WorldWideScience

Sample records for surface temperature precipitation

  1. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  2. An assessment of precipitation and surface air temperature over China by regional climate models

    Science.gov (United States)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  3. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  4. Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences

    Science.gov (United States)

    Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.

    2002-01-01

    Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nin??o southern oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2 ??C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures). In this context, the marine boundary layer acts in an analogous fashion to the orographic features which form the natural boundaries of other Alaskan ecosystems. Variability in precipitation may play a secondary role.

  5. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  6. Sensitivity of summer precipitation to tropical sea surface temperatures over East Asia in the GRIMs GMP

    Science.gov (United States)

    Chang, Eun-Chul; Yeh, Sang-Wook; Hong, Song-You; Wu, Renguang

    2013-05-01

    In this study, uncoupled atmospheric general circulation model experiments are conducted to examine the sensitivity of tropical Ocean basins from the Indian Ocean to the tropical Pacific Ocean on the summer precipitation variability over East Asia. It is remarkable that the Indian Ocean basin sea surface temperature (SST) and the tropical Pacific basin SST act on summer precipitation variability over Northeast Asia and southern China quite differently. That is, SST warming in the Indian Ocean largely contributes to the increase in the amount of summer precipitation over East Asia, which is in contrast to the warming of the western tropical Pacific Ocean. Our further analysis indicates that an altered large-scale atmospheric circulation over the western tropical Pacific contributes to contrasting atmospheric motion over East Asia due to the tropics-East Asia teleconnections, which results in changes in the amount of summer precipitation due to the warming of the Indian and western tropical Pacific Oceans.

  7. Seasonal trends in precipitation and surface air temperature extremes in mainland Portugal, 1941-2007

    Science.gov (United States)

    de Lima, M. I. P.; Santo, F. E.; Ramos, A. M.

    2012-04-01

    Several climate models predict, on a global scale, modifications in climate variables that are expected to have impact on society and the environment. The concern is on changes in the variability of processes, the mean and extreme events (maximum and minimum). To explore recent changes in precipitation and near surface air temperature extremes in mainland Portugal, we have inspected trends in time series of specific indices defined for daily data. These indices were recommended by the Commission for Climatology/Climate Variability and Predictability (CCl/CLIVAR) Working Group on Climate Change Detection, and include threshold indices, probability indices, duration indices and other indices. The precipitation and air temperature data used in this study are from, respectively, 57 and 23 measuring stations scattered across mainland Portugal, and cover the periods 1941-2007, for precipitation, and 1941-2006, for temperature. The study focuses on changes at the seasonal scale. Strong seasonality is one of the main features of climate in mainland Portugal. Intensification of the seasonality signal across the territory, particularly in the more sensitive regions, might contribute to endanger already fragile soil and water resources and ecosystems, and the local environmental and economic sustainability. Thus, the understanding of variations in the intensity, frequency and duration of extreme precipitation and air temperature events at the intra-annual scale is particularly important in this geographical area. Trend analyses were conducted over the full period of the records and for sub-periods, exploring patterns of change. Results show, on the one hand, regional differences in the tendency observed in the time series analysed; and, on the other hand, that although trends in annual indices are in general not statistically significant, there are sometimes significant changes over time in the data at the seasonal scale that point out to an increase in the already existing

  8. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures

    Science.gov (United States)

    Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar

    2017-08-01

    In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.

  9. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Science.gov (United States)

    Koster, Randal D.; Mahanama, P. P.

    2012-01-01

    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  10. The influence of the circulation on surface temperature and precipitation patterns over Europe

    Directory of Open Access Journals (Sweden)

    P. D. Jones

    2009-06-01

    Full Text Available The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.

  11. Surface chemistry allows for abiotic precipitation of dolomite at low temperature.

    Science.gov (United States)

    Roberts, Jennifer A; Kenward, Paul A; Fowle, David A; Goldstein, Robert H; González, Luis A; Moore, David S

    2013-09-03

    Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics. Here we document the abiotic synthesis of low-temperature dolomite in laboratory experiments and constrain possible mechanisms for dolomite formation. Ancient and modern seawater solution compositions, with identical pH and pCO2, were used to precipitate an ordered, stoichiometric dolomite phase at 30 °C in as few as 20 d. Mg-rich phases nucleate exclusively on carboxylated polystyrene spheres along with calcite, whereas aragonite forms in solution via homogeneous nucleation. We infer that Mg ions are complexed and dewatered by surface-bound carboxyl groups, thus decreasing the energy required for carbonation. These results indicate that natural surfaces, including organic matter and microbial biomass, possessing a high density of carboxyl groups may be a mechanism by which ordered dolomite nuclei form. Although environments rich in organic matter may be of interest, our data suggest that sharp biogeochemical interfaces that promote microbial death, as well as those with high salinity may, in part, control carboxyl-group density on organic carbon surfaces, consistent with origin of dolomites from microbial biofilms, as well as hypersaline and mixing zone environments.

  12. Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies

    Science.gov (United States)

    Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu

    2016-10-01

    Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.

  13. On the relationship between the snowflake type aloft and the surface precipitation types at temperatures near 0 °C

    Science.gov (United States)

    Sankaré, Housseyni; Thériault, Julie M.

    2016-11-01

    Winter precipitation types can have major consequences on power outages, road conditions and air transportation. The type of precipitation reaching the surface depends strongly on the vertical temperature of the atmosphere, which is often composed of a warm layer aloft and a refreezing layer below it. A small variation of the vertical structure can lead to a change in the type of precipitation near the surface. It has been shown in previous studies that the type of precipitation depends also on the precipitation rate, which is directly linked to the particle size distribution and that a difference as low as 0.5 °C in the vertical temperature profile could change the type of precipitation near the surface. Given the importance of better understanding the formation of winter precipitation type, the goal of this study is to assess the impact of the snowflake habit aloft on the type of precipitation reaching the surface when the vertical temperature is near 0 °C. To address this, a one dimensional cloud model coupled with a bulk microphysics scheme was used. Four snowflake types (dendrite, bullet, column and graupel) have been added to the scheme. The production of precipitation at the surface from these types of snow has been compared to available observations. The results showed that the thickness of the snow-rain transition is four times deeper when columns and graupel only fall through the atmosphere compared to dendrites. Furthermore, a temperature of the melting layer that is three (four) times warmer is required to completely melt columns and graupel (dendrites). Finally, the formation of freezing rain is associated with the presence of lower density snowflakes (dendrites) aloft compared to the production of ice pellets (columns). Overall, this study demonstrated that the type of snowflakes has an impact on the type of precipitation reaching the surface when the temperature is near 0 °C.

  14. Relation between sea surface temperature anomaly in the Atlantic and summer precipitation over the Northeast China

    Institute of Scientific and Technical Information of China (English)

    白人海

    2001-01-01

    Based on global monthly average data set of sea surface temperature (SST) during 1950 -1992 and global monthly average 500 hPa height during 1950 - 1997 offered by NCAR/NCEP, the feature of SST anomaly in the Atlantic and its relation with summer precipitation over the Northeast China are analyzed. The results show that, the second eigenvector of the SST′s empirical orthogonal expanssion in winter season over the North Atlantic suggests that distribution of SST anomaly has unusual meridional difference; The location of its center is basically identical to center of significant correlation region between summer precipitation over the Northeast China and winter SST in the Atlantic. When winter SST in the North Atlantic is hot in south and cold in north, the blocking situation is stronger in the middle- high latitude. Correspondingly, the blocking high pressure in the northern North Pacific is also getting stronger,the westerlies circulation index in East Asia in next summer would be lower, asa result, more precipitation in the summer would be experienced over Northeast China and vice versa.

  15. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    Science.gov (United States)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  16. Torrential precipitations on the Spanish east coast: The role of the Mediterranean sea surface temperature

    Science.gov (United States)

    Millán, M.; Estrela, M. J.; Caselles, V.

    Floods constitute one of the most important natural risks on the Spanish Mediterranean coast. Although it is very difficult to avoid them, a correct understanding of their principal cause, which is torrential rain, can facilitate their prediction and in this way avoid, at least partially, their catastrophic effects (both loss of human lives and material damage). The work presented here is part of a more extensive study underway in the CEAM (Centro de Estudios Ambientales del Mediterráneo). Its objective is the analysis of the conditions that produce torrential precipitations. These can be explained by the hypothesis of the Back Door Front, a mechanism which on its own permits the development of a potentially unstable mass above the Mediterranean sea. Among the different factors that are valued in this hypothesis, the Sea Surface Temperature is considered to play an important role. It is studied by means of satellite images since this is the only technique that permits a synoptic view of this parameter. NOAH satellite images have been used, applying the split-window operative technique. This work presents initial results that confirm the importance of the Sea Surface Temperature (SST) as a moisture source in the Mediterranean cyclogenesis.

  17. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941-2007

    Science.gov (United States)

    de Lima, M. Isabel P.; Santo, Fátima Espírito; Ramos, Alexandre M.; de Lima, João L. M. P.

    2013-06-01

    Changes in the climatology of precipitation and surface air temperature are being investigated worldwide, searching for changes in variability, the mean and extreme events (maximum and minimum). By exploring recent adjustments in the climate of mainland Portugal, particularly in the intensity, frequency and duration of extreme events, this study investigates trends in selected specific indices that are calculated from daily precipitation data from 57 and surface air temperature data from 23 measuring stations scattered across the territory. Special attention is paid to regional differences and variations in seasonality. The data cover the periods 1941-2007 for precipitation, and 1941-2006 for temperature. They are explored at the annual and seasonal scales and for different sub-periods. Results show that trends in annual precipitation indices are generally weak and, overall, not statistically significant at the 5% level. Nevertheless, a decreasing trend is revealed by regional indices of total wet-day precipitation and extreme precipitation (above the 99th percentile). Seasonal precipitation exhibits significant decreasing trends in spring precipitation, while extreme heavy precipitation events, in terms of both magnitude and frequency, have become more pronounced in autumn. Results for winter and summer suggest that the extremes have not suffered any significant aggravation. Trends for air temperature are statistically more significant and marked than for precipitation and indicate general warming across the territory. This warming trend is revealed very consistently by the time series of individual stations and regional mean temperature, and is also consistent with the findings reported in other studies for Portugal and at the European scale.

  18. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950-2006

    NARCIS (Netherlands)

    Haylock, M.; Hofstra, N.; Klein Tank, A.; Klok, L.; Jones, P.; New, M.

    2008-01-01

    We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950–2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and

  19. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006

    NARCIS (Netherlands)

    Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M.

    2008-01-01

    We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950-2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and

  20. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    Science.gov (United States)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  1. Surface chemistry allows for abiotic precipitation of dolomite at low temperature

    OpenAIRE

    Roberts, Jennifer A.; Kenward, Paul A.; Fowle, David A.; Goldstein, Robert H.; Luis A. González; Moore, David S.

    2013-01-01

    Abundant in the geologic record, but scarce in modern environments below 50 °C, the mineral dolomite is used to interpret ancient fluid chemistry, paleotemperature, and is a major hydrocarbon reservoir rock. Because laboratory synthesis of abiotic dolomite had been unsuccessful, chemical mechanisms for precipitation are poorly constrained, and limit interpretations of its occurrence. Here we report the abiotic synthesis of dolomite at 25 °C, and demonstrate that carboxylated surfaces on organ...

  2. Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.P. [Los Alamos National Laboratory, Earth and Environmental Sciences Division, Los Alamos, NM (United States); University of California, Geography Department, Santa Barbara, CA (United States); Funk, Chris [University of California, Geography Department, Santa Barbara, CA (United States); U.S. Geological Survey, Earth Resources Observation and Science (EROS), Sioux Falls, SD (United States); Michaelsen, Joel [University of California, Geography Department, Santa Barbara, CA (United States); Rauscher, Sara A. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Robertson, Iain; Loader, Neil J. [Swansea University, Department of Geography, College of Science, Swansea (United Kingdom); Wils, Tommy H.G. [Rotterdam University, Department of Geography, Rotterdam (Netherlands); Koprowski, Marcin [Nicolaus Copernicus University, Laboratory of Dendrochronology, Institute of Ecology and Environment Protection, Torun (Poland); Eshetu, Zewdu [Ethiopian Institute of Agricultural Research, Forestry Research Centre, Addis Ababa (Ethiopia)

    2012-11-15

    We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s-1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer. (orig.)

  3. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Guillod, Benoit P.; Seneviratne, Sonia I.

    2015-05-01

    The extent of the Amazon rainforest is projected to drastically decrease in future decades because of land-use changes. Previous climate modelling studies have found that the biogeophysical effects of future Amazonian deforestation will likely increase surface temperatures and reduce precipitation locally. However, the magnitude of these changes and the potential existence of tipping points in the underlying relationships is still highly uncertain. Using a regional climate model at a resolution of about 50 km over the South American continent, we perform four ERA-interim-driven simulations with prescribed land cover maps corresponding to present-day vegetation, two deforestation scenarios for the twenty-first century, and a totally-deforested Amazon case. In response to projected land cover changes for 2100, we find an annual mean surface temperature increase of over the Amazonian region and an annual mean decrease in rainfall of 0.17 mm/day compared to present-day conditions. These estimates reach and 0.22 mm/day in the total-deforestation case. We also compare our results to those from 28 previous (regional and global) climate modelling experiments. We show that the historical development of climate models did not modify the median estimate of the Amazonian climate sensitivity to deforestation, but led to a reduction of its uncertainty. Our results suggest that the biogeophysical effects of deforestation alone are unlikely to lead to a tipping point in the evolution of the regional climate under present-day climate conditions. However, the conducted synthesis of the literature reveals that this behaviour may be model-dependent, and the greenhouse gas-induced climate forcing and biogeochemical feedbacks should also be taken into account to fully assess the future climate of this region.

  4. Study on Precipitation Anomalies of North of China in April and Its relationship to Sea Surface Temperature Evolvement

    Science.gov (United States)

    Song, Y.; Li, Z.; Guan, Y.

    2012-04-01

    Using monthly precipitation data in North of China for 1960-2007, American NCEP/NCAR monthly reanalysis data and NOAA SST (sea surface temperature) data, and SST indices data in Climate System Monitoring Bulletin collected by National Climate Center, this paper studied the general circulation, large-scale weather system anomalous characteristics and SSTA evolvement with more rainfall of North of China in April. The results showed that precipitation differences between months in spring in North of China were quite obvious, and the correlation coefficients between precipitation of North of China in April and that in March and in May were not significant respectively. The linear trend of precipitation in April was out of phase with that in spring. It was meaningful to study precipitation in April solely. The space pattern of first leading mode of EOF analysis for precipitation of North of China in April indicated that rainfall changed synchronously. In years of more rainfall in April showed negative phase of EU pattern in 500hPa geopotential height field of high latitude in the Northern Hemisphere, and North of China located at where cold and warm air masses met, which availed reinforcement of south wind and ascending motion. In middle and high latitudes was latitudinal circulation, and North of China was controlled by warm ridge and latitudinal large-scale front zone; In years of less rainfall, meridional circulation prevailed and large-scale front zone located northward and presented meridional pattern, and North of China was affected by cold air mass. At the same time, water vapor was transported strongly from Pacific, South China Sea and southwest of China, and reached Northeast of China. In years of less rainfall, the water vapor transportation was quite weak. The rainfall was related closely to sea surface temperature anomalies, especially to the Indian Ocean, the middle and east of Pacific, middle and south of Pacific and northwest of Pacific where there were

  5. Assessing the radiative impacts of precipitating clouds on winter surface air temperatures and land surface properties in general circulation models using observations

    Science.gov (United States)

    Li, J.-L. F.; Lee, Wei-Liang; Wang, Yi-Hui; Richardson, Mark; Yu, Jia-Yuh; Suhas, E.; Fetzer, Eric; Lo, Min-Hui; Yue, Qing

    2016-10-01

    Using CloudSat-CALIPSO ice water, cloud fraction, and radiation; Clouds and the Earth's Radiant Energy System (CERES) radiation; and long-term station-measured surface air temperature (SAT), we identified a substantial underestimation of the total ice water path, total cloud fraction, land surface radiative flux, land surface temperature (LST), and SAT during Northern Hemisphere winter in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We perform sensitivity experiments with the National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) in fully coupled modes to identify processes driving these biases. We found that biases in land surface properties are associated with the exclusion of downwelling longwave heating from precipitating ice during Northern Hemisphere winter. The land surface temperature biases introduced by the exclusion of precipitating ice radiative effects in CESM1 and CMIP5 both spatially correlate with winter biases over Eurasia and North America. The underestimated precipitating ice radiative effect leads to colder LST, associated surface energy-budget adjustments, and cooler SAT. This bias also shifts regional soil moisture state from liquid to frozen, increases snow cover, and depresses evapotranspiration (ET) and total leaf area index in Northern Hemisphere winter. The inclusion of the precipitating ice radiative effects largely reduces the model biases of surface radiative fluxes (more than 15 W m-2), SAT (up to 2-4 K), and snow cover and ET (25-30%), compared with those without snow-radiative effects.

  6. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña

    Science.gov (United States)

    Evans, Jason P.; Boyer-Souchet, Irène

    2012-05-01

    This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.

  7. Spatial patterns of sea surface temperature influences on East African precipitation as revealed by empirical orthogonal teleconnections

    Directory of Open Access Journals (Sweden)

    Tim eAppelhans

    2016-02-01

    Full Text Available East Africa is characterized by a rather dry annual precipitation climatology with two distinct rainy seasons. In order to investigate sea surface temperature driven precipitation anomalies for the region we use the algorithm of empirical orthogonal teleconnection analysis as a data mining tool. We investigate the entire East African domain as well as 5 smaller sub-regions mainly located in areas of mountainous terrain. In searching for influential sea surface temperature patterns we do not focus any particular season or oceanic region. Furthermore, we investigate different time lags from zero to twelve months. The strongest influence is identified for the immediate (i.e. non-lagged influences of the Indian Ocean in close vicinity to the East African coast. None of the most important modes are located in the tropical Pacific Ocean, though the region is sometimes coupled with the Indian Ocean basin. Furthermore, we identify a region in the southern Indian Ocean around the Kerguelen Plateau which has not yet been reported in the literature with regard to precipitation modulation in East Africa. Finally, it is observed that not all regions in East Africa are equally influenced by the identified patterns.

  8. Surface temperature and precipitation affecting GPS signals before the 2009 L'Aquila earthquake (Central Italy)

    Science.gov (United States)

    Amoruso, A.; Crescentini, L.; Chiaraluce, L.

    2017-08-01

    An Mw 6.1 normal faulting earthquake struck Central Italy in 2009 April, which unfortunately nucleated right below the town of L'Aquila, causing more than 300 casualties and widespread damage. The main shock was preceded by a foreshock sequence lasting ∼6 months. It has been claimed that an analysis of continuous Global Positioning System (GPS) data shows that during the foreshock sequence a 5.9 Mw slow slip event (SSE) occurred along a decollement located beneath the reactivated normal fault system. This hypothesized SSE that started in the middle of 2009 February and lasted for almost two weeks would have eventually loaded the largest foreshock and the main shock. We show that the strain signal that the SSE would have generated at two laser strainmeters operating at about 20 km NE from the SSE source was essentially undetected. We then propose an alternative interpretation for the displacement observed in the GPS data. A transient signal is present in temperature and precipitation time-series recorded close to the GPS station that has largest signal referred to the SSE, implying that these contaminated the GPS record. This work illustrates how environmental noise may be relevant when investigating small strain signals, showing the importance of having data from weather stations and water level sensors colocated with GPS stations.

  9. A new multimodel ensemble method using nonlinear genetic algorithm: An application to boreal winter surface air temperature and precipitation prediction

    Science.gov (United States)

    Ahn, Joong-Bae; Lee, Joonlee

    2016-08-01

    A new multimodel ensemble (MME) method that uses a genetic algorithm (GA) is developed and applied to the prediction of winter surface air temperature (SAT) and precipitation. The GA based on the biological process of natural evolution is a nonlinear method which solves nonlinear optimization problems. Hindcast data of winter SAT and precipitation from the six coupled general circulation models participating in the seasonal MME prediction system of the Asia-Pacific Economic Conference Climate Center are used. Three MME methods using GA (MME/GAs) are examined in comparison with a simple composite MME strategy (MS0): MS1 which applies GA to single-model ensembles (SMEs), MS2 which applies GA to each ensemble member and then performs a simple composite method for MME, and MS3 which applies GA to both MME and SME. MS3 shows the highest predictability compared to MS0, MS1, and MS2 for both winter SAT and precipitation. These results indicate that biases of ensemble members of each model and model ensemble are more reduced with MS3 than with other MME/GAs and MS0. The predictability of the MME/GAs shows a greater improvement than that of MS0, particularly in higher-latitude land areas. The reason for the more improved increase of predictability over the land area, particularly in MS3, seems to be the fact that GA is more efficient in finding an optimum solution in a complex region where nonlinear physical properties are evident.

  10. Forecasting monthly precipitation in Central Chile: a self-organizing map approach using filtered sea surface temperature

    Science.gov (United States)

    Rivera, Diego; Lillo, Mario; Uvo, Cintia B.; Billib, Max; Arumí, José Luis

    2012-01-01

    Western South America is subject to considerable inter-annual variability due to El Niño-Southern Oscillation (ENSO) so forecasting inter-annual variations associated with ENSO would provide an opportunity to tailor management decisions more appropriately to the season. On one hand, the self-organizing maps (SOM) method is a suitable technique to explore the association between sea surface temperature and precipitation fields. On the other hand, Wavelet transform is a filtering technique, which allows the identification of relevant frequencies in signals, and also allows localization on time. Taking advantage of both methods, we present a method to forecast monthly precipitation using the SOM trained with filtered SST anomalies. The use of the SOM to forecast precipitation for Chillan showed good agreement between forecasted and measured values, with correlation coefficients ( r 2) ranging from 0.72 to 0.91, making the combined use filtered SST fields and SOM a suitable tool to assist water management, for example in agricultural water management. The method can be easily tailored to be applied in other stations or to other variables.

  11. The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2012-01-01

    Full Text Available The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.

    The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

  12. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  13. Near-surface Observations of Temperature and Salinity from Profiling Floats: The Diurnal Cycle, Precipitation, and Mixing

    Science.gov (United States)

    Anderson, J. E.; Riser, S.

    2012-12-01

    Observations of near-surface temperature and salinity obtained from Argo-type profiling floats enhanced with an auxiliary Surface Temperature and Salinity (STS) CTD are presented. Using the STS unit, high vertical resolution (Price-Weller-Pinkel (PWP) one-dimensional mixed layer model. Additionally, the near-surface heat budget is examined.

  14. Sensitivity of June Near-Surface Temperatures and Precipitation in the Eastern United States to Historical Land Cover Changes Since European Settlement

    Science.gov (United States)

    Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.

    2008-01-01

    Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3 C and 0.4 C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1 C when compared to 1920. Little change in precipitation was found.

  15. Sensitivity of June Near-Surface Temperatures and Precipitation in the Eastern United States to Historical Land Cover Changes Since European Settlement

    Science.gov (United States)

    Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.

    2008-01-01

    Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3 C and 0.4 C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1 C when compared to 1920. Little change in precipitation was found.

  16. Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951-2010

    Science.gov (United States)

    Cinco, Thelma A.; de Guzman, Rosalina G.; Hilario, Flaviana D.; Wilson, David M.

    2014-08-01

    Observed daily precipitation and near surface air temperature data from 34 synoptic weather stations in the Philippines for the period 1951-2010 were subjected to trend analysis which revealed an overall warming tendency compared to the normal mean values for the period 1961-1990. This warming trend can be observed in the annual mean temperatures, daily minimum mean temperatures and to a lesser extent, daily maximum mean temperatures. Precipitation and temperature extremes for the period 1951-2010 were also analysed relative to the mean 1961-1990 baseline values. Some stations (Cotabato, Iloilo, Laoag and Tacloban,) show increases in both frequency and intensity of extreme daily rainfall events which are significant at the 95% level with none of the stations showing decreasing trends. The frequency of daily temperature maximum above the 99th percentile (hot days) and nights at the 1st percentile (cold nights) suggests that both days and nights in particular are becoming warmer. Such indicators of a warming trend and increase in extreme events in the Philippines are discussed in the context of similar national, regional (Asia Pacific) and global studies. The relevance of such empirically based climatology studies, particularly for nations such as the Philippines which are increasingly vulnerable to the multiple impacts of global climate change, is also considered.

  17. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... plastically deformed to different equivalent strains by uniaxial tension. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at 703 K (430 °C) and 693 K (420 °C) depending on the material. Microstructural characterization of the as-deformed states and the nitrided...

  18. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    In order to obtain quantitative data on the asphaltene precipitation induced by the addition of n-alkane (heptane) at temperatures above the normal boiling point of the precipitant, a high temperature/high pressure filtration apparatus has been constructed. Oil and alkane are mixed at the appropr...

  19. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

    Science.gov (United States)

    Eichhorn, Astrid; Bader, Jürgen

    2017-09-01

    As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.

  20. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces

    NARCIS (Netherlands)

    Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Supit, I.

    2015-01-01

    This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop sim

  1. Temperature exerts no influence on organic matter δ13C of surface soil along the 400 mm isopleth of mean annual precipitation in China

    Science.gov (United States)

    Jia, Yufu; Wang, Guoan; Tan, Qiqi; Chen, Zixun

    2016-09-01

    Soil organic carbon is the largest pool of carbon in the terrestrial ecosystem, and its isotopic composition is affected by a number of factors. However, the influence of environmental factors, especially temperature, on soil organic carbon isotope values (δ13CSOM) is poorly constrained. This impedes the application of the variability of organic carbon isotopes to reconstructions of paleoclimate, paleoecology, and global carbon cycling. Given the considerable temperature gradient along the 400 mm isohyet (isopleth of mean annual precipitation - MAP) in China, this isohyet provides ideal experimental sites for studying the influence of temperature on soil organic carbon isotopes. In this study, the effect of temperature on surface soil δ13C was assessed by a comprehensive investigation of 27 sites across a temperature gradient along the isohyet. Results demonstrate that temperature does not play a role in soil δ13C. This suggests that organic carbon isotopes in sediments cannot be used for paleotemperature reconstruction and that the effect of temperature on organic carbon isotopes can be neglected in the reconstruction of paleoclimate and paleovegetation. Multiple regressions with MAT (mean annual temperature), MAP, altitude, latitude, and longitude as independent variables and δ13CSOM as the dependent variable show that these five environmental factors together account for only 9 % of soil δ13C variance. However, one-way ANOVA analyses suggest that soil type and vegetation type are significant factors influencing soil δ13C. Multiple regressions, in which the five aforementioned environmental factors were taken as quantitative variables, and vegetation type, soil type based on the Chinese Soil Taxonomy, and World Reference Base (WRB) soil type were separately used as dummy variables, show that 36.2, 37.4, and 29.7 %, respectively, of the variability in soil δ13C are explained. Compared to the multiple regressions in which only quantitative environmental

  2. Increased Stream Temperature in Response to Extreme Precipitation Events

    Science.gov (United States)

    Wilson, C. E.; Gooseff, M. N.

    2016-12-01

    Aquatic ecosystem temperature regulation is essential to the survival of riverine fish species restricted to limited water temperature ranges. Dissolved oxygen levels, similarly necessary to fish health, are decreased by rising temperatures, as warmer waters can hold less oxygen than colder waters. Climate change projections forecast increased precipitation intensities, a trend that has already been observed in the past decade. Though extreme events are becoming more common, the stream temperature response to high-intensity rainfall is not yet completely understood. Precipitation and stream temperature records from gages in the Upper Midwestern United States were analyzed to determine whether there exists a positive relationship between high-intensity rainfall and stream temperature response. This region was chosen for its already observed trends in increasing precipitation intensity, and rural gages were used in order to minimize the effect of impervious surfaces on runoff amounts and temperature. Days with recorded precipitation were divided by an intensity threshold and classified as either high-intensity or low-intensity days. While the effects of rain events on temperature are variable, increases in stream temperature in response to high-intensity rainfall were observed. For some basins, daily maximum rates of stream temperature increase were, on average, greater for higher intensity events. Similarly, the average daily stream temperature range was higher in streams on days of high-intensity precipitation, compared to days of low-intensity events. Understanding the effect of increasing precipitation intensity in conjunction with rising air temperatures will provide insight into the future of aquatic ecosystems and their adaptation to climate change.

  3. Winter precipitation types and icing at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, J.; Stewart, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences

    2005-07-01

    An understanding of the physics of winter precipitation formation mechanisms is important for the forecasting of winter storms and associated icing. Empirical techniques are generally used to account for many types of precipitation. This paper proposed a microphysics scheme able to predict liquid particles, solid particles and those with a mixture of solid and liquid particles within varying environmental conditions. A revised 1-D cloud model utilizing a double-moment microphysics scheme was presented. The basic physics of liquid and semi-liquid particles formation and their interaction with the environment were outlined. A detailed evolution of precipitation types and environmental conditions was examined using typical temperature profiles and a study of other atmospheric conditions. The double microphysics scheme predicted the total concentration and mixing of various hydrometeor categories which were divided into 2 different branches: frozen and liquid. Characteristics for the categories were presented. A comparison of temperature, moisture and precipitation profiles was presented, as well as a comparison of surface precipitation types. The relationship between sounding parameters and precipitation types was examined, and ranges of temperature and depth were outlined. The study showed that the occurrence of a particular precipitation type or combinations of types can be associated with a range of atmospheric profiles. Melting and refreezing parameters exhibited variations for the same precipitation types and their combinations were not produced within a single profile. It was concluded that profiles must be very precise to simulate certain combinations. 10 refs., 1 tab., 8 figs.

  4. Soil temperature extrema recovery rates after precipitation cooling

    Science.gov (United States)

    Welker, J. E.

    1984-01-01

    From a one dimensional view of temperature alone variations at the Earth's surface manifest themselves in two cyclic patterns of diurnal and annual periods, due principally to the effects of diurnal and seasonal changes in solar heating as well as gains and losses of available moisture. Beside these two well known cyclic patterns, a third cycle has been identified which occurs in values of diurnal maxima and minima soil temperature extrema at 10 cm depth usually over a mesoscale period of roughly 3 to 14 days. This mesoscale period cycle starts with precipitation cooling of soil and is followed by a power curve temperature recovery. The temperature recovery clearly depends on solar heating of the soil with an increased soil moisture content from precipitation combined with evaporation cooling at soil temperatures lowered by precipitation cooling, but is quite regular and universal for vastly different geographical locations, and soil types and structures. The regularity of the power curve recovery allows a predictive model approach over the recovery period. Multivariable linear regression models alloy predictions of both the power of the temperature recovery curve as well as the total temperature recovery amplitude of the mesoscale temperature recovery, from data available one day after the temperature recovery begins.

  5. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....

  6. The variability of temperature and precipitation over Korean Peninsula induced by off-equatorial western Pacific precipitation during boreal summer

    Science.gov (United States)

    Jeong, Yerim; Ham, Yoo-Geun

    2016-04-01

    The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea

  7. Inter-annual variability of precipitation over Southern Mexico and Central America and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations

    Science.gov (United States)

    Fuentes-Franco, Ramón; Coppola, Erika; Giorgi, Filippo; Pavia, Edgar G.; Diro, Gulilat Tefera; Graef, Federico

    2015-07-01

    An ensemble of future climate projections performed with the regional climate model RegCM4 is used to assess changes in inter-annual variability of precipitation over Southern Mexico and Central America (SMECAM). Two different Global Climate Models (GCMs) from the coupled model intercomparison project phase 5 are used to provide boundary conditions for two different RegCM4 configurations. This results in four regional climate projections extending from 1970 to 2100 for the greenhouse gas representative concentration pathway RCP8.5. The precipitation variability over the SMECAM region and its dependence on the gradient between Atlantic and Pacific sea surface temperature (SST) anomalies are verified by reproducing SST anomaly patterns during wettest and driest years similar to those seen in observational datasets. RegCM4 does a comparably better job than the driving GCMs. This strong relationship between precipitation and SST anomalies does not appear to change substantially under future climate conditions. For the rainy season, June to September, we find a future change in inter-annual variability of precipitation towards a much greater occurrence of very dry seasons over the SMECAM region, with this change being more pronounced in the regional than in the global model projections. A greater warming of the Tropical Northeastern Pacific (TNP) compared to the Tropical North Atlantic (TNA), which causes stronger wind fluxes from the TNA to the TNP through the Caribbean Low Level Jet, is identified as the main process responsible for these drier conditions.

  8. Carbide precipitation in austenitic stainless steel carburized at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, F. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)]. E-mail: frank.ernst@case.edu; Cao, Y. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Michal, G.M. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Heuer, A.H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2007-04-15

    Low-temperature gas-phase carburization can significantly improve the surface mechanical properties and corrosion resistance of austenitic stainless steel by generating a single-phase 'case' with concentrations of interstitially dissolved carbon exceeding the equilibrium solubility limit by orders of magnitude. Upon prolonged treatment, however, carbides (mostly {chi}, M{sub 5}C{sub 2}) can precipitate and degrade the properties. High-resolution and spatially resolved analytical transmission electron microscopy revealed the precise carbide-austenite orientation relationship, a highly coherent interface, and that precipitation only occurs when (i) the carbon-induced lattice expansion of the austenite has reached a level that substantially reduces volume-misfit stress and (ii) diffusional transport of nickel, chromium, and iron - enhanced by structural defects - can locally reduce the nickel concentration to the solubility limit of nickel in {chi}-carbide.

  9. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...... and stratiform precipitation events by cloud observations. We find that for stratiform precipitation, extremes increase with temperature at approximately the Clausius-Clapeyron rate, without characteristic scales. In contrast, convective precipitation exhibits characteristic spatial and temporal scales, and its...

  10. Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminant leaching

    NARCIS (Netherlands)

    Apul, D.S.; Gardner, K.H.; Eighmy, T.T.; Fallman, A.M.; Comans, R.N.J.

    2005-01-01

    This paper discusses the modeling of anion and cation leaching from complex matrixes such as weathered steel slag. The novelty of the method is its simultaneous application of the theoretical models for solubility, competitive sorption, and surface precipitation phenomena to a complex system. Select

  11. Synthesis and Characterization of Large Surface Area Yttrium Oxide by Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    崔大立; 龙志奇; 张顺利; 崔梅生; 黄小卫

    2004-01-01

    The method for preparing yttrium oxide with large specific surface area was introduced. By means of BET, SEM, TG and DTA analysis, the effects of precipitant, stirring velocity, non-RE impurity in solution, calcination temperature, on the surface area were studied respectively. The Y2O3 sample with specific surface area of more than 60 m2*g-1 and L.O.I less than 1% was prepared in the suitable precipitation condition and calcinations temperature when the ammonia used as precipitant. The SEM shows that the Y2O3 prepared with large surface area is the aggregation of about 50 nm particles.

