Technical Information of China (English)

    YANG Tingting; CHEN Zhongbiao; HE Yijun

    2015-01-01

    This paper proposes a new method to retrieve salinity profiles from the sea surface salinity (SSS) observed by the Soil Moisture and Ocean Salinity (SMOS) satellite. The main vertical patterns of the salinity profiles are firstly extracted from the salinity profiles measured by Argo using the empirical orthogonal function. To determine the time coefficients for each vertical pattern, two statistical models are developed. In the linear model, a transfer function is proposed to relate the SSS observed by SMOS (SMOS_SSS) with that measured by Argo, and then a linear relationship between the SMOS_SSS and the time coefficient is established. In the nonlinear model, the neural network is utilized to estimate the time coefficients from SMOS_SSS, months and positions of the salinity profiles. The two models are validated by comparing the salinity profiles retrieved from SMOS with those measured by Argo and the climatological salinities. The root-mean-square error (RMSE) of the linear and nonlinear model are 0.08–0.16 and 0.08–0.14 for the upper 400 m, which are 0.01–0.07 and 0.01–0.09 smaller than the RMSE of climatology. The error sources of the method are also discussed.

  6. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  7. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  8. Retrieval assessment using the microwave simulation tool for the High Altitude and LOng range aircraft HALO: humidity, temperature and hydrometeor profiles

    Science.gov (United States)

    Mech, M.; Crewell, S.; Orlandi, E.; Hirsch, L.

    2011-12-01

    realistic particle habits and shapes. In this presentation the HAMP instruments, the simulation test bed, and the retrieval approaches and results will be introduced. The capability of HAMP for hydrometeor observations and the retrieval of integrated contents are shown based on a data set of simulated brightness temperatures and concurrent hydrometeor contents and profiles. Furthermore, the potential of the selected passive microwave frequencies for the derivation of temperature and humidity profiles, especially upper tropospheric water vapor, is presented. In the simulations the different sensitivities of the various passive microwave frequencies to varying hydrometeor contents and surface properties can be seen clearly. Additionally, the results of retrieval approaches with an integrated profiling technique combining the active and passive information for hydrometeor contents and profiles over ocean and land are presented.

  9. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-bo; OUYANG Zhi-yun; ZHENG Hua; LI Wei-feng; SCHIENKE Erich W; WANG Xiao-ke

    2007-01-01

    Land surface temperature (LST), which is heavily influenced by urban surface structures, is a significant parameter in urban environmental analysis. This study examined the effect impervious surfaces (IS) spatial patterns have on LST in Beijing, China. A classification and regression tree model (CART) was adopted to estimate IS as a continuous variable using Landsat images from two seasons combined with QuickBird. LST was retrieved from the Landsat Thematic Mapper (TM) image to examine the relationships between IS and LST. The results revealed that CART was capable of consistently predicting LST with acceptable accuracy (correlation coefficient of 0.94 and the average error of 8.59%). Spatial patterns of IS exhibited changing gradients across the various urban-rural transects, with LST values showing a concentric shape that increased as you moved from the outskirts towards the downtown areas.Transect analysis also indicated that the changes in both IS and LST patterns were similar at various resolution levels, which suggests a distinct linear relationship between them. Results of correlation analysis further showed that IS tended to be positively correlated with LST, and that the correlation coefficients increased from 0.807 to 0.925 with increases in IS pixel size. The findings identified in this study provide a theoretical basis for improving urban planning efforts to lessen urban temperatures and thus dampen urban heat island effects.

  10. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  11. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  12. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  13. Inter-comparison of four remote sensing based surface energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate

    Directory of Open Access Journals (Sweden)

    J. Chirouze

    2013-01-01

    Full Text Available Remotely sensed surface temperature can provide a good proxy for water stress level and is therefore particularly useful to estimate spatially distributed evapotranspiration. Instantaneous stress levels or instantaneous latent heat flux are deduced from the surface energy balance equation constrained by this equilibrium temperature. Pixel average surface temperature depends on two main factors: stress and vegetation fraction cover. Methods estimating stress vary according to the way they treat each factor. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a triangle method, inspired by Moran et al., 1994 and two single-pixel (TSEB, SEBS are applied at seasonal scale over a four by four km irrigated agricultural area in semi-arid northern Mexico. Their performances, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as a more complex soil-vegetation-atmosphere transfer model forced with true irrigation and rainfall data. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performances. Drop in model performances is observed when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when extreme hydric and vegetation conditions are encountered in the same image (therefore, esp. in spring and early summer while they tend to exaggerate the spread in water status in more homogeneous conditions (esp. in winter.

  14. Inter-comparison of four remote sensing based surface energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate

    Science.gov (United States)

    Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J. C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; Watts, C.; Chehbouni, G.

    2013-01-01

    Remotely sensed surface temperature can provide a good proxy for water stress level and is therefore particularly useful to estimate spatially distributed evapotranspiration. Instantaneous stress levels or instantaneous latent heat flux are deduced from the surface energy balance equation constrained by this equilibrium temperature. Pixel average surface temperature depends on two main factors: stress and vegetation fraction cover. Methods estimating stress vary according to the way they treat each factor. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a triangle method, inspired by Moran et al., 1994) and two single-pixel (TSEB, SEBS) are applied at seasonal scale over a four by four km irrigated agricultural area in semi-arid northern Mexico. Their performances, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as a more complex soil-vegetation-atmosphere transfer model forced with true irrigation and rainfall data. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performances. Drop in model performances is observed when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when extreme hydric and vegetation conditions are encountered in the same image (therefore, esp. in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (esp. in winter).

  15. On the suitability of global algorithms for the retrieval of SST from the north Indian Ocean using NOAA/AVHRR

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.

    The errors associated with the SST retrievals from the north Indian Ocean, using global multichannel sea surface temperature (MCSST), nonlinear sea surface temperature (NLSST), and Pathfinder sea surface temperature (PFSST) algorithms are analysed...

  16. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  17. Combining Abundance/Temperature Retrieval with 3D Atmospheric Circulation Simulations of Hot Jupiters

    Science.gov (United States)

    Heng, Kevin

    2011-09-01

    The atmospheres of hot Jupiters are three-dimensional, non-linear entities and understanding them requires the construction of a hierarchy of models of varying sophistication. Since previous work has either focused on the atmospheric dynamics or implemented multi-band radiative transfer, a reasonable approach is to combine the treatment of 3D dynamics with dual-band radiative transfer, where the assumption is that the stellar irradiation and re-emitted radiation from the exoplanet are at distinct wavelengths. I report on the successful implementation of such a setup and demonstrate how it can be used to compute self-consistent temperature-pressure profiles on both the day and night sides of a hot Jupiter, as well as zonal-wind profiles, circulation cell patterns and the angular/temporal offset of the hotspot from the substellar point. In particular, the hotspot offset should aid us in distinguishing between different types of hot Jupiter atmospheres. Together with N. Madhusudhan, we combine the dual-band simulation technique with the abundance/temperature retrieval method of Madhusudhan & Seager, by empirically constraining a range of values for the broad-band opacities which are consistent with the current observations. The advantage of our novel method is that the range of opacities used improves with time as the observations get better. The ability to thoroughly, efficiently and systematically explore the interplay between atmospheric dynamics, radiation and synthetic spectra is an important step forward, as it prepares us for the theoretical interpretation of exoplanetary spectra which will be obtained by future space-based missions such as JWST and EChO. I acknowledge generous support from the Zwicky Prize Fellowship and the Star and Planet Formation Group (PI: Michael Meyer) at ETH Zurich.

  18. Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2017-02-01

    Full Text Available An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT and columnar water vapor (CWV. This paper describes problems associated with this process and recommends an improved strategy for processing remote sensing data, collected from both visible to near-infrared and shortwave infrared modules, to retrieve accurate AOT, CWV, and surface reflectance values. This strategy includes a workflow for radiometric and spatial cross-calibration and a method to retrieve atmospheric parameters and surface reflectance based on a radiative transfer function. This method was tested using data collected with the Compact Airborne Spectrographic Imager (CASI and SWIR Airborne Spectrographic Imager (SASI from a site in Huailai County, Hebei Province, China. Various methods for retrieving AOT and CWV specific to this region were assessed. The results showed that retrieving AOT from the remote sensing data required establishing empirical relationships between 465.6 nm/659 nm and 2105 nm, augmented by ground-based reflectance validation data, and minimizing the merit function based on AOT@550 nm optimization. The paper also extends the second-order difference algorithm (SODA method using Powell’s methods to optimize CWV retrieval. The resulting CWV image has fewer residual surface features compared with the standard methods. The derived remote sensing surface reflectance correlated significantly with the ground spectra of comparable vegetation, cement road and soil targets. Therefore, the method proposed in this paper is reliable enough for integrated atmospheric correction and surface reflectance retrieval from hyperspectral remote sensing data. This study provides a good reference for surface

  19. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  20. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    Science.gov (United States)

    Minnett, Peter J.; Corlett, Gary K.

    2012-11-01

    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST.

  1. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    Science.gov (United States)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  2. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  3. Practical retrieval of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data.