  12. Bhutan Rivers Runoff Sensitivity to Changes in Precipitation and Temperature

    Science.gov (United States)

    Sonessa, M. Y.; Richey, J. E.; Lettenmaier, D. P.

    2012-12-01

    The Kingdom of Bhutan harnesses its water resources mostly for hydropower generation. Hydroelectricity represents 96% of the country's electricity generating capacity and 99.9% of its electricity generation. About 87% of the electricity generated within Bhutan is exported to India. Assessment of this crucial resource is vital for its proper usage and management especially in the light of potential land use and climate changes. A land surface hydrologic model, Variable Infiltration Capacity (VIC), was used to assess the hydrology of the country. The model was forced using data obtained from three sources: NCEP/NCAR, Weather Research and Forecasting (WRF) and ERA Interim. The NCEP/NCAR forcing resulted in better flow simulation for most of the stations than WRF and ERA forcings. Thus, NCEP/NCAR forcing data was used to evaluate the runoff sensitivity to temperature and precipitation changes. In both steps, VIC was run at 1/24° latitude-longitude resolution. The modeled mean annual runoff elasticity which measures fractional change in annual runoff divided by fractional change in annual precipitation ranges from 1.08 to 2.16. The elasticity value is lower for higher reference precipitations and vice versa. The runoff sensitivity to temperature change computed as percentage change in annual runoff per 1°C change in temperature are all declines and ranges from -1.38 to -1.54. Spatially, both higher elasticity and sensitivity (big negatives) are towards the northern part the country where elevation is more than 5000 m above sea level.

  13. Interaction between temperature, precipitation and snow cover trends in Norway

    Science.gov (United States)

    Rizzi, Jonathan; Brox Nilsen, Irene; Stagge, James Howard; Gisnås, Kjersti; Merete Tallaksen, Lena

    2016-04-01

    Northern latitudes are experiencing faster warming than other regions, partly due to the snow--albedo feedback. A reduction in snow cover, which has a strong positive feedback on the energy balance, leads to a lowering of the albedo and thus, an amplification of the warming signal. Norway, in particular, can be considered a "cold climate laboratory" with large gradients in geography and climate that allows studying the effect of changing temperature and precipitation on snow in highly varying regions. Previous research showed that during last decades there has been an increase in air temperature for the entire country and a concurrent reduction in the land surface area covered by snow. However, these studies also demonstrate the sensitivity of the trend analysis to the period of record, to the start and end of the period, and to the presence of extreme years. In this study, we analyse several variables and their spatial and temporal variability across Norway, including mean, minimum and maximum daily temperature, daily precipitation, snow covered area and total snow water equivalent. Climate data is retrieved from seNorge (http://www.senorge.no), an operationally gridded dataset for Norway with a resolution of 1 km2. Analysis primarily focused on three overlapping 30-year periods (i.e., 1961-1990, 1971-2000, 1981-2010), but also tested trend sensitivity by varying period lengths. For each climate variable the Theil-Sen trend was calculated for each 30-year period along with the difference between 30-year mean values. In addition, indices specific to each variable were calculated (e.g. the number of days with a shift from negative to positive temperature values). The analysis was performed for the whole of Norway as well as for separate climatological regions previously defined based on temperature, precipitation and elevation. Results confirm a significant increase in mean daily temperatures and accelerating warming trends, especially during winter and spring

  14. Towards the Consideration of Surface and Environment variables for a Microwave Precipitation Algorithm Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.; Guch, I.

    2014-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperatures characteristics similar to precipitation Ongoing work by NASA's GPM microwave radiometer team is constructing databases for the GPROF algorithm through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The at-launch database focuses on stratification by emissivity class, surface temperature and total precipitable water (TPW). We'll perform sensitivity studies to determine the potential role of environmental factors such as land surface temperature, surface elevation, and relative humidity and storm morphology such as storm vertical structure, height, and ice thickness to improve precipitation estimation over land, including rain and snow. In other words, what information outside of the satellite radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate

  15. Precipitation from supersaturated aluminate solutions. II. Role of temperature

    NARCIS (Netherlands)

    Straten, H.A. van; Bruyn, P.L. de

    1984-01-01

    The effect of temperature on the precipitation of aluminum hydroxide from dilute potassium aluminate solutions (CAl(OH)4 = 4 × 10−3 M) was studied in acid titration and pH-stat experiments. The precipitation sequence is largely dictated by the supersaturation (II) and follows the Ostwald rule of

  16. Spatial Information Research for Temperature and Precipitation Climate Data in Hengduan Mountains

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the spatial information of temperature and precipitation data in Hengduan mountains. [Method] Considering GIS spatial interpolation and numerical statistics theory, spatial prediction were carried out to the ten years average temperature and precipitation flux observation data in 109 sparse meteorological stations in Hengduan Mountains. Based on the spatial range of geographic position of Hengduan Mountains, and 1∶1 000 000 scale DEM as data sources, and using trend surface ...

  17. MSU (Microwave Sounding Unit) Daily Troposphere Temperatures and Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of two MSU tropospheric temperatures levels and precipitation which are described in detail below. The NOAA satellites contributing to this...

  18. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  19. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    Science.gov (United States)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  20. Temperature and precipitation in Mongolia based on dendroclimatic investigations

    Institute of Scientific and Technical Information of China (English)

    G. Jacoby; N. Pederson; R. D'Arrigo

    2003-01-01

    Recent tree-ring studies in Mongolia provide evidence of unusual warming that is in agreement with large-scale reconstructed and recorded temperaturesfor the Northern Hemisphere and the Arctic. One Mongolian proxy record for temperature extends back over 1000 years and several others are over 350 years in length. Precipitation reconstructions based on tree rings reflect recent increasesbut also indicate that the increases are within the long-term range of variations. Spectral analyses of recorded precipitation data and the reconstructions support the hypotheses of quasi-solar periodicity in precipitation variation, previously suggested by others.

  1. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  2. Precipitation Hardenable High Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  3. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  4. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  5. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  6. Projected changes in precipitation extremes linked to temperature over Japan

    Science.gov (United States)

    Nayak, S.; Dairaku, K.; Takayabu, I.; Suzuki-Parker, A.

    2015-12-01

    Recent studies have argued that the extreme precipitation intensities are increasing in many regions across the globe due to atmospheric warming. This argument is based on the principle of Clausius-Clapeyron relationship which states that the atmosphere can hold more moisture in warmer air temperature (~7%/°C). In our study, we have investigated the precipitation extremes linked to temperature in current climate (1981-2000) and their projected changes in late 21st century (2081-2100, RCP4.5) over Japan from multi-model ensemble downscaling experiments by three RCMs (NHRCM, NRAMS, WRF) forced by JRA25 as well as three GCMs (CCSM4, MIROC5, MRI-GCM3). To do this, the precipitation intensities of wet days (defined as ≥ 0.05 mm/d) are stratified to different bins with 1°C temperature interval. We have also identified the occurrences of precipitation extremes in different spell durations and associated peak intensities exceeding various thresholds in two climate periods. We found that extreme precipitation intensities are increased by 5 mm/d in future climate for temperatures above 21°C (Fig. 1). Precipitation extremes of higher percentiles are projected to have larger increase rates in future climate scenarios (3-5%/°C in the current climate and 4-6%/°C in the future climate scenarios). The joint probability distribution of wet hours (≥1mm/h) with various peak intensities under future climate scenarios (RCP4.5) of the late 21st century suggests an increase of long-lived (>10hr) and short-lived (1-2hr) events. On the other hand, a relatively decrease of medium-lived events (3-10hr) are noticed in future climate scenario. The increase of extreme precipitation intensities in future climate is due to the increase in temperature under RCP4.5 (~2°C). Increase in temperature causes more evapotranspiration and subsequently increases the water vapor in the atmosphere.

  7. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yajuan [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Fang, Ruimei; Shang, Hongyan [College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Shi, Zhonghua; Gong, Maochu [Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China); Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan (China); Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan (China); Chen, Yaoqiang, E-mail: nic7501@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China); Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan (China); Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan (China)

    2015-04-15

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H{sub 2}-temperature programmed reduction (H{sub 2}-TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m{sup 2}/g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure.

  8. Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971-2000

    Institute of Scientific and Technical Information of China (English)

    SONG Lianchun; A.J.CANNON; P.H.WHITFIELD

    2007-01-01

    Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971-2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971-1985) and second (1986-2000) halves of the record were analyzed using the MannWhitney U test and the global k-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986-2000, while precipitation decreased in the Yellow River valley.Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period.

  9. Changing Temperature and Precipitation Extremes in Europe's Climate of the 20th Century

    NARCIS (Netherlands)

    Klein Tank, Albertus Maria Gerardus

    2004-01-01

    This thesis aims at increasing the knowledge on past changes in extremes through the analysis of historical records of observations at meteorological stations. The key question addressed is: How did the extremes of daily surface air temperature and precipitation change in Europe's climate of the

  10. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  11. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  12. Temperature and Precipitation Changes in China During the Holocene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We review here proxy records of temperatare and precipitation in China during the Holocene,especially the last two millennia.The quality of proxy data,methodology of reconstruction,and uncertainties in reconstruction were emphasized in comparing different temperatare and precipitation reconstruction and clarilying temporal and spatial patterns of temperature and precipitation during the Holocene.The Holocene climate was generally warm and wet.The warmest period occurred in 9.6-6.2 cal ka BP,whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.O-5.0 cal ka BP.There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes.During past two millennia,a warming trend in the 20th century was clearly detected,but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene.Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900),but the warming of the Medieval Warm Period(AD 900-AD 1300)was not distinct in China,especially west China.The spatial pattern of precipitation showed significant regional differences in China,especially east China.The modern warm period has lasted 20、years from 1987 to 2006.Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.

  13. 末次盛冰期热带降雨对低纬表层海温的敏感性%SENSITIVITY OF TROPICAL PRECIPITATION CAUSED BY THE LOW LATITUDE SEA SURFACE TEMPERATURE DURING LAST GLACIAL MAXIMUM

    Institute of Scientific and Technical Information of China (English)

    王跃; 翦知湣; 赵平

    2011-01-01

    利用美国国家大气研究中心的CAM 3大气环流模式,研究模拟了末次盛冰期热带辐合带(Intertropical Convergence Zone,简称ITCZ)/夏季风区降雨对热带表层海水温度(Sea Surface temperature,简称SST)变化的敏感性,结果发现:1)在冰期边界条件下热带SST异常很大程度上控制着局地降阿的响应,特别当SST异常范围从区域扩大到全球热带地区,ITCZ/夏季风降雨的剧烈变化可以与其他冰期边界条件的影响相当;2)不论是以古海洋重建的热带SST还是海气耦合模拟输出的SST为边界条件.CAM 3中热带降雨基本上与局地SST呈正相关关系(SST变暖.降雨增加),并同时受SST梯度分布格局控制.这与完全海气耦合模式的冰期模拟结果一致;3)合理的SST边界条件(特别是海气耦合模式输出的SST分布)驱动下,模拟得到的热带降雨异常分布与其他独立的占海洋水循环特征指标重建更为吻合(相对于现代值,亚洲夏季风区和赤道西太平洋辐合带降雨增加,两侧副热带太平洋降雨减少).这些结果不仅为探索未次盛冰期时期热带水循环特征变化提供了新的古海洋重建数据支撑,也有利于进一步揭示冰期/间冰期旋回中热带气候变化的物理机制所在.如该项研究揭示的热带SST-降雨正相关关系在赤道中东太平洋等非季风区与现代观测一致.而现代亚洲太平洋夏季风区中负相关关系在冰期条件下并未得到再现,说明不同气候背景对夏季风区海气相互作用有重要影响.%Modern observations have demonstrated two kinds of correlation between tropical Sea Surface Temperature ( SST) and local precipitation anomalies : negative in Asian-Pacific summer monsoon regions and positive in CentralEastern equatorial Pacific. Paleoclimatic studies have also revealed that different patterns of tropical SST could cause drastic changes of precipitation through tropical convections and atmospheric

  14. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes

    Science.gov (United States)

    Crook, J. A.; Jackson, L. S.; Osprey, S. M.; Forster, P. M.

    2015-09-01

    Earth radiation management has been suggested as a way to rapidly counteract global warming in the face of a lack of mitigation efforts, buying time and avoiding potentially catastrophic warming. We compare six different radiation management schemes that use surface, troposphere, and stratosphere interventions in a single climate model in which we projected future climate from 2020 to 2099 based on RCP4.5. We analyze the surface air temperature responses to determine how effective the schemes are at returning temperature to its 1986-2005 climatology and analyze precipitation responses to compare side effects. We find crop albedo enhancement is largely ineffective at returning temperature to its 1986-2005 climatology. Desert albedo enhancement causes excessive cooling in the deserts and severe shifts in tropical precipitation. Ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection have the potential to cool more uniformly, but cirrus cloud thinning may not be able to cool by much more than 1 K globally. We find that of the schemes potentially able to return surface air temperature to 1986-2005 climatology under future greenhouse gas warming, none has significantly less severe precipitation side effects than other schemes. Despite different forcing patterns, ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection all result in large scale tropical precipitation responses caused by Hadley cell changes and land precipitation changes largely driven by thermodynamic changes. Widespread regional scale changes in precipitation over land are significantly different from the 1986-2005 climatology and would likely necessitate significant adaptation despite geoengineering.

  15. SURFACE METALLIZATION OF CENOSPHERES AND PRECIPITATORS BY ELECTROLESS PLATING

    Institute of Scientific and Technical Information of China (English)

    Chujiang Cai; Zhigang Shen; Mingzhu Wang; Shulin Ma; Yushan Xing

    2003-01-01

    This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternatively,according to the characteristic surface of cenospheres, an Ag coating catalysis system is adopted to first deposit Ag on the cenospheres surface, followed, if necessary, by the deposition of other metals such as Cu, Ni, etc. on the Ag coating to produce monolayer and multilayer metal-coated cenospheres. The surface characteristics and the morphologies of the metal coatings are examined in detail with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. It can be shown that the quality of metal coatings derived from the Ag coating catalysis system, is better than that of the colloidal Pd0 catalysis system.

  16. Factors controlling cloud microphysics, precipitation rate, and brightness temperature of tropical convective and stratiform clouds

    Science.gov (United States)

    Hashino, T.; Casella, D.; Mugnai, A.; Sano, P.; Smith, E. A.; Tripoli, G.

    2008-12-01

    This paper discusses factors controlling cloud microphysics, precipitation rate and brightness temperature of tropical convective and stratiform clouds. Tropical convective and stratiform clouds are important in radiative forcing of climates and distribution of precipitation over the ocean. The possible effects of climate change on these clouds are still not well understood. Recent studies show that the higher CCN concentration in a convective cloud can lead to more vigorous updrafts and a higher evaporation/precipitation ratio. The stronger updraft often means stronger downdraft and gust fronts, which can trigger convection nearby. This implies that increases in CCN concentration can result in an increase in area coverage and persistence of tropical cirrus and stratiform clouds. The increased cloudiness would then be expected to lower sensible and latent heat flux from the ocean by lowering sea surface temperature, affecting the future development of convective clouds. The sea surface temperature may also change in a local area due to change of ocean circulation in climate change scenarios. Satellite remote sensing is a powerful tool to study tropical and global precipitation distribution. Many physically-based passive-microwave (MW) satellite precipitation algorithms make use of cloud radiation databases (CRDs), which typically consist of microphysical profiles from cloud resolving model (CRMs) and simulated MW brightness temperature (Tb). Thus, it is important to validate Tb simulated by a CRM against the observed Tb. Also, it is important to study how any changes in the tropical clouds due to aerosols and sea surface temperature translate into the precipitation and brightness temperature. The case study chosen is KWAJEX campaign that took place from 23 July to 14 September 1999. Authors have developed microphysical physical framework (Advanced Microphysics Prediction System) to predict ice particle properties explicitly in a CRM (University of Wisconsin

  17. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  18. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system

    Science.gov (United States)

    Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.

    2016-02-01

    This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with

  19. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  20. Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France

    Science.gov (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Graff, Benjamin

    2015-04-01

    This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the last century built on the NOAA 20th century global extended atmospheric reanalysis (20CR, Compo et al., 2011). It aims at delivering appropriate meteorological forcings for continuous distributed hydrological modelling over the last 140 years. The longer term objective is to improve our knowledge of major historical hydrometeorological events having occurred outside of the last 50-year period, over which comprehensive reconstructions and observations are available. It would constitute a perfect framework for assessing the recent observed events but also future events projected by climate change impact studies. The Sandhy (Stepwise ANalogue Downscaling method for Hydrology) statistical downscaling method (Radanovics et al., 2013), initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between 20CR predictors - temperature, geopotential shape, vertical velocity and relative humidity - and local predictands - precipitation and temperature - relevant for catchment-scale hydrology. Multiple predictor domains for geopotential shape are retained from a local optimisation over France using the Safran near-surface reanalysis (Vidal et al., 2010). Sandhy gives an ensemble of 125 equally plausible gridded precipitation and temperature time series over the whole 1871-2012 period. Previous studies showed that Sandhy precipitation outputs are very slightly biased at the annual time scale. Nevertheless, the seasonal precipitation signal for areas with a high interannual variability is not well simulated. Moreover, winter and summer temperatures are respectively over- and underestimated. Reliable seasonal precipitation and temperature signals are however necessary for hydrological modelling, especially for evapotranspiration and snow accumulation/snowmelt processes. Two different post-processing methods are

  1. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  2. Precipitation, temperature, and moisture transport variations associated with two distinct ENSO flavors during 1979-2014

    Science.gov (United States)

    Gu, Guojun; Adler, Robert F.

    2016-11-01

    Interannual precipitation and temperature variations during 1979-2014 are investigated by examining the effects of two distinct flavors of the El Niño-Southern Oscillation (ENSO), i.e., the tropical eastern Pacific (EP) and central Pacific (CP) ENSO events. Satellite- and ground-based observations with global coverage are applied including the monthly precipitation data from the Global Precipitation Climatology Project (GPCP) and surface temperature anomalies from the NASA-GISS surface temperature anomaly analysis. Related variations in other water-cycle components including atmospheric moisture transport are also examined by using the outputs from the NASA-Modern Era Retrospective-analysis for Research and Applications (MERRA). While the second leading mode from an EOF analysis of sea surface temperature (SST) anomalies between 30°N and 30°S is dominated by interdecadal-scale variability that is not a focus of this study, the first and third leading modes represent well the EP and CP events, respectively. The corresponding principal components (PC1 and PC3) are then applied as indices to estimate the influences of the two ENSO flavors on various physical components through linear regression. Because of their distinct SST configurations in the tropical Pacific, the two ENSO flavors manifest different spatial features of precipitation anomalies as shown in past studies. Differences can also be readily seen in satellite-retrieved tropospheric layered temperatures and oceanic columnar water vapor content. General agreements between observations and MERRA outputs can be obtained as judged by consistent respective anomalies corresponding to the two ENSO flavors, suggesting that MERRA could provide an accurate account of variations on the interannual time scale. Interannual variations in MERRA vertically integrated moisture transport (VIMT) are further examined to explore possible relations between precipitation and tropospheric moisture transport corresponding to the

  3. Extreme temperatures and precipitation in Poland. An evaluation attempt

    Energy Technology Data Exchange (ETDEWEB)

    Ustrnul, Zbigniew [Institute of Meteorology and Water Management, Krakow (Poland); Wypych, Agnieszka; Kosowski, Marek [Jagiellonian Univ., Krakow (Poland)

    2012-02-15

    Summer (JJA) and winter (DJF) temperature extremes and summer (JJA) precipitation extremes in Poland that occurred in the years 1951-2006 are analyzed in this paper. Diurnal extreme values of air temperature (Tmax, Tmin) and diurnal precipitation totals (P) are considered. The data was obtained from 54 meteorological stations. Extreme values were identified based on different methodological approaches. Advantages and disadvantages of selected methods are shown with respect to both temporal and spatial variability of the data. The differences obtained as a result of the applied criteria confirm that the method of percentiles seems to be the most suitable one to be used in spatial analysis. This is especially relevant in areas with a relatively high variability of absolute values. When it comes to analyses of multi-annual trends, the criterion used plays a less significant role. Regardless of the method, there is a certain direction of changes that is maintained, although their magnitudes may be different. It may be concluded from the conducted analyses that for the full evaluation of both spatial variability and temporal variability of weather extremes, a variety of methods and criteria for identifying extreme values, should be considered. They may significantly influence the final results. (orig.)

  4. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p......H equal to 9.1. Although the inlet fluid composition, flow rate, and temperature were identical for all experiments, the onset of calcite precipitation depended on the identity of the seeds present in the reactor. Calcite precipitated instantaneously and at a constant rate in the presence of calcite...

  5. Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2015-01-01

    The objective of this paper is to identify better performing Coupled Model Intercomparison Project phase 3 (CMIP3) global climate models (GCMs) that reproduce grid-scale climatological statistics of observed precipitation and temperature for input to hydrologic simulation over global land regions. Current assessments are aimed mainly at examining the performance of GCMs from a climatology perspective and not from a hydrology standpoint. The performance of each GCM in reproducing the precipitation and temperature statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the Climatic Research Unit (CRU) 3.10 gridded data set and re-sampled to the resolution of each GCM for comparison. Observed and GCM-based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen-Geiger climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency (NSE) index and root mean square error (RMSE) between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following better performing GCMs from a hydrologic perspective: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCm (Model for Interdisciplinary Research on Climate) (Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change), MIUB (Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group), MPI (Max Planck Institute for Meteorology) and MRI (Japan Meteorological Research Institute). The future response of these GCMs was found to be representative of the 44 GCM ensemble members which confirms that the selected GCMs are reasonably

  6. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  7. Climate Dynamics and Global Change: Temperature, Precipitation, and Circulation in GFDL Aqua-Planet Model

    Science.gov (United States)

    Dinh, T.; Fueglistaler, S.

    2015-12-01

    Numerical experiments are carried out using the GFDL General Circulation Model to assess climate sensitivity associated with CO2 increase and surface warming. This work is motivated by the calculation by Cess and Potter (1988, JGR), who proposed that surface temperature perturbations may be used as a surrogate for climate change induced by CO2 increase.We compare climatic changes due to CO2 increase in slab-ocean simulations with changes forced by surface warming in prescribed-surface-temperature simulations with fixed CO2 (Cess-type experiments). We found that slab-ocean and Cess-type experiments give the same rates of change per degree surface warming for the global atmosphere temperature and circulation strength. However, the global precipitation increases almost twice as slowly in slab-ocean runs (1.5%/K) when compared to Cess-type runs (2.8%/K). Therefore, we caution that Cess-type experiments may not be suitable for studying global precipitation change under climate change.

  8. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    P. Marnier

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).

  9. Synthesis of Dy2O3 nanoparticles via hydroxide precipitation:effect of calcination temperature

    Institute of Scientific and Technical Information of China (English)

    Bahaa M. Abu-Zied; Abdullah M. Asiri

    2014-01-01

    This work described the preparation of dysprosium oxide, Dy2O3, nanoparticles using the homogeneous precipitation method. Dy3+ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300-700 °C in static air. The calcination temperature of the Dy-precursor was chosen based on its decomposi-tion as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray pho-toelectron spectroscopy (XPS). The obtained results revealed that Dy2O3 with crystallites size of 11-21 nm was formed at 500 °C. Such value increased to 25-37 nm for the sample calcined at 700 °C.

  10. Interdecadal trend turning of global terrestrial temperature and precipitation during 1951-2002

    Institute of Scientific and Technical Information of China (English)

    Xiaohui Shi; Xiangde Xu

    2008-01-01

    A grid-by-grid counting of interdecadal trend turning (ITT) of annual mean surface air temperature (SAT) and total precipitation at 67,359 terrestrial grids in the period 1951-2002 is presented. An analysis of the last ITTs of SAT and total precipitation in the period, in the context of both occurrence time and linear trends after the breakpoint, indicates that a warming trend has become highly significant across most reagent of the world in the late 20th Century. Most terrestrial grids have recorded an ITT of total precipitation in either the 1970s or 1980s, and 45.7% of the terrestrial grids in the study have seen a decreasing trend in total annual precipitation after the breakpoint, with the remaining 54.3% having experienced an increasing trend. Basically, global terrestrial regions have experienced either an increasingly warm and dry climate or an increasingly warm and wet climate. An analysis of ITT of regional mean SAT and total precipitation in 22 regions shows that the Northern American continent has become increasingly warm and dry after the last interdecadal breakpoint. Meanwhile, the African continent has become increasingly warm and wet, with both Europe and most of Asia having the same trend. Southern South America and the West of Australia have experienced an opposite trend in climate, becoming increasingly cold and wet.

  11. The distribution shifts of Pinus armandii and its response to temperature and precipitation in China

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zheng

    2017-09-01

    Full Text Available Background The changing climate, particularly in regard to temperature and precipitation, is already affecting tree species’ distributions. Pinus armandii, which dominates on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural and ecological value. We wish to test the correlations between the distribution shift of P. armandii and changing climate, and figure out how it tracks future climate change. Methods We sampled the surface soil at sites throughout the distribution of P. armandii to compare the relative abundance of pollen to the current percent cover of plant species. This was used to determine possible changes in the distribution P. armandii. Given the hilly terrain, elevation was considered together with temperature and precipitation as variables correlated with distribution shifts of P. armandii. Results We show that P. armandii is undergoing change in its geographic range, including retraction, a shift to more northern areas and from the upper high part of the mountains to a lower-altitude part in hilly areas. Temperature was the strongest correlate of this distribution shift. Elevation and precipitation were also both significantly correlated with distribution change of P. armandii, but to a lesser degree than temperature. Conclusion The geographic range of P. armandii has been gradually decreasing under the influence of climate change. This provides evidence of the effect of climate change on trees at the species level and suggests that at least some species will have a limited ability to track the changing climate.

  12. Optimization of tetanus toxoid ammonium sulfate precipitation process using response surface methodology.

    Science.gov (United States)

    Brgles, Marija; Prebeg, Pero; Kurtović, Tihana; Ranić, Jelena; Marchetti-Deschmann, Martina; Allmaier, Günter; Halassy, Beata

    2016-10-02

    Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization-mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.

  13. Historical effects of temperature and precipitation on California crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D.B. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cahill, K.N. [Interdisciplinary Graduate Program in Environment and Resources, Stanford University, Stanford, CA 94305 (United States); Field, C.B. [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2007-03-15

    For the 1980-2003 period, we analyzed the relationship between crop yield and three climatic variables (minimum temperature, maximum temperature, and precipitation) for 12 major Californian crops: wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios. The months and climatic variables of greatest importance to each crop were used to develop regressions relating yield to climatic conditions. For most crops, fairly simple equations using only 2-3 variables explained more than two-thirds of observed yield variance. The types of variables and months identified suggest that relatively poorly understood processes such as crop infection, pollination, and dormancy may be important mechanisms by which climate influences crop yield. Recent climatic trends have had mixed effects on crop yields, with orange and walnut yields aided, avocado yields hurt, and most crops little affected by recent climatic trends. Yield-climate relationships can provide a foundation for forecasting crop production within a year and for projecting the impact of future climate changes.

  14. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D.

    2010-10-15

    A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p

  15. The effect of molybdenum on niobium, titanium carbonitride precipitate evolution and grain refinement in high-temperature vacuum carburizing alloys

    Science.gov (United States)

    Enloe, Charles M.

    austenite beneficially affected precipitate size distribution prior to reheating, lowered precipitate coarsening rates, and delayed the associated onset of abnormal grain growth during soaking at elevated temperature. Thermo-kinetic simulations support experimentally observed effects of prior precipitate distributions on precipitate coarsening. Investigations of microalloy precipitate composition evolution indicated that Mo is incorporated into fine microalloy precipitates (<40 nm) following hot-rolling and cooling to room temperature. The molybdenum concentration gradients observed in fine precipitates in hot-rolled alloys are attributed to the precipitation sequence of microalloy carbonitrides prior to reheating. The molybdenum concentration in microalloy precipitates also varies as a function of precipitate size and total Nb addition in hot-rolled alloys reheated to 900 °C. Further reheating to 1100 °C and soaking results in a reduction of Mo concentration in microalloy precipitates due to Mo partitioning to austenite. Thermodynamic calculations support observations of reduced Mo incorporation in microalloy precipitates in austenite relative to ferrite. Possible mechanisms for the effect of Mo on Nb-rich precipitate coarsening and associated grain growth were investigated. No measurable segregation of Mo to the carbonitride-matrix interface was observed, and solute Mo is shown to have a negligible effect on Nb diffusion activation energy. It is hypothesized that Mo reduces the coarsening of microalloy carbonitrides either through a reduction in the diffusion frequency factor, particle matrix surface energy, or a combination of these mechanisms enhanced by Mo partitioning during soaking in austenite.

  16. Corresp onding Relation b etween Warm Season Precipitation Extremes and Surface Air Temp erature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN Wei; LI Jian; YU Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966-2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season (May to October). The results show that below 25◦C, both daily and hourly precipitation extremes in South China increase with rising temperature. More extreme events transit to the two-time Clausius-Clapeyron (CC) relationship at lower temperatures. Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25◦C, among which the decrease of hourly extremes is much more significant. In order to investigate the effects of rainfall durations, hourly precipitation extremes are presented by short duration and long duration precipitation, respectively. Results show that the dramatic decrease of hourly rainfall intensities above 25◦C is mainly caused by short duration precipitation, and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28◦C.

  17. The effect of increased temperature and altered precipitation on plants in an arid ecosystem

    Science.gov (United States)

    Wertin, T. M.; Reed, S.; Belnap, J.

    2011-12-01

    Projected changes in climate are expected to strongly affect arid and semi-arid landscapes where plant communities are assumed to already experience high temperatures and low water availability. Here we investigated the effect of elevated temperature and altered precipitation regimes on plant physiology, community composition, phenology and growth on the Colorado Plateau. The ecosystem is dominated by the native perennial grasses Pleuraphis jamesii and Achnatherum hymenoides and the shrub Atriplex confertifolia and has well-formed biological soil crusts. The invasive annual grass Bromus tectorum is also present. In 2005, five blocks of four 2m by 2.5m plots were established, and within each block plots were randomly assigned to ambient or elevated temperature (soil surface temperature of +2°C above ambient) and ambient or elevated precipitation (1.5 mm precipitation pulses applied three times weekly during summer) in full-factorial. In 2009 the temperature treatment was increased to +4°C. Additionally, five new blocks were established with the plots randomly assigned ambient or elevated temperature (again, +2°C was used) and ambient or elevated precipitation (summertime large bi-weekly watering to counteract negative effects the lamps may have had on soil moisture) in full-factorial. Throughout 2010 and 2011 the phenological state of the dominate plant species was recorded weekly. At the end of May 2010 and 2011 biomass accumulation, reproductive output and vegetative cover were assessed. Additionally, diurnal foliar gas exchange, foliar fluorescence and xylem pressure potential were measured on the dominant plant species three times throughout the spring and summer of 2011. Elevated temperature had no effect on carbon fixation or foliar physiology of A. confertifolia or P. jamesii, though A. hymenoides carbon fixation was negatively affected by elevated temperature with the +4°C treatment causing a greater reduction in fixation than the +2°C treatment. The

  18. Precipitation and temperature ensemble forecasts from single-value forecasts

    Directory of Open Access Journals (Sweden)

    J. Schaake

    2007-04-01

    Full Text Available A procedure is presented to construct ensemble forecasts from single-value forecasts of precipitation and temperature. This involves dividing the spatial forecast domain and total forecast period into a number of parts that are treated as separate forecast events. The spatial domain is divided into hydrologic sub-basins. The total forecast period is divided into time periods, one for each model time step. For each event archived values of forecasts and corresponding observations are used to model the joint distribution of forecasts and observations. The conditional distribution of observations for a given single-value forecast is used to represent the corresponding probability distribution of events that may occur for that forecast. This conditional forecast distribution subsequently is used to create ensemble members that vary in space and time using the "Schaake Shuffle" (Clark et al, 2004. The resulting ensemble members have the same space-time patterns as historical observations so that space-time joint relationships between events that have a significant effect on hydrological response tend to be preserved.

    Forecast uncertainty is space and time-scale dependent. For a given lead time to the beginning of the valid period of an event, forecast uncertainty depends on the length of the forecast valid time period and the spatial area to which the forecast applies. Although the "Schaake Shuffle" procedure, when applied to construct ensemble members from a time-series of single value forecasts, may preserve some of this scale dependency, it may not be sufficient without additional constraint. To account more fully for the time-dependent structure of forecast uncertainty, events for additional "aggregate" forecast periods are defined as accumulations of different "base" forecast periods.

    The generated ensemble members can be ingested by an Ensemble Streamflow Prediction system to produce ensemble forecasts of streamflow and other

  19. Improving precipitation simulation from updated surface characteristics in South America

    Science.gov (United States)

    Pereira, Gabriel; Silva, Maria Elisa Siqueira; Moraes, Elisabete Caria; Chiquetto, Júlio Barboza; da Silva Cardozo, Francielle

    2017-07-01

    Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p < 0.05, Student's t test). Correspondingly, the simulations performed with adjustments in maximum fractional vegetation cover, in visible and shortwave infrared reflectance, and in the leaf area index, showed a good agreement for maximum and minimum temperature, with values closer to observed data. The changes in physical parameters and land use updating in BATS/RegCM4 reduced overestimation of simulated precipitation from 19 to 7 % (significant at p < 0.05, Student's t test). Regarding evapotranspiration and precipitation, the most significant differences due to land use updating were located (1) in the Amazon deforestation arc; (2) around the Brazil-Bolivia border (in the Brazilian Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the

  20. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  1. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia

    Science.gov (United States)

    Hu, Zengyun; Li, Qingxiang; Chen, Xi; Teng, Zhidong; Chen, Changchun; Yin, Gang; Zhang, Yuqing

    2016-11-01

    The natural ecosystem in Central Asia is sensitive and vulnerable to the arid and semiarid climate variations, especially the climate extreme events. However, the climate extreme events in this area are still unclear. Therefore, this study analyzed the climate variability in the temperature and precipitation extreme events in an alpine grassland (Bayanbuluk) of Central Asia based on the daily minimum temperature, daily maximum temperature, and daily precipitation from 1958 to 2012. Statistically significant ( p < 0.01) increasing trends were found in the minimum temperature, maximum temperature at annual, and seasonal time scales except the winter maximum temperature. In the seasonal changes, the winter temperature had the largest contribution to the annual warming. Further, there appeared increasing trends for the warm nights and the warm days and decreasing trends for the cool nights and the cool days at a 99 % confidence level. These trends directly resulted in an increasing trend for the growing season length (GSL) which could have positively influence on the vegetation productivity. For the precipitation, it displayed an increasing trend for the annual precipitation although it was not significant. And the summer precipitation had the same variations as the annual precipitation which indicated that the precipitation in summer made the biggest contribution to the annual precipitation than the other three seasons. The winter precipitation had a significant increasing trend (1.49 mm/10a) and a decreasing trend was found in spring. We also found that the precipitation of the very wet days mainly contributes to the annual precipitation with the trend of 4.5 mm/10a. The maximum 1-day precipitation and the heavy precipitation days only had slight increasing trend. A sharp decreasing trend was found before the early 1980s, and then becoming increase for the above three precipitation indexes. The climate experienced a warm-wet abrupt climate change in the 1980s

  2. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    Science.gov (United States)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using

  3. Trends and variability of daily and extreme temperature and precipitation in the Caribbean region, 1961-2010

    Science.gov (United States)

    Allen, T. L.; Stephenson, T. S.; Vincent, L.; Van Meerbeeck, C.; McLean, N.

    2013-05-01

    A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily surface temperature and precipitation data for an assessment of quality and homogeneity and for the preparation of climate change indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961-2010 and 1986-2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. Region-wide, annual means of the daily minimum temperatures (+1.4°C) have increased more than the annual means of the daily maximum temperatures (+0.9°C) leading to significant decrease in the diurnal temperature range. The frequency of warm days and warm nights has increased by more than 15% while 9% fewer cool days and 13% fewer cool night were found over the 50-year interval. These frequency trends are further reflected in a rise of the annual extreme high and low temperatures by ~1°C. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986- 2010. Finally, aside from the observed climate trends, correlations between these indices and the Atlantic Multidecadal Oscillation (AMO) annual index suggest a coupling between land temperature variability and, to a lesser extent, precipitation extremes on the one hand, and the AMO signal of the North Atlantic surface sea temperatures.

  4. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011

    Institute of Scientific and Technical Information of China (English)

    Wei Liu; ZongXing Li; Meng Zhu; XiaoYan Guo; LiJuan Chen

    2016-01-01

    Global climate change has been evident in many places worldwide. This study provides a better understanding of the variability and changes in frequency, intensity, and duration of temperature, precipitation, and climate extremes in the Extensive Hexi Region, based on meteorological data from 26 stations. The analysis of average, maximum, and minimum temperatures revealed that statistically significant warming occurred from 1960 to 2011. All temperature extremes dis-played trends consistent with warming, with the exception of coldest-night temperature (TNn) and coldest-day tempera-ture (TXn), which were particularly evident in high-altitude areas and at night. Amount of precipitation and number of rainy days slowly increased with no significant regional trends, mainly occurring in the Qilian Mountains and Hexi Cor-ridor. The significance of changes in precipitation extremes during 1960–2011 was high, but the regional trends of max-imum 5-day precipitation (RX5day), the average precipitation on wet days (SDII), and consecutive wet days (CWD) were not significant. The variations in the studied parameters indicate an increase in both the extremity and strength of precip-itation events, particularly in higher-altitude regions. Furthermore, the contribution from very wet precipitation (R95) and extremely wet precipitation (R99) to total precipitation also increased between 1960 and 2011. The assessment of these changes in temperature and precipitation may help in developing better management practices for water resources. Future studies in the region should focus on the impact of these changes on runoffs and glaciers.

  5. Variations in temperature and precipitation during Indian summer monsoon simulated by RegCM3

    Science.gov (United States)

    Dash, S. K.; Mamgain, A.; Pattnayak, K. C.; Giorgi, F.

    2012-04-01

    Variations in temperature and precipitation due to global changes have large societal impact in sectors such as agriculture and health. It is therefore very important to examine their temporal and spatial variations at the regional level in order to access the impact of climate change. In India, the most important quasi-periodic system to affect the weather and climate is the Indian summer monsoon. The local changes in the temperature and precipitation can be well examined by a regional model. RegCM3 is one such model best suited for the Indian region. This model has been integrated in the ensemble mode at 55km resolution over India for the summer monsoon season during the years 1982-2009. The model simulations are compared with observed values in detail. Comparison with observations shows that RegCM3 has slightly underestimated summer monsoon precipitation over the Central and Northeast India. Nevertheless, over these regions, RegCM3 simulated rainfall is closer to the observations when compared to other regions where rainfall is highly overestimated. The model simulated mid-tropospheric temperature shows a warm bias over the Himalayan and Tibetan regions that gives leads to the low pressure in the region. Thus the position of the monsoon trough as simulated by the model lies to the north of its original position. This is similar to the usual monsoon break condition leading to less rainfall over Central India. RegCM3 simulated surface maximum temperature shows large negative bias over the country while the surface minimum temperature is close to the observation. Nevertheless, there is a strong correlation between the all India weighted average surface temperature simulated by RegCM3 and IMD observations. At the regional level, in the Central India, both rainfall and temperature show the best correlation with the respective observed values. While examining the extreme condition in Central India, it is found that RegCM3 simulated frequencies of very wet and

  6. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  7. Adsorption of RNA on mineral surfaces and mineral precipitates

    Science.gov (United States)

    Biondi, Elisa; Furukawa, Yoshihiro; Kawai, Jun

    2017-01-01

    The prebiotic significance of laboratory experiments that study the interactions between oligomeric RNA and mineral species is difficult to know. Natural exemplars of specific minerals can differ widely depending on their provenance. While laboratory-generated samples of synthetic minerals can have controlled compositions, they are often viewed as "unnatural". Here, we show how trends in the interaction of RNA with natural mineral specimens, synthetic mineral specimens, and co-precipitated pairs of synthetic minerals, can make a persuasive case that the observed interactions reflect the composition of the minerals themselves, rather than their being simply examples of large molecules associating nonspecifically with large surfaces. Using this approach, we have discovered Periodic Table trends in the binding of oligomeric RNA to alkaline earth carbonate minerals and alkaline earth sulfate minerals, where those trends are the same when measured in natural and synthetic minerals. They are also validated by comparison of co-precipitated synthetic minerals. We also show differential binding of RNA to polymorphic forms of calcium carbonate, and the stabilization of bound RNA on aragonite. These have relevance to the prebiotic stabilization of RNA, where such carbonate minerals are expected to have been abundant, as they appear to be today on Mars.

  8. Biophysical effects on temperature and precipitation due to land cover change

    Science.gov (United States)

    Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut

    2017-05-01

    Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for

  9. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Maiorano, Luigi

    2016-07-01

    Climate change is determining a generalized phenological advancement, and amphibians are among the taxa showing the strongest phenological responsiveness to warming temperatures. Amphibians are strongly influenced by climate change, but we do not have a clear picture of how climate influences important parameters of amphibian populations, such as abundance, survival, breeding success and morphology. Furthermore, the relative impact of temperature and precipitation change remains underappreciated. We used Bayesian meta-analysis and meta-regression to quantify the impact of temperature and precipitation change on amphibian phenology, abundance, individual features and performance. We obtained effect sizes from studies performed in five continents. Temperature increase was the major driver of phenological advancement, while the impact of precipitation on phenology was weak. Conversely, population dynamics was mostly determined by precipitation: negative trends were associated with drying regimes. The impact of precipitation on abundance was particularly strong in tropical areas, while the importance of temperature was feeble. Both temperature and precipitation influenced parameters representing breeding performance, morphology, developmental rate and survival, but the response was highly heterogeneous among species. For instance, warming temperature increased body size in some species, and decreased size in others. Similarly, rainy periods increased survival of some species and reduced the survival of others. Our study showed contrasting impacts of temperature and precipitation changes on amphibian populations. Both climatic parameters strongly influenced amphibian performance, but temperature was the major determinant of the phenological changes, while precipitation had the major role on population dynamics, with alarming declines associated with drying trends.

  10. Assessing impacts of PBL and surface layer schemes in simulating the surface-atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yan, Huiping; Berg, Larry K.; Hagos, Samson M.; Feng, Zhe; Yang, Ben; Huang, Maoyi

    2016-11-01

    Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments, and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow

  11. Daily temperature and precipitation data for 223 USSR Stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A. [Research Institute of Hydrometeorological Information, Obninsk (Russian Federation); Vose, R.S. [Univ. of Tennessee, Knoxville, TN (United States); Steurer, P.M. [National Climatic Data Center, Asheville, NC (United States)

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  12. Weighting of NMME temperature and precipitation forecasts across Europe

    Science.gov (United States)

    Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen

    2017-09-01

    Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.

  13. Assessing the Influence of Precipitation on Diurnal Temperature Range Changes: Implications for Climate Change Projection

    Science.gov (United States)

    Van den Hoof, C.; Garreaud, R.

    2014-12-01

    In this study, we investigate up to what extent the spatial heterogeneity in the projected changes in DTR during the rest of the 21st century (under several emission scenarios) is explained by the regional variability in projected precipitation changes. DTR is indeed a suitable index of climate variability and change [1] and several studies have highlighted the existence of a negative correlation with both the cloud cover and the precipitation rate over land throughout last century [2]. Precipitation reduces DTR mainly by decreasing surface solar radiation through increased cloud cover and by increasing daytime surface evaporative cooling through increased soil moisture content. Whether or not these processes are captured in the current generation of global and regional models is matter of research. To achieve our objective, we make use of the climate projections made available by the CMIP5 project as well as their historical runs, along with reanalysis and station data. At inter-annual timescale, the seasonal mean DTR simulated by an ensemble of CMIP5 models for the last decades shows a negative relationship over land with the simulated precipitation at zero lag. The correlation is globally very strong except during winter at higher latitudes. This corresponds well with the correlations observed in the re-analysis datasets. Some spatial variability in correlation strength is however noticeable between both datasets. Concerning the projected changes, the negative correlation between DTR and precipitation does not hold globally; no correlation or even positive correlations are observed in different climate regions, including Northern South America and Central Europe. Within this study we will further investigate the physical process that could explain this change in correlation sign as well as the reason why positive correlations are rarely observed or simulated at inter-annual timescale under current climate during summer and at lower latitudes during winter. [1] K

  14. Reconstructing Precipitation from Temperature and Drought-Index Reconstructions in Western North America

    Science.gov (United States)

    Wahl, E. R.; Cook, E.; Diaz, H. F.; Meko, D. M.

    2012-12-01

    Well-verified tree ring-based reconstructions of the surface temperature field over the past 500 years in western North America have recently been completed using the principal component spatial regression (PCSR) method. In conjunction with the North American Drought Atlas (NADA) reconstructions of drought index values, constructed using the point-by-point regression (PPR) method, the new spatial temperature reconstructions make it possible to estimate direct moisture fields over western North America for a significant portion of the past millennium. To achieve this goal, experiments will be conducted in which reconstructed temperature, or its equivalent in the form of potential evapotranspiration, will be regressed out of the NADA reconstructions to 'back out' in residual form the contribution of precipitation in the NADA with its regional seasonalities intact. To ensure non-overlap of the temperature and PDSI tree chronology data used, an implementation of the NADA will be done that excludes the proxy data used in the temperature reconstructions. To facilitate examination of maximum comparability of the drought and temperature data, the annual temperature reconstructions also will be calibrated to summer (JJA) temperatures, the NADA seasonality. Bootstrapping methods recently implemented for paleoclimate field reconstruction, the maximum entropy bootstrap for PPR and a modification of bootstrapping from residuals for PCSR, will be evaluated for generation of uncertainty ensemble distributions associated with the derived precipitation reconstructions. Generation of a reconstruction ensemble allows, for example, estimation of the distribution of extreme values or the uncertainty in a temporally smoothed time series, results that cannot readily be obtained from traditional confidence intervals associated with expected value estimates. More generally, the ensemble distribution will allow these regression-based reconstructions to be more meaningfully compared with

  15. Gridded 5km GHCN-Daily Temperature and Precipitation Dataset, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded 5km GHCN-Daily Temperature and Precipitation Dataset (nClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature,...

  16. Concentration and Separation of Active Proteins from Potato Industry Waste Based on Low-Temperature Evaporation and Ethanol Precipitation

    Science.gov (United States)

    Ahokas, Mikko; Järvinen, Juho; Toivanen, Juho; Tanskanen, Juha P.

    2017-01-01

    Purpose. Potato fruit juice, a residue of starch industry, contains up to 2.5% [w/w] of proteins that are potentially valuable raw-materials of food, cosmetic, and pharma industries. The recovery of protein from the potato fruit juice is limited by the lack of industrially feasible concentration and separation technologies. The present research thus aimed at development of such process for the separation of active protease inhibitors from potato fruit juice. Methods. Low temperature mechanical vapor recompression evaporation was applied for concentration of potato fruit juice followed by ethanol precipitation for recovery of active proteins. The effects of precipitation temperature and precipitative agents were investigated employing response surface modeling methodology. Results. Concentration of potato fruit juice by evaporation was successful without loss of trypsin inhibition activity. Precipitation using 6.5 M ethanol at low temperature (0–+4°C) was found suitable for the recovery of active protease inhibitors from the concentrate. Piloting at starch industry yielded 50% of total proteins, with a high quantity of active protease inhibitors and a minor inclusion of other proteins. Conclusion. Concentration by low-temperature evaporation, followed by ethanol precipitation of protease inhibitors at optimized temperature, is an attractive option for valorization of potato fruit juice. PMID:28299232

  17. Variability and Trends in Precipitation, Temperature and Drought Indices in the State of California

    OpenAIRE

    Minxue He; Mahesh Gautam

    2016-01-01

    This study presents a comprehensive assessment of the variability and trends of the precipitation and temperature along with the trends in drought indices over the State of California. The non-parametric Mann–Kendall trend test is applied with a trend-free pre-whitening procedure in trend identification. A dataset containing 120-year (water years 1896–2015) monthly precipitation, average temperature, maximum temperature, minimum temperature and the Palmer Index for seven climatic regions of t...

  18. Understanding Farmers’ Perceptions and Adaptations to Precipitation and Temperature Variability: Evidence from Northern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Allahyari

    2016-12-01

    Full Text Available Precipitation and temperature variability present significant agricultural risks worldwide. Northern Iran’s agriculture mainly depends on paddy fields, which are directly affected by precipitation and temperature variability. The main aim of this study is to explore farmers’ attitudes towards precipitation and temperature variability and their adaptation strategies in paddy fields in a typical agricultural province in northern Iran. Primary survey data were collected from a sample of 382 paddy farmers of Rasht County in Guilan Province. Data have been analyzed using both summary statistics and bivariate analysis (Pearson, Spearman, and Eta correlation coefficients. Empirical findings reveal that most paddy farmers had experienced precipitation and temperature variability and were taking measures to reduce its negative impacts on their crops. Results also indicate that farm size and household income influence farmers’ perception to precipitation and temperature variability, while availability of water resources also influence farmers’ adaptation decisions.

  19. The relationship between ENSO cycle and temperature, precipitation and runoff in the Qilian mountain area

    Institute of Scientific and Technical Information of China (English)

    LANYongchao; DINGYongjian; KANGErsi; ZHANGJishi

    2003-01-01

    El Nino and La Nina are the events concerned internationally. The corresponding relationship between E1 Nino events, temperature, precipitation and runoff in the Qilian mountain area are analyzed according to the date fi'om the weather and the hydrometric stations in the area, the results show that effects of E1 Nino events to temperature, precipitation and runoff are different in the different time and zones. When E1 Nino occurs, temperature rises, but precipitation and runoff decrease in the whole Qilian mountain area, especially in the east and middle parts of the area. Temperature rises, precipitation and runoff still decrease in the eastern Qilian mountain area in the next year El Nino occurring, but decrease extent is fewer. There are not obvious relationship between temperature,precipitation and runoff with El Nino events in the western Qilian mountain area.

  20. Holocene temperatures and isotopes of precipitation in Northwest Greenland recorded in lacustrine organic materials

    Science.gov (United States)

    Lasher, G. Everett; Axford, Yarrow; McFarlin, Jamie M.; Kelly, Meredith A.; Osterberg, Erich C.; Berkelhammer, Max B.

    2017-08-01

    Reconstructions of Holocene lake water isotopic composition based upon subfossil aquatic organic material offer new insights into Arctic climate. We present quantitative estimates of warmth during the Holocene Thermal Maximum in northwest Greenland, inferred from oxygen isotopes of chironomid head capsules and aquatic moss preserved in lake sediments. δ18O values of chironomids from surface sediments of multiple Greenland lakes indicate that these subfossil remains record the δ18O values of the lake water in which they grow. Our lake water δ18O reconstruction is supported by downcore agreement with δ18O values in aquatic moss and chironomid remains. δ18O of both organic materials from Secret Lake decrease after 4 ka (ka = thousands of years ago) by 3‰ into the Neoglacial. We argue that lake water at Secret Lake primarily reflects precipitation δ18O values, which is strongly correlated with air temperature in NW Greenland, and that this signal is biased towards summer and early autumn conditions. Other factors may have influenced Secret Lake δ18O values through the Holocene, including evaporation of lake water and changing seasonality and source of precipitation. The maximum early Holocene summer and early autumn-biased temperature anomaly at Secret Lake is 2.5-4 °C warmer than present from 7.7 (the beginning of our record) to ∼6 ka. The maximum late Holocene cold anomaly (which includes the Little Ice Age) is 1.5-3 °C colder than present. These ranges of possible temperature anomalies reflect uncertainty in the δ18O - temperature relationship for precipitation at the study site through the Holocene.

  1. The Peak Structure and Future Changes of the Relationships Between Extreme Precipitation and Temperature

    Science.gov (United States)

    Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.

    2017-01-01

    Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.

  2. Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation.

    Science.gov (United States)

    Okwadha, George D O; Li, Jin

    2011-10-01

    In this study, a biosealant obtained from microbial carbonate precipitation (MCP) was evaluated as an alternative to an epoxy-coating system. A bacterium Sporosarcina pasteurii strain ATCC 11859, which metabolizes urea and precipitates calcite in a calcium-rich environment, was used in this study to generate the biosealant on a PCB-contaminated concrete surface. Concrete cylinders measuring 3 in (76.2 mm) by 6 in (152.4 mm) were made in accordance with ASTM C33 and C192 and used for this purpose. The PCB, urea, Ca(2+), and bacterial cell concentrations were set at 10 ppm, 666 mM, 250 mM, and about 2.1 × 10(8) cells mL(-1), respectively. The results indicate that the biosealed surfaces reduced water permeability by 1-5 orders of magnitude, and had a high resistance to carbonation. Since the MCP biosealant is thermally stable under temperatures of up to 840 °C, the high temperatures that normally exist in the surrounding equipment, which may contain PCB-based fluids, have no effect on the biosealed surfaces. Consequently, there is greater potential to obtain a stronger, coherent, and durable surface by MCP. No measurable amount of PCBs was detected in the permeating water, indicating that the leaching water, if any, will have a minimum impact on the surrounding environment.

  3. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios

    Science.gov (United States)

    Drobinski, Philippe; Silva, Nicolas Da; Panthou, Gérémy; Bastin, Sophie; Muller, Caroline; Ahrens, Bodo; Borga, Marco; Conte, Dario; Fosser, Giorgia; Giorgi, Filippo; Güttler, Ivan; Kotroni, Vassiliki; Li, Laurent; Morin, Efrat; Önol, Bariş; Quintana-Segui, Pere; Romera, Raquel; Torma, Csaba Zsolt

    2016-03-01

    In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979-2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature-precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius-Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature-precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature-precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature-precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region.

  4. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  5. Trends and variability of daily temperature and precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    Science.gov (United States)

    Guan, Yinghui

    2017-04-01

    The variability of surface air temperature and precipitation extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Using daily minimum (TN), maximum temperature (TX) and precipitation from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of extreme climate indices recommended by the Expert Team on Climate Change Detection and Indices, which has rarely been applied in this region, were computed and analyzed during 1960-2012. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960-2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by -3.45, -1.03, -3.04, -0.42 and -1.6 days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73 days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14 °C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of -0.09 °C/decade for the whole YRB during 1960-2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. For precipitation, simple daily intensity index, very wet day precipitation, extremely wet day precipitation, extremely heavy precipitation days, maximum 1-day precipitation, maximum 5-day precipitation and maximum consecutive dry days all increased significantly during 1960-2012. In

  6. Presence of sulfate does not inhibit low-temperature dolomite precipitation

    Science.gov (United States)

    Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Rivadeneyra, Maria A.; Vasconcelos, Crisógono

    2009-07-01

    The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and Halomonas meridiana, two moderately halophilic aerobic bacteria, which metabolize independent of sulfate concentration. The culture experiments were conducted at 25 and 35 °C using variable SO 42- concentrations (0, 14, 28 and 56 mM) and demonstrate that halophilic aerobic bacteria mediate direct precipitation of dolomite with or without SO 42- in the culture media which simulate dolomite occurrences commonly found under the Earth's surface conditions. Hence, we report that the presence of sulfate does not inhibit dolomite precipitation. Further, we hypothesize that, if sedimentary dolomite is a direct precipitate, as in our low-temperature culture experiments, the kinetic factors involved are likely to be quite different from those governing a dolomite replacement reaction, such as in hydrothermal experiments. Consequently, the occurrence and, presumably, growth of dolomite in SO 42--rich aerobic cultures may shed new light on the long-standing Dolomite Problem.

  7. Changes in magnitude and frequency of heavy precipitation across China and its potential links to summer temperature

    Science.gov (United States)

    Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun

    2017-04-01

    Changes in the magnitude, frequency and timing of heavy precipitation are closely related to the occurrence of floods and droughts, which hold a great deal of significance for management of agricultural irrigation and water resources. Records of daily precipitation and temperature from 728 stations across China were used to assess changes in the magnitude, frequency and timing of heavy precipitation using the Peak-over-Threshold (POT) with 95th percentile as the threshold. Because of the continuous nature of the magnitude and timing of heavy precipitation, the ;change point; method and the modified Mann-Kendall trend test method were used to detect change points (CPs) and slowly-varying changes, respectively. In addition, the segmented regression and Poisson regression methods were used to detect CPs and temporal trends in the frequency of heavy precipitation, respectively, with consideration of the count nature of the data. The results showed that 55% and 36% of the stations had CPs in mean and/or variance of the magnitude and timing, respectively, while the percentage is only 5.8% in the frequency. However, while there is limited evidence of significant trends in the magnitude and timing, strong evidence points to a significant increasing frequency in most regions of China. These changes may be partly explained by changes in summer temperature. Examination of the summer surface temperature records suggests that the areas, where the frequency of heavy precipitation has a significant increase, are also mostly characterized by significant increasing temperature. In addition, trends of the frequency vary between the periods before and after the turn point (TP) of summer temperature trends, especially in northern China where both the summer temperature and the frequency have shifted significantly decreasing trends to significantly increasing trends. A possible interpretation of these findings is that storms tend to be more frequent without significant changes in water

  8. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  9. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  10. Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin

    Directory of Open Access Journals (Sweden)

    W. Terink

    2009-08-01

    Full Text Available In many climate impact studies hydrological models are forced with meteorological forcing data without an attempt to assess the quality of these forcing data. The objective of this study is to compare downscaled ERA15 (ECMWF-reanalysis data precipitation and temperature with observed precipitation and temperature and apply a bias correction to these forcing variables. The bias-corrected precipitation and temperature data will be used in another study as input for the Variable Infiltration Capacity (VIC model. Observations were available for 134 sub-basins throughout the Rhine basin at a temporal resolution of one day from the International Commission for the Hydrology of the Rhine basin (CHR. Precipitation is corrected by fitting the mean and coefficient of variation (CV of the observations. Temperature is corrected by fitting the mean and standard deviation of the observations. It seems that the uncorrected ERA15 is too warm and too wet for most of the Rhine basin. The bias correction leads to satisfactory results, precipitation and temperature differences decreased significantly. Corrections were largest during summer for both precipitation and temperature, and for September and October for precipitation only. Besides the statistics the correction method was intended to correct for, it is also found to improve the correlations for the fraction of wet days and lag-1 autocorrelations between ERA15 and the observations.

  11. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  12. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    Science.gov (United States)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  13. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    Science.gov (United States)

    Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  14. Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves

    Science.gov (United States)

    Thiele, Sebastian; Matlack, Kathryn H.; Kim, Jin-Yeon; Qu, Jianmin; Wall, James J.; Jacobs, Laurence J.

    2014-02-01

    Nonlinear ultrasonic waves have shown to be sensitive to various microstructural changes in metals including coherent precipitates; these precipitates introduce a strain field in the lattice structure. The thermal aging of certain alloy steels leads to the formation of coherent precipitates, which pin dislocations and contribute to the generation of a second harmonic component. A precipitate hardenable material namely 17-4 PH stainless steel is thermally treated in this research to obtain different precipitation stages, and then the influence of precipitates on the acoustic nonlinearity parameter is assessed. Conclusions about the microstrucutural changes in the material are drawn based on the results from a nonlinear Rayleigh surface wave measurement and complementary thermo-electric power, hardness and ultrasonic velocity measurements. The results show that the nonlinear parameter is sensitive to coherent precipitates in the material and moreover that precipitation characteristics can be characterized based on the obtained experimental data.

  15. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-02-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  16. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  17. Detecting Variation Trends of Temperature and Precipitation for the Dadu River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.

  18. Climate Prediction Center (CPC)Weekly U.S. Precipitation and Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weekly U.S. minimum and maximum temperatures in whole degrees Fahrenheit and reported and estimated precipitation amounts in hundredths of inches(ex 100 is 1.00...

  19. Gridded Mean Monthly Temperature and Precipitation Data for Alaska, British Columbia, and Yukon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To aid in better understanding the temperature and precipitation data of the spatially variable climate of Alaska and Northwest Canada, this dataset was created via...

  20. Climate Prediction Center(CPC)Daily U.S. Precipitation and Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily U.S. minimum and maximum temperatures in whole degrees Fahrenheit and reported and estimated precipitation amounts in hundredths of inches(ex 100 is 1.00...

  1. Simulated Future Air Temperature and Precipitation Climatology and Variability in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs

    Science.gov (United States)

    Ozturk, Tugba; Pelin Ceber, Zeynep; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    The Mediterranean Basin is one of the regions that shall be affected most by the impacts of the future climate changes on temperature regime including changes in heat waves intensity and frequency, seasonal and interannual precipitation variability including changes in summer dryness and drought events, and hydrology and water resources. In this study, projected future changes in mean air temperature and precipitation climatology and inter-annual variability over the Mediterranean region were simulated. For performing this aim, the future changes in annual and seasonal averages for the future period of 2070-2100 with respect to the period from 1970 to 2000 were investigated. Global climate model outputs of the World Climate Research Program's (WCRP's) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset were used. SRES A2, A1B and B1 emission scenarios' outputs of the Intergovernmental Panel on Climate Change (IPCC) were used in future climate model projections. Future surface mean air temperatures of the larger Mediterranean basin increase mostly in summer and least in winter, and precipitation amounts decreases in all seasons at almost all parts of the basin. Future climate signals for surface air temperatures and precipitation totals will be much larger than the inter-model standard deviation. Inter-annual temperature variability increases evidently in summer season and decreases in the northern part of the domain in the winter season, while precipitation variability increases in almost all parts of domain. Probability distribution functions are found to be shifted and flattened for future period compared to reference period. This indicates that occurrence frequency and intensity of extreme weather conditions will increase in the future period. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  2. Can reanalysis datasets describe the persistent temperature and precipitation extremes over China?

    Science.gov (United States)

    Zhu, Jian; Huang, Dan-Qing; Yan, Pei-Wen; Huang, Ying; Kuang, Xue-Yuan

    2016-08-01

    The persistent temperature and precipitation extremes may bring damage to the economy and human due to their intensity, duration and areal coverage. Understanding the quality of reanalysis datasets in descripting these extreme events is important for detection, attribution and model evaluation. In this study, the performances of two reanalysis datasets [the twentieth century reanalysis (20CR) and Interim ECMWF reanalysis (ERA-Interim)] in reproducing the persistent temperature and precipitation extremes in China are evaluated. For the persistent temperature extremes, the two datasets can better capture the intensity indices than the frequency indices. The increasing/decreasing trend of persistent warm/cold extremes has been reasonably detected by the two datasets, particularly in the northern part of China. The ERA-Interim better reproduces the climatology and tendency of persistent warm extremes, while the 20CR has better skill to depict the persistent cold extremes. For the persistent precipitation extremes, the two datasets have the ability to reproduce the maximum consecutive 5-day precipitation. The two datasets largely underestimate the maximum consecutive dry days over the northern part of China, while overestimate the maximum consecutive wet days over the southern part of China. For the response of the precipitation extremes against the temperature variations, the ERA-Interim has good ability to depict the relationship among persistent precipitation extremes, local persistent temperature extremes, and global temperature variations over specific regions.

  3. THE INFLUENCE OF CHANGES IN TELECONNECTION PATTERN TRENDS ON TEMPERATURE AND PRECIPITATION TRENDS IN NORTHEASTERN ROMANIA

    Directory of Open Access Journals (Sweden)

    A. PITICAR

    2014-05-01

    Full Text Available The influence of changes in teleconnection pattern trends on temperature and precipitation trends in northeastern Romania. Influence of changes in teleconnection patterns on temperature and precipitation have been identified in many studies performed at local, regional, or global scales. The research on this issue was poorly approached in Romania. In this paper, the northeastern Romania area was considered. This work is focused on analyzing trends in the time series of air temperature and precipitation at ten stations located in northeastern Romania across 50 years (1961-2010. Using the conditional Mann-Kendall test, these trends are compared with trends in Northern Hemisphere teleconnection indices. The main goal was to estimate the influence of trends in five teleconnection indices on changes in temperature and precipitation in northeastern Romania. The main results suggest that the highest increase in air temperature is typical for summer, followed by an increase in winter time series. The trends in precipitation are both positive and negative in the area, but most of them are statistically insignificant. However a significant increase has been observed in October at the most locations, and a significant decrease in time series of a high altitude station (Ceahlău. Significant changes have occurred in Northern Hemisphere teleconnection indices during 1961-2010. The results of the conditional Mann-Kendall test indicate that the changes in the teleconnection patterns are significantly related to changes in temperature and precipitation in northeastern Romania.

  4. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations.

    Science.gov (United States)

    Wang, Xia; Tang, Sanyi; Cheke, Robert A

    2016-12-21

    An outbreak of dengue fever in Guangdong province in 2014 was the most serious outbreak ever recorded in China. Given the known positive correlation between the abundance of mosquitoes and the number of dengue fever cases, a stage structured mosquito model was developed to investigate the cause of the large abundance of mosquitoes in 2014 and its implications for outbreaks of the disease. Data on the Breteau index (number of containers positive for larvae per 100 premises investigated), temperature and precipitation were used for model fitting. The egg laying rate, the development rate and the mortality rates of immatures and adults were obtained from the estimated parameters. Moreover, effects of daily fluctuations of temperature on these parameters were obtained and the effects of temperature and precipitation were analyzed by simulations. Our results indicated that the abundance of mosquitoes depended not only on the total annual precipitation but also on the distribution of the precipitation. The daily mean temperature had a nonlinear relationship with the abundance of mosquitoes, and large diurnal temperature differences can reduce the abundance of mosquitoes. In addition, effects of increasing precipitation and temperature were interdependent. Our findings suggest that the large abundance of mosquitoes in 2014 was mainly caused by the distribution of the precipitation. In the perspective of mosquito control, our results reveal that it is better to clear water early and spray insecticide between April and August in case of limited resources.

  5. The Sensitivity of Regional Precipitation to Global Temperature Change and Forcings

    Science.gov (United States)

    Tebaldi, C.; O'Neill, B. C.; Lamarque, J. F.

    2016-12-01

    Global policies are most commonly formulated in terms of climate targets, like the much talked about 1.5° and 2°C warming thresholds identified as critical by the recent Paris agreements. But what does a target defined in terms of a globally averaged quantity mean in terms of expected regional changes? And, in particular, what should we expect in terms of significant changes in precipitation over specific regional domains for these and other incrementally different global goals? In this talk I will summarize the result of an analysis that aimed at characterizing the sensitivity of regional temperatures and precipitation amounts to changes in global average temperature. The analysis uses results from a multi-model ensemble (CMIP5), which allows us to address structural uncertainty in future projections, a type of uncertainty particularly relevant when considering precipitation changes. I will show what type of changes in global temperature and forcing levels bring about significant and pervasive changes in regional precipitation, contrasting its sensitivity to that of regional temperature changes. Because of the large internal variability of regional precipitation, I will show that significant changes in average regional precipitation can be detected only for fairly large separations (on the order of 2.5° or 3°C) in global average temperature levels, differently from the much higher sensitivity shown by regional temperatures.

  6. Temperature and precipitation effects on wheat yield across a European transect

    DEFF Research Database (Denmark)

    Pirttioja, N; Carter, T.; Fronzek, S;

    2015-01-01

    concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from......his study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop...... changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides...

  7. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-02-01

    Full Text Available Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions in Bhutan. It assesses the spatial variation of temperature and precipitation across the country and evaluates the causes for this variation based on daily data from 70 meteorological stations that have been recording data for time spans ranging from 3 to 21 years. Temperature and precipitation show contrasting spatial variation, with temperature primarily affected by elevation and precipitation by latitude. Models were developed using mixed linear regression models to predict seasonal and annual mean temperature and precipitation based on geographical location. Using linear regression we found that temperatures changed by about 0.5°C for every 100 m of change in elevation, with lapse rates being highest in February, March, and November and lowest from June to August. The lapse rate was highest for minimum temperatures and lowest for maximum temperatures, with the greatest difference during winter. The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations.

  8. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  9. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  10. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    Science.gov (United States)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  11. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures.

    Science.gov (United States)

    Wang, Zemin; Fang, Xulei; Li, Hui; Liu, Wenqing

    2017-04-01

    The formation of copper-rich precipitates of 17-4 precipitate hardened stainless steel has been investigated, after tempering at 350-570°C for 4 h, by atom probe tomography (APT). The results reveal that the clusters, enriched only with Cu, were observed after tempering at 420°C. Segregation of Ni, Mn to the Cu-rich clusters took place at 450°C, contributing to the increased hardening. After tempering at 510°C, Ni and Mn were rejected from Cu-rich precipitates and accumulated at the precipitate/matrix interfaces. Al and Si were present and uniformly distributed in the precipitates that were <1.5 nm in radius, but Ni, Mn, Al, and Si were enriched at the interfaces of larger precipitates/matrix. The proxigram profiles of the Cu-rich precipitates formed at 570°C indicated that Ni, Mn, Al, and Si segregated to the precipitate/matrix interfaces to form a Ni(Fe, Mn, Si, Al) shell, which significantly reduced the interfacial energy as the precipitates grew into an elongated shape. In addition, the number density of Cu-rich precipitates was increased with the temperature elevated from 350 up to 450°C and subsequently decreased at higher temperatures. Also, the composition of the matrix and the precipitates were measured and found to vary with temperature.

  12. Trends in indices of daily temperature and precipitations extremes in Morocco

    Science.gov (United States)

    Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y.