    Science.gov (United States)

    Wu, Hua; Wang, Ning; Ni, Li; Tang, Bo-Hui; Li, Zhao-Liang

    2012-10-22

    A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of the atmosphere (TOA). The regression coefficients were determined by the main principal components of emissivity spectra and those of simulated brightness temperature at TOA using a ridge regression method. The experience with the simulated Interferometer Atmospheric Sounding Instrument (IASI) data showed that the emissivity spectra could be retrieved under clear sky conditions with root mean square errors of 0.015 and 0.03 for 714-970 cm(-1) (10.3-14.0 μm) and 970-1250 cm(-1) (8.0-10.3 μm), respectively, for various land surface and atmospheric conditions. This indicates the proposed method may be robust and applicable for all hyperspectral infrared sensors.

  4. PM10 retrieval over the water surface of Penang Straits from Landsat TM5 data

    Science.gov (United States)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Saleh, N. Mohd.; Hashim, S. A.

    2007-04-01

    In this study, we used the Landsat TM data captured on 9 March 2006 for the retrieval of PM10 over the water surface of Penang Straits, Malaysia. PM10 measurements were collected using a handheld DustTrak TM meter simultaneously with the remotely sensed data acquisition. The PCI Geomatica version 9.1 digital image processing software was used in all image-processing analysis. An algorithm was developed based on the atmospheric optical characteristic. The digital numbers were extracted corresponding to the ground-truth locations for each band and then converted into radiance and reflectance values. The reflectance measured from the satellite [reflectance at the top of atmospheric, ρ(TOA)] was subtracted by the amount given by the surface reflectance to obtain the atmospheric reflectance. Then the atmospheric reflectance was related to the PM10 using regression analysis. These atmospheric reflectance values were used for calibration of the PM10 algorithm. The developed algorithm was used to correlate the digital signal and the PM10 concentration. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS). The PM10 concentration was generated using this algorithm over the water surface of Penang straits.

  5. Surface Ice Velocity Retrieval From MOA Based On NCC Feature Tracking

    Science.gov (United States)

    Li, T.; Liu, Y.; Cheng, X.

    2016-12-01

    The velocity of glacier in Antarctica is a fundamental parameter to ice dynamics and projection of sea level rise, and it is as well the key indicator of global climate change. COSI-Corr, an extension of ENVI software, was employed to acquire the horizontal velocity of ice flows throughout the whole Antarctica continent from 2003-2004 and 2008-2009 MOA (MODIS Mosaic of Antarctica) compiled by NSIDC. However, conventional tracking methods severely suffer from spurious matching resulting from ice surface's variation, illumination condition, inappropriate window size etc. So it is indispensable to correct the initial output field contaminated by noises before extracting valuable information. Usually, the low-SNR areas, which denote quite poor quality, are filtered out directly based on some roles of thumb. Here we have some experiments to test performance of FFT (Fast Fourier Transform) and SVD (Singularity Value Decomposition) of optimizing the estimation by cutting image into overlapped tiles. Validation was conducted by comparing the final result with respect to MEaSUREs in typical flow areas including inland stream and ice shelves. The primitive results shows that both methods can reduce RMSE to an extent of 20% 40% but FFT performs more robust. Our result shows that MOA datasets, which highlight true surface morphology, have potential for continental ice surface velocity's retrieval.

  6. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    Directory of Open Access Journals (Sweden)

    M. Kiefer

    2010-04-01

    Full Text Available We examine volume mixing ratios (vmr retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. In level 2 (L2 data products of three different retrieval processors, which perform one dimensional (1-D retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in

  7. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-02-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0degree of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. It is evident, from this analysis, that SCIAMACHY therefore has the potential to

  8. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-07-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in-situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0° of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing a seasonal signal that is representative of lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. The presented analysis suggests that

  9. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  10. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  11. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  12. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  13. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  14. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area

    Science.gov (United States)

    Nie, Qin; Xu, Jianhua

    2015-06-01

    It is well known that urban impervious surface (IS) has a warming effect on urban land surface temperature (LST). However, the influence of an IS's structure, components, and spatial distribution on LST has rarely been quantitatively studied within strictly urban areas. Using ETM+ remote sensing images from the downtown area of Shanghai, China in 2010, this study characterized and quantified the influence of the IS spatial pattern on LST by selecting the percent cover of each IS cover feature and ten configuration metrics. The IS fraction was estimated by linear spectral mixture analysis (LSMA), and LST was retrieved using a mono-window algorithm. The results indicate that high fraction IS cover features account for the majority of the study area. The high fraction IS cover features are widely distributed and concentrated in groups, which is similar with that of high temperature zones. Both the percent composition and the configuration of IS cover features greatly affect the magnitude of LST, but the percent composition is a more important factor in determining LST than the configuration of those features. The significances and effects of the given configuration variables on LST vary greatly among IS cover features.

  15. Wavelength influence in sub-pixel temperature retrieval using the dual-band technique

    Directory of Open Access Journals (Sweden)

    M. F. Buongiorno

    2006-06-01

    Full Text Available The thermal model proposed by Crisp and Baloga (1990 for active lava flows considers thermal flux as a function of the fractional area of two thermally distinct radiant surfaces. In this model, the larger surface area corresponds to the cooler crust of the flow and the other, much smaller to fractures in the crust. These cracks temperature is much higher than the crust one and approaches the temperature of the molten or plastic interior flow. The dual-band method needs two distinct SWIR (short wave infrared bands to formulate a two equations system from the simultaneous solution of the Planck equation in each band. The system solutions consist in the crust temperature and the fractional area of the hot component. The dual band technique originally builds on data acquired by sensors (such as Landsat TM with two SWIR bands only. The use of hyperspectral imaging spectrometers allows us to test the dual-band technique using different wavelengths in the SWIR range of the spectrum. DAIS 7915 is equipped with 40 bands into the range 1.54-2.49 nm which represent potential input in dual band calculation. This study aims to compare results derived by inserting assorted couples of wavelengths into the equation system. The analysis of these data provides useful information on dual-band technique accuracy.

  16. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  17. Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Indian Academy of Sciences (India)

    J S Prasad; A S Rajawat; Yaswant Pradhan; O S Chauhan; S R Nayak

    2002-09-01

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has been applied. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on a pair of atmospherically corrected and geo-referenced sequential images by Maximum Cross-Correlation (MCC) technique. The MCC technique involves computing matrices of cross-correlation coe#cients and identifying correlation peaks. The movement of the pattern can be calculated knowing the displacement of windows required to match patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along the east coast during the GSI cruise ST-133 of R.V. Samudra Kaustubh in January 2000. The current data were measured using the ocean current meter supplied by the Environmental Measurement and CONtrol (EMCON), Kochi available with the Geological Survey of India, Marine Wing. This current meter can measure direction and magnitude with an accuracy of ± 5° and 2% respectively. The measurement accuracies with coefficient of determination (2) of 0.99, for both magnitude (cm.s-1) and direction (deg.) were achieved.

  18. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  19. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  20. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Directory of Open Access Journals (Sweden)

    A. Gobiet

    2007-02-01

    Full Text Available This study describes and evaluates a Global Navigation Satellite System (GNSS radio occultation (RO retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006 from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the Global Ozone Monitoring for Occultation of Stars (GOMOS sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary

  1. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  2. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  3. Operational tools and applications of EO satellite data to retrieve surface fluxes in semi-arid countries

    Science.gov (United States)

    Tanguy, Maliko

    The objective of the thesis is to develop and evaluate useful tools and applications of Earth Observation (EO) satellite data to estimate surface fluxes in semi-arid countries. In a first part (Chapter 4), we assess the performance of a new parameterisation scheme of ground heat flux (G) to be used in remote sensing (RS) evapotranspiration (ET) estimation methods. The G-parameterisation optimized with AMMA flux data performs well and improves the sensible heat flux (H) and ET retrieved by means of the triangle method (Jiang & Islam, 2001). In a second part (Chapter 5), the triangle method is compared with ET estimated by means of a land surface model (JULES). An attempt is made to calibrate JULES using the triangle method through Monte Carlo simulations, but the two methods supply rather different results, indicating that further intercomparison tasks should be carried out to assess the performance of RS-based algorithms and land surface models in estimating the components of the land surface energy balance. Chapter 6 presents a set of operational examples for retrieving surface fluxes using RS data. The first example is the study of temporal evolution of ET-maps in Western Africa under monsoonal influence. In a second example, we apply the new scheme proposed in Chapter 4 to retrieve and analyse the long term evolution (2000-2009) of the surface energy balance components, G, H and ET at several sites of the Segura Basin (S-E Spain) using MODIS-Terra data (land surface temperature and NDVI). Temporal and spatial distribution of evapotranspiration reveals different controls on ET. (Chapter 6). In the last example, MODIS-Aqua Sea Surface Temperature (SST) is used to validate a mathematical model to retrieve surface fluxes in a Mediterranean coastal lagoon (Mar Menor, S-E Spain). El objetivo de esta tesis es de desarrollar y evaluar herramientas y aplicaciones de la teledetección para estimar flujos de superficie en zonas semiáridas. En una primera parte (Cap

  4. Retrieval of chlorphyll from the sea-leaving radiance in the Arbaian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Jadhav, N.