    2016-05-01

    The purpose of this paper is to provide a summary of Morocco's climate extreme trends during the last four decades. Indices were computed based on a daily temperature and precipitation using a consistent approach recommended by the ETCCDI. Trends in these indices were calculated at 20 stations from 1970 to 2012. Twelve indices were considered to detect trends in temperature. A large number of stations have significant trends and confirm an increase in temperature, showing increased warming during spring and summer seasons. The results also show a decrease in the number of cold days and nights and an increase in the number of warm days and nights. Increasing trends have also been found in the absolute warmest and coldest temperatures of the year. A clear increase is detected for warm nights and diurnal temperature range. Eight indices for precipitation were also analyzed, but the trends for these precipitation indices are much less significant than for temperature indices and show more mixed spatial patterns of change. Heavy precipitation events do not exhibit significant trends except at a few locations, in the north and central parts of Morocco, with a general tendency towards drier conditions. The correlation between these climate indices and the large-scale atmospheric circulations indices such as the NAO, MO, and WEMO were also analyzed. Results show a stronger relationship with these climatic indices for the precipitation indices compared to the temperature indices. The correlations are more significant in the Atlantic regions, but they remain moderate at the whole country scale.

  13. Precipitation and temperature effects on mortality and lactation parameters of dairy cattle in California.

    Science.gov (United States)

    Stull, C L; McV Messam, L L; Collar, C A; Peterson, N G; Castillo, A R; Reed, B A; Andersen, K L; VerBoort, W R

    2008-12-01

    Data from 3 commercial rendering companies located in different regions of California were analyzed from September 2003 through August 2005 to examine the relationship of dairy calf and cow mortality to monthly average daily temperature and total monthly precipitation respectively. Yearly average mortality varied between rendering regions from 2.1 to 8.1% for mature cows. The relationship between cow and calf monthly mortality and monthly average daily temperature was U-shaped. Overall, months with average daily temperatures less than 14 and greater than 24 degrees C showed substantial increases in both calf and cow mortality with calf mortality being more sensitive to changes in these temperature ranges than cow mortality. Temperature changes were reflected in a 2-fold difference between the minimum and maximum mortality in cows and calves. Precipitation showed a weak effect with calf mortality and no effect with cow mortality. Data from Dairy Herd Improvement Association were used from 112 California herds tested over a 24-mo period to examine the relationship of milk production and quality with monthly average daily temperature and monthly precipitation. Somatic cell count and percent milk fat were either weakly or not associated with monthly average daily temperature and total monthly precipitation. However, total monthly precipitation was negatively associated with test day milk per milking cow regardless of the dairy's geographical location. Housing-specific associations for test day milk per milking cow were greater for total monthly precipitation than monthly average daily temperature, with the strongest negative association seen for dairies that do not provide shelter for cows. This suggests that providing suitable housing for lactating dairy cattle may ameliorate the precipitation-associated decrease in test day milk per milking cow.

  14. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  15. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  16. TEMPERATURE AND PRECIPITATION CHANGES IN TÂRGU-MURES (ROMANIA FROM PERIOD 1951-2010

    Directory of Open Access Journals (Sweden)

    O.Rusz

    2012-03-01

    Full Text Available Temperature and precipitation changes in Târgu Mures (Romania from period 1951-2010. The analysis was made based upon meteorological data collected at Târgu Mures meteorological station (Romania, Mures county, lat. 46°32’N, lon. 24°32’E, elevation 308 m, between 1951 and 2010. Several climatic parameters were studied (for instance, annual and monthly mean temperature, maximum precipitation in 24 hours, number of summer days, etc. Detected inhomogeneities are not related to instrumental causes or geographical relocation. Positive and statistical significant trends (Mann-Kendall test are indicated for: mean annual temperatures, mean temperatures of warm months, average of the maximum and minimum temperatures (annual and warm months data, number of days with mean temperature between 20.1-25.0 °C, number of days with precipitation ≥0 mm, and for all parameters of precipitation of September. The sequential version of Mann-Kendall test show a beginning of a trend in 1956 in the case of mean temperature (at same, the two and three parts regression denote this year like a moment of change, years 1965 and 1992 in the case of annual amount of precipitation. CUSUM charts indicate occurs of changes points at 1988, 2005, 2009 (mean temperature respectively at 1989, 2004 (precipitation, and at 1968, 1992 (daily temperature range. Tendencies of overlapped time series reveal a more important increase at the end of period (mainly for mean temperature. The analysis with RClimDex show for 5 extreme climate indices a significant trend: positive for summer days, warm nights, warm spell duration indicator and negative for cold nights and cold days.

  17. New estimates of tropical temperature and precipitation changes during the last 42ka

    Science.gov (United States)

    Grauel, A.; Hodell, D. A.; Bernasconi, S. M.; Correa-Metrio, A.

    2013-12-01

    , consistent with inferred precipitation changes from Cariaco Basin sediments (e.g., Deplazes et al., 2013). The gypsum hydration method cannot be applied to the clay-rich intervals that were deposited during humid periods. The pollen-based temperature estimates suggest a decrease of 3-5°C during the LGM and warm interstadials during the last glaciation relative to the Holocene. We suggest the combination of temperature estimates from pollen MAT and isotope geochemical methods can provide a continuous record of tropical temperature change in lowland Central America. The results of our study show that temperature decline in the lowland Neotropics was much greater during HE1 and HE4 than previously assumed. Potential forcing mechanisms other than the southward shift of the ITCZ and reduced AMOC and sea-ice, might have been reduced convection because of reduced sea surface temperatures in source areas. Moreover, our results suggest the tropical response to freshwater forcing was much greater during HE1 and HE4 than for other HEs. Deplazes, G., Lückge, A., Peterson, L.C., Timmermann, A., Hamann, Y., Hughen, K.A., Röhl, U., Laj, C., Cane, M.A., Sigman, D.M., Haug, G.H. (2013). Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 6, 213-217.

  18. Applying 2D Bias Correction Method to Gridded Simulations of Precipitation and Temperature over Southeastern South America.

    Science.gov (United States)

    Piani, C.; Montroull, N.; Saurral, R. I.

    2014-12-01

    The two dimensional bias correction methodology for temperature and precipitation, developed by Piani et al. (2012) for station data, was applied to the CCSM4 (NCAR) model gridded output from the CMIP5 dataset and a 40 year gridded dataset over Southeastern South America (Tencer et al., 2011; Jones et al., 2012). Copula density functions of observed temperature and precipitation showed significant structure when subsets of sixteen gridpoints were pooled together. By contrast no structure is detectable in copulas of GCM data. By construction, independent one dimensional bias correction of temperature and precipitation cannot correct copula density distributions hence, the 2D method is applied. The method is validated, as customary, by calibrating and subsequently validating the methodology with non-overlapping 20 year time periods. Visual inspection of single copula density functions for all grid points is unfeasible. Hence the bias correction method is validated by calculating a Kolmogorov-Smirnoff (KS) type statistic measuring the distance between observed and simulated and between observed and corrected copulas at each grid point. Results for the KS statistic are plotted in the figure shown. The methodology clearly shows great potential for application to climate impact modeling. References Jones, P. D., Lister, D. H., Harpham, C., Rusticucci, M. and Penalba, O. (2013), Construction of a daily precipitation grid for southeastern South America for the period 1961-2000. Int. J. Climatol., 33: 2508-2519. doi: 10.1002/joc.3605 Piani, C., &Haerter, J. O. (2012). Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophysical Research Letters, 39(20). Tencer, B., Rusticucci, M., Jones, P., & Lister, D. (2011).A Southeastern South American Daily Gridded Dataset of Observed Surface Minimum and Maximum Temperature for 1961-2000. Bulletin of the American Meteorological Society, 92(10). Figure. Kolmogorov-Smirnoff type statistic

  19. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  20. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  1. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region

    Science.gov (United States)

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  2. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region

    Science.gov (United States)

    Li, Tianyu; Meng, Qingmin

    2016-11-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  3. Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of northeastern Brazil

    Science.gov (United States)

    Hänsel, Stephanie; Medeiros, Deusdedit; Matschullat, Jörg; Silva, Isamara; Petta, Reinaldo

    2016-03-01

    A 51-year dataset (1961 to 2011) from nine meteorological stations in the capitals of northeastern Brazil (NEB), with daily data of precipitation totals and of mean, minimum and maximum temperatures, was statistically analyzed for data homogeneity and for signals of climate variability. The hypothesis was explored that a connection exists between inhomogeneities of the time series and the meteorological systems influencing the region. Results of the homogeneity analysis depend on the selected test variable, the test algorithm and the chosen significance level; all more or less subjective choices. Most of the temperature series was classified as "suspect", while most of the precipitation series was categorized as "useful". Displaying and visually checking the time series demonstrates the power of expertise and may allow for a deeper data analysis. Consistent changes in the seasonality of temperature and precipitation emerge over NEB despite manifold breaks in the temperature series. Both series appear to be coupled. The intra-annual temperature and precipitation ranges have increased, along with an intensified seasonal cycle. Temperature mainly increased during DJF, MAM and SON, with decreases in JJA being related to wetter conditions and more frequent heavy precipitation events. Drought conditions mostly increased in SON and DJF, depending on the timing of the local dry season.

  4. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  5. Does Temperature Modify the Effects of Rain and Snow Precipitation on Road Traffic Injuries?

    Science.gov (United States)

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2015-01-01

    Background There are few data on the interaction between temperature and snow and rain precipitation, although they could interact in their effects on road traffic injuries. Methods The integrated database of the Korea Road Traffic Authority was used to calculate the daily frequency of road traffic injuries in Seoul. Weather data included rain and snow precipitation, temperature, pressure, and fog from May 2007 to December 2011. Precipitation of rain and snow were divided into nine and six temperature range categories, respectively. The interactive effects of temperature and rain and snow precipitation on road traffic injuries were analyzed using a generalized additive model with a Poisson distribution. Results The risk of road traffic injuries during snow increased when the temperature was below freezing. Road traffic injuries increased by 6.6% when it was snowing and above 0°C, whereas they increased by 15% when it was snowing and at or below 0°C. In terms of heavy rain precipitation, moderate temperatures were related to an increased prevalence of injuries. When the temperature was 0–20°C, we found a 12% increase in road traffic injuries, whereas it increased by 8.5% and 6.8% when it was 20°C, respectively. The interactive effect was consistent across the traffic accident subtypes. Conclusions The effect of adverse weather conditions on road traffic injuries differed depending on the temperature. More road traffic injuries were related to rain precipitation when the temperature was moderate and to snow when it was below freezing. PMID:26073021

  6. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  7. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  8. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo, 8, E-28040 Madrid (Spain); Miller, M.K. [Oak Ridge National Laboratory (ORNL), Materials Science and Technology Division, P.O. Box 2008, Oak Ridge, TN 37831-6139 (United States); Garcia-Mateo, C. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo, 8, E-28040 Madrid (Spain)

    2014-07-01

    The nature of different carbides formed during the lower bainite reaction at different transformation temperatures was determined by atom probe tomography in three steels with different carbon and silicon contents. It is known that steel composition and temperature alter the carbide precipitation sequence during low-temperature bainite formation. However, present results confirm that dislocations in lower bainite that are more prominent at the lower the transformation temperature, trap a substantial amount of carbon and hence, can influence the carbide precipitation sequence and, in particular, can determine where ε-carbide forms before the growth of cementite. - Highlights: • Identification of carbides in lower bainite using atom probe tomography. • Determination of carbon trapping at dislocations in lower bainite. • Carbide precipitation sequence during lower bainite formation.

  9. Low-Temperature Mechanical Behavior of Super Duplex Stainless Steel with Sigma Precipitation

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-09-01

    Full Text Available Experimental studies in various aspects have to be conducted to maintain stable applications of super duplex stainless steels (SDSS because the occurrence rate of sigma phase, variable temperature and growth direction of sigma phase can influence mechanical performances of SDSS. Tensile tests of precipitated SDSS were performed under various temperatures to analyze mechanical and morphological behavior.

  10. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010

    Directory of Open Access Journals (Sweden)

    I. Keggenhoff

    2014-08-01

    Full Text Available Annual changes to climate extreme indices in Georgia (Southern Caucasus from 1971 to 2010 are studied using homogenized daily minimum and maximum temperature and precipitation series. Fourteen extreme temperature and 11 extreme precipitation indices are selected from the list of core climate extreme indices recommended by the World Meteorological Organization – Commission for Climatology (WMO-CCL and the research project on Climate Variability and Predictability (CLIVAR of the World Climate Research Programme (WCRP. Trends in the extreme indices are studied for 10 minimum and 11 maximum temperature and 24 precipitation series for the period 1971–2010. Between 1971 and 2010 most of the temperature extremes show significant warming trends. In 2010 there are 13.3 fewer frost days than in 1971. Within the same time frame there are 13.6 more summer days and 7.0 more tropical nights. A large number of stations show significant warming trends for monthly minimum and maximum temperature as well as for cold and warm days and nights throughout the study area, whereas warm extremes and night-time based temperature indices show greater trends than cold extremes and daytime indices. Additionally, the warm spell duration indicator indicates a significant increase in the frequency of warm spells between 1971 and 2010. Cold spells show an insignificant increase with low spatial coherence. Maximum 1-day and 5-day precipitation, the number of very heavy precipitation days, very wet and extremely wet days as well as the simple daily intensity index all show an increase in Georgia, although all trends manifest a low spatial coherence. The contribution of very heavy and extremely heavy precipitation to total precipitation increased between 1971 and 2010, whereas the number of wet days decreases.

  11. Land surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors

    Science.gov (United States)

    The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface fluxes (the Evaporative F...

  12. Land-surface controls on afternoon precipitation diagnosed from observatorial data: uncertainties and confounding factors

    NARCIS (Netherlands)

    Guillod, B.P.; Orlowsky, B.; Miralles, D.; Teuling, A.J.; Blanken, P.D.; Buchmann, N.

    2014-01-01

    The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as

  13. Orientation Relationships between Precipitates and Their Parent Phases in Steels at Low Transformation Temperatures

    Science.gov (United States)

    Lee, Dong Nyung; Han, Heung Nam

    The directed growth of precipitates proceeds in their parent phases at low transformation temperatures. The growth needs the activation energy. The activation energy is usually supplied in the form of thermal energy. However, at low transformation temperatures, the thermal energy is not enough to surmount the activation barrier, and so the strain energy developed in the parent phase assists surmounting the barrier, resulting in the directed growth of precipitates. The strain energy can result from a difference in density between the nucleus and matrix and a lattice mismatch along the nucleus:matrix interface. The fundamental concept of the model is that the maximum growth rate of precipitate is along the direction that generates the maximum strain energy and minimizes the interface energy. In this paper, orientation relationships between ferrite precipitate and parent austenite, between orthorhombic cementite precipitate and parent austenite, between cementite precipitate and parent ferrite, and between hexagonal Mo2C precipitate and parent ferrite have been discussed based on the directed growth model.

  14. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics

    Directory of Open Access Journals (Sweden)

    Feng Niu

    2012-09-01

    Full Text Available Aerosols may modify cloud properties and precipitation via a variety of mechanisms with varying and contradicting consequences. Using a large ensemble of satellite data acquired by the Moderate Resolution Imaging Spectroradiometer onboard the Earth Observing System's Aqua platform, the CloudSat cloud profiling radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO satellite over the tropical oceans, we identified two distinct correlations of clouds and precipitation with aerosol loading. Cloud-top temperatures are significantly negatively correlated with increasing aerosol index (AI over oceans and aerosol optical depth (AOT over land for deep mixed-phase clouds with liquid droplets near the warm bases and ice crystals near the cold tops; no significant changes were found for uniformly liquid clouds. Precipitation rates are positively correlated with the AI for mixed-phase clouds, but negatively correlated for liquid clouds. These distinct correlations might be a manifestation of two potential mechanisms: the invigoration effect (which enhances convection and precipitation and the microphysical effect (which suppresses precipitation. We note that the highly limited information garnered from satellite products cannot unequivocally support the causal relationships between cloud-top temperature/precipitation rate and aerosol loading. But if aerosols are indeed the causes for the observed relationships, they may change the overall distribution of precipitation, leading to a more extreme and unfavorable rainfall pattern of suppressing light rains and fostering heavy rains.

  15. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  16. Precipitation and temperatures extremes in East Africa in past and future climate

    OpenAIRE

    Kuya, Elinah Khasandi

    2016-01-01

    Climate change has increased extreme weather events over the planet. The most robust changes in East Africa (EA) are for daily temperature and precipitation, where high-impact extreme values have become more common. The overall magnitude, seasonal distribution of precipitation and its inter-annual variability have been altered. East Africa experiences some of the most severe convective storms in the world. They can come without warning and are becoming more frequent. These changes present sig...

  17. Improving precipitation simulation from updated surface characteristics in South America

    Science.gov (United States)

    Pereira, Gabriel; Silva, Maria Elisa Siqueira; Moraes, Elisabete Caria; Chiquetto, Júlio Barboza; da Silva Cardozo, Francielle

    2016-04-01

    Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the replacement of tropical rainforest for pasture and agriculture and the replacement of agricultural areas for pasture, scrubland, and deciduous forest.

  18. Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes

    Science.gov (United States)

    Sørland, Silje Lund; Sorteberg, Asgeir

    2016-07-01

    Extreme rainfall events in the central Indian region are often related to the passage of synoptic scale monsoon low-pressure systems (LPS). This study uses the surrogate climate change method on ten monsoon LPS cases connected to observed extreme rainfall events, to investigate how sensitive the precipitation and runoff are to an idealized warmer and moister atmosphere. The ten cases are simulated with three different initial and lateral boundary conditions: the unperturbed control run, and two sets of perturbed runs where the atmospheric temperature is increased uniformly throughout the atmosphere, the specific humidity increased according to Clausius Clapeyron's relation, but the large-scale flow is unchanged. The difference between the control and perturbed simulations are mainly due to the imposed warming and feedback influencing the synoptic flow. The mean precipitation change with warming in the central Indian region is 18-20 %/K, with largest changes at the end of the LPS tracks. The LPS in the warmer runs are bringing more moisture further inland that is released as precipitation. In the perturbed runs the precipitation rate is increasing at all percentiles, and there is more frequent rainfall with very heavy intensities. This leads to a shift in which category that contributes most to the total precipitation: more of the precipitation is coming from the category with very heavy intensities. The runoff changes are similar to the precipitation changes, except the response in intensity of very heavy runoff, which is around twice the change in intensity of very heavy precipitation.

  19. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  20. Mechanical Properties of Discontinuous Precipitated Al-Zn Alloys after Drawing at Room and Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Jehyun [Changwon National University, Changwon (Korea, Republic of); Han, Seung Zeon; Ahn, Jee Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lim, Sung Hwan [Kangwon National University, Chuncheon (Korea, Republic of); Kim, Kwang Ho [Pusan National University, Pusan (Korea, Republic of); Kim, Sang sik [Gyeongsang National University, Jinju (Korea, Republic of)

    2017-02-15

    In order to study the effect of microstructural change on the tensile properties of discontinuous precipitated Al-Zn binary alloy, four different Al-Zn alloys(25, 30, 35, 45 wt%Zn) were aged at 160 ℃ for different aging times(0, 5, 15, 30, 60, 120, 360 min) after being solution treated at 400 ℃, and successively drawn at room and cryogenic temperatures(-197 ℃). Discontinuous precipitation was formed during aging in the Al matrix(which contained more than 30 wt%Zn) in Al alloys containing more than 30 wt%Zn. The tensile strength of continuous precipitated Al-35Zn alloy decreased with increasing drawing ratio, however, the tensile strength of discontinuous precipitated Al-35Zn alloy increased with further drawing. The strength and ductility combination, 350 MPa-36%was achieved by drawning discontinuous precipitated Al-Zn alloy at room temperature. The discontinuous precipitated Al-Zn alloy drawn at cryogenic temperature showed a higher value of tensile strength, over 500 MPa, although ductility decreased.

  1. Six temperature and precipitation regimes of the contiguous United States between 1895 and 2010: a statistical inference study

    Science.gov (United States)

    Shen, Samuel S. P.; Wied, Olaf; Weithmann, Alexander; Regele, Tobias; Bailey, Barbara A.; Lawrimore, Jay H.

    2016-07-01

    This paper describes six different temporal climate regimes of the contiguous United States (CONUS) according to interdecadal variations of surface air temperature (SAT) and precipitation using the United States Historical Climatology Network (USHCN) monthly data (Tmax, Tmin, Tmean, and precipitation) from 1895 to 2010. Our analysis is based on the probability distribution, mean, standard deviation, skewness, kurtosis, Kolmogorov-Smirnov (KS) test, and Welch's t test. The relevant statistical parameters are computed from gridded monthly SAT and precipitation data. SAT variations lead to classification of four regimes: 1895-1930 (cool), 1931-1960 (warm), 1961-1985 (cool), and 1986-2010 (warm), while precipitation variations lead to a classification of two regimes: 1895-1975 (dry) and 1976-2010 (wet). The KS test shows that any two regimes of the above six are statistically significantly different from each other due to clear shifts of the probability density functions. Extremes of SAT and precipitation identify the ten hottest, coldest, driest, and wettest years. Welch's t test is used to discern significant differences among these extremes. The spatial patterns of the six climate regimes and some years of extreme climate are analyzed. Although the recent two decades are the warmest among the other decades since 1895 and many hottest years measured by CONUS Tmin and Tmean are in these two decades, the hottest year according to the CONUS Tmax anomalies is 1934 (1.37 °C), which is very close to the second Tmax hottest year 2006 (1.35 °C).

  2. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  3. Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Zhu Jianhua; Mou Zhanjun

    2007-01-01

    The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD,BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3,and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.

  4. The impacts of precipitating cloud radiative effects on ocean surface evaporation, precipitation, and ocean salinity in coupled GCM simulations

    Science.gov (United States)

    Li, J.-L. F.; Wang, Yi-Hui; Lee, Tong; Waliser, Duane; Lee, Wei-Liang; Yu, Jia-Yuh; Chen, Yi-Chun; Fetzer, Eric; Hasson, Audrey

    2016-08-01

    The coupled global climate model (GCM) fidelity in representing upper ocean salinity including near sea surface bulk salinity (SSS) is evaluated in this study, with a focus on the Pacific Ocean. The systematic biases in ocean surface evaporation (E) minus precipitation (P) and SSS are found to be fairly similar in the twentieth century simulations of the Coupled Model Intercomparison Phase 3 (CMIP3) and Phase 5 (CMIP5) relative to the observations. One of the potential causes of the CMIP model biases is the missing representation of the radiative effects of precipitating hydrometeors (i.e., snow) in most CMIP models. To examine the radiative effect of cloud snow on SSS, sensitivity experiments with and without such effect are conducted by the National Center for Atmospheric Research-coupled Community Earth System Model (CESM). This study investigates the difference in SSS between sensitivity experiments and its relationship with atmospheric circulation, E - P and air-sea heat fluxes. It is found that the exclusion of the cloud snow radiative effect in CESM produces weaker Pacific trade winds, resulting in enhanced precipitation, reduced evaporation, and a reduction of the upper ocean salinity in the tropical and subtropical Pacific. The latter results in an improved comparison with climatological upper ocean bulk salinity. The introduction of cloud snow also altered the budget terms that maintain the time-mean salinity in the mixed layer.

  5. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  6. NESDIS Microwave Integrated Retrieval System (MIRS) ATMS Precipitation and Surface Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the NESDIS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  7. Precipitation and Temperature Effects on Stable Fly (Diptera: Muscidae) Population Dynamics.

    Science.gov (United States)

    Taylor, David B; Friesen, Kristina; Zhu, Jerry

    2017-06-01

    The dynamics of stable fly, Stomoxys calcitrans (L.), populations relative to temperature and precipitation were evaluated in a 13-yr study in eastern Nebraska. During the course of the study, >1.7 million stable flies were collected on an array of 25 sticky traps. A log-normal model using degree-days with a 15 °C threshold and weekly lags 0-4 for temperature and 2-7 for precipitation provided the best fit with the observed data. The relationships of temperature and precipitation to stable fly trap catches were both curvilinear, with maxima at 6.6 degree-day-15 (≈22 °C) and 7.4 mm precipitation per day, respectively. The temperature and precipitation model accounted for 72% of the variance in seasonal trap catches. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  8. Seasonal transition of precipitation characteristics associated with land surface conditions in and around Bangladesh

    Science.gov (United States)

    Ono, M.; Takahashi, H. G.

    2016-10-01

    This study examined the seasonal transition of precipitation characteristics and its association with land surface conditions in and around Bangladesh, where land surface conditions are predominantly wet. Hourly rain rate data from the Global Satellite Mapping of Precipitation Microwave-Infrared Combined Product and 10 day soil moisture data from the Advanced Microwave Scanning Radiometer Earth Observing System were used over the 7 years from 2003 to 2009. Area mean values of soil moisture, and precipitation amount, frequency, and intensity were calculated for each 10 day period. Results showed that higher precipitation amount and frequency were observed over the wet soil conditions, which indicates that soil moisture was influenced by previous precipitation events. However, the soil moisture could also control the precipitation characteristics. The seasonal and interannual variations in all regions suggested that precipitation amount and frequency increased in moist soil conditions, which is associated with an increase of water vapor supplied from the moist land surface. Over a flat plain (87°E-91°E, 23°N-25°N), a higher afternoon precipitation intensity was observed over drier land surfaces. This relationship was observed on seasonal and interannual variations. This suggests that the land surface conditions in this region can affect the afternoon precipitation intensity to some extent, although changes of atmospheric conditions can be a major factor particularly for the seasonal changes. However, this relationship was not observed in mountainous regions. This can be explained by other factors, such as thermally induced local circulations by the surrounding topography, being stronger than the impact of land surface conditions.

  9. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  10. Attributing extreme precipitation in the Black Sea region to sea surface warming

    Science.gov (United States)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  11. Comparing regional precipitation and temperature extremes in climate model and reanalysis products

    Directory of Open Access Journals (Sweden)

    Oliver Angélil

    2016-09-01

    Full Text Available A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  12. Comparing regional precipitation and temperature extremes in climate model and reanalysis products.

    Science.gov (United States)

    Angélil, Oliver; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V; Stone, Dáithí; Donat, Markus G; Wehner, Michael; Shiogama, Hideo; Ciavarella, Andrew; Christidis, Nikolaos

    2016-09-01

    A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  13. Sensitivity of a prairie wetland to increased temperature and seasonal precipitation changes

    Energy Technology Data Exchange (ETDEWEB)

    Poiani, K.A. [Cornell Univ., Ithaca, NY (United States); Johnson, W.C. [South Dakota State Univ., Brookings, SD (United States); Kittel, T.G.F. [Univ. Corp. for Atmospheric Research, Boulder, CO (United States)]|[Colorado State Univ., Fort Collins, CO (United States)

    1995-04-01

    We assessed the potential effects of increased temperature and changes in amount and seasonal timing of precipitation on the hydrology and vegetation of a semi-permanent prairie wetland in North Dakota using a spatially-defined, rule-based simulation model. Simulations were run with increased temperatures of 2{degree}C combined with a 10 percent increase or decrease in total growing season precipitation. Changes in precipitation were applied either evenly across all months or to individual seasons (spring, summer, or fall). The response of semi-permanent wetland P1 was relatively similar under most of the seasonal scenarios. A 10 percent increase in total growing season precipitation applied to summer months only, to fall months only, and over all months produced lower water levels compared to those resulting from the current climate due to increased evapotranspiration. Wetland hydrology was most affected by changes in spring precipitation and runoff. Vegetation response was relatively consistent across scenarios. Seven of the eight seasonal scenarios produced drier conditions with no open water and greater vegetation cover compared to those resulting from the current climate. Only when spring precipitation increased did the wetland maintain an extensive open water area (49 percent). 36 refs., 3 figs., 3 tabs.

  14. Preparation of High-Surface Area Nano-CeO2 by Template-Assisted Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high-surface area nano-CeO2 was prepared by Ce(NO3)3 by precipitation method, with surfactant cetyltrimethyl ammonium bromide (CTAB) as templating agent. The effects of the precipitating agents, reaction temperature, ageing time, and calcination temperature on the surface area, as well as the pore structure and the mean crystallite size of nano-CeO2 were studied. It was found that the reaction of Ce(NO3)3 with NaOH in the presence of CTAB at 90 ℃ for 12 h yieldsed a cerium oxide/surfactant mixture, which after calcination at 400 ℃ resulted in high-surface area nano-CeO2. The mean crystallite size of CeO2 was approximately 6 nm, surface area was in excess of 200 m2·g-1, pore size was approximately 9 nm, and the pore distribution was concentrative. Moreover, the surface area can still reach 147 m2·g-1 after calcination at 700 ℃, which showed the good thermal stability of the CeO2. The number of oxygen vacancies in the structure of CeO2 corresponded with the surface area of CeO2, and the high surface area was propitious to the formation of oxygen vacancies.

  15. Predictive Uncertainty Estimation on a Precipitation and Temperature Reanalysis Ensemble for Shigar Basin, Central Karakoram

    Directory of Open Access Journals (Sweden)

    Paolo Reggiani

    2016-06-01

    Full Text Available The Upper Indus Basin (UIB and the Karakoram Range are the subject of ongoing hydro-glaciological studies to investigate possible glacier mass balance shifts due to climatic change. Because of the high altitude and remote location, the Karakoram Range is difficult to access and, therefore, remains scarcely monitored. In situ precipitation and temperature measurements are only available at valley locations. High-altitude observations exist only for very limited periods. Gridded precipitation and temperature data generated from the spatial interpolation of in situ observations are unreliable for this region because of the extreme topography. Besides satellite measurements, which offer spatial coverage, but underestimate precipitation in this area, atmospheric reanalyses remain one of the few alternatives. Here, we apply a proven approach to quantify the uncertainty associated with an ensemble of monthly precipitation and temperature reanalysis data for 1979–2009 in Shigar Basin, Central Karakoram. A Model-Conditional Processor (MCP of uncertainty is calibrated on precipitation and temperature in situ data measured in the proximity of the study region. An ensemble of independent reanalyses is processed to determine the predictive uncertainty of monthly observations. As to be expected, the informative gain achieved by post-processing temperature reanalyses is considerable, whereas significantly less gain is achieved for precipitation post-processing. The proposed approach indicates a systematic assessment procedure for predictive uncertainty through probabilistic weighting of multiple re-forecasts, which are bias-corrected on ground observations. The approach also supports an educated reconstruction of gap-filling for missing in situ observations.

  16. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    Science.gov (United States)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  17. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  18. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations

    Science.gov (United States)

    Donat, Markus G.; Alexander, Lisa V.; Herold, Nicholas; Dittus, Andrea J.

    2016-10-01

    Knowledge about long-term changes in climate extremes is vital to better understand multidecadal climate variability and long-term changes and to place today's extreme events in a historical context. While global changes in temperature and precipitation extremes since the midtwentieth century are well studied, knowledge about century-scale changes is limited. This paper analyses a range of largely independent observations-based data sets covering 1901-2010 for long-term changes and interannual variability in daily scale temperature and precipitation extremes. We compare across data sets for consistency to ascertain our confidence in century-scale changes in extremes. We find consistent warming trends in temperature extremes globally and in most land areas over the past century. For precipitation extremes we find global tendencies toward more intense rainfall throughout much of the twentieth century; however, local changes are spatially more variable. While global time series of the different data sets agree well after about 1950, they often show different changes during the first half of the twentieth century. In regions with good observational coverage, gridded observations and reanalyses agree well throughout the entire past century. Simulations with an atmospheric model suggest that ocean temperatures and sea ice may explain up to about 50% of interannual variability in the global average of temperature extremes, and about 15% in the global average of moderate precipitation extremes, but local correlations are mostly significant only in low latitudes.

  19. Variability and Trends in Precipitation, Temperature and Drought Indices in the State of California

    Directory of Open Access Journals (Sweden)

    Minxue He

    2016-03-01

    Full Text Available This study presents a comprehensive assessment of the variability and trends of the precipitation and temperature along with the trends in drought indices over the State of California. The non-parametric Mann–Kendall trend test is applied with a trend-free pre-whitening procedure in trend identification. A dataset containing 120-year (water years 1896–2015 monthly precipitation, average temperature, maximum temperature, minimum temperature and the Palmer Index for seven climatic regions of the state is used for this purpose. The results confirm previous work indicating that no clear trends are observed in precipitation, while a distinct warming trend is evident in temperature over the state. New findings of this study include: (1 in general, the variability of annual, winter (December–February and spring (March–May precipitation shows an increasing tendency, implying intensified frequency of the occurrence of dry or wet extremes; (2 on the annual scale and in the summer, statewide meteorological, hydrological and agricultural drought indices all have decreasing trends, indicating the more frequent occurrence of drought events; and (3 among seven regions, the South Coast Drainage region generally has the most significant warming trend, as well as the most significant declining trends in drought indices. Overall, these findings are highly meaningful from both theoretical and practical perspectives, in the context of providing critical information in developing prediction models and guiding water resources management practices, respectively.

  20. The Impact of Fluctuations in Precipitation and Temperature on the Seasonal Snowpack

    Science.gov (United States)

    Woods, Ross

    2016-04-01

    The development and melting of the seasonal snowpack depends on complex interactions among climate elements. Previous work (Woods 2009, Adv. Wat. Res.) showed how the typical seasonal variation of temperature and precipitation rate influence snowpack development. Results were expressed in terms of three dimensionless variables for: seasonal temperature regime; seasonality of precipitation; and depth of the snowpack relative to the energy available for melting. However, that theory does not take account of sub-seasonal fluctuations in temperature and precipitation, and as a consequence, makes poor predictions of snow storage in some climates. Here we write a stochastic differential equation for point-scale snow water equivalent (SWE), and then derive an equation for time variation of the probability distribution (pdf) of SWE. This provides a detailed but compact understanding of how temperature and precipitation interact to influence the seasonal accumulation and melt of snow. From this equation, we can estimate statistics such as the mean and standard deviation of SWE on any day of the year, and the mean residence time of snow, and see how they are related to climate characteristics. To develop the equation, we first describe temperature and precipitation with 4 parameters each, defining the mean, seasonal amplitude, seasonal timing, and sub-seasonal fluctuations. To simulate the response of the snowpack to climate, we use a temperature index model with two parameters: a degree-day melt factor and a threshold temperature. By writing the equation for snow storage in dimensionless form, we reduce the problem to five dimensionless parameters, three of them the same as found by Woods (2009), plus one each for the sub-seasonal fluctuations in precipitation and temperature. In the special case of no fluctuations in temperature and precipitation, the new equation reduces to the deterministic case of Woods (2009). We verify by Monte Carlo simulation that that the

  1. The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation

    Science.gov (United States)

    Bracegirdle, Thomas J.; Stephenson, David B.; Turner, John; Phillips, Tony

    2015-12-01

    Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study explores the impacts of these biases on multimodel uncertainty in Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble projections of 21st century change in Antarctic surface temperature, net precipitation, and SIA. The analysis is based on time slice climatologies in the Representative Concentration Pathway 8.5 future scenario (2070-2099) and historical (1970-1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature, and SIA are found to be strongly associated with simulated historical mean SIA (e.g., cross-model correlations of r = 0.77, 0.71, and -0.85, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed SIA. These strong emergent relationships on SIA bias could, if found to be physically robust, be exploited to give more precise climate projections for Antarctica.