    Error estimates in chlorophyll retrieval in the sea from satellite data have always been higher compared to the errors in retrieval of sea surface temperature or wind speed from satellite data. This is due to the higher percentage of noise...

  5. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  6. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  7. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations

    Directory of Open Access Journals (Sweden)

    L. N. Lamsal

    2014-06-01

    Full Text Available We assess the standard operational nitrogen dioxide (NO2 data product (OMNO2, version 2.1 retrieved from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite using a combination of aircraft and surface in situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8 with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI chemistry-transport model (CTM used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.

  8. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  9. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  10. Developing a synergy algorithm for land surface temperature: the SEN4LST project

    Science.gov (United States)

    Sobrino, Jose A.; Jimenez, Juan C.; Ghent, Darren J.

    2013-04-01

    Land surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. An adequate characterization of LST distribution and its temporal evolution requires measurements with detailed spatial and temporal frequencies. With the advent of the Sentinel 2 (S2) and 3 (S3) series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. The Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project aims at developing techniques to fully utilize synergy between S2 and S3 instruments in order to improve LST retrievals. In the framework of the SEN4LST project, three LST retrieval algorithms were proposed using the thermal infrared bands of the Sea and Land Surface Temperature Retrieval (SLSTR) instrument on board the S3 platform: split-window (SW), dual-angle (DA) and a combined algorithm using both split-window and dual-angle techniques (SW-DA). One of the objectives of the project is to select the best algorithm to generate LST products from the synergy between S2/S3 instruments. In this sense, validation is a critical step in the selection process for the best performing candidate algorithm. A unique match-up database constructed at University of Leicester (UoL) of in situ observations from over twenty ground stations and corresponding brightness temperature (BT) and LST match-ups from multi-sensor overpasses is utilised for validating the candidate algorithms. Furthermore, their performance is also evaluated against the standard ESA LST product and the enhanced offline UoL LST product. In addition, a simulation dataset is constructed using 17 synthetic images of LST and the radiative transfer model MODTRAN carried under 66 different atmospheric conditions. Each candidate LST

  11. Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yili

    2013-01-01

    WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer,which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space.In this paper,a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat.The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model.Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation,by which a group of ambiguous wind directions was obtained.A median filter was then used to remove ambiguity of wind direction.Evaluated with sea surface wind speed and direction data from the U.S.National Data Buoy Center (NDBC),root mean square errors are 1.2 m/s and 30° for retrieved wind speed and wind direction,respectively.The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications,without reducing accuracy.

  12. Using Paraffin PCM, Cryogel and TEC to Maintain Comet Surface Sample Cold from Earth Approach Through Retrieval

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    An innovative thermal design concept to maintain comet surface samples cold (for example, 263 degrees Kelvin, 243 degrees Kelvin or 223 degrees Kelvin) from Earth approach through retrieval is presented. It uses paraffin phase change material (PCM), Cryogel insulation and thermoelectric cooler (TEC), which are commercially available.

  13. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    Science.gov (United States)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  14. Retrieving capillary-gravity wave spectrum from polarimetric microwave radiation of ocean surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum coefficients (C0 and C2). This provides a simple way to investigate the effect of curvature spectrum on ocean emission. It is found that ocean waves with wavelengths both comparable to and much greater than the electromagnetic wavelength can contribute to the harmonics of ocean surface microwave emission, depending on the magnitude of the ocean surface spectrum in these length scales. Bright-ness temperature predictions differ significantly due to present diverse spectrum models, and thus a study on wave spectrum obtained inversely from brightness temperature measurements is necessary. From the ocean surface radiation data measured by polarimetric microwave radiometer, we derived an ocean wave spectrum with a wider wave number range, using the proposed two-scale model and constrained linear least-squares method. The derived ocean wave spectrum is useful for comparing with present diverse models.

  15. Retrieval of near-surface sulfur dioxide (SO2 concentrations at a global scale using IASI satellite observations

    Directory of Open Access Journals (Sweden)

    S. Bauduin

    2015-10-01

    Full Text Available SO2 from volcanic eruptions is now operationally monitored from space in both ultraviolet (UV and thermal infrared (TIR spectral range, but anthropogenic SO2 has almost solely been measured from UV sounders. Indeed, TIR instruments are well-known to have a poor sensitivity to the boundary layer (PBL, due to generally low thermal contrast (TC between the ground and the air above it. Recent studies have demonstrated the capability of the Infrared Atmospheric Sounding Interferometer (IASI to measure near-surface SO2 locally, for specific atmospheric conditions. In this work, we develop a retrieval method allowing the inference of SO2 near-surface concentrations from IASI measurements at a global scale. This method consists of two steps. Both are based on the computation of radiance indexes representing the strength of the SO2 ν3 band in IASI spectra. The first step allows retrieving the peak altitude of SO2 and selecting near-surface SO2. In the second step, 0–4 km columns of SO2 are inferred using a look-up table (LUT approach. Using this new retrieval method, we obtain the first global distribution of near-surface SO2 from IASI-A, and identify the dominant anthropogenic hotspot sources and volcanic degassing. The 7-year daily time evolution of SO2 columns above two industrial source areas (Beijing in China and Sar Cheshmeh in Iran is investigated and correlated to the seasonal variations of the parameters that drive the IASI sensitivity to the PBL composition. Apart from TC, we show that humidity is the most important parameter which determines IR sensitivity to near-surface SO2. As IASI provides twice daily global measurements, the differences between the retrieved columns for the morning and evening orbits are investigated. This paper finally presents a first intercomparison of the measured 0–4 km columns with an independent iterative retrieval method and with observations of the Ozone Monitoring Instrument (OMI.

  16. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  17. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  18. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    Science.gov (United States)

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  19. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique: an overview

    Directory of Open Access Journals (Sweden)

    G. Zeni

    2008-06-01

    Full Text Available This paper presents a comprehensive overview of the surface deformation retrieval capability of the Differential Synthetic Aperture Radar Interferometry (DInSAR algorithm, referred to as Small BAseline Subset (SBAS technique, in the context of active volcanic areas. In particular, after a brief description of the algorithm some experiments relevant to three selected case-study areas are presented. First, we concentrate on the application of the SBAS algorithm to a single-orbit scenario, thus considering a set of SAR data composed by images acquired on descending orbits by the European Remote Sensing (ERS radar sensors and relevant to the Long Valley caldera (eastern California area. Subsequently, we address the capability of the SBAS technique in a multipleorbit context by referring to Mt. Etna volcano (southern Italy test site, with respect to which two different ERS data set, composed by images acquired both on ascending and descending orbits, are available. Finally, we take advantage of the capability of the algorithm to work in a multi-platform scenario by jointly exploiting two different sets of SAR images collected by the ERS and the Environment Satellite (ENVISAT radar sensors in the Campi Flegrei caldera (southern Italy area. The presented results demonstrate the effectiveness of the algorithm to investigate the deformation field in active volcanic areas and the potential of the DInSAR methodologies within routine surveillance scenario.

  20. Constraining Planetary Boundary Layer Retrievals with Surface Reflections from GNSS Radio Occultation Measurements

    Science.gov (United States)

    Ao, C. O.; Shume, E. B.; Hajj, G. A.; Meehan, T. K.

    2016-12-01

    In an earlier study, we demonstrated that grazing surface reflection observed from GNSS radio occultation (RO) data yields frequency shifts that are sensitive to refractivity within the planetary boundary layer (PBL). In this presentation, we show our latest progress in retrieving PBL refractivity using a combination of direct and reflected RO data. Through forward simulations, we first assess how the reflected Doppler frequency will vary as a function of refractivity parameters in the PBL. Next, we describe our method for extracting the reflected Doppler signal from actual COSMIC and TerraSAR-X observations and discuss its associated uncertainty. We focus our attention to RO soundings from the subtropical Eastern oceans where large negative refractivity biases within the PBL have been reported. We investigate the feasibility of using the inferred reflected signal to correct the negative bias. Finally, we discuss how future RO observations such as those from COSMIC-2 can be enhanced to provide stronger reflection signals through changes in the GNSS receiver configurations.

  1. Applications of SMAP data to retrieval of ocean surface wind and salinity

    Science.gov (United States)

    Yueh, Simon; Fore, Alexander; Tang, Wenqing; Hayashi, Akiko; Stiles, Bryan; Zhang, Fuqing; Weng, Yonghui; Real, Nicolas

    2016-10-01

    We have examined the L-band radiometer and radar data from NASA's Soil Moisture Active Passive (SMAP) mission for ocean research and applications. We find that the SMAP data are in excellent agreement with the geophysical model function (GMF) derived from the Aquarius data up to a wind speed of 20 ms-1. For severe wind conditions, the higher resolution data from SMAP allowed us to assess the sensitivity of L-band radiometer signals to hurricane force winds. We applied the L-band GMF to the retrieval of ocean surface wind and SSS from the SMAP data. Comparison with the European Center for Medium-Range Weather Forecasting, WindSat and RapidSCAT wind speeds suggests that SMAP's radiometer wind speed reaches an excellent accuracy of about 1.1-1.7 ms-1 below a wind speed of 20 ms-1. We have also found that the maximum wind speed derived from the SMAP radiometer data can reach 140 knots for severe storms and are generally in good agreement with the hurricane track analysis and operational aircraft Stepped Frequency Microwave Radiometer wind speeds. The spatial patterns of the SMAP SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features.

  2. Measurements of the O2A- and B-bands for determining temperature and pressure profiles from ACE MAESTRO: Forward model and retrieval algorithm

    Science.gov (United States)

    Nowlan, C. R.; McElroy, C. T.; Drummond, J. R.

    2007-12-01

    The ACE-MAESTRO (Atmospheric Chemistry Experiment Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument on the SCISAT satellite is able to measure solar occultation absorption in the A- and B-bands of molecular oxygen with a spectral resolution of 2 nm. Profiles of total atmospheric density are derived by exploiting the constant and known mixing ratio of O2, and are used to determine profiles of pressure and temperature using hydrostatic balance and the ideal gas law. A highly accurate combined fast-line-by-line and extended correlated-k technique is implemented to fast forward model MAESTRO's O2 absorption measurements, which ensures that errors in pressure and temperature resulting from the forward model approximation are essentially negligible. Estimated errors in pressure and temperature are determined for the A-, B-, and combined A B-band retrievals for a typical retrieval, and demonstrate that pressure profiles should be derivable to within 1% and temperature to within 2 K over most altitudes using a combined A B retrieval. The combined retrieval provides an improvement of up to 0.25% in pressure and 0.5 K in temperature over the A-band retrieval alone. The B-band could also be used alone below about 50 km, where its independent retrieval produces error estimates of 1 1.5% in pressure and 2 3 K in temperature.

  3. The potential of using meteorological data to correct for water surface roughness impacts on soil moisture retrieval in the Arctic

    Science.gov (United States)

    Högström, Elin; Bartsch, Annett

    2017-04-01

    Permafrost temperatures have risen significantly over the past two to three decades, and the Arctic, which to a large extent is underlain by permafrost, is expected to warm rapidly compared to the global mean temperature until the end of the 21st century. In remote areas that are difficult to access for ground measurements, such as the Arctic, satellite-derived data are essential. For permafrost studies in particular, satellite derived soil moisture data is one important parameter which is needed for modelling purposes. To assess the applicability of such data at high latitudes has been given little attention but recent studies have pointed out that seasonal land cover variations and the presence of small water bodies. The presence of small water bodies is characteristic for the Arctic and we expect it to cause complications for soil moisture retrieval from satellite data in these regions. In the present study, we hypothesize that a bias related to water fraction is caused by variations in the water surface roughness (wind, precipitation). The impact is quantified for the active microwave remote sensing instrument Metop Advanced Scatterometer (ASCAT) by investigating the higher spatial resolution synthetic aperture radar (SAR) data acquired by ENVISAT Advanced SAR. The bias is calculated as an average over time for 11 sites across the Siberian Arctic. It is concluded that a water fraction higher than 20% causes a bias of more than 10% relative surface soil moisture. Comparisons with in situ collected meteorological data showed that the bias to a great extent could be attributed to the wind and therefore a bias correction was developed based on this. The wind correction was applied and evaluated with in-situ soil moisture data, which were available from one of the sites: the Lena Delta. The results from the correction were weak, which is likely explained by the fact that the water surfaces at this specific site mainly correspond to rivers: variations in discharge

  4. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations

    Directory of Open Access Journals (Sweden)

    L. N. Lamsal

    2014-11-01

    Full Text Available We assess the standard operational nitrogen dioxide (NO2 data product (OMNO2, version 2.1 retrieved from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite using a combination of aircraft and surface in~situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8 with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Since validation data sets are scarce and are limited in space and time, validation of the global product is still limited in scope by spatial and temporal coverage and retrieval conditions. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI chemistry-transport model (CTM used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.

  5. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    Institute of Scientific and Technical Information of China (English)

    Qin NIE; Jianhua XU; Wang MAN

    2016-01-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem.It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods.This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis,utilizing data from downtown Shanghai,China.UIS estimates were obtained from linear spectral mixture analysis,and LST was retrieved through application of the mono-window algorithm,using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010.These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai.LST has a long memory for a certain spatial range of UIS values,such that a large increment in UIS is likely to be followed by a large increment in LST.While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010),these observed correlations show a weakening during the study period as urbanization increased.

  6. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    Science.gov (United States)

    Nie, Qin; Xu, Jianhua; Man, Wang

    2016-03-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem. It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods. This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis, utilizing data from downtown Shanghai, China. UIS estimates were obtained from linear spectral mixture analysis, and LST was retrieved through application of the mono-window algorithm, using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010. These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai. LST has a long memory for a certain spatial range of UIS values, such that a large increment in UIS is likely to be followed by a large increment in LST. While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010), these observed correlations show a weakening during the study period as urbanization increased.

  7. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  8. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  9. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  10. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  11. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Science.gov (United States)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general

  12. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    Science.gov (United States)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce

  13. Modelling the angular effects on satellite retrieved LST at global scale using a land surface classification

    Science.gov (United States)

    Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren

    2017-04-01

    Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is

  14. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  15. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  16. Retrievals of underlying surface roughness and moisture from polarimetric pulse echoes in the specular direction through inhomogeneous vegetation canopy

    Institute of Scientific and Technical Information of China (English)

    金亚秋; 陈扉; 常梅

    2003-01-01

    The time-dependent Mueller matrix solution of vector radiative transfer for inhomogeneous random media of non-spherical scatterers is presented. Co-polarized and cross-polarized bistatic scatterings for a polarized pulse incidence are numerically simulated. Numerical results well demonstrate volumetric and surface scattering mechanism and depict the inhomogeneous fraction profile of random scatterers. The peak tails in polarized echoes due to wave reflections from the underlying surface can be identified. Its co-polarized peaks in the specular direction are applied to simultaneous retrievals of the underlying surface roughness and moisture in the presence of inhomogeneous vegetation canopy.

  17. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    Science.gov (United States)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  18. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  19. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  20. Pushing the upper limit of Rayleigh-scatter Temperatures Retrievals into the Lower Thermosphere Using an Inversion Approach

    Science.gov (United States)

    Bandoro, J.; Sica, R. J.; Argall, S.

    2012-12-01

    An important aspect of solar terrestrial relations is the coupling between the lower and upper atmosphere-ionosphere system. The coupling is evident in the general circulation of the atmosphere, where waves generate in the lower atmosphere play an important role in the dynamics of the upper atmosphere, which feeds back on the lower atmosphere's circulation. To address coupling problems requires measurements over the broadest range of heights possible. A recently developed retrieval method for temperature profiles from Rayleigh-scatter lidar measurements using an inversion approach allows the upward extension of the altitude range of temperature by 10 to 15 km over the conventional method, thus producing the equivalent of increasing the systems power-aperture product by 4 times [1]. The method requires no changes to the lidar's hardware and thus, can be applied to the body of existing measurements. In addition, since the uncertainties of the retrieved temperature profile are found by a Monte Carlo error analysis, it is possible to isolate systematic and random uncertainties to model the effect of each one on the final uncertainty product for the temperature profile. This unambiguous separation of uncertainties was not previously possible as only the propagation of the statistical uncertainties are typically reported. For the Purple Crow Lidar, corrections for saturation (e.g. non-linearity) in the photocount returns, ozone extinction and background removal all contribute to the overall systematic uncertainty. Results of individually varying each systematic correction and the effect on the final temperature uncertainty through Monte Carlo realizations are presented to determine the importance for each one. For example, it was found that treatment of the background correction as a systematic versus statistical uncertainty gave results in agreement with each other. This new method is then applied to measurements obtained by the Purple Crow lidar' Rayleigh

  1. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  2. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  3. Multi-spectrum retrieval of Venus IR surface emissivity maps from VIRTIS/VEX nightside measurements at Themis Regio

    Science.gov (United States)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2016-02-01

    Surface emissivity maps in the infrared can contribute to explore Venus' geology. Nightside radiance spectra at Themis Regio acquired by the IR mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard Venus EXpress (VEX) are used to derive emissivity data from the three accessible spectral surface windows at 1.02, 1.10, and 1.18 μm. The measured spectra are simulated by applying a full radiative transfer model. Neglecting geologic activity, a multi-spectrum retrieval algorithm is utilized to determine the emissivity maps of the surface target as parameter vectors that are common to many spectrally resolved images that cover this target. Absolute emissivity values are difficult to obtain due to strong interferences from other parameters. The true emissivity mean of the target cannot be retrieved, nor can the emissivity mean of a retrieved map be strictly preset. The retrieved map can exhibit trends with latitude and topography that are probably artificial. Once the trends have been removed in a post-processing step, it can be observed that the magnitude of the resulting spatial emissivity fluctuations around their mean value increases with increasing mean value. A linear transformation is applied that converts the de-trended map to exhibit a defined emissivity mean value called reference emissivity, here 0.5, yielding the 'renormalized emissivity map' with accordingly transformed fluctuations. It is verified that renormalized emissivity maps are largely independent of the emissivity mean before renormalization, of modifications to interfering atmospheric, surface, and instrumental parameters, and of selected details of the retrieval pipeline and data calibration and preprocessing. Extremely large emissivity retrieval errors due to imperfect or unconsidered forward model parameters are effectively avoided. If the absolute emissivity at a given bin of the target were known, the absolute emissivity map of the entire target could be

  4. [Multi-layer perceptron neural network based algorithm for simultaneous retrieving temperature and emissivity from hyperspectral FTIR data].