  2. An investigation of predictability dynamics of temperature and precipitation in reanalysis datasets over the continental United States

    Science.gov (United States)

    Dhanya, C. T.; Villarini, Gabriele

    2017-01-01

    Reanalysis datasets have been under critical scrutiny due to their widespread use in various climatic and hydrological modeling applications, in particular over many areas of the globe with limited or absent reliable observational data. Nevertheless, reanalysis products are in the process of continuous improvements reflecting the improved system knowledge, model physics and assimilation techniques. In addition, several internal model adjustments have also been adopted to minimize the bias in reanalysis datasets. Considering these factors, it is necessary to investigate the inherent chaotic dynamics of reanalyses and the possible discrepancies, if any, with respect to the observational data. Here we compare and contrast the chaotic dynamics of daily precipitation and daily mean surface temperature simulated by the reanalysis against observed data over the continental United States. Our focus is on four reanalysis products: the National Aeronautics and Space Administration's Modern Era Retrospective-Analysis for Research and Applications (MERRA), European Centre for Medium-Range Weather Forecasts' ERA-Interim, Japanese Meteorological Agency's Japanese 55-year Reanalysis (JRA-55), and National Center for Environmental Prediction/National Center for Atmospheric Research's Reanalysis I. The inherent chaotic dynamics measured in terms of three statistics (i.e., maximum predictability, predictive error and predictive instability) reveal the inconsistency among the four reanalysis products. ERA-Interim is capable of simulating the precipitation's chaotic dynamics over much of the study region, while MERRA is found to be superior in capturing the temperature's chaotic dynamics. Analyses on various aspects of daily precipitation and temperature indicate that the biases in precipitation's chaotic dynamics may be attributed to the inconsistencies in simulating the signal-to-noise ratio and non-rainy days, while biases in temperature's chaotic dynamics could be due to the

  3. Increase of record-breaking temperature and precipitation extremes in a warming world

    Science.gov (United States)

    Coumou, D.; Lehmann, J.; Robinson, A.; Rahmstorf, S.

    2011-12-01

    The last decade has seen many record-breaking weather events, including severe heat waves, as well as rainfall and drought extremes. At the same time, this decade was globally the warmest since accurate measurements started in the 19th century. This raises the question, often asked by public and media directly after the occurrence of a specific extreme, whether these extremes are related to global warming. Here we analyze record-breaking events in the last decade using global gridded datasets of monthly-mean surface temperature and precipitation. We compare the number of observed records with those expected in a stationary climate, for which the simple 1/n relationship holds, with n the number of previous data points (e.g. years). In addition, we develop a first-order theoretical model to quantify the respective contributions of climate change and natural variability to the occurrence of records. World wide the number of monthly heat records is now, on average 5 times larger than expected in a stationary climate. This indicates that record-breaking heat waves lasting for several weeks now have, on average, an 80% chance of being due to climatic warming. Some tropical regions including East-Africa, India and Amazonia have seen an even larger increase in the number of record breaking events, pushing the probability that a record event is due to climatic warming to more than 90%. The high number of observed records is well explained by a model assuming a linear warming over the last 40 years. Precipitation extremes are more complex than heat extremes as different physical processes associated with global warming are likely to affect them. Warmer air can hold more moisture and thus, in principle, enhances extremes in both rainfall maxima and minima. Also, changes in wind patterns will affect precipitation and it is expected that dry areas will become drier and wet areas wetter. We show that, globally averaged the number of observed records, both for minima and maxima

  4. Assessment of climate variations in temperature and precipitation extreme events over Iran

    Science.gov (United States)

    Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M. M.; Molanejad, M.; Sabziparvar, A. A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; Zawar-Reza, P.; Khoshakhlagh, F.; Soltanzadeh, I.; Babu, C. A.; Azizi, G. H.; Martin, M. V.

    2016-11-01

    In this study, changes in the spatial and temporal patterns of climate extreme indices were analyzed. Daily maximum and minimum air temperature, precipitation, and their association with climate change were used as the basis for tracking changes at 50 meteorological stations in Iran over the period 1975-2010. Sixteen indices of extreme temperature and 11 indices of extreme precipitation, which have been quality controlled and tested for homogeneity and missing data, are examined. Temperature extremes show a warming trend, with a large proportion of stations having statistically significant trends for all temperature indices. Over the last 15 years (1995-2010), the annual frequency of warm days and nights has increased by 12 and 14 days/decade, respectively. The number of cold days and nights has decreased by 4 and 3 days/decade, respectively. The annual mean maximum and minimum temperatures averaged across Iran both increased by 0.031 and 0.059 °C/decade. The probability of cold nights has gradually decreased from more than 20 % in 1975-1986 to less than 15 % in 1999-2010, whereas the mean frequency of warm days has increased abruptly between the first 12-year period (1975-1986) and the recent 12-year period (1999-2010) from 18 to 40 %, respectively. There are no systematic regional trends over the study period in total precipitation or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at less than 15 % of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 85 % of all weather stations, forming strongly coherent spatial patterns.

  5. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Frezzotti, Massimo; Gragnani, Roberto; Proposito, Marco [l' Energia e l' Ambiente, ' Progetto Clima Globale' , Ente per le Nuove Tecnologie, Rome (Italy); Pourchet, Michel; Gay, Michel; Vincent, Christian; Fily, Michel [CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France); Flora, Onelio [University of Trieste, Dipartimento di Scienze Geologiche, Ambientali e Marine, Trieste (Italy); Gandolfi, Stefano [University of Bologna, Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, Bologna (Italy); Urbini, Stefano [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Becagli, Silvia; Severi, Mirko; Traversi, Rita; Udisti, Roberto [University of Florence, Dipartimento di Chimica, Florence (Italy)

    2004-12-01

    Surface mass balance (SMB) distribution and its temporal and spatial variability is an essential input parameter in mass balance studies. Different methods were used, compared and integrated (stake farms, ice cores, snow radar, surface morphology, remote sensing) at eight sites along a transect from Terra Nova Bay (TNB) to Dome C (DC) (East Antarctica), to provide detailed information on the SMB. Spatial variability measurements show that the measured maximum snow accumulation (SA) in a 15 km area is well correlated to firn temperature. Wind-driven sublimation processes, controlled by the surface slope in the wind direction, have a huge impact (up to 85% of snow precipitation) on SMB and are significant in terms of past, present and future SMB evaluations. The snow redistribution process is local and has a strong impact on the annual variability of accumulation. The spatial variability of SMB at the kilometre scale is one order of magnitude higher than its temporal variability (20-30%) at the centennial time scale. This high spatial variability is due to wind-driven sublimation. Compared with our SMB calculations, previous compilations generally over-estimate SMB, up to 65% in some areas. (orig.)

  6. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  7. Variability and long-term change in Australian temperature and precipitation extremes

    Directory of Open Access Journals (Sweden)

    Dörte Jakob

    2016-12-01

    We conclude that in assessing the likelihood of climate hazards, one needs to consider the modulation of climate extremes due to both long-term change and climate variability. Our findings imply that when planning for adaptation, different emphasis needs to be given to changing temperature and precipitation extremes.

  8. Extreme precipitation and temperature responses to circulation patterns in current climate: statistical approaches

    NARCIS (Netherlands)

    Photiadou, C.

    2015-01-01

    Climate change is likely to influence the frequency of extreme extremes - temperature, precipitation and hydrological extremes, which implies increasing risks for flood and drought events in Europe. In current climate, European countries were often not sufficiently prepared to deal with the great so

  9. Understanding the joint behavior of temperature and precipitation for climate change impact studies

    Science.gov (United States)

    Rana, Arun; Moradkhani, Hamid; Qin, Yueyue

    2017-07-01

    The multiple downscaled scenario products allow us to assess the uncertainty of the variations of precipitation and temperature in the current and future periods. Probabilistic assessments of both climatic variables help better understand the interdependence of the two and thus, in turn, help in assessing the future with confidence. In the present study, we use ensemble of statistically downscaled precipitation and temperature from various models. The dataset used is multi-model ensemble of 10 global climate models (GCMs) downscaled product from CMIP5 daily dataset using the Bias Correction and Spatial Downscaling (BCSD) technique, generated at Portland State University. The multi-model ensemble of both precipitation and temperature is evaluated for dry and wet periods for 10 sub-basins across Columbia River Basin (CRB). Thereafter, copula is applied to establish the joint distribution of two variables on multi-model ensemble data. The joint distribution is then used to estimate the change in trends of said variables in future, along with estimation of the probabilities of the given change. The joint distribution trends vary, but certainly positive, for dry and wet periods in sub-basins of CRB. Dry season, generally, is indicating a higher positive change in precipitation than temperature (as compared to historical) across sub-basins with wet season inferring otherwise. Probabilities of changes in future, as estimated from the joint distribution, indicate varied degrees and forms during dry season whereas the wet season is rather constant across all the sub-basins.

  10. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA

    Directory of Open Access Journals (Sweden)

    Haramis Linn

    2010-03-01

    Full Text Available Abstract Background Models of the effects of environmental factors on West Nile virus disease risk have yielded conflicting outcomes. The role of precipitation has been especially difficult to discern from existing studies, due in part to habitat and behavior characteristics of specific vector species and because of differences in the temporal and spatial scales of the published studies. We used spatial and statistical modeling techniques to analyze and forecast fine scale spatial (2000 m grid and temporal (weekly patterns of West Nile virus mosquito infection relative to changing weather conditions in the urban landscape of the greater Chicago, Illinois, region for the years from 2004 to 2008. Results Increased air temperature was the strongest temporal predictor of increased infection in Culex pipiens and Culex restuans mosquitoes, with cumulative high temperature differences being a key factor distinguishing years with higher mosquito infection and higher human illness rates from those with lower rates. Drier conditions in the spring followed by wetter conditions just prior to an increase in infection were factors in some but not all years. Overall, 80% of the weekly variation in mosquito infection was explained by prior weather conditions. Spatially, lower precipitation was the most important variable predicting stronger mosquito infection; precipitation and temperature alone could explain the pattern of spatial variability better than could other environmental variables (79% explained in the best model. Variables related to impervious surfaces and elevation differences were of modest importance in the spatial model. Conclusion Finely grained temporal and spatial patterns of precipitation and air temperature have a consistent and significant impact on the timing and location of increased mosquito infection in the northeastern Illinois study area. The use of local weather data at multiple monitoring locations and the integration of mosquito

  11. How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?

    Science.gov (United States)

    Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Devis, Annemarie; Saeed, Sajjad; Stengel, Martin; van Lipzig, Nicole P. M.

    2016-11-01

    Convection-permitting climate model are promising tools for improved representation of extremes, but the number of regions for which these models have been evaluated are still rather limited to make robust conclusions. In addition, an integrated interpretation of near-surface characteristics (typically temperature and precipitation) together with cloud properties is limited. The objective of this paper is to comprehensively evaluate the performance of a `state-of-the-art' regional convection-permitting climate model for a mid-latitude coastal region with little orographic forcing. For this purpose, an 11-year integration with the COSMO-CLM model at Convection-Permitting Scale (CPS) using a grid spacing of 2.8 km was compared with in-situ and satellite-based observations of precipitation, temperature, cloud properties and radiation (both at the surface and the top of the atmosphere). CPS clearly improves the representation of precipitation, in especially the diurnal cycle, intensity and spatial distribution of hourly precipitation. Improvements in the representation of temperature are less obvious. In fact the CPS integration overestimates both low and high temperature extremes. The underlying cause for the overestimation of high temperature extremes was attributed to deficiencies in the cloud properties: The modelled cloud fraction is only 46 % whereas a cloud fraction of 65 % was observed. Surprisingly, the effect of this deficiency was less pronounced at the radiation balance at the top of the atmosphere due to a compensating error, in particular an overestimation of the reflectivity of clouds when they are present. Overall, a better representation of convective precipitation and a very good representation of the daily cycle in different cloud types were demonstrated. However, to overcome remaining deficiencies, additional efforts are necessary to improve cloud characteristics in CPS. This will be a challenging task due to compensating deficiencies that currently

  12. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

    Directory of Open Access Journals (Sweden)

    Moukrane Dehmas

    2011-01-01

    Full Text Available Inconel 718 is widely used because of its ability to retain strength at up to 650∘C for long periods of time through coherent metastable  Ni3Nb precipitation associated with a smaller volume fraction of  Ni3Al precipitates. At very long ageing times at service temperature,  decomposes to the stable Ni3Nb phase. This latter phase is also present above the  solvus and is used for grain control during forging of alloy 718. While most works available on precipitation have been performed at temperatures below the  solvus, it appeared of interest to also investigate the case where phase precipitates directly from the fcc matrix free of  precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM. TEM observations confirmed the presence of rotation-ordered domains in plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases.

  13. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  14. Assessing changes in precipitation and temperature over the Iberian Peninsula during the 21st century

    Science.gov (United States)

    Bernardino, Mariana; Pimpão Silva, Álvaro; Espírito Santo, Fátima; Pinto, Armando

    2016-04-01

    Climate is a major factor driving the spatio-temporal distribution of most ecological systems and human activities, due to their vulnerability to inter-annual climate variability and to climate change. These systems are very sensitive to changes in traditional patterns of regional climate but also to the frequency and magnitude of extreme events. Changes in surface air temperature extremes and precipitation over the Iberian Peninsula were investigated using one of the high resolution climate simulations produced by the Euro-Cordex consortium. Two sets of simulations forced with the new IPCC AR5 emission scenarios RCP4.5 and RCP8.5, with a horizontal resolution of 12.5 km were used to compute climate indices defined by the European Climate Assessment (ECA) project, for present (1970-2010) and for the 21st century climates. Changes in magnitude and in the spatial patterns of these indices were evaluated and once the expected impacts in different sectors are related with these changes, the results provide information to be used in sectoral adaption measures, namely in tourism, water, agriculture, human health, energy and infrastructures.

  15. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  16. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  17. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  18. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  19. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  20. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  1. Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin

    Directory of Open Access Journals (Sweden)

    W. Terink

    2010-01-01

    Full Text Available In many climate impact studies hydrological models are forced with meteorological data without an attempt to assess the quality of these data. The objective of this study is to compare downscaled ERA15 (ECMWF-reanalysis data precipitation and temperature with observed precipitation and temperature and apply a bias correction to these forcing variables. Precipitation is corrected by fitting the mean and coefficient of variation (CV of the observations. Temperature is corrected by fitting the mean and standard deviation of the observations. It appears that the uncorrected ERA15 is too warm and too wet for most of the Rhine basin. The bias correction leads to satisfactory results, precipitation and temperature differences decreased significantly, although there are a few years for which the correction of precipitation is less satisfying. Corrections were largest during summer for both precipitation and temperature, and for September and October for precipitation only. Besides the statistics the correction method was intended to correct for, it is also found to improve the correlations for the fraction of wet days and lag-1 autocorrelations between ERA15 and the observations. For the validation period temperature is corrected very well, but for precipitation the RMSE of the daily difference between modeled and observed precipitation has increased for the corrected situation. When taking random years for calibration, and the remaining years for validation, the spread in the mean bias error (MBE becomes larger for the corrected precipitation during validation, but the overal average MBE has decreased.

  2. Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors

    Directory of Open Access Journals (Sweden)

    B. P. Guillod

    2014-08-01

    Full Text Available The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the evaporative fraction (EF, i.e., the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by relating the before-noon EF to the frequency of afternoon precipitation over the contiguous US, through statistical analyses of multiple EF and precipitation data sets. We analyze remote-sensing data products (Global Land Evaporation: the Amsterdam Methodology (GLEAM for EF, and radar precipitation from the NEXt generation weather RADar system (NEXRAD, FLUXNET station data, and the North American Regional Reanalysis (NARR. Data sets agree on a region of positive relationship between EF and precipitation occurrence in the southwestern US. However, a region of strong positive relationship over the eastern US in NARR cannot be confirmed with observation-derived estimates (GLEAM, NEXRAD and FLUXNET. The GLEAM–NEXRAD data set combination indicates a region of positive EF–precipitation relationship in the central US. These disagreements emphasize large uncertainties in the EF data. Further analyses highlight that much of these EF–precipitation relationships could be explained by precipitation persistence alone, and it is unclear whether EF has an additional role in triggering afternoon precipitation. This also highlights the difficulties in isolating a land impact on precipitation. Regional analyses point to contrasting mechanisms over different regions. Over the eastern US, our analyses suggest that the EF–precipitation relationship in NARR is either atmospherically controlled (from precipitation persistence and

  3. Spatio-temporal Variation of Temperature and Precipitation of Sagarmatha Zone, Eastern Nepal.

    Science.gov (United States)

    Shrestha, A.; Dahal, B. M.; Kayastha, R.; Sharma, C. M.; Gurung, S.; Raut, N.

    2016-12-01

    This study analyses spatial and temporal variability of temperature and precipitation along different physiographic regions (Terai or low land: L, mid-hills: Mh, high-hills: Hh and high Himalaya: H) of Sagarmatha zone, eastern Nepal. Within the approximate 187 km North-South width, elevation of the study area ranges from 80 m a.s.l at Terai in south to 8,848 m a.s.l at the highest peak of the Earth, Mt. Everest in north. Such rapid change in altitude has caused a wide range of climatic conditions in this area. In this study, we have used observed climate data from five meteorological stations located at different elevations, namely Rajbiraj (L: 91m), Okhaldhunga (Mh: 1720m), Salleri (Hh: 2378m), Syangboche (H: 3700m) and Dingboche (H: 4355m) in order to present how temperature and precipitation varies with elevation and time. The spatial distribution of past temperature data (1980 - 2013) shows that annual mean temperature at the higher elevation (H) is increasing at relatively higher rate ( 0.09 °C/yr) than middle and lower elevations. Similarly, annual temperature at middle and higher elevation shows more positive temperature anomalies than at lower elevation which also indicates that the temperature is getting warmer than normal at these regions. Annual precipitation trend in largely fluctuating, however, it shows increasing trend in Mh (5.48 mm/yr) and Hh (3.74 mm/yr) with more positive precipitation anomalies but decreasing trend in the number of rainy days, whereas at lower elevation (L), annual precipitation is decreasing (-8.4 mm/yr) but the number of rainy days is increasing. We also analyzed the spatial and temporal variation in the projected temperature and precipitation data obtained from CORDEX South Asia RCM (Experiment: CCAM-CNRM) at RCP4.5 and RCP8.5 climate scenarios. The results obtained from this study can be used to assess the impact of climate change in the region and devise better mitigation and adaptation strategies and plans.

  4. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  5. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liming [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Dai, Aiguo [National Center for Atmospheric Research, Boulder, CO (United States); Dai, Yongjiu [Beijing Normal University, School of Geography, Beijing (China); Vose, Russell S. [National Climatic Data Center, Climate Analysis Branch, Asheville, NC (United States); Zou, Cheng-Zhi [NOAA/NESDIS, Office of Research and Applications, Camp Springs, MD (United States); Tian, Yuhong [IMSG at NOAA/NESDIS, Camp Springs, MD (United States); Chen, Haishan [Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Meteorological Disaster, Nanjing (China)

    2009-02-15

    This paper analyzes the spatial dependence of annual diurnal temperature range (DTR) trends from 1950-2004 on the annual climatology of three variables: precipitation, cloud cover, and leaf area index (LAI), by classifying the global land into various climatic regions based on the climatological annual precipitation. The regional average trends for annual minimum temperature (T{sub min}) and DTR exhibit significant spatial correlations with the climatological values of these three variables, while such correlation for annual maximum temperature (T{sub max}) is very weak. In general, the magnitude of the downward trend of DTR and the warming trend of T{sub min} decreases with increasing precipitation amount, cloud cover, and LAI, i.e., with stronger DTR decreasing trends over drier regions. Such spatial dependence of T{sub min} and DTR trends on the climatological precipitation possibly reflects large-scale effects of increased global greenhouse gases and aerosols (and associated changes in cloudiness, soil moisture, and water vapor) during the later half of the twentieth century. (orig.)

  6. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    Science.gov (United States)

    Liu, Qiang; Fu, Yongshuo H; Zeng, Zhenzhong; Huang, Mengtian; Li, Xiran; Piao, Shilong

    2016-02-01

    Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). We investigated the relationships of EOS with temperature, precipitation sum, and insolation sum over the preseason periods by computing temporal partial correlation coefficients. The results showed that the EOS date was delayed in temperate China by an average rate at 0.12 ± 0.01 days per year over the time period of 1982-2011. EOS of dry grassland in Inner Mongolia was advanced. Temporal trends of EOS determined across the four methods were similar in sign, but different in magnitude. Consistent with previous studies, we observed positive correlations between temperature and EOS. Interestingly, the sum of precipitation and insolation during the preseason was also associated with EOS, but their effects were biome dependent. For the forest biomes, except for evergreen needle-leaf forests, the EOS dates were positively associated with insolation sum over the preseason, whereas for dry grassland, the precipitation over the preseason was more dominant. Our results confirmed the importance of temperature on phenological processes in autumn, and further suggested that both precipitation and insolation should be considered to improve the performance of autumn phenology models. © 2015 John Wiley & Sons Ltd.

  7. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Xin Lin

    Full Text Available Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N. Based on atmospheric CO2 observations at Point Barrow (BRW in Alaska, satellite-derived NDVI (a proxy of vegetation productivity, and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average. The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit the responsiveness of carbon assimilation and/or decomposition to warming under high (low precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future

  8. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Science.gov (United States)

    Lin, Xin; Li, Junsheng; Luo, Jianwu; Wu, Xiaopu; Tian, Yu; Wang, Wei

    2015-01-01

    Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation

  9. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  10. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys

    Directory of Open Access Journals (Sweden)

    J.B. Ferguson

    2016-02-01

    Full Text Available Because the mechanical performance of precipitation-hardened alloys can be significantly altered with temperature changes, understanding and predicting the effects of temperatures on various mechanical properties for these alloys are important. In the present work, an analytical model has been developed to predict the elastic modulus, the yield stress, the failure stress, and the failure strain taking into consideration the effect of temperatures for precipitation-hardenable Al-Mg-Cu-Si Alloys (Al-A319 alloys. In addition, other important mechanical properties of Al-A319 alloys including the strain hardening exponent, the strength coefficient, and the ductility parameter can be estimated using the current model. It is demonstrated that the prediction results based on the proposed model are in good agreement with those obtained experimentally in Al-A319 alloys in the as-cast condition and after W and T7 heat treatments.

  11. Improved weather generator algorithm for multisite simulation of precipitation and temperature

    CERN Document Server

    King, Leanna M; Simonovic, Slobodan P

    2016-01-01

    The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbour weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. A case study of the Upper Thames River Basin in Ontario, Canada is performed and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach offers a major advantage over parametric and semi-parametric weather generators as it can be applied to multiple sites for simulation of temperatures and precipitation amounts without making assumptions regarding the spatial correlations and the probability distributions for each variable.

  12. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    Science.gov (United States)

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger

  13. Future Changes Projections of Atmospheric Circulation and Precipitation and Temperature Patterns Over South America in Austral Summer

    Science.gov (United States)

    Shimizu, M. H.; Cavalcanti, I. F.

    2012-12-01

    Atmospheric circulation is primarily driven by temperature gradients across the globe due to differential heating of Earth's surface which leads to a surplus of energy in the tropics and a deficit in the high latitudes. However, due to global warming, changes in atmospheric circulation are expected, which could result in modifications also in precipitation pattern. There are some evidences of changes in atmospheric circulation, such as the expansion of tropical belt and the poleward shift of large-scale atmospheric circulation systems, such as jet streams. These changes can be enhanced in a scenario with increasing greenhouse gases concentration. The objective of this study was to analyze future changes of atmospheric circulation and precipitation and temperature patterns in the austral summer over South America under Representative Pathway Concentration 8.5 (RCP 8.5) emission scenario. This evaluation was made according to model projections based on the coordinated climate change experiments defined by Coupled Model Intercomparison Project phase 5 (CMIP5). Historical simulations were used to evaluate model performance in reproduce main climatic features over South America in the Austral Summer. This analysis showed that some models perform better than others, with a wide range of difference between simulations and Global Precipitation Climatology Project (GPCP) and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data sets. In general, the models captured the main features of Austral Summer such as the northwest-southeast precipitation band associated with the South Atlantic Convergence Zone (SACZ) and the anticyclonic circulation at high levels related to Bolivian High. The projections from different models pointed out in general to a reduction of precipitation, however the signal was not the same over all the continent and for all models. For example, Met Office's HadGEM2-ES projection indicated a reduction of precipitation in most of

  14. Uncertainty in runoff based on Global Climate Model precipitation and temperature data – Part 1: Assessment of Global Climate Models

    Directory of Open Access Journals (Sweden)

    T. A. McMahon

    2014-05-01

    Full Text Available Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3 GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash–Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research, MIROCM (Center for Climate System Research (The University of Tokyo, National

  15. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Science.gov (United States)

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  16. Recent Trends in Temperature and Precipitation in the Langat River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Mahdi Amirabadizadeh

    2015-01-01

    Full Text Available A study was undertaken to detect long-term trends in the annual and seasonal series of maximum and minimum temperatures. Measurements were taken at 11 meteorological stations located in the Langat River Basin in Malaysia. The rainfall and maximum and minimum temperature data were obtained from the Malaysia Meteorological Department (MMD and the Department of Irrigation and Drainage (DID Malaysia. The procedures used included the Mann-Kendall test, the Mann-Kendall rank statistic test, and the Theil-Sen’s slope method. The analytical results indicated that when there were increasing and decreasing trends in the annual and seasonal precipitation and temperature, only the increasing trends were significant at the 95% confidence level. The Theil-Sen’s slope method showed that the rate of increment in the annual precipitation is greater than the seasonal precipitation. A bootstrap technique was applied to explore uncertainty about significant slope values for rainfall, as well as the maximum and minimum temperatures. The Mann-Kendall rank statistics test indicated that most of the trends in the annual and seasonal time series started in the year 2000. All of the annual and seasonal significant trends were obtained at the stations located in the north, east, and northeast portions of the Langat River Basin.

  17. Changes of temperature and precipitation extremes in China: past and future

    Science.gov (United States)

    Wen, Xin; Fang, Guohua; Qi, Heshuai; Zhou, Lei; Gao, Yuqin

    2016-10-01

    Historical temperature and precipitation extremes and their potential future changes are quantified and evaluated throughout the landmass of China. A statistical model of climate extremes based on generalized extreme value (GEV) distribution is applied to both historical climate data and bias correction and spatial disaggregation (BCSD) downscaled Coupled Model Inter-comparison Project phase 5 (CMIP5) projections. The results indicate relatively moderate historical warm extreme conditions in China with regional means of maximum temperature 28.9, 29.4, and 29.8 °C for 10-, 20-, and 50-year return periods, respectively, whereas the corresponding regional means of minimum temperature are -20.1, -20.8, and -21.5 °C, manifesting a downward trend northwardly with relative larger regional variations in cold extremes. The historical precipitation extremes also decline gradually from south-southeast toward northwest with significant regional differences. As for the future, the warm extremes are expected to aggravate by roughly 1.66-4.92 °C projected by CMIP5, indicating larger increasing rate and spatial differences compared to cold extremes. The extreme precipitation is projected to increase 7.9-13.4 %, the dry regions would see a larger increasing rate compared to wet regions. The increasing radiative forcing concentration would trigger upward variations in both temperature and precipitation extreme magnitudes. Also, the warm extreme changes are more sensitive to the radiative forcing concentration than the cold extremes. The CMIP5 projections basically maintain a favorable inter-model consistency in temperature and rainfall extreme simulation for the future, but the inter-model difference of warm extremes is larger than cold extremes.

  18. Time series requirements and trends of temperature and precipitation extremes over Italy

    Science.gov (United States)

    Fioravanti, Guido; Desiato, Franco; Fraschetti, Piero; Perconti, Walter; Piervitali, Emanuela

    2013-04-01

    Extreme climate events have strong impacts on society and economy; accordingly,the knowledge of their trends on long period is crucial for the definition and implementation of a national adaptation strategy to climate change. The Research Programme on Climate Variability and Predictability (CLIVAR) identified a set of temperature and precipitation indices suited to investigate variability and trends of climate extremes. It is well known that extreme indices calculation is more demanding than first and second order statistics are: daily temperature and precipitation data are required and strict constrains in terms of continuity and completeness must be met. In addition, possible dishomogeneities affecting time series must be identified and adjusted before indices calculation. When metadata are not available, statistical methods can provide scientist a relevant support for homogeneity check; however, ad-hoc decision criteria (sometimes subjective) must be applied whenever contradictory results characterize different statistical homogeneity tests. In this work, a set of daily (minimum and maximum) temperature and precipitation time series for the period 1961-2011 were selected in order to guarantee a quite uniform spatial distribution of the stations over the Italian territory and according to the afore-said continuity and completeness criteria. Following the method described by Vincent, the homogeneity check of temperature time series was run at annual level. Two well-documented tests were employed (F-test and T-test), both implemented in the free R-package RHtestV3. The Vincent method was also used for a further investigation of time series homogeneity. Temperature dishomogeneous series were discarded. For precipitation series, no homogeneity check was run. The selected series were employed at daily level to calculate a reliable set of extreme indices. For each station, a linear model was employed for indices trend estimation. Finally, single station results were

  19. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    Science.gov (United States)

    van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank

    2016-11-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation

  20. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea.

    Science.gov (United States)

    Kenward, P A; Goldstein, R H; González, L A; Roberts, J A

    2009-12-01

    Here we report precipitation of dolomite at low temperature (30 degrees C) mediated by a mixed anaerobic microbial consortium composed of dissimilatory iron-reducing bacteria (DIRB), fermenters, and methanogens. Initial solution geochemistry is controlled by DIRB, but after 90 days shifts to a system dominated by methanogens. In live experiments conditions are initially saturated with respect to dolomite (Omega(dol) = 19.40) and increase by two orders of magnitude (Omega(dol) = 2 330.77) only after the onset of methanogenesis, as judged by the increasing [CH(4)] and the detection of methanogenic micro-organisms. We identify ordered dolomite in live microcosms after 90 days via powder X-ray diffraction, while sterile controls precipitate only calcite. Scanning electron microscopy and transmitted electron microscopy demonstrate that the precipitated dolomite is closely associated with cell walls and putative extra-cellular polysaccharides. Headspace gas measurements and denaturing gradient gel electrophoresis confirm the presence of both autotrophic and acetoclastic methanogens and exclude the presence of DIRB and sulfate-reducing bacteria after dolomite begins forming. Furthermore, the absence of dolomite in the controls and prior to methanogenesis confirm that methanogenic Archaea are necessary for the low-temperature precipitation of dolomite under the experimental conditions tested.

  1. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  2. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  3. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  4. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  5. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  6. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    Science.gov (United States)

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  7. Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature

    Directory of Open Access Journals (Sweden)

    William Walter Adams III

    2016-07-01

    Full Text Available Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature – most strongly in Col-0 and least strongly in the Italian ecotype – and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers

  8. Variability of temperature sensitivity of extreme precipitation from a regional-to-local impact scale perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2016-12-01

    Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute

  9. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  10. CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature dataset for two largest Polish river basins

    Science.gov (United States)

    Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.

    2015-12-01

    The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07

  11. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  12. How to apply the dependence structure analysis to extreme temperature and precipitation for disaster risk assessment

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-06-01

    IPCC reports that a changing climate can affect the frequency and the intensity of extreme events. However, the extremes appear in the tail of the probability distribution. In order to know the relationship between extreme events in the tail of temperature and precipitation, an important but previously unobserved dependence structure is analyzed in this paper. Here, we examine the dependence structure by building a bivariate joint of Gumbel copula model for temperature and precipitation using monthly average temperature (T) and monthly precipitation (P) data from Beijing station in China covering a period of 1951-2015 and find the dependence structure can be divided into two sections, they are the middle part and the upper tail. We show that T and P have a strong positive correlation in the high tail section (T > 25.85 °C and P > 171.1 mm) (=0.66, p < 0.01) while they do not demonstrate the same relation in the other section, which suggests that the identification of a strong influence of T on extreme P needs help from the dependence structure analysis. We also find that in the high tail section, every 1 °C increase in T is associated with 73.45 mm increase in P. Our results suggested that extreme precipitation fluctuations by changes in temperature will allow the data dependence structure to be included in extreme affect for the disaster risk assessment under future climate change scenarios. Copula bivariate jointed probability distribution is useful to the dependence structure analysis.

  13. Caterpillar biomass depends on temperature and precipitation, but does not affect bird reproduction

    Science.gov (United States)

    Schöll, Eva Maria; Ohm, Judith; Hoffmann, Konstantin Frank; Hille, Sabine Marlene

    2016-07-01

    Complex changes in phenological events appear as temperatures are increasing: In deciduous forests bud burst, hatching of herbivorous caterpillars, egg laying and nestling time of birds when feeding chicks on caterpillars, may differentially shift into early season and alter synchronization. If timing of bird reproduction has to match with short periods of food availability, phenological mismatch could negatively affect reproductive success. Using a unique empirical approach along an altitudinal temperature gradient, we firstly asked whether besides temperature, also precipitation and leaf phenology interplay and affect caterpillar biomass, since impacts of rainfall on caterpillars have been largely neglected so far. Secondly, we asked whether abundance of caterpillars and thereby body mass of great tit nestlings, which are mainly fed with caterpillars, vary along the altitudinal temperature gradient. We demonstrated that next to temperature also precipitation and leaf phenology affected caterpillar biomass. In our beech forest, even along altitudes, caterpillars were available throughout the great tit breeding season but in highly variable amounts. Our findings revealed that although timing of leaf phenology and great tit breeding season were delayed with decreasing temperature, caterpillars occurred synchronously and were not delayed according to altitude. However, altitude negatively affected caterpillar biomass, but body mass of fledglings at high altitude sites was not affected by lower amounts of caterpillar biomass. This might be partially outweighed by larger territory sizes in great tits.

  14. Dynamic precipitation of nickel-based superalloys undergoing severe deformation below the solvus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nowotnik, Andrzej; Rokicki, Pawel; Mrowka-Nowotnik, Grazyna; Sieniawski, Jan [Rzeszow Univ. of Technology (Poland). Dept. of Material Science

    2015-07-15

    The authors performed uniaxial compression tests of nickel-based superalloys: single crystal CMSX-4, also precipitation hardened; Inconel 718 and X750, at temperatures below the γ' solvus, in order to study the effect of temperature and strain rate on their flow stress and microstructural development. On the basis of the obtained flow stress values, the activation energy of a high-temperature deformation process was estimated. Microstructural observations of the deformed samples at high temperatures, previously solution heat treated and aged CMSX-4 and Inconel alloys revealed non-uniform deformation effects. Distribution of either molybdenum- or niobium-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures, 720-850 C. Microstructural examination of the alloys also showed that shear banding and cavity growth were responsible for the decrease in flow stress and a specimen fracture at larger strains.

  15. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  16. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin

    Science.gov (United States)

    Marks, D.; Winstral, A.; Reba, M.; Pomeroy, J.; Kumar, M.

    2013-05-01

    Determining surface precipitation phase is required to properly correct precipitation gage data for wind effects, to determine the hydrologic response to a precipitation event, and for hydrologic modeling when rain will be treated differently from snow. In this paper we present a comparison of several methods for determining precipitation phase using 12 years of hourly precipitation, weather and snow data from a long-term measurement site at Reynolds Mountain East (RME), a headwater catchment within the Reynolds Creek Experimental Watershed (RCEW), in the Owyhee Mountains of Idaho, USA. Methods are based on thresholds of (1) air temperature (Ta) at 0 °C, (2) dual Ta threshold, -1 to 3 °C, (3) dewpoint temperature (Td) at 0 °C, and (4) wet bulb temperature (Tw) at 0 °C. The comparison shows that at the RME Grove site, the dual threshold approach predicts too much snow, while Ta, Td and Tw are generally similar predicting equivalent snow volumes over the 12 year-period indicating that during storms the cloud level is at or close to the surface at this location. To scale up the evaluation of these methods we evaluate them across a 380 m elevation range in RCEW during a large mixed-phase storm event. The event began as snow at all elevations and over the course of 4 h transitioned to rain at the lowest through highest elevations. Using 15-minute measurements of precipitation, changes in snow depth (zs), Ta, Td and Tw, at seven sites through this elevation range, we found precipitation phase linked to the during-storm surface humidity. By measuring humidity along an elevation gradient during the storm we are able to track changes in Td to reliably estimate precipitation phase and effectively track the elevation of the rain/snow transition during the event.

  17. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau

    Science.gov (United States)

    Ren, Wei; Yao, Tandong; Xie, Shiyou; He, You

    2017-02-01

    Constraining temporal and spatial variability in water stable isotopes (δ18O and δD) is requested for interpreting proxy records of paleoclimate/paleoaltimetry. The southeastern Tibetan Plateau (TP) receives large amounts of precipitation in both summer (JJAS) and spring (MAM) and this makes it different from most other parts of the TP where annual precipitation concentrates only in summer. However, our knowledge of controls on precipitation and surface runoff generation in this region is still far from sufficient. In this study, the δ18O and δD of precipitation and stream waters across the southeastern TP were analyzed to investigate moisture sources and empirical isotope-elevation relationships. Herein, seasonal precipitation patterns, moisture trajectories and precipitation isotopes suggest this region is seasonally dominated by the monsoon in summer and the southerlies (from the Bay of Bengal) or a mix of southerlies and westerlies in spring. Spatially, vertical variations in precipitation seasonality exert profound influences on isotopic variability for stream waters. Larger contributions of spring precipitation (with higher δ18O and d-excess (d-excess = δD-8δ18O) compared to summer precipitation) vs. summer precipitation in the surface runoff generation at lower elevations account for the uncommon altitudinal decrease in streamwater d-excess. Such a cause also contributes to the slightly greater vertical lapse rates of streamwater δ18O (-0.28 to -0.48‰/100 m) relative to the Himalayan front. In addition, although a robust δ18O-elevation relationship is demonstrated based upon our measured and other published data on a broad spatial scale (over a 5200 m elevation range), this relationship is found to deviate from the empirical/theoretical pattern in the Himalayan front, which is also caused by the substantial spring precipitation in the southeastern TP. It is suggested that long-term changes in δ18O or δD of paleowater in this region actually

  18. Implications of dynamics underlying temperature and precipitation distributions for changes in extremes

    Science.gov (United States)

    Neelin, J. D.; Loikith, P. C.; Stechmann, S. N.; Sahany, S.; Bernstein, D. N.; Quinn, K. M.; Meyerson, J.; Hales, K.; Langenbrunner, B.

    2015-12-01

    Characterizing present-day probability distributions of temperature and precipitation measures are an important part of the pathway to improving quantitative assessment of changes in their extremes. In some cases, relatively simple prototypes for the dynamics underlying these distributions can assist in this characterization, pointing to key physical factors and measures to evaluate even in more complex distributions. In the case of daily temperature distributions, quantifying the widespread occurrence of non-Gaussian tails is motivated in part by tracer-advection across a maintained gradient prototypes. Substantial implications of the shape of these tails for regional changes in probabilities of temperature extremes with large-scale warming motivate measures of non-Gaussianity specific to this problem for assessing climate model present-day simulations. In the case of distributions of precipitation accumulations, simple prototypes yield insights into the form of the present-day distribution and predictions for the form of the global warming changes that can be evaluated in models and observations. Probability drops relatively slowly over a substantial range of accumulation size, followed by a key cutoff scale that limits large event probabilities in current climate but changes under global warming. Precipitation integrated over spatial clusters exhibits similar distribution features.

  19. Temperature and precipitation reconstruction in correspondence to Dansgaard-Oeschger events and glacial terminations from Turkey

    Science.gov (United States)

    Stockhecke, Mona; Bechtel, Achim; Peterse, Francien; Randlett, Marie-Eve; Schubert, Carsten J.; Timmermann, Axel

    2016-04-01

    Lacustrine records from deep closed lakes, such as the 600,000 yr-old sedimentary sequence from Lake Van (Turkey), can provide detailed insights into the mechanisms of past environmental changes in the continental interior. The Lake Van record is continues and has an excellent age control over the last 350 ka. Repetitive intervals of annually-laminated sections are reflected in a sub-annual resolved color record. The Lake Van color record documents lake-level rises for all Dansgaard-Oeschger (DO) interstadials synchronous to the NGRIP δ18O record of Greenland ice reflecting temperature increases. Comparison with model hindcasts from LOVECLIM experiments, supports the notion that the lake-level increases during the warm interstadials is caused by precipitation increases due to atmospheric changes as consequence of AMOC increase during a paucity of ice-sheet calving events. Quaternary quantitative temperature and precipitation changes in the Eastern Mediterranean are unknown over the last 150 ka although it covers a critical time and area in human and mammal evolution. We quantified temperature and hydroclimate changes within a multi-proxy biomarker study. Lipid biomarkers during several DO events from MIS 3 and over the last two terminations were extracted at centennial resolution. Mean air temperatures (MAT) based on down-core distributional changes in branched glycerol dialkyl glycerol tetraethers (brGDGTs), indicate a 1.5-3° warming at stadial/interstadial transitions and 2-4° warming for glacials/interglacial transitions. Simultaneous analysis of the leaf wax hydrogen isotopic composition (δ2Hwax) result in a reconstruction of changes in the source water due to variable precipitation/evaporation ratio. Isotopically 10 ‰ (20) lighter δD-values of leaf-wax n-alkane C29 argue for a significantly increased humidity during the interstadials (interglacials) compared to the stadials (glacials). Magnitudes of temperature and precipitation changes at the DO

  20. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  1. Sorption of trace metals on calcite: Applicability of the surface precipitation model

    NARCIS (Netherlands)

    Comans, R.N.J.; Middelburg, J.J.

    1987-01-01

    Published Sorption isotherm data of Cd2+, Mn2+, Zn2+, and Co2+ on calcite are adequately described by the surface precipitation model which was originally developed by FArley et al. (1985) for the sorption of cations on metal oxides. In addition to monolayer adsorption, the model accounts for the fo

  2. Complexity analysis of the air temperature and the precipitation time series in Serbia

    Science.gov (United States)

    Mimić, G.; Mihailović, D. T.; Kapor, D.

    2017-02-01

    In this paper, we have analyzed the time series of daily values for three meteorological elements, two continuous and a discontinuous one, i.e., the maximum and minimum air temperature and the precipitation. The analysis was done based on the observations from seven stations in Serbia from the period 1951-2010. The main aim of this paper was to quantify the complexity of the annual values for the mentioned time series and to calculate the rate of its change. For that purpose, we have used the sample entropy and the Kolmogorov complexity as the measures which can indicate the variability and irregularity of a given time series. Results obtained show that the maximum temperature has increasing trends in the given period which points out a warming, ranged in the interval 1-2 °C. The increasing temperature indicates the higher internal energy of the atmosphere, changing the weather patterns, manifested in the time series. The Kolmogorov complexity of the maximum temperature time series has statistically significant increasing trends, while the sample entropy has increasing but statistically insignificant trend. The trends of complexity measures for the minimum temperature depend on the location. Both complexity measures for the precipitation time series have decreasing trends.

  3. Effects of Nitrogen Content and Austenitization Temperature on Precipitation in Niobium Micro-alloyed Steels

    Institute of Scientific and Technical Information of China (English)

    Lei CAO; Zhong-min YANG; Ying CHEN; Hui-min WANG; Xiao-li ZHAO

    2015-01-01

    The influences of nitrogen content and austenitization temperature on Nb(C,N)precipitation in niobium micro-alloyed steels were studied by different methods:optical microscopy,tensile tests,scanning electron mi-croscopy,transmission electron microscopy,physicochemical phase analysis,and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content.The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates,which mainly depends on the niobium content in the steel.The mass fraction of small-sized Nb(C,N) precipitates (1-10 nm)in the steel with high nitrogen content is less than that in the steel with low nitrogen con-tent.After austenitized at 1 150 ℃,a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content,whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N)precipitates become finer in both steels.Furthermore,the results also show that part of the nitrogen in steel involves the formation of al-loyed cementite.

  4. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    Science.gov (United States)

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (Psoil organic carbon concentration (r=0.838, Psoil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  5. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  6. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  7. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  8. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  9. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  10. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  11. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  12. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2017-02-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  13. Precipitation variability in central Himalayas and its relation to Northern Hemisphere temperature

    Institute of Scientific and Technical Information of China (English)

    DUAN Keqin; YAO Tandong

    2003-01-01

    A 149.8-m-long ice core was drilled at the accumulation area of Dasuopu glacier (28°23′N, 85°43′E, 7100 m a.s.l.) in the central Himalayas in 1997. The ice core was analyzed continuously for stable isotopes (δ18O), cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-,SO2-4,NO3-) throughout the core. Cycles indicated by δ18O, cations and anions were identified and counted as seasonal fluctuations as annual increment from maximum to maximum values. Reconstructed 300-year annual net accumulation from the core reveals a major precipitation trend for the central Himalayas with an average precipitation 750 mm per year. The trend, separated from the time series, shows a strong correlation to global temperature. Generally, as northern global temperature increases 0.1℃, the accumulation decreases about 80mm and vise versa. This may suggests that monsoon precipitation in Himalayas have decreased continuously in past decade as a response to global warming.

  14. Observed temperature and precipitation changes in Hungary with an outlook to the Carpathian region

    Science.gov (United States)

    Kovacs, Tamas; Lakatos, Monika; Bihari, Zita; Szentimrey, Tamas

    2013-04-01

    Climate change challenges natural ecosystems and also human activity, and is expected to result in significant changes in temperature and precipitation in Hungary. The exact knowledge of the observed tendencies are crucial for responsible awareness. Climate indices are used in several projects on climate change as prevailing indicators of changes in extremes. The past tendencies of temperature are presented by examining the changes in the number of summer days, frost days, warm nights and hot days. For describing the precipitation changes the number of wet days, days with heavy rainfall, simple daily intensity (precipitation sum/number of wet days) and maximum number of consecutive days are analyzed in this paper. The changes of such indices for Hungary from the beginning of the 20th century to present are illustrated and analyzed on graphs and trend maps. With an outlook to the Carpathian region the preliminary results of the CARPATCLIM project, hold by JRC and lead by the Hungarian Meteorological Service are introduced in this study. The homogenized and interpolated database is produced in daily temporal resolution for the period 1961-2010 and in 0.1° spatial resolution for the 50°N - 44°N, 17°E - 27°E area for many basic meteorological variables. The harmonized database provides relevant outcomes for climate change studies and other climatological research. Several climate indices are presented in this study for the Carpathian region as preliminary results of the investigations of the dataset.

  15. Time-Temperature-Precipitation Behavior in Al-Li Alloy 2195

    Science.gov (United States)

    Chen, P. S.; Bhat, B. N.

    2002-01-01

    Transmission electron microscopy was used to study time-temperature-precipitation (TTP) behavior in aluminum-lithium (Al-Li) 2195 alloy. Al-Li 2195 (nominally Al + 4 percent Cu + 1 percent Li + 0.3 percent Ag + 0.3 percent Mg + 0.1 percent Zr) was initially solutionized for 1 hr at 950 F and then stretched 3 percent. Heat treatments were conducted for up to 100 hr at temperatures ranging from 200 to 1,000 F. TTP diagrams were determined for both matrix and subgrain boundaries. Depending upon heat treatment conditions, precipitate phases (such as GP zone, theta'', theta', theta, delta', T1, TB, and T2) were found in the alloy. The TTP diagrams were applied as a guide to avoid T1 precipitation at subgrain boundaries, as part of an effort to improve the alloy's cryogenic fracture toughness (CFT). New understanding of TTP behavior was instrumental in the development of a two-step artificial aging treatment that significantly enhanced CFT in Al-Li 2195.

  16. RELATIONSHIP BETWEEN DIPOLE OSCILLATION OF SSTA OF INDIAN OCEAN REGION AND PRECIPITATION AND TEMPERATURE IN CHINA

    Institute of Scientific and Technical Information of China (English)

    肖子牛; 晏红明; 李崇银

    2002-01-01

    The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.

  17. Predicting cement distribution in geothermal sandstone reservoirs based on estimates of precipitation temperatures

    Science.gov (United States)

    Olivarius, Mette; Weibel, Rikke; Whitehouse, Martin; Kristensen, Lars; Hjuler, Morten L.; Mathiesen, Anders; Boyce, Adrian J.; Nielsen, Lars H.

    2016-04-01

    Exploitation of geothermal sandstone reservoirs is challenged by pore-cementing minerals since they reduce the fluid flow through the sandstones. Geothermal exploration aims at finding sandstone bodies located at depths that are adequate for sufficiently warm water to be extracted, but without being too cemented for warm water production. The amount of cement is highly variable in the Danish geothermal reservoirs which mainly comprise the Bunter Sandstone, Skagerrak and Gassum formations. The present study involves bulk and in situ stable isotope analyses of calcite, dolomite, ankerite, siderite and quartz in order to estimate at what depth they were formed and enable prediction of where they can be found. The δ18O values measured in the carbonate minerals and quartz overgrowths are related to depth since they are a result of the temperatures of the pore fluid. Thus the values indicate the precipitation temperatures and they fit the relative diagenetic timing identified by petrographical observations. The sandstones deposited during arid climatic conditions contain calcite and dolomite cement that formed during early diagenesis. These carbonate minerals precipitated as a response to different processes, and precipitation of macro-quartz took over at deeper burial. Siderite was the first carbonate mineral that formed in the sandstones that were deposited in a humid climate. Calcite began precipitating at increased burial depth and ankerite formed during deep burial and replaced some of the other phases. Ankerite and quartz formed in the same temperature interval so constrains on the isotopic composition of the pore fluid can be achieved. Differences in δ13C values exist between the sandstones that were deposited in arid versus humid environments, which suggest that different kinds of processes were active. The estimated precipitation temperatures of the different cement types are used to predict which of them are present in geothermal sandstone reservoirs in

  18. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  19. Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption.

    Science.gov (United States)

    Turner, Brett D; Binning, Philip; Stipp, S L S

    2005-12-15

    Fluoride contamination of groundwater, both anthropogenic and natural, is a major problem worldwide. In this study, fluoride removal by crushed limestone (99% pure calcite) was investigated by batch studies and surface-sensitive techniques from solutions with fluoride concentrations from 150 micromol/L (3 mg/L) to 110 mM (approximately 2100 mg/L). Surface-sensitive techniques, including atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) as well as zeta potential measurements, confirm that, in addition to precipitation reactions, adsorption of fluoride also occurs. Results indicate that fluoride adsorption occurs immediately over the entire calcite surface with fluorite precipitating at step edges and kinks, where dissolved Ca2+ concentration is highest. The PHREEQ geochemical model was applied to the observed data and indicates that existing models, especially at low fluoride concentrations and high pH (>7.5) are not equipped to describe this complex system, largely because the PHREEQ model includes only precipitation reactions, whereas a combination of adsorption and precipitation parameters are required.

  20. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  1. Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System (GLDAS) Land Surface States

    Science.gov (United States)

    Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly

  2. Responses of Grassland and Forest to Temperature and Precipitation Changes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    PENG Jing; DONG Wenjie; YUAN Wenping; ZHANG Yong

    2012-01-01

    Using the Normalized Difference Vegetation Index (NDVI) as an indicator of vegetation growth,we explored the characteristics and differences in the response to drought of five vegetation biomes in Northeast China,including typical steppe,desert steppe,meadow steppe,deciduous coniferous forest and deciduous broad-leaved forest during the period 1982 2009.The results indicate that growing season precipitation may be the primary vegetation growth-limiting factor in grasslands.More than 70% of the temporal variations in NDVI can be explained by the amount of precipitation during the growing season in typical and desert steppes.During the same period,the mean temperature in the growing season could explain nearly 43% of the variations in the mean growing season NDVI and is therefore a dominant growth-limiting factor for forest ecosystems.Therefore,the NDVI trends differ largely due to differences in the vegetation growth-limiting factors of the different vegetation biomes.The NDVI responses to droughts vary in magnitude and direction and depend on the drought-affected areas of the five vegetation types.Specifically,the changes in NDVI are consistent with the variations in precipitation for grassland ecosystems.A lack of precipitation resulted in decreases in NDVI,thereby reducing vegetation growth in these regions.Conversely,increasing precipitation decreased the NDVI of forest ecosystems.The results also suggest that grasslands under arid and semi-arid environments may be more sensitive to drought than forests under humid environments.Among grassland ecosystems,desert steppe was most sensitive to drought,followed by typical steppe; meadow steppe was the least sensitive.

  3. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  4. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Haiying Tang; Steven O. Salley; K.Y. Simon Ng [Wayne State University, Detroit, MI (United States). Department of Chemical Engineering and Materials Science

    2008-10-15

    The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4{sup o}C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides. 45 refs., 11 figs., 2 tabs.

  5. Temperature trends and variability in the Greater Horn of Africa: interactions with precipitation

    Science.gov (United States)

    Camberlin, Pierre

    2017-01-01

    Relationships between daily precipitation and daily maximum and minimum temperature (Tx and Tn, respectively) are analyzed at station level over the Greater Horn of Africa (GHA). Rainfall occurrence is associated with either above normal Tn (mostly in cool highland areas) or below normal Tn (especially lowland, hot environments and early parts of the rainy season). Tx generally displays a more consistent response to rainfall occurrence, with cooling peaking 1 day after the rainfall event. However there is often a persistence of this cooling several days after the rainfall event, and the amplitude of the cooling is also greater for heavy rainfall events. These temperature anomalies are thought to be a response to cloudiness (concurrent reduced Tx and concurrent enhanced Tn) and soil moisture (reduced Tx and Tn, suggested to reflect evaporative cooling). These relationships are of relevance to the interpretation of temperature trends. From 1973 to 2013, the GHA shows a clear warming signal, for both Tn (+0.20 to +0.25 °C/decade depending on seasons) and Tx (+0.17 to +0.22 °C/decade). Rainfall shows both negative (mostly between February and July) and positive trends (mostly in October-December). Given the superimposition of temperature and rainfall trends in parts of the GHA and the covariations between daily rainfall and both Tx and Tn, regression models are used to extract the rainfall influence on temperature, accounting for lag effects up to 4 days. The daily residuals from these models are used to depict temperature variations independent from precipitation variations. At some stations, trends computed on these residuals noticeably differ from the raw Tx trends. When averaged across the GHA, these effects do not exceed -0.06 to +0.03 °C/decade (depending on the month) for Tx, and are marginal for Tn, thus do not strongly modify the magnitude of the warming in the last 40 years. Nevertheless, these results show that precipitation-temperature relationships must

  6. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model.

    Science.gov (United States)

    Lian, Lishu; Li, Baofu; Chen, Yaning; Chu, Cuicui; Qin, Yanhua

    2017-09-11

    Land use/cover changes (LUCCs) are an important cause of regional climate changes, but the contribution of LUCCs to regional climate changes is not clear. In this study, the Weather Research and Forecasting (WRF) model and statistical methods were used to investigate changes in meteorologic variables in January, April, July, and October 2013 due to local LUCCs from 1990 to 2010 in southern Shandong province, China. The results indicate that the WRF model simulates temperatures in the region well, with high correlation coefficients (0.86-0.97, p < 0.001) between the modeled and measured values. The model simulates precipitation less well, with correlation coefficients of 0.41-0.91, but they are all at statistically significant levels, with p < 0.05. During the 20-year period, the LUCCs in the study area consisted mainly of conversions from dry land to urbanized land (747.3 km(2)) and bare/sparse vegetation (132.4 km(2)). The LUCCs caused a 0.16 °C temperature increase in January and October and 0.01 and 0.18 °C temperature decreases in April and July, respectively. The range of temperature changes over mixed forest and water bodies due to the LUCCs was wide (0.39-1.31 °C) and was narrower over deciduous broadleaf forest and wetland (0.01 to 0.06 °C). The LUCCs did not change the precipitation greatly in January, April, and October but did affect the precipitation in July substantially, causing a decrease of 23.71 mm. The LUCCs did not affect wind speed and direction substantially during these four months: average wind speeds increased by 0.02 and 0.01 m/s in January and October, respectively, and decreased by 0.02 and 0.05 m/s in April and July, respectively. Overall, The LUCCs affected spring temperatures the least and summer precipitation the most.

  7. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  8. Correlation between dust events in Mongolia and surface wind and precipitation

    Directory of Open Access Journals (Sweden)

    Ganbat Amgalan

    2017-01-01

    Full Text Available This study presents dust event spatiotemporal distribution and regional trends, and the impact of surface wind and precipitation on dust occurrences in Mongolia. We used data collected between 2000 and 2013 from 113 meteorological stations in natural forest steppe, steppe, Gobi Desert, and mountain zones. We analyzed the relationship between dusty days, derived using the sum of days with dust storms and/or drifting dust, and days with strong winds (at a threshold wind speed of a constant 6.5 m s-1, hereafter, strong wind days and precipitation by comparing the dusty days in dust-frequent years, dust-less years, and dust-mean years. Dusty days in dust-frequent years were associated with strong wind days when the precipitation is about 10 mm and dust occurrences were suppressed by large amounts of precipitation (approximately 22 mm in dust-less years over the southeastern part of the Gobi Desert in May. We propose a potential dust index (PDI based on the correlations among dusty days, strong winds and precipitation. The PDI performed as predicted in most areas of the country in the spring season.

  9. Optimizing Calcium Phosphates by the Control of pH and Temperature via Wet Precipitation.

    Science.gov (United States)

    Kim, YoungJae; Lee, Seon Yong; Roh, Yul; Lee, Jinhyeok; Kim, Juyeun; Lee, Yongwoo; Bang, Junseok; Lee, Young Jae

    2015-12-01

    A series of calcium phosphates synthesized through a wet precipitation route of hydroxylapatite (HAP) was investigated over a wide range of temperature and pH (25-80 degrees C, and pH 6.5-10.0) using a combination of microscopic and spectroscopic analyses. XRD and FTIR show that monetite and brushite are formed as a single phase at non-ideal conditions of HAP, respectively. From TGA results, it is found that brushite is converted to monetite at a range 175-200 degrees C when heated at the heating rate, 10 degrees C/min. This phase transformation is also observed when brushite is aged at pH 8.5 and 60 degrees C for 24 hr in solution. Morphology of brushite is sensitive to pH variation. At pH 6.5, tabular and platy crystals of brushite are observed whereas needle-like ones are predominant at pH 8.5. For HAP formed at pH 10.0, their shapes tend toward needle-like particles as temperature increases. HAP particles at pH 8.5 are very similar in morphology to HAP at pH 10.0, but their lengths are two or three times as great as those at pH 10.0. These observations demonstrate that desired phase and properties of calcium phosphates can be controlled by pH, temperature, and aging time through a wet precipitation method.

  10. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [Carnegie Inst. of Science, Stanford, CA (United States); Michalak, Anna M. [Carnegie Inst. of Science, Stanford, CA (United States); Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Huntzinger, Deborah N. [Northern Arizona Univ., Flagstaff, AZ (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif sur Yvette (France); Piao, Shilong [Peking Univ., Beijing (China); Poulter, Benjamin [Montana State Univ., Bozeman, MT (United States); Fisher, Joshua B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Cook, Robert B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayes, Daniel [Univ. of Maine, Orno, ME (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ito, Akihiko [National Inst. for Environmental Studies, Tsukuba (Japan); Jain, Atul [Univ. of Illinois, Urbana-Champaign, IL (United States); Lei, Huimin [Tsinghua Univ., Beijing (China); Lu, Chaoqun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parazoo, Nicholas C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Peng, Shushi [Peking Univ., Beijing (China); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tao, Bo [Univ. of Kentucky, Lexington, KY (United States); Tian, Hanqin [Auburn Univ., AL (United States); Wang, Weile [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Jia [Auburn Univ., AL (United States)

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p < 0.01), the post La Niña sink is driven largely by tropical precipitation (r PG,T= -0.46, p = 0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. Furthermore, we find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  11. The winter trends in air temperature and atmospheric precipitation in the Moldova Region (Romania

    Directory of Open Access Journals (Sweden)

    Machidon Ovidiu-Miron

    2017-06-01

    Full Text Available The study is a comparative analysis of the characteristics of air temperature and atmospheric precipitations in winter seasons from the WMO reference periods (1961 - 1990, 1981 – 2010 compared with last 7 years (2010 – 2016. There is a continuous increase of air temperature in winter, from −2,0°C between 1961-1990, to −1,1°C between 2010-2016, so a heating of 0,9°C. In the last 7 years (2010-2016 the average number of frosty nights (nights with minimum temperature of ≤ −10°C was reduced by 18% compared to the period 1961-1990 and by 3% compared to the period 1981-2010. In the same period (2010 – 2016, the rainfall were higher in winter, respectively by 17% than during 1961-1990 and by 22% than during 1981-2010. There is an increase of torrential character of precipitation, more pronounced in the southern region of Moldova.

  12. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin

    Science.gov (United States)

    Tang, Zhiguang; Ma, Jinhui; Peng, Huanhua; Wang, Shuhan; Wei, Junfeng

    2017-09-01

    The Shiyang river basin is a typical arid inland river basin in northwestern China, where significant climate change and ecological environment deterioration has been observed over the past several decades. The vegetation in Shiyang river basin is mostly concentrated in its upstream, and plays an important role in ecological environment of this watershed. However, how the regional vegetation responds to such climatic change is poorly understood. To address this question, the spatiotemporal changes of vegetation growth in upper Shiyang river basin together with their responses to climate changes were investigated using SPOT VEGETATION Normalized Difference Vegetation Index (NDVI) and climate datasets from 1999 to 2013. Results reveal that about 81.3% of the study area shows an increasing trend in NDVI. The average NDVI of the study area increases at rates of 7.75% for the growing season (March-November), 11.75% for spring (March-May), 9.62% for summer (June-August), and 5.98% for autumn (September-November) over the study period. The increase of NDVI in spring and autumn suggests the growing season of the vegetation in this study area has been prolonged. The effects of climate changes on vegetation growth vary with the types of vegetation and seasons, which shows a large spatial and temporal heterogeneity. As compared with temperature, precipitation is the dominant climatic factor affecting the interannual variations of vegetation. If the temperature and precipitation continue to increase in the study area, the sensitivity of vegetation growth to temperature and precipitation may decline.

  13. Long-Term Variability of Precipitation of Charged Particles on Mercury's Surface

    Science.gov (United States)

    Benna, M.; Slavin, J. A.; Boardsen, S. A.; Baker, D. N.; Anderson, B. J.; Korth, H.; McClintock, W. E.; Schriver, D.; Travnicek, P. M.; Zurbuchen, T.; Raines, J. M.; Solomon, S. C.

    2012-12-01

    With over 18 months in orbit, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been providing the opportunity for studying the long-term variability of Mercury's magnetosphere and exosphere with high temporal and spatial resolution. To investigate the variability of the planet's magnetospheric and exospheric structures, we computed global models of the magnetosphere for the interplanetary magnetic field (IMF) conditions measured during MESSENGER's first 270 orbits. These global models were generated for a wide range of possible solar wind ram pressures. By fitting the locations of the modeled boundary crossings with those measured by the spacecraft Magnetometer we were able to recover the values of the solar wind moments that were acting on the magnetosphere during each orbit. The reliability of this method was validated through comparisons with the solar wind moments derived independently from the WSA-ENLIL model. Results from these models reveal that the magnitude of the solar wind forcing is modulated primarily by the orbital distance of the planet from the Sun. Moreover, sporadic fluctuations in solar wind and IMF inputs (on timescales of a few hours) lead to the major reconfigurations of the magnetosphere and the exosphere that were observed by MESSENGER. These reconfigurations not only affect the distributions and energetics of charged particles but also the geographical location and extent of space weathering from charged particle precipitation onto the planet's surface. Modeling the precipitation of charged particle on Mercury's surface reveals an intermittent, often (north-south) asymmetric and IMF-driven bombardment of the dayside of the planet. The intensity of the dayside precipitation is function of the solar wind pressure and the magnitude of induction in the Mercury's outer core. In contrast, precipitation in nightside regions appears to be persistent and less dependent in location and intensity on IMF

  14. Sigma Phase Precipitation and Properties of Super-duplex Stainless Steel UNS S32750 Aged at the Nose Temperature

    Institute of Scientific and Technical Information of China (English)

    ZOU Dening; HAN Ying; ZHANG Wei; YU Junhui

    2011-01-01

    The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method. Color-optical microscopy, scanning electron microscopy, energy spectrum analysis, impact and corrosion testing were carried out to investigate characteristics of microstructure and properties of the SDSS aged at the nose temperature. The experimental results indicate that the nose temperature of precipitation is 920 ℃ and aging at this temperature tiny σ phases can precipitate at phase interfaces or ferrite grain boundaries within 2 min.Prolonging aging duration the amount of σ-phase increases and a dual structure with σ and γ is obtained when aging for 120 min. The precipitation of σ-phase leads to severe deterioration in impact toughness (longitudinal/transverse direction) and corrosion resistance of SDSS.

  15. Comparative Study of the Effects of ENSO Phenomenon (El Niño, La Niña on Temperature and Precipitation of Mashhad

    Directory of Open Access Journals (Sweden)

    vajiheh mohammadi sabet

    2017-03-01

    Full Text Available Introduction: The Southern Oscillation is a large scale phenomenon that changes the Normal oscillating air pressure on both sides of the Pacific Ocean. It disrupted the normal conditions and the patterns of temperature and precipitation change in the nearby region and other regions of the world. This phenomenon is caused by changing the water slope in the Pacific Ocean between Peru (northwestern South America and Northern Australia (about Indonesia and Malaysia. ENSO phenomenon is formed of Elnino (warm state and La Niña (cold state. There is high pressure system in the East and low pressure system in the West Pacific Ocean in normal conditions (Walker cycle. The trade winds blow from East to West with high intensity. ENSO start when the trade winds and temperature and pressure balance on both sides of the PacificOcean change. High pressure will form in the west and low pressure will form in the East. As a result, west will have high and east will have low rainfall. Temperature will change at these two locations. Enso longs about 6 to 18 months. This research investigated the impact of ENSO on monthly precipitation and temperature of Mashhad.The results showed that temperature and rainfall have a good relation with ENSO.This relation occurs in 0-5 month lag. Materials and Methods: The severity of ENSO phenomenon is known by an index which is called ENSO index. The index is the anomaly of sea surface temperature in the Pacific. The long-term temperature and precipitation data of Mashhad selected and analyzed. The Rainfall has no trend but temperature has trend. The trend of temperature modeled by MARS regression and trend was removed.The rainfall data changed to standard and temperature changed to anomaly for comparison with ENSO index. The 2016 annual and monthly temperature of Mashhad is not available. The 2016 Annual temperature was forecasted by ARMA (1,1 model. Then this forecast disaggregated to monthly temperature. For each period of

  16. Changes in annual temperature and precipitation extremes in the Carpathians since AD 1961

    Science.gov (United States)

    Dumitrescu, Alexandru; Birsan, Marius-Victor; Magdalena Micu, Dana; Cheval, Sorin

    2014-05-01

    The Carpathians are the largest, longest, most twisted and fragmented segment of the Alpine system, stretching between latitudes 44°N and 50°N, and longitudes 17°E and 27°E. This European mountain range is a climatically transitional region between major atmospheric circulation source areas of the Atlantic Ocean, Mediterranean Sea and continental Europe. The region is a European biodiversity hotspot, containing over one third of all European plant species. It is acknowledged that the mountain regions are particularly sensitive and vulnerable to climate change than any other regions located at the same latitudes. Observational studies on the variability and trends of extreme events suggest an overall consensus towards a significant increase in the frequency, duration and intensity of warm extremes in most of these regions, including the Carpathians. 15 core indices, defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), were computed in order to investigate the changes in annual temperature and precipitation extremes, based on their known relevance for the infrastructure, human health and tourism activities in these mountains. The indices were computed from gridded daily datasets of minimum and maximum temperature and precipitation at 0.1° resolution (~10 km), available online within the framework of the project CarpatClim (www.carpatclim-eu.org) for the period 1961-2010. Changes in the annual temperature and precipitation extremes in the last five decades have been identified with the Mann-Kendall non-parametric trend test, at the 90% significance level (two-tail test). The results show decreasing trends in cold-related thermal indices, especially in the number of frost days, and increasing trends in warm-related ones. No consistent trend in precipitation extremes has been found. There is a generally uniform signal of significant increasing trends in the frequency of summer days across the Carpathians, with no obvious differences between

  17. Effect of Temperature on Precipitation Rate of Calcium Carbonate Produced through Microbial Metabolic Process of Bio Materials

    Directory of Open Access Journals (Sweden)

    Prima Yane Putri

    2016-09-01

    Full Text Available Concrete is the most widely used construction material in civil engineering. But plain concrete is a brittle material and has little resistance to cracking. The cracking in concrete promotes deterioration such as the corrosion of reinforcing rebar, therefore, repair in filling the crack is often carried out. Recently, repair methods using bio-based materials associated with microbial metabolic processes leading to precipitation of calcium carbonate have been intensively studied. In this study, influencing factors on the precipitation rate depending on the constituents of bio-based material comprising yeast, glucose and calcium acetate mixed in tris buffer solution was examined for improving the rate of initial reactions. In addition, effect of temperature change on the amount of calcium carbonate precipitation was also investigated. The precipitates were identified by X-ray diffraction. It was shown that the increase of temperature lead to a change on calcium carbonate precipitation and caused the pH decrease under 7.0.

  18. Weather Type classification over Chile; patterns, trends, and impact in precipitation and temperature

    Science.gov (United States)

    Frias, T.; Trigo, R. M.; Garreaud, R.