    Science.gov (United States)

    Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming

    2008-04-01

    The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation.

  5. Simultaneous Retrieval of Aerosol Optical Depth and Surface Reflectance over Land within Short Temporal Interval Using MSG Data

    Science.gov (United States)

    Li, C.; Xue, Y.; Li, Y. J.; Yang, L. K.; Hou, T. T.

    2012-04-01

    Aerosols cause a major uncertainty in the research of climatology and global change, whereas satellite aerosol remote sensing over land still remains a big challenge. Due to their short time repeat cycle, geostationary satellites are capable of monitoring the temporal features of aerosols, while its limited number of visible bands is an obstacle. On the other hand, a main uncertainty in aerosol retrieval is the difficulty to separate the relatively weaker contribution of the atmosphere to the signal received by the satellite from the contribution of the Earth's surface. In this paper, an analytical retrieval strategy is presented to solve the both problems above. For the lack of surface reflectance, we use the Ross-Li BRDF (Bidirectional Reflectance Distribution Function) model and assume that the surface reflective property changes mainly due to the change of illumination geometry in a short time interval while the kernals of Ross-Li model remain the same. For the limited visible band, we take advantage of the Aerosol Optical Depth (AOD) consistence within short distances, thus to reduce the number of unknown parameters. A parameterization of the atmospheric radiative transfer model is used which is proved to be proper to retrieve aerosol and surface parameters by sensitivity analysis. Taking the three kernels of kernel-driven BRDF model and AOD as unknown parameters and based on prior knowledge of aerosol types, a series of nonlinear equations can be established then. Both AOD and surface reflectance can be obtained by using a numerical method to solve these equations. By applying this method, called LABITS-MSG (Land Aerosol and Bidirectional reflectance Inversion by Time Series technique for MSG), to data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations on board Meteosat Second Generation (MSG), we obtain regional maps of AOD and surface reflectance in July 11, 2010 within a temporal interval of as short as 1 hour, and a spatial

  6. The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3

    CERN Document Server

    Ruescas, Ana Belen; Fomferra, Norman; Brockmann, Carsten

    2016-01-01

    Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European Space Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). In this paper we explain the implementation in the Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM) and the use of one LST algorithm developed in the framework of the Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project. The LST algorithm is based on the split-window technique with an explicit dependence on the surface emissivity. Performance of the methodology is assessed by using MEdium Resolution Imaging Spectrometer/Advanced Alo...

  7. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    Science.gov (United States)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  8. GHRSST Level 3C sub-skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES 13) Imager in East position (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the America Region (AMERICAS) based on retrievals from the...

  9. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  10. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  11. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    Science.gov (United States)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  12. Global Abundance and Temperature Constraints via Joint Spectroscopic Phase Curve Retrievals

    Science.gov (United States)

    Line, Michael R.; Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura; Fortney, Jonathan J.

    2016-01-01

    Spectroscopic thermal emission phase curves can provide us with a global view of an exoplanet's atmosphere. Different wavelengths probe different atmospheric depths whereas different phases probe different planetary longitudes. This in essence allows us to reconstruct the "3D" thermal and compositional structure of these atmospheres. In this contribution I will discuss the application of powerful atmospheric retrieval approaches to spectroscopic phase curve data, specifically the WFC3+Spitzer IRAC observations of the hot-Jupiter WASP-43b. First I will show the variation in thermal structures and molecular abundances with phase, assuming each phase is independent. Secondly, I will present a new framework for performing a joint retrieval on multiple phases simultaneously. In such a framework, I will test, via Bayesian hypothesis testing, a variety of assumptions. For instance, can the absorption features across all phases be explained with a global metallicity and C-to-O ratio under the assumption of thermochemical equilibrium? Can chemical quenching perturb the abundances on the cooler phases more than the hotter phases? Can we tell the difference? Can a global thermal structure "shape" explain all phases or is there structure variation with phase? Answering such questions are critical to understanding the complex interactions of atmospheric dynamics, chemical processes, and radiative energy balance in exoplanet atmospheres.

  13. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  14. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  15. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  16. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  17. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  18. 用遗传算法反演连续植被的组分温度%Retrieval of Component Temperature of Continuous Vegetation Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    庄家礼; 陈良富; 徐希孺

    2001-01-01

    Due to high correlation coefficients among multi-channel thermalinfrared data and mixed pixels widely existed, it is difficult to improve the accuracy of retrieved land surface temperature; further more, component temperature can not be retrieved from multi-channel thermal infrared data. In this paper, taken erectophile type continuous vegetation as an example, we did many Monte-Carlo simulations, and established empirical analytic expressions of component effective emissivities with soil emissivity and leaf area index. Empirical analytic expressions were used to construct objective function, and genetic algorithm was employed to synchronously retrieve component temperature, soil emissivity and LAI from thermal infrared multi-angle data. Many experiments of genetic algorithm inversion from simulated data were conducted, results show that it is very robust to retrieve component temperature using genetic algorithm, and genetic algorithm can cope with uncertainty inversion problem pretty well if we take full advantage of priori knowledge. Comparison between inversion results and ground-truth data were made. This paper offers a new method to retrieve component temperature from multiangle thermal infrared data based on the model of directionality of thermal radiance%由于热红外多波段数据间具有高度的相关性和混合像元的大量存在,使得多波段陆面温度反演精度难以提高,并且难以得到组分温度信息.在连续植被热辐射方向性规律的基础上,以喜直型连续植被为例,进行了大量的Monte-Carlo模拟,建立了组分有效比辐射率与土壤表面比辐射率和植被叶面积指数之间的经验函数关系,并以此构造目标函数,采用遗传算法,从热红外多角度数据中,同时反演混合像元组分温度和土壤比辐射率以及叶面积指数.通过对模拟的观测数据进行遗传算法反演的大量试验,结果表明,遗传算法反演组分温度非常稳健,在宽松的先验知识

  19. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  20. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  1. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    Directory of Open Access Journals (Sweden)

    Xiwei Fan

    2015-04-01

    Full Text Available Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST retrieval error of 11.0 K when using the generalized split-window (GSW algorithm with a cirrus optical depth (COD at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  2. Arctic clouds and surface radiation – a critical comparison of satellite retrievals and the ERA-interim reanalysis

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2011-12-01

    Full Text Available Clouds regulate Earth's radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Ground-based observations of central Arctic Ocean cloudiness are limited to sporadic field campaigns. Therefore many studies rely on satellite- or reanalysis data. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that the three data sets differ significantly. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. In winter passive satellite instruments have serious difficulties, detecting only half the cloudiness of the reanalysis, active instruments being in between. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERA-Interim reanalysis are about twice that calculated on the basis of CloudSat retrievals. We discuss these discrepancies in terms of instrument-, retrieval- and reanalysis characteristics.

  3. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  4. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  5. Calibration approach and plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter

    2014-01-01

    The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, the infrared calibration sources, and the alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally, the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.

  6. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite

    Institute of Scientific and Technical Information of China (English)

    MA Wentao; YANG Xiaofeng; YU Yang; LIU Guihong; LI Ziwei; JING Cheng

    2015-01-01

    Rainfall has two significant effects on the sea surface, including salinity decreasing and surface becoming rougher, which have further influence on L-band sea surface emissivity. Investigations using the Aquarius and TRMM 3B42 matchup dataset indicate that the retrieved sea surface salinity (SSS) is underestimated by the present Aquarius algorithm compared to numerical model outputs, especially in cases of a high rain rate. For example, the bias between satellite-observed SSS and numerical model SSS is approximately 2 when the rain rate is 25 mm/h. The bias can be eliminated by accounting for rain-induced roughness, which is usually modeled by rain-generated ring-wave spectrum. The rain spectrum will be input into the Small Slope Approximation (SSA) model for the simulation of sea surface emissivity influenced by rain. The comparison with theoretical model indicated that the empirical model of rain spectrumis more suitable to be used in the simulation. Further, the coefficients of the rain spectrum are modified by fitting the simulations with the observations of the 2–year Aquarius and TRMM matchup dataset. The calculations confirm that the sea surface emissivity increases with the wind speed and rain rate. The increase induced by the rain rate is rapid in the case of low rain rate and low wind speed. Finally, a modified model of sea surface emissivity including the rain spectrum is proposed and validated by using the matchup dataset in May 2014. Compared with observations, the bias of the rain-induced sea surface emissivity simulated by the modified modelis approximately 1e–4, and the RMSE is slightly larger than 1e–3. With using more matchup data, thebias between model retrieved sea surface salinities and observationsmay be further corrected, and the RMSE may be reduced to less than 1 in the cases of low rain rate and low wind speed.