    2009-04-01

    The Andes Cordillera induces considerable disturbances on the structure and evolution of the pressure systems that influences South America. Different weather types for southern South America are derived from the daily maps of geopotential height at 850hPa corresponding to a 42 year period, spanning from 1958 to 2000. Here we have used the ECWMF ERA-40 reanalysis dataset to construct an automated version of the Lamb Weather type (WTs) classification scheme (Jones et al., 1993) developed for the UK. We have identified 8 basic WTs (Cyclonic, Anticyclonic and 6 main directional types) following a similar methodology to that previously adopted by Trigo and DaCamara, 2000 (for Iberia). This classification was applied to two regions of study (CLnorth and CLsouth) which differ 20° in latitude, so that the vast Chile territory could be covered. Then were assessed the impact of the occurrence of this weather types in precipitation in Chile, as well as in the distribution of precipitation and temperature fields (reanalysis data) in southern half of South America. The results allow to conclude that the precipitation in central region of Chile is largely linked with the class occurrence (concerning CLnorth) of cyclonic circulation and of West quadrant (SW, W and NW), despite of it's relatively low frequency. In CLsouth, for its part, it is verified that the most frequent circulation is from the west quadrant, although the associated amount of rainfall is lower than in CLnorth. There was also a general decrease of precipitation at local weather stations chosen in the considered period of study, particularly in austral winter.

  19. Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin

    Directory of Open Access Journals (Sweden)

    N. Aloysius

    2017-08-01

    Full Text Available Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016–2035 and mid-century (2046–2065. We find that total runoff from the CRB is projected to increase by 5 % [−9 %; 20 %] (mean – min and max – across model ensembles over the next two decades and by 7 % [−12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5 are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.

  20. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  1. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  2. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions

    Science.gov (United States)

    Singhania, Shalabh; Wang, Qiankun; Filippou, Dimitrios; Demopoulos, George P.

    2005-06-01

    Arsenic is a major contaminant in the nonferrous extractive metallurgy. In the past 20 years, many studies have shown that it can be precipitated as relatively stable crystalline scorodite (FeAsO4·2H2O) by precipitation under ambient or elevated pressures. In the present study, an extensive program of scorodite precipitation tests under ambient pressure has shown that the rate of scorodite formation increases dramatically by a small increase in temperature from 85 °C to 100 °C. The beneficial effects of temperature are attributed to the higher thermodynamic stability of scorodite at elevated temperatures, but also to higher rates of secondary nuclei formation and crystal growth. In any case, irrespective of the precipitation temperature, the leachability of all scorodite precipitates observed in toxicity characterization leaching procedure (TCLP) tests is below 5 mg/L As. Another parameter examined in this study was seeding. It was observed that the higher the initial concentration of seed, the faster the precipitation. Precipitation of well-crystallized scorodite can be effected equally well on heterogeneous seed such as hematite (Fe2O3) or gypsum (CaSO4·2H2O) added externally or formed in situ.

  3. How you cannot find rain with changes in land surface temperature

    Science.gov (United States)

    Wanders, Niko

    2017-04-01

    Estimating precipitation from space-born sensors is valuable source of observation in poorly-gauged regions. For example, hydrological modelling and monitoring greatly benefits from the increased near-real time data availability for improved accuracy in the simulations of water resources. As is true for all satellite product, precipitation estimated from space are far from perfect and scientist have used many techniques to improve their accuracy. In this study, I tried to improve the space-born precipitation estimates by using remotely sensed soil moisture to observe sudden increases in soil wetness as a result of precipitation. After a month of massaging the data and applied methodology I realized that the gain was very marginal and I was drilling a dry hole. Driven by these disappointing results I tried some random other satellite products to see if they showed correlation with the precipitation signal. There I found a causality that I had not expected at the start of this study, linking land surface temperature to precipitation. It seemed that using changes in land surface temperature strongly correlated with precipitation totals, driven by a cooling of the soil as a result of increase wetness. This link could not only be modelled, but more surprisingly it could be observed from space and used to improve the satellite precipitation estimates. The reduction in the precipitation uncertainty was far better than for any of the three soil moisture products, contrary to what one might expect. This was far from the anticipated result but it showed me that sometimes you should think out of the box and not only use observations for their intended purpose. This experience has motivated me to not only use the obvious observation or method and try techniques and methods from other disciplines to see if we can improve our understanding of the hydrological cycle.

  4. Models for evolution of reactive surface area during dissolution and precipitation

    Science.gov (United States)

    Pedersen, Janne; Jettestuen, Espen; Hildebrand-Habel, Tania; Vinningland, Jan Ludvig; Vadla Madland, Merete; Korsnes, Reidar Inge; Hiorth, Aksel

    2014-05-01

    During water flooding of a reservoir, minerals can dissolve and/or precipitate if the injected water is out of equilibrium with the formation. A net mass transfer between solid and fluid will result in a dynamically changing pore space, which in turn may change the permeability and/or the porosity of the reservoir. When secondary minerals precipitate from solution they will form on top of the primary minerals on the pore walls, and hence the reactive surface area of the individual minerals constituting the porous medium will change. This will in turn affect the dissolution/precipitation rates. In this work we study three different models for the evolution of reactive surface areas during flooding of a core with a brine that is in disequilibrium with the rock. The three models differ in the way secondary minerals are distributed on the solid surface: In model I the whole surface area of both primary and secondary minerals is reactive; hence there will be no screening effect when secondary minerals form. In model II secondary minerals form as a monolayer on the primary minerals that will screen primary minerals from the flow. Model I and II represent two extremes regarding the screening effect; namely no screening (model I) and full screening (model II). Model III is motivated from observations of unflooded and flooded chalk using scanning electron microscopy (SEM). In this model secondary minerals are assumed to form preferentially near crystal defects, being e.g. dislocations in crystallographic pattern or grain contacts. Also the rate of precipitation for forming minerals varies for precipitation onto primary (dissimilar) minerals and precipitation onto secondary (similar) minerals. The three models are implemented into a lattice Boltzmann (LB) based geochemical simulator, and simulation results are compared to results from a 3 years long core flooding experiment with outcrop chalk flooded with 0.219M MgCl2 at 130°C, as well as SEM studies. Before flooding 98wt

  5. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [Research Institute for Global Change, JAMSTEC, Yokohama (Japan); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); Wittenberg, Andrew T. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2012-03-15

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role. (orig.)

  6. Temperature and extreme rainfalls on France in a climatic change scenario; Temperature et precipitations extremes sur la france dans un scenario de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M

    2007-07-01

    Impact of an anthropogenic climate change scenario on the frequency distribution of temperature and precipitation over France is studied with a numerical simulation calibrated with observed daily data from the synoptic network. (author)

  7. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Science.gov (United States)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  8. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    Science.gov (United States)

    Faust, Johan; Fabian, Karl; Giraudeau, Jacques; Knies, Jochen

    2016-04-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO reconstructions are crucial to better understand NAO variability in its response to climate forcing factors, and assess predictability and possible shifts associated with ongoing climate change. Fjord deposits have a great potential for providing high-resolution sedimentary records that reflect local terrestrial and marine processes and, therefore, offer unique opportunities for the investigation of sedimentological and geochemical climatically induced processes. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we use the gained knowledge to establish the first high resolution NAO proxy record from marine sediments. By comparing geochemical measurements from a short sediment core with instrumental data we show that marine primary productivity proxies are sensitive to NAO changes. Conditioned on a stationary relation between our climate proxy and the NAO we establish the first high resolution NAO proxy record (NAO-TFJ) from marine sediments covering the past 2,800 years. The NAO-TFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends.

  9. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California.

    Science.gov (United States)

    Swain, Daniel L; Horton, Daniel E; Singh, Deepti; Diffenbaugh, Noah S

    2016-04-01

    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.

  10. Precipitation and temperature changes in eastern India by multiple trend detection methods

    Science.gov (United States)

    Sharma, Chandra Shekhar; Panda, Sudhindra N.; Pradhan, Rudra P.; Singh, Amanpreet; Kawamura, Akira

    2016-11-01

    The present study deals with spatial and temporal trend analysis of precipitation and temperature (1970-2004) in eastern India. Long-term trend direction and magnitude of change over time (annual and seasonal) were detected and analyzed by Mann-Kendall test, Sen's slope estimator, Least square linear regression, Spearman rank correlation and Sequential Mann-Kendall test. In addition to it, correlation analysis was also performed. Trend analysis of annual rainfall by different methods indicated similar annual trends in eastern India. North-eastern, south-eastern and western parts of eastern India indicated increasing trend, whereas the north-western, central and southern parts showed decreasing trend. A similar trend was observed by different methods in case of seasonal rainfall. During winter season, decreasing trend was observed in the central part, whereas similar results were obtained for pre-and post-monsoon in the western part. The trend during monsoon season was found similar to annual rainfall trend. Abrupt change in trend of rainfall with time was lacking in eastern India. Maximum temperature analysis indicated increasing trend in the western part for all the seasons (except in monsoon) and decreasing trend in the eastern part. On the contrary, increasing trend was observed in the eastern part and decreasing trend in the western half of the study area for all the seasons in case of minimum temperature. Significant changes were observed during monsoon season as compared to other seasons. A decreasing trend in mean temperature was observed in the central, southern and north western parts, whereas it was found to be increasing in the north-eastern, western and south-eastern parts. In majority of the eastern India region, any abrupt change of trend in temperatures with time was not clearly observed. Negative correlation between rainfall and maximum temperature was observed in the entire eastern India. Similar results were observed in case of minimum temperature

  11. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins

    Science.gov (United States)

    Berezowski, Tomasz; Szcześniak, Mateusz; Kardel, Ignacy; Michałowski, Robert; Okruszko, Tomasz; Mezghani, Abdelkader; Piniewski, Mikołaj

    2016-03-01

    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data-Gridded Daily Precipitation & Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration-National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the

  12. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2013-06-01

    Full Text Available Both long-term observation data and model simulations suggest an increasing chance of serious drought in the dry season and extreme flood in the wet season in southern China, yet little is known about how changes in precipitation pattern will affect soil respiration in the region. We conducted a field experiment to study the responses of soil respiration to precipitation manipulations – precipitation exclusion to mimic drought, double precipitation to simulate flood, and ambient precipitation as control (abbr. EP, DP and AP, respectively – in three subtropical forests in southern China. The three forest sites include Masson pine forest (PF, coniferous and broad-leaved mixed forest (MF and monsoon evergreen broad-leaved forest (BF. Our observations showed that altered precipitation strongly influenced soil respiration, not only through the well-known direct effects of soil moisture on plant and microbial activities, but also by modification of both moisture and temperature sensitivity of soil respiration. In the dry season, soil respiration and its temperature sensitivity, as well as fine root and soil microbial biomass, showed rising trends with precipitation increases in the three forest sites. Contrarily, the moisture sensitivity of soil respiration decreased with precipitation increases. In the wet season, different treatments showed different effects in three forest sites. The EP treatment decreased fine root biomass, soil microbial biomass, soil respiration and its temperature sensitivity, but enhanced soil moisture sensitivity in all three forest sites. The DP treatment significantly increased soil respiration, fine root and soil microbial biomass in the PF only, and no significant change was found for the soil temperature sensitivity. However, the DP treatment in the MF and BF reduced soil temperature sensitivity significantly in the wet season. Our results indicated that soil respiration would decrease in the three subtropical

  13. Evaluation of Temperature and Precipitation in Coupled Regional Climate Model Simulations

    Science.gov (United States)

    Fischer, Andreas M.; Weigel, Andreas P.; Liniger, Mark A.; Buser, Christoph; Appenzeller, Christof

    2010-05-01

    Climate change is expected to have major impacts on society and ecosystems during the upcoming decades. The exact quantification of the climate change signal to be expected, however, is still associated with many uncertainties. For an atmosphere-ocean general circulation model (AOGCM) uncertainties in projecting future climate arise from a number of different sources: uncertainties in physical process understanding and model formulation, natural climate variability, and the amount of future anthropogenic greenhouse gas levels in the atmosphere. When analyzing AOGCM-driven regional climate model (RCM) simulations, which are often applied to provide local climate change information to the impacts community and policy makers, a further level of model uncertainty is introduced. An important step towards quantifying model uncertainty is the analysis of systematic model biases and of the the inter-model spread of the climate change signals obtained. Here, we compare RCM simulations of temperature and precipitation from the FP6-ENSEMBLES project among each other and against observations over Europe, and in greater detail over Switzerland. The RCMs (at 25 km horizontal resolution) were driven by AOGCMs and run in transient mode over the period 1950 to 2050 based on the A1B emission scenario. Some of the RCMs were forced by the same AOGCM, hence allowing to study the spread of different RCMs under the same boundary conditions. Climate change over Switzerland is assessed for the period 2021-50 as seasonal means over distinct climatic regions. The coupled RCM-GCM models exhibit remarkably large systematic biases in temperature and precipitation. Over selected European regions the absolute temperature bias can be as high as 5 K, although the annual cycle is relatively well reproduced. In general, the models simulate too wet conditions with biases of 50 - 100 % above observations during wintertime. Over Switzerland the interannual variability is generally overestimated

  14. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    Science.gov (United States)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  15. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  16. The sensitivity of multiple equilibria in a cloud resolving model to sea surface temperature changes in weak temperature gradient simulations

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    2012-10-01

    In the tropics, gravity waves quickly redistribute buoyancy anomalies, which leads to approximately weak temperature gradients (WTG) in the horizontal. In our cloud resolving model (CRM), the WTG approximation is enforced by relaxing potential temperature perturbations to a reference profile which represents the mean state of the atmosphere. To obtain reference profiles, the model is run in a non-WTG mode until radiative convective equilibrium (RCE). RCE vertical profiles of temperature and moisture are then used as reference profiles for WTG simulations. Continuing the work of Sessions et al (2010), we investigate the sensitivity of multiple equilibria in a CRM to changes in sea surface temperatures (SST). Multiple equilibria refers to a precipitating or non-precipitating steady state under identical forcing conditions. Specifically, we run RCE simulations for different SSTs to generate reference profiles representing different large scale environments for WTG simulations. We then perform WTG experiments for each SST with varying surface wind speeds. The model domain is initialized either with a completely dry troposphere, or with a RCE moisture profile. We find that the range of wind speeds maintaining both a dry and a precipitating steady state is strongly dependent on SST.

  17. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  18. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  19. Use of objective analysis to estimate winter temperature and precipitation at different stations over western Himalaya

    Indian Academy of Sciences (India)

    Jagdish Chandra Joshi; Ashwagosha Ganju

    2010-10-01

    Temperature and fresh snow are essential inputs in an avalanche forecasting model.Without these parameters,prediction of avalanche occurrence for a region would be very difficult.In the complex terrain of Himalaya,nonavailability of snow and meteorological data of the remote locations during snow storms in the winter is a common occurrence.In view of this persistent problem present study estimates maximum temperature,minimum temperature,ambient temperature and precipitation intensity on different regions of Indian western Himalaya by using similar parameters of the neighbouring regions.The location at which parameters are required and its neighbouring locations should all fall in the same snow climatic zone.Initial step to estimate the parameters at a location,is to shift the parameters of neighbouring regions at a reference height corresponding to the altitude of the location at which parameters are to be estimated.The parameters at this reference height are then spatially interpolated by using Barnes objective analysis.The parameters estimated on different locations are compared with the observed one and the Root Mean Square Errors (RMSE)of the observed and estimated values of the parameters are discussed for the winters of 2007 –2008.

  20. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species

    Science.gov (United States)

    Siegmund, Jonatan F.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.

    2016-10-01

    Ongoing climate change is known to cause an increase in the frequency and amplitude of local temperature and precipitation extremes in many regions of the Earth. While gradual changes in the climatological conditions have already been shown to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. Studying this question calls for the application of statistical methods that are tailored to the specific properties of event time series. Here, we employ event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences in order to systematically quantify simultaneities between meteorological extremes and the timing of the flowering of four shrub species across Germany. Our study confirms previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of the investigated plants. However, previous studies solely based on correlation analysis do not allow deriving explicit estimates of the strength of such interdependencies without further assumptions, a gap that is closed by our analysis. In addition to direct impacts of extremely warm and cold spring temperatures, our analysis reveals statistically significant indications of an influence of temperature extremes in the autumn preceding the flowering.

  1. Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the Generalized Linear Model statistical downscaling approach

    Science.gov (United States)

    Asong, Z. E.; Khaliq, M. N.; Wheater, H. S.

    2016-08-01

    In this study, a multisite multivariate statistical downscaling approach based on the Generalized Linear Model (GLM) framework is developed to downscale daily observations of precipitation and minimum and maximum temperatures from 120 sites located across the Canadian Prairie Provinces: Alberta, Saskatchewan and Manitoba. First, large scale atmospheric covariates from the National Center for Environmental Prediction (NCEP) Reanalysis-I, teleconnection indices, geographical site attributes, and observed precipitation and temperature records are used to calibrate GLMs for the 1971-2000 period. Then the calibrated models are used to generate daily sequences of precipitation and temperature for the 1962-2005 historical (conditioned on NCEP predictors), and future period (2006-2100) using outputs from five CMIP5 (Coupled Model Intercomparison Project Phase-5) Earth System Models corresponding to Representative Concentration Pathway (RCP): RCP2.6, RCP4.5, and RCP8.5 scenarios. The results indicate that the fitted GLMs are able to capture spatiotemporal characteristics of observed precipitation and temperature fields. According to the downscaled future climate, mean precipitation is projected to increase in summer and decrease in winter while minimum temperature is expected to warm faster than the maximum temperature. Climate extremes are projected to intensify with increased radiative forcing.

  2. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  3. Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin

    Science.gov (United States)

    Terink, W.; Hurkmans, R. T. W. L.; Uijlenhoet, R.; Torfs, P. J. J. F.; Warmerdam, P. M. M.

    2009-04-01

    The Hydrology and Quantitative Water Management group of Wageningen University is involved in the EU research project NeWater. The objective of this project is to develop tools which provide medium range hydrological predictions by coupling catchment-scale water balance models and ensembles from mesoscale climate models. The catchment-scale distributed hydrological model used in this study is the Variable Infiltration Capacity (VIC) model. This hydrological model in combination with an ensemble from the climate model ECHAM5 (developed by Max Plank Institute für Meteorologie (MPI-M), Hamburg) is being used to evaluate the effects of climate change on the hydrological regime of the Rhine basin and to assess the uncertainties involved in the ensembles from the climate model used in this study. Three future scenarios (2001-2100) are used in this study, which are downscaled ECHAM5 runs which were forced by the IPCC carbon emission scenarios B1, A1B and A2. A downscaled ECHAM5 "Climate of the 20th Century" run (1951-2000) is used as the reference climate. Downscaled ERA15 data is used to calibrate the VIC model. Downscaling of both the ECHAM5 and ERA15 model was carried out with the regional climate model REMO at MPI-M to a resolution of 0.088 degrees. The assessment of uncertainties involved in the climate model ensembles is performed by comparing the model (ECHAM5-REMO and ERA15-REMO) ensemble precipitation and temperature data with observations. This resulted in the detection of a bias in both the downscaled reference climate data and downscaled ERA15 data. A bias-correction has been applied to both the downscaled ERA15 data and the reference climate data. This bias-correction corrects for the mean and coefficient of variation for precipitation and the mean and standard deviation for temperature. The results of the applied bias-correction are analyzed spatially and temporally. Despite the fact that the bias-correction only uses two parameters, the coefficient of

  4. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  5. Effects of precipitation on soil respiration and its temperature/moisture sensitivity in three subtropical forests in Southern China

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2012-11-01

    Full Text Available Both long-term observation data and model simulations suggest an increasing chance of serious drought in the dry season and extreme flood in the wet season in Southern China, yet little is known about how changes in precipitation pattern will affect soil respiration in the region. We conducted a field experiment to study the responses of soil respiration to precipitation manipulations – precipitation exclusion to mimic drought, double precipitation to simulate flood, and ambient precipitation (Abbr. EP, DP and AP, respectively – in three subtropical forests in Southern China. The three forests include Masson pine forest (PF, coniferous and broadleaved mixed forest (MF and monsoon evergreen broadleaved forest (BF. Our observations showed that altered precipitation can strongly influence soil respiration, not only through the well-known direct effects of soil moisture, but also by modification on both moisture and temperature sensitivity of soil respiration. In the dry season, soil respiration and its temperature sensitivity in the three forests showed rising trends with precipitation increase, and its moisture sensitivity showed an opposite trend. In the wet season, the EP treatment also decreased soil respiration and its temperature sensitivity, and enhanced moisture sensitivity in all three forests. Soil respiration under the DP treatment increased significantly in the PF only, and no significant change was found for either moisture or temperature sensitivity. However, the DP treatment in the MF and BF reduced temperature sensitivity significantly. Our results indicated that soil respiration would decrease in the three subtropical forests if soil moisture continues to decrease in the future. More rainfall in the wet season could have limited effect on the response of soil respiration to the rising of temperature in the BF and MF.

  6. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  7. A Cluster Analysis Using Gridded Temperatures and Precipitation Data in Korea

    Science.gov (United States)

    Lee, Yung-Seop; Kim, Hee-Kyung; Lee, Youngho; Hyun, Myungjin; Lee, Jae-Won

    2017-04-01

    The climatological data of South Korea is observed from about 100 ASOS(Automated Synoptic Observing System) and about 500 AWS(Automatic Weather Station). In order to produce the high quality data, quality control is needed to the observed data. Especially, clustering techniques should be used for the spatial differentiation of the observational stations. By the way, the meteorological data might not be reflected uniformly in the climate characteristic of South Korea because of density difference. The grid data of numerical model, on the other hand, is reflected uniformly because it spaced at 5km×5km apart is distributed evenly. In this study, the temperatures and precipitation data of South Korea are analyzed using K-means clustering method with long-term grid data. Based on the result of gridded data clustering, the automated QC techniques by clusters on meteorological data, which are ASOS and AWS data, can be developed.

  8. Dynamical and statistical downscaling of precipitation and temperature in a Mediterranean area

    KAUST Repository

    Pizzigalli, Claudia

    2012-03-28

    In this paper we present and discuss a comparison between statistical and regional climate modeling techniques for downscaling GCM prediction . The comparison is carried out over the “Capitanata” region, an area of agricultural interest in south-eastern Italy, for current (1961-1990) and future (2071–2100) climate. The statistical model is based on Canonical Correlation Analysis (CCA), associated with a data pre-filtering obtained by a Principal Component Analysis (PCA), whereas the Regional Climate Model REGCM3 was used for dynamical downscaling. Downscaling techniques were applied to estimate rainfall, maximum and minimum temperatures and average number of consecutive wet and dry days. Both methods have comparable skills in estimating stations data. They show good results for spring, the most important season for agriculture. Both statistical and dynamical models reproduce the statistical properties of precipitation well, the crucial variable for the growth of crops.

  9. Synergistic effect of austenitizing temperature and hot plastic deformation strain on the precipitation behavior in novel HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Yuan, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chien-Chon [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-07-15

    Examination of thin foils of specimens with various austenitizing conditions by transmission electron microscopy revealed randomly homogeneous precipitation in the ferrite for each experimental condition. Though no interphase precipitation was found in the present study, two types of random precipitation morphologies were identified in the ferrite matrix. One was randomly and homogeneously precipitated carbides of smaller size (<10 nm), and the other was randomly precipitated carbides of larger size (10–30 nm). Transmission electron microscopy results provided evidence that both types of precipitation carbides could be associated with the supersaturation of microalloying elements in the ferrite and austenite, respectively. A higher austenitizing temperature treatment can lead to more microalloying elements dissolving in the austenite such that many tiny carbides precipitation at the low isothermal holding temperature, which is believed to effectively strengthen the ferrite. Vickers hardness data revealed that, in specimens austenitized at 1200 °C and deformed at 900 °C with strains of 10% and 30%, the ranges of hardness distribution were 250–360 HV 0.1 and 310–400 HV 0.1, respectively. For specimens austenitized at 1000 °C and deformed at 900 °C with strains of 10% and 30%, the ranges of hardness distribution were 220–250 HV 0.1 and 220–260 HV 0.1, respectively. Therefore, the average Vickers hardness increased with the austenitizing temperature and deformation strain. However, a wider range of hardness distribution occurred in specimens that underwent treatment at higher austenitizing temperatures. The wider Vickers hardness distribution reflects non-uniform precipitation in each ferrite grain.

  10. The importance of sea-ice area biases in 21st century multi-model projections of Antarctic net precipitation and temperature and their relative change

    Science.gov (United States)

    Bracegirdle, T.

    2015-12-01

    Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study has explored the impacts of these biases on multi-model uncertainty in CMIP5 ensemble projections of 21st century change in Antarctic surface temperature, net precipitation and SIA. The analysis is based on time slice climatologies in the RCP8.5 future scenario (2070-2099) and historical (1970-1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature and SIA are found to be strongly associated with simulated historical mean SIA (e.g. cross-model correlations of r = 0.77, 0.70 and -0.86, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed historical SIA. These findings are particularly relevant to quantifying and reducing model uncertainty in projections of Antarctic surface mass balance and associated contributions to sea level change.

  11. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran

    Indian Academy of Sciences (India)

    Mohammad Zarenistanak; Amit G Dhorde; R H Kripalani

    2014-03-01

    This paper presents results of trend analysis and change point detection of annual and seasonal precipitation, and mean temperature (TM), maximum temperature (TMAX) and minimum temperature (TMIN) time series of the period 1950–2007. Investigations were carried out for 50 precipitation stations and 39 temperature stations located in southwest Iran. Three statistical tests including Pettitt’s test, Sequential Mann–Kendall test (SQ-MK test) and Mann–Kendall rank test (MK-test) were used for the analysis. The results obtained for precipitation series indicated that most stations showed insignificant trends in annual and seasonal series. Out of the stations which showed significant trends, highest numbers were observed during winter season while no significant trends were detected in summer precipitation. Moreover, no decreasing significant trends were detected by statistical tests in annual and seasonal precipitation series. The analysis of temperature trends revealed a significant increase during summer and spring seasons. TMAX was more stable than TMIN and TM, and winter was stable compared to summer, spring and autumn seasons. The results of change point detection indicated that most of the positive significant mutation points in TM, TMAX and TMIN began in the 1990s.

  12. Towards better understanding of the response of Sphagnum peatland to increased temperature and reduced precipitation in Central Europe

    Science.gov (United States)

    Juszczak, Radoslaw; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Hoffmann, Mathias; Józefczyk, Damian; Lamentowicz, Mariusz; Leśny, Jacek; Łuców, Dominika; Moni, Christophe; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Olejnik, Janusz

    2017-04-01

    With respect to climate change peatlands are highly vulnerable ecosystems. Especially a potential drying in future might result in a major carbon source and release to the atmosphere. We carried out a field climate manipulation experiment at Rzecin peatland in western Poland to assess how increased temperature and reduced precipitation may impact carbon balance, vegetation, microbes and water chemistry of the Sphagnum peatland. Here, we present results of measurements conducted in two contrasting years (417 mm and 678 mm of precipitation in very dry 2015 and wet 2016, respectively). The experimental design consists of four treatments, each one replicated three times (control, CO; simulated warming, W; prolonged drought, D and warming & drought, W+D). Increased temperatures (T) during the year were achieved by infrared heaters (400W × 4 per site, approx. 60 Wṡm-2 addition of LW radiation). Precipitation was reduced using an automatic curtain, covering the site during nighttime hours of the growth seasons. The manipulation experiment was successful during both years, increasing the air (30 cm height) and soil temperature (5 cm depth, sites W and D) by up to 0.2 oC and 1.0 oC, respectively. Precipitation was reduced to 37 % during both years. At W+D site the peat temperature was nearly two times higher than on W site indicating the impact of drought on T increase. To study the C exchange we developed an automatic mobile platform for measuring CO2/CH4/H2O fluxes (LGR) as well as 13CO2 and 13CH4 fluxes (PICARRO CRDS G2201-i). Measurements were performed, using dynamic ecosystem chambers (for NEE and Reco) and combined with simultaneous measurements of surface spectral properties. Flux calculation and gap filling was done according to Hoffmann et al. 2015. Methane emissions were significantly higher on manipulated plots than on CO (25 gCṡm-2yr-1) during both years, but only in the very dry 2015, CH4 fluxes were the highest on W+D site (33 gC gCṡm-2yr-1). Besides

  13. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  14. An evaluation of temperature and precipitation from global and regional climate models over Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Precipitation and temperature from global (GCMs) and regional (RCMs) climate models are compared with reanalysis and observations over Scandinavia. Also projections for the next 50-100 years are considered. The climate development is visualised as moving averages (1920-2100). Box plots are used to illuminate how well GCM runs capture the observed seasonal cycle. Maps show the seasonal difference between results from control runs (RCM) and observations (E-OBS dataset) for the reference period 1981-2000. Plots illustrate the RCM-representation of seasonal temperature and precipitations cycle for five locations in Norway and Sweden: Oslo, Bergen, Trondheim, Tromsoe and Oestersund. The results show rather large differences between control runs and observations, demonstrating the need for bias correction of results from climate models. To get an indicator of which GC M-RCM-combination give the best representation of present climate over Scandinavia, a model ranking is provided. The performance measure used is the root-mean-square deviation of mean monthly and seasonal values. The data is compared both in an area-weighted spatial average of the whole domain as well as for the selected locations. The results indicate that the regional models RACMO2 and RCA show the smallest deviations from observed climate. Among the top ranking GCM-RCM combinations, most were driven by the global model ECHAM5 and some by a version of HadCM3. These two GCMs are also present among the worst performing GCM-RCM combinations indicating that selection of RCMs is crucial. (Author)

  15. Effects of precipitation and temperature on crop production variability in northeast Iran.

    Science.gov (United States)

    Bannayan, Mohammad; Lotfabadi, Sajad Sadeghi; Sanjani, Sarah; Mohamadian, Azadeh; Aghaalikhani, Majid

    2011-05-01

    Climate variability adversely impacts crop production and imposes a major constraint on farming planning, mostly under rainfed conditions, across the world. Considering the recent advances in climate science, many studies are trying to provide a reliable basis for climate, and subsequently agricultural production, forecasts. The El Niño-Southern Oscillation phenomenon (ENSO) is one of the principle sources of interannual climatic variability. In Iran, primarily in the northeast, rainfed cereal yield shows a high annual variability. This study investigated the role played by precipitation, temperature and three climate indices [Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and NINO 3.4] in historically observed rainfed crop yields (1983-2005) of both barley and wheat in the northeast of Iran. The results revealed differences in the association between crop yield and climatic factors at different locations. The south of the study area is a very hot location, and the maximum temperature proved to be the limiting and determining factor for crop yields; temperature variability resulted in crop yield variability. For the north of the study area, NINO 3.4 exhibited a clear association trend with crop yields. In central locations, NAO provided a solid basis for the relationship between crop yields and climate factors.

  16. Effects of Temperature and Precipitation on Breeding Migrations of Amphibian Species in Southeastern Norway

    Directory of Open Access Journals (Sweden)

    Børre K. Dervo

    2016-01-01

    Full Text Available To reveal the effects of climate, a generalized linear mixed model was used to explore the variation in onset of spawning migration for the two newt species T. cristatus and L. vulgaris in southern Norway. Amphibians are highly influenced by the physical environment, such as temperature and rainfall. The first migrating newts were observed subsequently to the three first consecutive days with mean temperature close to or above 4°C. Further, migration of L. vulgaris was facilitated at lower temperatures compared to T. cristatus, but the migration was dependent on higher precipitation levels. Northern populations of T. cristatus and L. vulgaris may already benefit from a warmer climate due to increased recruitment and juvenile survival. However, an offset in the migration phenology due to climate change might further alter the recruitment and survival rates with either positive or negative outcome. Thus, variations in migration phenology for newts due to climate change may have implications for management and protection status in many systems. In a general context, we should increase emphasis on protecting newts and support increased populations and distribution.

  17. Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

    Directory of Open Access Journals (Sweden)

    Timme H Donders

    Full Text Available Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values, and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1, as well as in the growing season (T, are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001] in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001. The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural

  18. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    Science.gov (United States)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  19. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  20. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  1. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  2. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  3. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  4. Interdecadal Variations of Precipitation and Temperature in China Around the Abrupt Change of Atmospheric Circulation in 1976

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WAN Qilin; LIN Ailan; GU Dejun; ZHENG Bin

    2009-01-01

    The interdecadal characteristics of rainfall and temperature in China before and after the abrupt change of the general circulation in 1976 are analyzed using the global 2.5°×2.5° monthly mean reanalysis data from the National Centers for Environmental Prediction of US and the precipitation and temperature data at the 743 stations of China from the National Climate Center of China. The results show that after 1976, springtime precipitation and temperature were anomalously enhanced and reduced respectively in South China, while the reverse was true in the western Yangtze River basin. In summer, precipitation was anomalously less in South China, more in the Yangtze River basin, less again in North China and more again in Northeast China, showing a distribution pattern alternating with negative and positive anomalies ("-, +, -, +"). Meanwhile, temperature shows a distribution of warming in South China, cooling in the Yangtze and Huaihe River basins, and warming again in northern China. In autumn, precipitation tended to decrease and temperature tended to increase in most parts of the country. In winter, precipitation increased moderately in South China and warming was the trend across all parts of China. The interdecadal decline of mean temperature in spring and summer in China was mainly due to the daily maximum temperature variation, while the interdecadal increase was mainly the result of the minimum temperature change. The overall warming in autumn (winter) was mostly influenced by the minimum (maximum) temperature variation. These changes were closely related to the north-south shifts of the ascending and descending branches of the Hadley cell, the strengthening and north-south progression of the westerly jet stream, and the atmospheric stratification and water vapor transport conditions.

  5. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  6. Climate change impact on the roles of temperature and precipitation in western U.S. snowpack variability

    Science.gov (United States)

    Scalzitti, Jason; Strong, Courtenay; Kochanski, Adam

    2016-05-01

    We employ dynamical downscaling and pseudo global warming methodologies to evaluate climate change impact on the roles of temperature and precipitation in spring snowpack (S) variability across the western United States (U.S.). The negative correlation between S and temperature weakens linearly with elevation, whereas the correlation between S and precipitation increases asymptotically with elevation. The curvilinear relationship in the latter case was not visible in prior studies because of the observation networks' limited range. In our historical validation, there is a range of threshold elevations (1580-2181 m) across six mountainous regions, above which precipitation is the main driver of snowpack variability and below which temperature is the main driver. Under a moderate end-of-century climate change scenario, these thresholds increase by 191 to 432 m. These rising thresholds indicate increasing spatial and elevational vulnerability of western U.S. spring snowpack along with associated impacts to hydrologic and ecologic systems.