  7. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    Directory of Open Access Journals (Sweden)

    W. Tang

    2015-12-01

    Full Text Available Cloud parameters (cloud mask, effective particle radius and liquid/ice water path are the important inputs in determining surface solar radiation (SSR. These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 % and 98.5 W m-2 (or 28.9 %, respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA stations. The MBEs are 9.8 W m-2 (5.4 %; the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 % and 22.1 W m-2 (12.3 %, respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD, and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  8. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  9. Estimation and Modelling of Land Surface Temperature Using Landsat 7 ETM+ Images and Fuzzy System Techniques

    Science.gov (United States)

    Bisht, K.; Dodamani, S. S.

    2016-12-01

    Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.

  10. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  11. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  12. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  13. On the effective inversion by imposing a priori infor-mation for retrieval of land surface parameters

    Institute of Scientific and Technical Information of China (English)

    WANG YanFei; MA ShiQian; YANG Hua; WANG JinDi; LI XiaoWen

    2009-01-01

    The anisotropy of the land surface can be best described by the bidirectional reflectance distribution function (BRDF). As the field of multiangular remote sensing advances, it is increasingly probable that BRDF models can be inverted to estimate the important biological or climatological parameters of the earth surface such as leaf area index and albedo. The state-of-the-art of BRDF is the use of the linear kernel-driven models, mathematically described as the linear combination of the isotropic kernel, volume scattering kernel and geometric optics kernel. The computational stability is characterized by the algebraic operator spectrum of the kernel-matrix and the observation errors. Therefore, the retrieval of the model coefficients is of great importance for computation of the land surface albedos. We first consider the smoothing solution method of the kernel-driven BRDF models for retrieval of land surface albedos. This is known as an ill-posed inverse problem. The ill-posedness arises from that the linear kernel driven BRDF model is usually underdetermined if there are too few looks or poor directional ranges, or the observations are highly dependent. For example, a single angular observation 05 lead to an under-determined system whose solution is infinite (the null space of the kernel operator contains nonzero vectors) or no solution (the rank of the coefficient matrix is not equal to the augmented matrix). Therefore, some smoothing or regularization technique should be applied to suppress the ill-posedness. So far, least squares error methods with a priori knowledge, QR decomposition method for inversion of the BRDF model and regularization theories for ill-posed inversion were developed. In this paper, we emphasize on imposing a priori information in different spaces. We first propose a gen-eral a priori imposed regularization model problem, and then address two forms of regularization scheme. The first one is a regularized singular value decomposition

  14. Calibration of GNSS-R surface wind retrievals using the ERA analysis

    Science.gov (United States)

    Danielson, Rick; Johannessen, Johnny; Cardellach, Estel; Fabra, Fran; Catarino, Nuno

    2017-04-01

    The Space GNSS Receiver Remote Sensing Instrument (SGR-ReSI) of the TechDemoSat-1 (TDS-1) satellite collected and processed about half a million fast delivery wind speed retrievals. Exploring ways to validate these data provides an opportunity, not just to quantify, but also potentially to reduce wind speed retrieval errors (in an ordinary least squares sense) and thereby improve the correspondence between the data to be calibrated and an unknown target wind analysis. The ERA Interim analysis is employed as a calibrated reference for the TDS-1 wind speed retrievals. Simultaneous assessment of error in these two collocated data leads to a global (i.e., for all collocations) and local (i.e., as a function of wind speed) determinations of statistical properties characterizing bias (both additive and multiplicative), RMS error, and correlation with an unknown target analysis. The approach taken is widely referred to as the triple collocation method (Stoffelen 1998, McColl et al. 2014), where a simplifying assumption is that three wind estimates can be obtained from these two datasets (TDS-1 and ERA).

  15. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  16. Retrievability of atmospheric water vapour, temperature and vertical windspeed profiles from proposed sub-millimetre instrument ORTIS.

    Science.gov (United States)

    Hurley, Jane; Irwin, Patrick; Teanby, Nicholas; de Kok, Remco; Calcutt, Simon; Irshad, Ranah; Ellison, Brian

    2010-05-01

    The sub-millimetre range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is jointly proposed by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions Europa Jupiter System Mission (EJSM). ORTIS will consist of an infrared and a sub-millimetre component; however in this study only the sub-millimetre component will be explored. The sub-millimetre component of ORTIS is projected to measure a narrow band of frequencies centred at approximately 2.2 THz, with a spectral resolution varying between approximately 1 kHz and 1 MHz, and having an expected noise magnitude of 2 nW/cm2 sr cm-1. In this spectral region, there are strong water and methane emission lines at most altitudes on Jupiter. The sub-millimetre component of ORTIS is designed to measure the abundance of atmospheric water vapour and atmospheric temperature, as well as vertical windspeed profiles from Doppler-shifted emission lines, measured at high spectral resolution. This study will test to see if, in practice, these science objectives may be met from the planned design, as applied to Jupiter. In order to test the retrievability of atmospheric water vapour, temperature and windspeed with the proposed ORTIS design, it is necessary to have a set of "measurements' for which the input parameters (such as species' concentrations, atmospheric temperature, pressure - and windspeed) are known. This is accomplished by generating a set of radiative transfer simulations using radiative transfer model RadTrans in the spectral range sampled by ORTIS, whereby the atmospheric data pertaining to Jupiter have provided by Cassini

  17. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  18. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  19. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  20. Estimating cloud optical thickness and associated surface UV irradiance from SEVIRI by implementing a semi-analytical cloud retrieval algorithm

    Directory of Open Access Journals (Sweden)

    P. Pandey

    2012-01-01

    Full Text Available In this paper, we describe the implementation of the Semi-Analytical Cloud Retrieval Algorithm (SACURA, to obtain scaled cloud optical thickness (SCOT from satellite imagery acquired with the SEVIRI instrument and surface UV irradiance levels. In estimation of SCOT particular care is given to the proper specification of the background (i.e., cloud-free spectral albedo and the retrieval of the cloud water phase from reflectance ratios in SEVIRI's 0.6 μm and 1.6 μm spectral bands. The SACURA scheme is then applied to daytime SEVIRI imagery over Europe, for the month of June 2006, at 15-min time increments. The resulting SCOT fields are compared with values obtained by the CloudSat experimental satellite mission, yielding a negligible bias, correlation coefficients ranging from 0.51 to 0.78, and a root mean square difference of 1 to 2 SCOT increments. These findings compare favourably to results from similar intercomparison exercises reported in the literature. Based on the retrieved SCOT from SEVIRI and radiative transfer modelling approach, simple parameterisations are proposed to estimate the surface UV-A and UV-B irradiance. The validation of the modelled UV-A and UV-B irradiance against the measurements over two Belgian stations, Redu and Ostend, indicate good agreement with the high correlation, index of agreement and low bias. The SCOT fields estimated by implementing SACURA on imagery from geostationary satellite are reliable and its impact on surface UV irradiance levels is well produced.

  1. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  2. Land surface reflectance retrieval from hyperspectral data collected by an unmanned aerial vehicle over the Baotou test site.

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01-0.07 and relative RMSE of approximately 5%-12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0).

  3. The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States

    Directory of Open Access Journals (Sweden)

    Fangni Lei

    2015-10-01

    Full Text Available Satellite-derived soil moisture products have become an important data source for the study of land surface processes and related applications. For satellites with sun-synchronous orbits, these products are typically derived separately for ascending and descending overpasses with different local acquisition times. Moreover, diurnal variations in land surface conditions, and the extent to which they are accurately characterized in retrieval algorithms, lead to distinct systematic and random error characteristics in ascending versus descending soil moisture products. Here, we apply two independent evaluation techniques (triple collocation and direct comparison against sparse ground-based observations to quantify (correlation-based accuracy differences in satellite-derived surface soil moisture acquired at different local acquisition times. The orbits from different satellites are separated into two overpass categories: AM (12:00 a.m. to 11:59 a.m. Local Solar Time and PM (12:00 p.m. to 11:59 p.m. Local Solar Time. Results demonstrate how patterns in the accuracy of AM versus PM retrieval products obtained from a variety of active and passive microwave satellite sensors vary according to land cover and across satellite products with different local acquisition times.

  4. Land surface reflectance retrieval from hyperspectral data collected by an unmanned aerial vehicle over the Baotou test site.

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    Full Text Available To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER, a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE of approximately 0.01-0.07 and relative RMSE of approximately 5%-12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD conditions (AOD = 0.18. However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0.

  5. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  6. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus

    2013-07-01

    In terrestrial biosphere models, key biochemical controls on carbon uptake by vegetation canopies are typically assigned fixed literature-based values for broad categories of vegetation types although in reality significant spatial and temporal variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based retrievals of leaf chlorophyll for estimating leaf photosynthetic capacity and for constraining model simulations of water and carbon fluxes. © 2013 IEEE.

  7. WISE 2000 campaign: sea surface salinity and wind retrievals from L-band radiometry

    Science.gov (United States)

    Camps, Adriano; Corbella, Ignasi; Font, Jordi; Etchetto, Jacqueline; Duffo, Nuria; Vall-llossera, Merce; Bara, Javier; Torres, Francisco; Wursteisen, Patrick; Martin-Neira, Manuel

    2000-12-01

    Sea surface salinity (SSS) has been recognized as a key parameter in climatological studies. SSS can be measured by passive microwave remote sensing at L band, where the sensitivity of the brightness temperatures shows a maximum and the atmosphere is almost transparent. To provide global coverage of this basic parameter with a 3-day revisit time, the SMOS mission was recently selected by ESA within the frame of the Earth Explorer Opportunity Missions. The SMOS mission will carry the MIRAS instrument, the first 2D L-band aperture synthesis interferometric radiometer. To address new challenges that this mission presents, such as incidence angle variation with pixel, polarization mixing, effect of wind and foam and others, a measurement campaign has been sponsored by ESA under the name of WISE 2000 and it is scheduled for October-November 2000. Two L-band radiometers, a video, a IR and a stereo-camera and four oceanographic and meteorological buoys will be installed in the oil platform 'Casablanca' located at 40 Km off the coast of Tarragona, where the sea conditions are representative of the Mediterranean open sea with periodic influence of the Ebro river fresh water plume.

  8. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  9. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  10. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  11. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  12. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  13. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    2 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 3University of ... Keywords: Urban growth, urban heat Island, land surface temperatures, satellite remote sensing .... observed target includes green vegetation or not.

  14. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  15. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  16. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  17. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  18. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  19. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  20. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  1. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  2. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  3. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  4. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  5. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    Science.gov (United States)

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  6. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    Science.gov (United States)

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-01

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  7. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  8. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  9. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  10. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  11. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  12. Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, J.S.; Rajawat, A.S.; Pradhan, Y.; Chauhan, O.S.; Nayak, S.R.

    optical depth model (in the atmospheric correction pro- cedure) and variability in the atmospheric ozone content and di erences between the OCM band wavelengths and the wavelengths actually required for the estimation of SSC (SAC Technical Report 2000... to the wrong choice of aerosol optical depth model and di erences in the cen- tral wavelengths and the band widths are less than 10.0 and 1.0 respectively. Percentage errors in SSC retrieval due to 10, 20 and 30% changes in ozone content are less than 1.0, 1...

  13. Polarimetric Retrievals of Surface and Cirrus Clouds Properties in the Region Affected by the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond

    2012-01-01

    In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by

  14. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  15. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  16. A new interpolation method for Antarctic surface temperature

    Institute of Scientific and Technical Information of China (English)

    Yetang Wang; Shugui Hou

    2009-01-01

    We propose a new methodology for the spatial interpolation of annual mean temperature into a regular grid with a geographic resolution of 0.01° for Antarctica by applying a recent compilation of the Antarctic temperature data.A multiple linear regression model of the dependence of temperature on some geographic parameters (i.e.,latitude,longitude,and elevation) is proposed empirically,and the kriging method is used to determine the spatial distribution of regional and local deviations from the temperature calculated from the multiple linear regression model.The modeled value and residual grids are combined to derive a high-resolution map of surface air temperature.The performance of our new methodology is superior to a variety of benchmark methods (e.g.,inverse distance weighting,kriging,and spline methods) via cross-validation techniques.Our simulation resembles well with those distinct spatial features of surface temperature,such as the decrease in annual mean surface temperature with increasing latitude and the distance away from the coast line;and it also reveals the complex topographic effects on the spatial distribution of surface temperature.

  17. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  18. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  19. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Understanding the spatial variation of Land Surface Temperature. (LST), will be ... positive correlation between mean of surface emissivity with date and ... deviation of 1.92 of LST and coefficient determinant R2 (0.46) show a ... (LST), as the prime and basic physical parameter of the earth's ..... thorough review of the paper.

  20. Towards a protocol for validating satellite-based Land Surface Temperature: Application to AATSR data

    Science.gov (United States)

    Ghent, Darren; Schneider, Philipp; Remedios, John

    2013-04-01

    Land surface temperature (LST) retrieval accuracy can be challenging as a result of emissivity variability and atmospheric effects. Surface emissivities can be highly variable owing to the heterogeneity of the land; a problem which is amplified in regions of high topographic variance or for larger viewing angles. Atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. Combined, atmospheric effects and emissivity variability can result in retrieval errors of several degrees. If though these are appropriately handled satellite-derived LST products can be used to improve our ability to monitor and to understand land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. Here we present validation of an improved LST data record from the Advanced Along-Track Scanning Radiometer (AATSR) and illustrate the improvements in accuracy and precision compared with the standard ESA LST product. Validation is a critical part of developing any satellite product, although over the land heterogeneity ensures this is a challenging undertaking. A substantial amount of previous effort has gone into the area of structuring and standardizing calibration and validation approaches within the field of Earth Observation. However, no unified approach for accomplishing this for LST has yet to be practised by the LST community. Recent work has attempted to address this situation with the development of a protocol for validating LST (Schneider et al., 2012) under the auspices of ESA and the support of the wider LST community. We report here on a first application of this protocol to satellite LST data. The approach can briefly be summarised thus: in situ validation is performed where ground-based observations are available - being predominantly homogeneous sites; heterogeneous pixels are validated by way of established radiometric-based techniques (Wan and Li

  1. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    Science.gov (United States)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  2. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    Science.gov (United States)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  3. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  4. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    Results from two years of the CryoSat Validation Experiment (CryoVEx) over sea ice in the western Arctic Ocean are presented. The estimation of freeboard, the height of sea ice floating above the water level, is one the main goals of the CryoSat-2 mission of the European Space Agency (ESA) in order...... to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... of the airborne validation dataset, since the radar overestimates the amount of open water and thin ice as well the freeboard of heavy ice deformation zones....

  5. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  6. Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to improve severe weather forecasts

    Science.gov (United States)

    Jones, Thomas A.; Koch, Steven; Li, Zhenglong

    2017-04-01

    Assimilation of hyperspectral sounder data into numerical weather prediction (NWP) models has proven vital to generating accurate model analyses of tropospheric temperature and humidity where few conventional observations exist. Applications to storm-scale models are limited since the low temporal resolution provided by polar orbiting sensors cannot adequately sample rapidly changing environments associated with high impact weather events. To address this limitation, hyperspectral sounders have been proposed for geostationary orbiting satellites, but these have yet to be built and launched in part due to much higher engineering costs and a lack of a definite requirement for the data. This study uses an Observation System Simulation Experiment (OSSE) approach to simulate temperature and humidity profiles from a hypothetical geostationary-based sounder from a nature run of a high impact weather event on 20 May 2013. The simulated observations are then assimilated using an ensemble adjustment Kalman filter approach, testing both hourly and 15 minute cycling to determine their relative effectiveness at improving the near storm environment. Results indicate that assimilating both temperature and humidity profiles reduced mid-tropospheric both mean and standard deviation of analysis and forecast errors compared to assimilating conventional observations alone. The 15 minute cycling generally produced the lowest errors while also generating the best 2-4 hour updraft helicity forecasts of ongoing convection. This study indicates the potential for significant improvement in short-term forecasting of severe storms from the assimilation of hyperspectral geostationary satellite data. However, more studies are required using improved OSSE designs encompassing multiple storm environments and additional observation types such as radar reflectivity to fully define the effectiveness of assimilating geostationary hyperspectral observations for high impact weather forecasting

  7. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  8. High spatial resolution Land Surface Temperature estimation over urban areas with uncertainty indices

    Science.gov (United States)

    Mitraka, Zina; Lazzarini, Michele; Doxani, Georgia; Del Frate, Fabio; Ghedira, Hosni

    2014-05-01

    Land Surface Temperature (LST) is a key variable for studying land surface processes and interactions with the atmosphere and it is listed in the Earth System Data Records (ESDRs) identified by international organizations like Global Climate Observing System. It is a valuable source of information for a range of topics in earth sciences and essential for urban climatology studies. Detailed, frequent and accurate LST mapping may support various urban applications, like the monitoring of urban heat island. Currently, no spaceborne instruments provide frequent thermal imagery at high spatial resolution, thus there is a need for synergistic algorithms that combine different kinds of data for LST retrieval. Moreover, knowing the confidence level of any satellite-derived product is highly important to the users, especially when referred to the urban environment, which is extremely heterogenic. The developed method employs spatial-spectral unmixing techniques for improving the spatial resolution of thermal measurements, combines spectral library information for emissivity estimation and applies a split-window algorithm to estimate LST with an uncertainty estimation inserted in the final product. A synergistic algorithm that utilizes the spatial information provided by visible and near-infrared measurements with more frequent low resolution thermal measurements provides excellent means for high spatial resolution LST estimation. Given the low spatial resolution of thermal infrared sensors, the measured radiation is a combination of radiances of different surface types. High spatial resolution information is used to quantify the different surface types in each pixel and then the measured radiance of each pixel is decomposed. The several difficulties in retrieving LST from space measurements, mainly related to the temperature-emissivity coupling and the atmospheric contribution to the thermal measurements, and the measurements themselves, introduce uncertainties in the final

  9. Influence of Annealing Temperature on CZTS Thin Film Surface Properties

    Science.gov (United States)

    Feng, Wenmei; Han, Junfeng; Ge, Jun; Peng, Xianglin; Liu, Yunong; Jian, Yu; Yuan, Lin; Xiong, Xiaolu; Cha, Limei; Liao, Cheng

    2017-01-01

    In this work, copper zinc tin sulfide (CZTS) films were deposited by direct current sputtering and the samples were annealed in different oven-set temperatures and atmosphere (Ar and H2S). The surface evolution was investigated carefully by using scanning electron microscopy (SEM), Raman spectroscopy and x-ray photoelectron spectroscopy. The surface of the as-sputtered precursor contained little Cu and large amounts of Zn and Sn. The metallic precursor was continuous and compact without pinholes or cracks. With the increase of the temperature from room temperature to 250°C, Cu atoms diffused to the film surface to form Cu1- x S and covered other compounds. Some small platelets were smaller than 500 nm spreading randomly in the holes of the film surfaces. When the temperature reached 350°C, Zn and Sn atoms began to diffuse to the surface and react with S or Cu1- x S. At 400°C, SEM showed the melting of large particles and small particles with a size from 100 nm to 200 nm in the background of the film surface. Excess Zn segregated towards the surface regions and formed ZnS phase on the surface. In addition, the signal of sodium in the CZTS surface was observed above 400°C. At 600°C, a large amount of regular structures with clear edges and corners were observed in the film surface in SEM images. A clear recrystallized process on the surface was assumed from those observations.

  10. Climate Change Signal Analysis for Northeast Asian Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Byungsoo KIM; Keon-Tae SOHN; Won-Tae KOWN; Seung-Ki MIN

    2005-01-01

    Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

  11. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  12. Evaluation of model simulated and MODIS-Aqua retrieved sea surface chlorophyll in the eastern Arabian Sea

    Science.gov (United States)

    Chakraborty, Kunal; Gupta, Anubhav; Lotliker, Aneesh A.; Tilstone, Gavin

    2016-11-01

    In this study we assess the accuracy of sea surface Chlorophyll-a (Chla) retrieved from satellite (MODIS-Aqua), using standard OC3M algorithm, and from a Regional Ocean Modelling System (ROMS) biophysical model against in situ data, measured in surface waters of the eastern Arabian Sea, from April 2009 to December 2012. MODIS-Aqua OC3M Chla concentrations showed a high correlation with the in situ data with slope close to unity and low root mean square error. In comparison, the ROMS model underestimated Chla, though the correlation was significant indicating that the model is capable of reproducing the trend in in situ Chla. Time Series trends in Chla were examined against wind driven Upwelling Indices (UIW) from April 2009 to December 2012 in north-eastern (Gujarat) and south-eastern (Kochi) coastal waters of the Arabian Sea. The annual peak in Chla along the Kochi coast during the summer monsoon was adequately captured by the model. It is well known that the peak in surface Chla along the Kochi and Gujarat coasts during the summer monsoon is the result of coastal upwelling, which the ROMS model was able to reproduce accurately. The maximum surface Chla along the Gujarat coast during the winter monsoon is due to convective mixing, which was also significantly captured by ROMS biophysical model. There was a lag of approximately one week between the maximum surface Chla and the peak in the Upwelling Index.

  13. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  14. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-01-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  15. Modelling snowpack surface temperature in the Canadian Prairies using simplified heat flow models

    Science.gov (United States)

    Singh, Purushottam Raj; Yew Gan, Thian

    2005-11-01

    Three practical schemes for computing the snow surface temperature Ts, i.e. the force-restore method (FRM), the surface conductance method (SCM), and the Kondo and Yamazaki method (KYM), were assessed with respect to Ts retrieved from cloud-free, NOAA-AVHRR satellite data for three land-cover types of the Paddle River basin of central Alberta. In terms of R2, the mean Ts, the t-test and F-test, the FRM generally simulated more accurate Ts than the SCM and KYM. The bias in simulated Ts is usually within several degrees Celsius of the NOAA-AVHRR Ts for both the calibration and validation periods, but larger errors are encountered occasionally, especially when Ts is substantially above 0 °C. Results show that the simulated Ts of the FRM is more consistent than that of the SCM, which in turn was more consistent than that of the KYM. This is partly because the FRM considers two aspects of heat conduction into snow, a stationary-mean diurnal (sinusoidal) temperature variation at the surface coupled to a near steady-state ground heat flux, whereas the SCM assumes a near steady-state, simple heat conduction, and other simplifying assumptions, and the KYM does not balance the snowpack heat fluxes by assuming the snowpack having a vertical temperature profile that is linear. Copyright

  16. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  17. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  18. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  19. AATSR land surface temperature product algorithm verification over a WATERMED site

    Science.gov (United States)

    Noyes, E. J.; Sòria, G.; Sobrino, J. A.; Remedios, J. J.; Llewellyn-Jones, D. T.; Corlett, G. K.

    A new operational Land Surface Temperature (LST) product generated from data acquired by the Advanced Along-Track Scanning Radiometer (AATSR) provides the opportunity to measure LST on a global scale with a spatial resolution of 1 km2. The target accuracy of the product, which utilises nadir data from the AATSR thermal channels at 11 and 12 μm, is 2.5 K for daytime retrievals and 1.0 K at night. We present the results of an experiment where the performance of the algorithm has been assessed for one daytime and one night time overpass occurring over the WATERMED field site near Marrakech, Morocco, on 05 March 2003. Top of atmosphere (TOA) brightness temperatures (BTs) are simulated for 12 pixels from each overpass using a radiative transfer model, with the LST product and independent emissivity values and atmospheric data as inputs. We have estimated the error in the LST product over this biome for this set of conditions by applying the operational AATSR LST retrieval algorithm to the modelled BTs and comparing the results with the original AATSR LSTs input into the model. An average bias of -1.00 K (standard deviation 0.07 K) for the daytime data, and -1.74 K (standard deviation 0.02 K) for the night time data is obtained, which indicates that the algorithm is yielding an LST that is too cold under these conditions. While these results are within specification for daytime retrievals, this suggests that the target accuracy of 1.0 K at night is not being met within this biome.

  20. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Marco Tedesco

    2016-12-01

    Full Text Available Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily. In this regard, the data recorded by the Advanced Microwave Scanning Radiometer—Earth Orbiting System (EOS (AMSR-E onboard the National Aeronautics and Space Administration’s (NASA AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.

  1. Spatially resolved surface topography retrieved from far-field intensity scattering measurements.

    Science.gov (United States)

    Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2014-02-01

    A far-field setup based on the fast and simultaneous recording of 1 million intensity angle-resolved-light-scattering patterns allows both to reconstruct surface topography and to cancel local defects in this topography. A spectral analysis is performed on measured data and allows to extract roughness and slopes mapping of a surface taking into account the spectral bandpass.

  2. Understanding Spatio-Temporal Impact of Land-Surface Heterogeneity on Soil Moisture Retrieval and Validation of Remotely Sensed Soil Moisture Products

    Science.gov (United States)

    Mohanty, Binayak; Gaur, Nandita; Maheshwari, Neelam

    2016-04-01

    This work serves to address the two-fold impact of land-surface heterogeneity on the soil moisture remote sensing community i.e. it 1) complicates the soil moisture retrieval process and 2) introduces uncertainty in validating remotely sensed soil moisture products using ground based data. In the retrieval algorithm for passive remote sensing, brightness temperature has been one key variable used to estimate soil moisture. However, the quantitative understanding of how brightness temperature evolves through space, time and hydroclimates is yet lacking. In this work, we attempt to develop an understanding of W's i.e., which (land surface variables), where (hydroclimates), what (support scale) and when (time) the sensitivity of brightness temperature varies with land surface variables. To this effect, a spatial global sensitivity analysis (GSA) to estimate sensitive variables of brightness temperature (H and V polarizations) at various support scales 800m, 1.6km, 3.2km, 6.4km, 12.8km, and 25.6km, 40km was employed. The effects of upscaling through various averaging techniques are also explored. It was found that the sensitivity of brightness temperature to spatial soil moisture decreases, whereas the sensitivity of scalar variables increase with increasing support scales. Also, the higher order interactions were significant in SMAPVEX12 and SMEX02 i.e., ~18% and ~10 % respectively, whereas SGP97 and SMEX04 show ~1% and ~5% interactions respectively between land surface variables. These interactions were also observed to decreases with increasing support scale. The second part of the study addresses the challenges in validation that arise as a result of scale discrepancy between footprint scale soil moisture and observed ground based data. The designed scheme generates the spatial variance structure of footprint scale moisture redistribution as a function of a scale appropriate dominant physical factor on which soil moisture redistribution depends. The scheme was

  3. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-08-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA. The high resolution (0.035 cm−1 full width half maximum, unapodized limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62 of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

    The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three than the corresponding estimate derived on the basis of error propagation.

    In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF. The bias and the standard deviation of these discrepancies are consistent with those obtained when

  4. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA. The high resolution (0.035 cm−1 limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62 of the inversion algorithms. The products of this processing chain are geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

    The results of the interc