  7. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  8. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  9. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  10. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  11. Worldwide influence of Lamb Weather Types on Temperature, Precipitation and Wind Speed

    Science.gov (United States)

    Cortesi, Nicola; Torralba, Veronica; Bretonnière, Pierre-Antoine; Gonzalez-Reviriego, Nube; Peña-Angulo, Dhais; Doblas-Reyes, Francisco Javier

    2016-04-01

    One of the main objectives of synoptic climatology is the detection of large-scale atmospheric drivers determining local climate variability. Especially in the extra-tropical regions, synoptic circulation plays an important role in driving local climate; for example, it is known that Atlantic weather fronts are responsible of a high amount of winter precipitation in Europe. In this research, the Weather Type catalogue developed by Lamb to classify the continuum of the atmospheric circulation in 10-26 classes was obtained individually at each grid point of the mean sea level pressure Era-Interim dataset (spatial resolution 0.7°), spanning the whole world. Although the analysis was performed globally, Tropical and Polar regions were excluded, the former because the Coriolis effect is weak at 0-23° N-S (nullifying the vorticity index), and the latter due to the spatial distortion of the Lamb grid at very high latitudes. Each resulting Weather Type was related to the local observed average daily 2-m Temperature, Precipitation and 10-m Wind speed anomalies from Era-Interim during last 30 years (1985-2014) to identify the Weather Types that behave as climate drivers at seasonal and yearly time scale. While some countries and regions have already been analysed in detail individually at higher spatial and/or temporal resolutions, this study provides a global view, filling the existing gap in literature, particularly in the Southern Hemisphere (South Africa, South America, Australia) and over oceans, providing a bigger picture of the influence of Weather Types on climate.

  12. Evidence for interfacial dissolution-precipitation during low-temperature mineral weathering

    Science.gov (United States)

    Ruiz-Agudo, Encarnacion; Putnis, Christine V.; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2013-04-01

    The dissolution of most common multicomponent minerals and glasses is typically "incongruent" as shown by the nonstoichiometric release of the solid phase components. This frequently results in the formation of so-called surface leached layers. The mechanism of this process has been a recurrent subject of research and debate over the past two decades, due to its relevance to a wide range of natural and technological processes, as well as being crucial in defining rate laws for mineral reactions. Here we report experimental, in situ nanoscale observations that confirm the formation of a cation depleted layer at the mineral-solution interface during dissolution of multicomponent minerals at acidic pH. Our in situ Atomic Force Microscopy studies of the dissolution of wollastonite, CaSiO3, and dolomite, Ca0.5Mg0.5CO3, combined with compositional analysis of reaction products, provide, for the first time, clear direct experimental evidence that cation-depleted (i.e. leached) layers are formed in a tight interface-coupled two step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase from a supersaturated boundary layer of fluid in contact with the mineral surface. Such a mechanism presents a new paradigm that differs from the concept of preferential leaching of cations, as postulated by most currently accepted incongruent dissolution models. References Ruiz Agudo, E; Putnis, CV; Rodríguez Navarro, C and Putnis, A. (2012) Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology, 40, 947-950 Urosevic, M; Rodríguez Navarro,C; Putnis, CV; Cardell, C; Putnis, A and Ruiz Agudo, E (2012) In situ nanoscale observations of the dissolution of [10-14] dolomite cleavage surfaces. Geochimica et Cosmochimica Acta, 80, 1-13

  13. Impacts of Interactive Dust and its Direct Radiative Forcing on Interannual Variations of Temperature and Precipitation in Winter over East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Sijia; Russell, Lynn M.; Yang, Yang; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2017-08-24

    We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leads to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of

  14. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  15. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat

    Science.gov (United States)

    Hýsek, Josef; Vavera, Radek; Růžek, Pavel

    2016-12-01

    In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).

  16. Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures

    Science.gov (United States)

    Chen, Z.; Peng, R. Lin; Moverare, J.; Avdovic, P.; Zhou, J. M.; Johansson, S.

    2016-07-01

    The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

  17. Historical and potential changes of precipitation and temperature of Alberta subjected to climate change impact: 1900-2100

    Science.gov (United States)

    Jiang, Rengui; Gan, Thian Yew; Xie, Jiancang; Wang, Ni; Kuo, Chun-Chao

    2017-02-01

    We investigated changes to precipitation and temperature of Alberta for historical and future periods. First, the Mann-Kendall test and Sen's slope were used to test for historical trends and trend magnitudes from the climate data of Alberta, respectively. Second, the Special Report on Emissions Scenarios (SRES) (A1B, A2, and B1) of CMIP3 (Phase 3 of Coupled Model Intercomparison Project), projected by seven general circulation models (GCM) of the Intergovernmental Panel on Climate Change (IPCC) for three 30 years periods (2020s, 2050s, and 2080s), were used to evaluate the potential impact of climate change on precipitation and temperature of Alberta. Third, trends of projected precipitation and temperature were investigated, and differences between historical versus projected trends were estimated. Using the 50-km resolution dataset from CANGRD (Canadian Grid Climate Data), we found that Alberta had become warmer and somewhat drier for the past 112 years (1900-2011), especially in central and southern Alberta. For observed precipitation, upward trends mainly occurred in northern Alberta and at the leeward side of Canadian Rocky Mountains. However, only about 13 to 22 % of observed precipitation showed statistically significant increasing trends at 5 % significant level. Most observed temperature showed significant increasing trends, up to 0.05 °C/year in DJF (December, January, and February) in northern Alberta. GCMs' SRES projections indicated that seasonal precipitation of Alberta could change from -25 to 36 %, while the temperature would increase from 2020s to 2080s, with the largest increase (6.8 °C) in DJF. In all 21 GCM-SRES cases considered, precipitation in both DJF and MAM (March, April, and May) is projected to increase, while temperature is consistently projected to increase in all seasons, which generally agree with the trends of historical precipitation and temperature. The SRES A1B scenario of CCSM3 might project more realistic future climate for

  18. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    Directory of Open Access Journals (Sweden)

    Benjamin Milkereit

    2014-03-01

    Full Text Available Time-temperature-precipitation (TTP diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  19. A temperature-precipitation based leafing model and its application in Northeast China.

    Directory of Open Access Journals (Sweden)

    Rong-Ping Li

    Full Text Available Plant phenology models, especially leafing models, play critical roles in evaluating the impact of climate change on the primary production of temperate plants. Existing models based on temperature alone could not accurately simulate plant leafing in arid and semi-arid regions. The objective of the present study was to test the suitability of the existing temperature-based leafing models in arid and semi-arid regions, and to develop a temperature-precipitation based leafing model (TP, based on the long-term (i.e., 12-27 years ground leafing observation data and meteorological data in Northeast China. The better simulation of leafing for all the plant species in Northeast China was given by TP with the fixed starting date (TPn than with the parameterized starting date (TPm, which gave the smallest average root mean square error (RMSE of 4.21 days. Tree leafing models were validated with independent data, and the coefficient of determination (R(2 was greater than 0.60 in 75% of the estimates by TP and the spring warming model (SW with the fixed starting date. The average RMSE of herb leafing simulated by TPn was 5.03 days, much lower than other models (>9.51 days, while the average R(2 of TPn and TPm were 0.68 and 0.57, respectively, much higher than the other models (<0.22. It indicates that TPn is a universal model and more suitable for simulating leafing of trees and herbs than the prior models. Furthermore, water is an important factor determining herb leafing in arid and semi-arid temperate regions.

  20. Relationship between extreme Precipitation and Temperature over Japan: An analysis from Multi-GCMs and Multi-RCMs products

    Science.gov (United States)

    Nayak, S.; Dairaku, K.; Takayabu, I.

    2014-12-01

    According to the IPCC reports, the concentration of CO­2 has been increasing and projected to be increased significantly in future (IPCC, 2012). This can have significant impacts on climate. For instance, Dairaku and Emori (2006) examined over south Asia by doubling CO2 and documented an increase in precipitation intensities during Indian summer monsoon. This would increase natural disasters such as floods, landslide, coastal disaster, erosion etc. Recent studies investigated whether the rate of increase of extreme precipitation is related with the rate expected by Clausius-Clapeyron (CC) relationship (approximately 7% per degree temperature rise). In our study, we examine whether this rate can increase or decrease in the future regional climate scenarios over Japan. We have analysed the ensemble experiments by three RCMs(NHRCM, NRAMS, WRF) forced by JRA25 as well as three GCMs (CCSM4, MIROC5, MRI-GCM3) for the current climate (1981-2000) and future scenario (2081-2100, RCP4.5) over Japan. We have stratified the extreme (99th, 95th, 90th, 75th percentile) precipitation of daily sum and daily maximum of hourly precipitation intensities of wet events based on daily mean temperature in bins of 1°C width for annual as well as for each season (DJF, MAM, JJA, SON). The results indicate that precipitation intensity increases when temperature increases roughly up to 22 °C and further increase of temperature decreases the precipitation intensities. The obtained results are consistent and match with the observation (APHRODITE dataset) over Japan. The decrease of precipitation at higher temperature mainly can be found in JJA. It is also noticed that the rate of specific humidity is estimated higher during JJA than other seasons. The rate of increase of extreme precipitation is similar to the rate expected by CC relation except DJF (nearly twice of CC relation) in current climate. This rate becomes to be significantly larger in future scenario for higher temperatures than

  1. Modeling effects of temperature and precipitation on carbon characteristics and GHGs emissions in Abies fabric forest of subalpine

    Institute of Scientific and Technical Information of China (English)

    LU Xuyang; CHENG Genwei; XIAO Feipeng; FAN Jihui

    2008-01-01

    Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China.It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes,A process-oriented biogeochemical model,Forest-DNDC,was applied to simulate the effects of climatic factors,temperature and precipitation changes on carbon characteristics,and greenhouse gases (GHGs) emissions inA.fabric forest.Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy.The model simulated carbon fluxes,soil carbon dynamics,soil CO2,N2O,and NO emissions with the changes of temperature and precipitation conditions.The results showed that with variation in the baseline temperature from-2℃ to+2℃,the gross primary production (GPP) and soil organic carbon (SOC)increased,and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate.With increasing baseline precipitation the GPP and NPP increased slightly,and the NEP and SOC showed decreasing trend.Soil CO2 emissions increased with the increase of temperature,and CO2 emissions changed little with increased baseline precipitation.With increased temperature and decreased baseline temperature,the total annual soil N2O emissions increased.With the variation of baseline temperature from -2℃ to +2℃,the total annual soil NO emissions increased.The total annual N2O and NO emissions showed increasing trends with the increase of precipitation.The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes,soil carbon dynamics,and soil GHGs emissions.The precipitation was not a principal factor affecting carbon fluxes,soil carbon dynamics,and soil CO2 emissions,but changes in precipitation could exert strong effect on soil N2O and NO emissions.

  2. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  3. Modeling the impact of changes in Atlantic sea surface temperature on the climate of West Africa

    Science.gov (United States)

    Adeniyi, Mojisola O.

    2016-08-01

    This study assesses the impacts of warming/cooling of the Atlantic sea surface temperature (SST) on the climate of West Africa using Version 4.4 of Regional Climate Model (RegCM4.4) of International Center for Theoretical Physics, Trieste, Italy. The 1-2 K cooling and warming of the Atlantic SST both result in tripole temperature and precipitation change structure, having a northwest-southeast orientation over West Africa. Findings reveal that the responses of precipitation and temperature to the Atlantic SST cooling are opposite to those for the Atlantic SST warming and these responses intensify with increased warming/cooling of the Atlantic SST. The structure of the change in climate is attributed to the response of atmospheric/soil moisture gradient and orientation of orography in West Africa.

  4. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on t

  5. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    NARCIS (Netherlands)

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations o

  6. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    NARCIS (Netherlands)

    Hu, Yu-Bin; Wolthers, Mariëtte|info:eu-repo/dai/nl/244773394; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations

  7. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years

    NARCIS (Netherlands)

    Peterse, F.|info:eu-repo/dai/nl/371172314; Martínez-García, A.; Zhou, B.; Beets, C.J.; Prins, M.A.; Zheng, H.; Eglinton, T.I.

    2014-01-01

    Our current understanding of past changes in East Asian summer monsoon (EASM) precipitation intensity derives from several loess–paleosol sequences and oxygen isotope (δ18O) records of well-dated stalagmites. Although temperature is generally presumed to have had minimal impact on EASM records, past

  8. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.D. [Universidad Autonoma Chapingo, Chapingo (Mexico)]. E-mail: dgomez@correo.chapingo.mx; Etchevers, J.D. [Instituto de Recursos Naturales, Colegio de Postgraduados, Montecillo, Edo. de Mexico (Mexico); Monterroso, A.I. [departamento de Suelos, Universidad Autonoma Chapingo, Chapingo (Mexico); Gay, G. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Campo, J. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Martinez, M. [Instituto de Recursos Naturales, Montecillo, Edo. de Mexico (Mexico)

    2008-01-15

    In regions of complex relief and scarce meteorological information it becomes difficult to implement techniques and models of numerical interpolation to elaborate reliable maps of climatic variables essential for the study of natural resources using the new tools of the geographic information systems. This paper presents a method for estimating annual and monthly mean values of temperature and precipitation, taking elements from simple interpolation methods and complementing them with some characteristics of more sophisticated methods. To determine temperature, simple linear regression equations were generated associating temperature with altitude of weather stations in the study region, which had been previously subdivided in accordance with humidity conditions and then applying such equations to the area's digital elevation model to obtain temperatures. The estimation of precipitation was based on the graphic method through the analysis of the meteorological systems that affect the regions of the study area throughout the year and considering the influence of mountain ridges on the movement of prevailing winds. Weather stations with data in nearby regions were analyzed according to their position in the landscape, exposure to humid winds, and false color associated with vegetation types. Weather station sites were used to reference the amount of rainfall; interpolation was attained using analogies with satellite images of false color to which a model of digital elevation was incorporated to find similar conditions within the study area. [Spanish] En las regiones de relieve complejo y con escasa informacion meteorologica se dificulta la aplicacion de las diferentes tecnicas y modelos de interpolacion numericos para elaborar mapas de variables climaticas confiables, indispensables para realizar estudios de los recursos naturales, con la utilizacion de las nuevas herramientas de los sistemas de informacion geografica. En este trabajo se presenta un metodo para

  9. Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivelu, V.; Selvadurai, A. Paul Blessington [Department of Physics, Anna University, Chennai 600044 (India); Zhao, Yongsheng; Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai 201203 (China); Murugaraj, R., E-mail: r.murugaraj@gmail.com [Department of Physics, Anna University, Chennai 600044 (India)

    2016-01-15

    In this present work, the Mn{sup 2+} and Co{sup 2+} ions doping and co-doping effect on the structural, vibrational, morphological, optical and magnetic behaviors of ZnO based dilute magnetic semiconductors are reported. The Zn{sub 0.95}Co{sub 0.05}O (ZC), Zn{sub 0.95}Mn{sub 0.05}O (ZM) and Zn{sub 0.90}Co{sub 0.05}Mn{sub 0.05}O (ZCM) samples were prepared by co-precipitation method. From the XRD analysis, it was observed that on the doping of Mn{sup 2+} ion in ZnO matrix, decreases their crystalline nature as well as the crystallite size significantly. The Raman spectra, Photoluminescence and electron paramagnetic resonance spectroscopy measurements reveal that the presence of defects in prepared samples. The UV-DRS spectroscopic exhibits the incorporation of dopant ions and their effect on the band gap subsequently. The magnetization measurements suggest the room temperature ferromagnetism (RTFM) in the prepared samples. The observed RTFM phenomenon was discussed based on the defects and grain confinement.

  10. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  11. An open-access CMIP5 pattern library for temperature and precipitation: description and methodology

    Science.gov (United States)

    Lynch, Cary; Hartin, Corinne; Bond-Lamberty, Ben; Kravitz, Ben

    2017-05-01

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares regression methods. We explore the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors between modeled and pattern-predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5 °C, but the choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation code are available at doi:10.5281/zenodo.495632.

  12. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China.

    Science.gov (United States)

    Hu, Zhaoyong; Wang, Genxu; Sun, Xiangyang

    2017-03-09

    Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L(-1), respectively, for DOC and were 0.38, 0.26, and 0.29 mg L(-1), respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha(-1)) and stand precipitation (98.52 kg ha(-1)), whereas the highest DON deposition was in BLF (3.62 kg ha(-1) bulk precipitation and 4.11 kg ha(-1) stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.

  13. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  14. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  15. Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects

    Science.gov (United States)

    Oueslati, Boutheina; Bony, Sandrine; Risi, Camille; Dufresne, Jean-Louis

    2016-11-01

    In this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius-Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections.

  16. Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution.

    Science.gov (United States)

    Gao, Y F; Nagai, M; Masuda, Y; Sato, F; Seo, W S; Koumoto, K

    2006-04-11

    A hydrotalcite-like film has been successfully deposited on an Al-bearing glass substrate based on an interface reaction between an Al layer and a zinc aqueous solution. The film selectively grew on the Al surface but not on the glass surface. The film on Al was composed of layered nanosheets of a hydrotalcite-like compound containing Al and Zn. Comparably, deposits on the plastic surface and precipitates in solution were wurzite-type ZnO with various morphologies depending upon the preparation conditions. At low supersaturation degrees, single crystals and superstructures of Zn-Al hydrotalcite were also obtained. This porous hydrotalcite film has a potential application as catalyst supports, environmental materials, or matrixes for hydrotalcite-based nanocomposite films. Using Al as a reaction interface makes it easy to coat porous hydrotalcites on a series of matrix materials varying in shapes and properties, which is important for achieving practical applications. In addition, the method developed should be widely applicable to other systems for the preparation of porous or oriented hydrotalcite-like thin films by an appropriate combination of divalent/trivalent solution-substrate systems.

  17. Impacts of the Two Biggest Lakes on Local Temperature and Precipitation in the Yellow River Source Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lijuan Wen

    2015-01-01

    Full Text Available The Tibetan Plateau harbors thousands of lakes; however few studies focus on impacts of lakes on local climate in the region. To investigate and quantify impacts of the two biggest lakes (Ngoring Lake and Gyaring Lake of the Yellow River source region in the Tibetan Plateau on local climate, two simulations (with and without the two large lakes from May 2010 to July 2011 are performed and analyzed using the WRF-CLM model (the weather research and forecasting model coupled with the community land model. Differences between simulated results show that the WRF-CLM model could provide realistic reproduction of surface observations and has better simulation after considering lakes. Lakes mostly reduce the maximum temperature all year round and increase the minimum temperature except in March due to the large heat capacity that makes lakes absorb (release more energy for the same temperature change compared to land. Lakes increase precipitation over the lake area and in the nearby region, mostly during 02–14 BT (Beijing Time of July to October when the warm lake surface induces the low level horizontal convergence and updraft over lake and provides energy and vapor to benefit the development of the convection for precipitation.

  18. On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania, Australia

    Science.gov (United States)

    White, Christopher J.; McInnes, Kathleen L.; Cechet, Robert P.; Corney, Stuart P.; Grose, Michael R.; Holz, Gregory K.; Katzfey, Jack J.; Bindoff, Nathaniel L.

    2013-12-01

    The ability of an ensemble of six GCMs, downscaled to a 0.1° lat/lon grid using the Conformal Cubic Atmospheric Model over Tasmania, Australia, to simulate observed extreme temperature and precipitation climatologies and statewide trends is assessed for 1961-2009 using a suite of extreme indices. The downscaled simulations have high skill in reproducing extreme temperatures, with the majority of models reproducing the statewide averaged sign and magnitude of recent observed trends of increasing warm days and warm nights and decreasing frost days. The warm spell duration index is however underestimated, while variance is generally overrepresented in the extreme temperature range across most regions. The simulations show a lower level of skill in modelling the amplitude of the extreme precipitation indices such as very wet days, but simulate the observed spatial patterns and variability. In general, simulations of dry extreme precipitation indices are underestimated in dryer areas and wet extremes indices are underestimated in wetter areas. Using two SRES emissions scenarios, the simulations indicate a significant increase in warm nights compared to a slightly more moderate increase in warm days, and an increase in maximum 1- and 5- day precipitation intensities interspersed with longer consecutive dry spells across Tasmania during the twenty-first century.

  19. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  20. RCM skill assessment applying precipitation, temperature and hydrological performance measures: comparing different RCM resolutions and bias correction methods

    Science.gov (United States)

    Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen; Widmann, Martin

    2017-04-01

    Global Climate Models (GCMs) are the main tool to assess futures changes in climate and their impacts. Due to their coarse resolution, GCMs fail to accurately simulate observed climate variables at the catchment scale. Therefore, climate researchers have focused on increasing model resolution by nesting Regional Climate Models (RCMs) into the GCMs for regional areas, a process known as dynamical downscaling. Commonly, RCMs also have simulation biases at the catchment scale and therefore statistical techniques, known as bias correction methods, are used to reduce such biases. In this project the skill to simulate precipitation and temperature from five reanalysis-driven Euro-CORDEX RCMs is evaluated. Furthermore, RCM precipitation and temperature outputs are coupled with a hydrological model (the HEC-HMS model) to simulate river flow at the catchment scale. Precipitation, temperature and hydrological biases are assessed using a range of metrics combining mean, extremes, time series and distribution measures. In order to evaluate the dynamical downscaling effect, the RCMs are analyzed at two resolutions: 0.44° and 0.11°. Additionally, both resolutions are bias-corrected employing the parametric quantile-mapping method: a) temperature is bias-corrected using the normal distribution, and b) precipitation is bias-corrected using the gamma and double-gamma distributions. Four catchments across England and Wales covering different climate conditions and topographical characteristics are used as study sites. The results from this study provide an overview of the skill of current state-of-the-art RCMs and their suitability for hydrological impact analysis at the catchment scale. Furthermore, for precipitation the study analyses the performance of the commonly-used gamma distribution quantile-mapping bias-correction method comparing it to the double-gamma distribution method considering their implications towards the simulation of hydrological impacts.

  1. A novel co-precipitation method for preparation of Mn--Ce/TiO2 composites for NOx reduction with NH3 at low temperature.

    Science.gov (United States)

    Sheng, Zhongyi; Hu, Yufeng; Xue, Jianming; Wang, Xiaoming; Liao, Weiping

    2012-01-01

    Mn--Ce/TiO2 catalyst prepared by a novel co-precipitation method was used in this study for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The catalyst showed high activity and good SO2 resistance. The NO conversion on the catalyst increased to 100% when 700 ppm of SO2 flowed in, and reached 60.8% in 2.5 h. The characterized results indicated that the catalyst prepared by the new method had good dispersion of the active phase, uniform micro-size particles and large Brunauer-Emmett-Teller surface. The temperature programmed reduction and temperature programmed desorption experiments showed that the improvement in SCR activity on the Mn--Ce/TiO2 catalyst might be due to the increase of active oxygen species and the enhancement of NH3 chemisorption, both of which were conducive to NH3 activation.

  2. Superacid Catalyst SO42-/ZrO2-La2O3 Prepared by Ultrasonic Co-precipitation and Low Temperature Aging

    Institute of Scientific and Technical Information of China (English)

    Tong-yun Chen; Xiang-feng Chu; Ke-liang Hu

    2009-01-01

    Sulfated zirconia-lanthana (SO42-/ZrO2-La2O3) precursors were prepared by ultrasonic co-precipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO42-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO42-/ZrO2-La2O3were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec-troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15℃) exhibited highly active sites and high catalytic property.

  3. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  4. Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments

    Science.gov (United States)

    Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.

    2012-12-01

    Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic

  5. Temperature and precipitation effects on agrarian economy in late imperial China

    Science.gov (United States)

    Pei, Qing; Zhang, David D.; Li, Guodong; Forêt, Philippe; Lee, Harry F.

    2016-06-01

    Climate change has been statistically proven to substantially influence the economy of early modern Europe, particularly in the long term. However, a detailed analysis of climate change and the economy of historical China remains lacking, particularly from a large-scale and quantitative perspective. This study quantitatively analyzes the relationship between climate change and the economy in late imperial China (AD 1600-1840) at the national level. This study also compares the findings on the relationship between climate change and the economy in late imperial China with those in early modern Europe. Results of multivariate regression and Granger causality analyses indicate that (1) climate change induces economic fluctuations in late imperial China, particularly in the long term; (2) given that the economic center is located in South China during the study period, temperature has a greater influence on the economy than precipitation; (3) the population of China is statistically proven to primarily act as consumers in the long term; and (4) given the long-term role of the Chinese population, the economic vulnerability in late imperial China under climate change is further increased and is higher than that in early modern Europe, whose population mainly acts as producers in the long term. In conclusion, the late imperial Chinese society has a high economic vulnerability to climate change. These findings revisit Malthusian theory and ‘Great Divergence’ theory by including the perspective of economic vulnerability under climate change during the study period. The role of the population must be investigated further to address the socioeconomic vulnerabilities under climate change.

  6. Analysis on Variations of the Temperature and Precipitation in North Slope Area of the Western Tianshan in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]The research aimed to analyze variation characteristics of the temperature and precipitation in north slope area of the Western Tianshan in recent 50 years.[Method] According to temperature and rainfall data from 1961 to 2010 at three meteorological stations in north slope area of the Western Tianshan,climate change in the zone in recent 50 years was analyzed by using linear trend analysis method and 5-year sliding average method.[Result] The temperature in north slope area of the Western Tiansha...

  7. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  8. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry.

    Science.gov (United States)

    Stack, Andrew G; Fernandez-Martinez, Alejandro; Allard, Lawrence F; Bañuelos, José L; Rother, Gernot; Anovitz, Lawrence M; Cole, David R; Waychunas, Glenn A

    2014-06-03

    Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.

  9. The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. Moen

    2004-06-01

    Full Text Available A continuous band of high ion temperature, which persisted for about 8h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00-15:00MLT auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti, respectively have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti, and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti, recurring on ~10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the open-closed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfvénic magnetosheath electrons and the response in the ionospheric

  10. A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature.

    Science.gov (United States)

    Shih, Yu-Jen; Liu, Chia-Hsun; Lan, Wei-Cheng; Huang, Yao-Hui

    2014-09-01

    Chemical oxo-precipitation (COP), which combines treatment with an oxidant and precipitation using metal salts, was developed for treating boron-containing water under milder conditions (room temperature, pH 10) than those of conventional coagulation processes. The concentration of boron compounds was 1000mg-BL(-1). They included boric acid (H3BO3) and perborate (NaBO3). Precipitation using calcium chloride eliminated 80% of the boron from the perborate solution, but was unable to treat boric acid. COP uses hydrogen peroxide (H2O2) to pretreat boric acid, substantially increasing the removal of boron from boric acid solution by chemical precipitation from less than 5% to 80%. Furthermore, of alkaline earth metals, barium ions are the most efficient precipitant, and can increase the 80% boron removal to 98.5% at [H2O2]/[B] and [Ba]/[B] molar ratios of 2 and 1, respectively. The residual boron in the end water of COP contained 15ppm-B: this value cannot be achieved using conventional coagulation processes.

  11. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India

    Indian Academy of Sciences (India)

    Dharmaveer Singh; Sanjay K Jain; R D Gupta

    2015-06-01

    Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future maximum temperature (Max), minimum temperature (Min) and precipitation in a part of Sutlej River Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3 under different emission scenarios and the National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model (SDSM). Variability and changes in Max, Min and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s. The study reveals rise in annual average Max, Min and precipitation under scenarios A1B and A2 for CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s. Increase in mean monthly Min is also observed for all months of the year under all scenarios of both the models. This is followed by decrease in Max during June, July August and September. However, the model projects rise in precipitation in months of July, August and September under A1B and A2 scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

  12. Experimental determination of barite dissolution and precipitation rates as a function of temperature and aqueous fluid composition

    Science.gov (United States)

    Zhen-Wu, B. Y.; Dideriksen, K.; Olsson, J.; Raahauge, P. J.; Stipp, S. L. S.; Oelkers, E. H.

    2016-12-01

    Barite dissolution and precipitation rates were investigated in closed system reactors, in which total aqueous NaCl concentrations ranged from 0 to 1.5 molal, pH from 2 to 9, and temperature from 25 to 90 °C. Measured barite dissolution and precipitation rates exhibited a reaction order of 0.2 and 1, respectively, with respect to the barite saturation state. Although these different reaction orders suggest distinctly different mechanisms for dissolution and precipitation, the rates for both processes approach equilibrium with a similar slope on a rate versus saturation state plot, consistent with the concept of micro-reversibility. Barite dissolution rate constants increase as a linear function of the square root of ionic strength but vary only slightly with pH. The dissolution rate dependence on temperature is consistent with an activation energy of 25 ± 2 kJ mol-1. Barite dissolution and precipitation rates are not significantly affected by the presence of aqueous calcium, magnesium or strontium. The rates measured in the study were generated in fluids similar to those found in sedimentary basins, ocean floor sediments and oil field reservoirs so the data may provide close estimates for the reactivity of barite during a variety of natural and industrial processes.

  13. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    Science.gov (United States)

    Dai, S.; Shulski, M.

    2013-12-01

    Climate warming and changes in rainfall patterns and increases in extreme events are resulting in higher risks of crop failures. A greater sense of urgency has been induced to understand the impacts of past climate on crop production in the U.S. As one of the most predominant sources of feed grains, corn is also the main source of U.S. ethanol. In the U.S. Corn Belt, region-scale evaluation on temperature and precipitation variability and extremes during the growing season is not well-documented yet. This study is part of the USDA-funded project 'Useful to Usable: Transforming climate variability and change information for cereal crop producers'. The overall goal of our work is to study the characteristics of average growing season conditions and changes in growing season temperature- and precipitation-based indices that are closely correlated with corn grain yield in the U.S. Corn Belt. The research area is the twelve major Corn Belt states, including IL, IN, IA, KS, MI, MN, MO, NE, OH, SD, ND, and WI. Climate data during 1981-2010 from 132 meteorological stations (elevation ranges from 122 m to 1,202 m) are used in this study, including daily minimum, maximum, and mean temperature, and daily precipitation. From 1981 to 2012, beginning date (BD), ending date (ED), and growing season length (GSL) in the climatological corn growing season are studied. Especially, during the agronomic corn growing season, from Apr to Oct, temperature- and precipitation-based indices are analyzed. The temperature-based indices include: number of days with daily mean temperature below 10°C, number of days with daily mean temperature above 30°C, the sum of growing degree days (GDD) between 10°C to 30°C (GDD10,30, growth range for corn), the sum of growing degree days above 30°C (GDD30+, exposure to harmful warming for corn), the sum of growing degree days between 0°C and 44°C (GDD0,44, survival range limits for corn), the sum of growing degree days between 5°C and 35°C (GDD5

  14. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    Science.gov (United States)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2016-09-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  15. Preliminary analysis on the relationships between Tibetan Plateau NDVI change and its surface heat source and precipitation of China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the automatic weather station data obtained from the Tibetan Plateau (TP), the normalized dif- ference vegetation index and the monthly precipitation data of China and by the methods of correlation and composite analysis, preliminary analytical results are achieved concerning the relationships be- tween TP NDVI change and its surface heat source and precipitation of China. The results of our re- search may lead to the following conclusions: (1) A positive correlation relationship exists between TP NDVI change and its surface heat source, including the sensible heat and the latent heat. As to the correlation of the former, it is more remarkable in western TP than in eastern TP, and as to the correla- tion of the latter, however it turns out contrary. (2) With the improvement of TP vegetation, its surface heat source of every season is also mainly reinforced, especially in summer. As to the contribution of the sensible heat and the latent heat to the increment of the TP surface heat source intensity, the for- mer is comparatively more significant than the latter in winter and spring, while in summer and autumn, the two have almost the same importance. (3) The correlation coefficient between summer NDVI over TP and the corresponding period precipitation of China displays a belt distribution of "+?+" from south to north China. (4) Anomalous surface heating field over TP derived from vegetation change is probably an important factor to affect summer precipitation of China.

  16. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    Science.gov (United States)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  17. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  18. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  19. RELATIONS BETWEEN GRACE-DERIVED WATER STORAGE CHANGE WITH PRECIPITATION AND TEMPERATURE OVER KAIDU RIVER BASIN, CHINA

    Directory of Open Access Journals (Sweden)

    J. Huang

    2016-06-01

    Full Text Available Water is essential for human survival and well-being, and important to virtually all sectors of the economy. In the aridzone of China’s west, water resource is the controlling factor on the distribution of human settlements. Water cycle variation is sensitive to temperature and precipitation, which are influenced by human activity and climate change. Satellite observations of Earth’s time-variable gravity field from the Gravity Recovery and Climate Experiment (GRACE mission, which enable direct measurement of changes of total terrestrial water storage, could be useful to aid this modelling. In this pilot study, TWS change from 2002 to 2013 obtained from GRACE satellite mission over the Kaidu River Basin in Xinjiang, China is presented. Precipitation and temperature data from in-situ station and National Satellite Meteorological Centre of China (NSMC are analysed to examine whether there is a statistically significant correlation between them.

  20. Cellular Precipitation at a 17-7 PH Stainless Steel Interphase Interface During Low-Temperature Nitridation

    Science.gov (United States)

    Wang, Danqi; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-07-01

    Cellular precipitation of Cr-rich nitrides was observed at an austenite-ferrite interface in 17-7 PH stainless steel after low-temperature nitridation. Fine-scale lamellar rocksalt-structured nitride (MN1- x , M: randomly distributed Fe, Cr, and Al) was identified at the interfaces between austenite and ferrite by local-electrode atom-probe tomography and transmission electron microscopy. The small size and spacing of the nitride lamellae reflect the low mobility of substitutional atoms under the conditions of low-temperature nitridation. Nitrides of the same structure were formed within the ferrite grain as extremely small particles. The face-centered cubic nitride precipitates in the Bain orientation relationship with the ferrite.

  1. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Cu cermets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism,namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.

  2. Assessment of Simulated Changes in Air Temperature and Precipitation over Central Asia via Multi-Model Ensemble Means of CMIP5 Models

    Science.gov (United States)

    Ozturk, Tugba; Tufan Turp, M.; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    In this study, we conducted a multi-model ensemble mean approach in order to investigate the projected changes in surface air temperatures and precipitation totals over Central Asia. Even though there are totally sixty seven different models of thirty modeling groups all around the world participating in the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP5), forty four models among them were used due to data availability. Central Asia (known as Region 8), which is one of twelve domains of the Coordinated Regional Climate Downscaling Experiment (CORDEX), was chosen as a domain of study. In this respect, we focused on two distinct scenarios (i.e. RCP4.5 and RCP8.5) for three different future periods (i.e. 2010-2040, 2040 - 2070 and 2070 - 2100) to examine accurately the foreseen changes in two fundamental climate variables (surface air temperature and precipitation total) for the Central Asia region. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  3. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  4. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  5. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  6. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  7. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  8. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  9. A new mean-extreme vector for the trends of temperature and precipitation over China during 1960-2013

    Science.gov (United States)

    Lyra, G. B.; Oliveira-Júnior, J. F.; Gois, G.; Cunha-Zeri, G.; Zeri, M.

    2016-06-01

    A mean-extreme (M-E) vector is defined to combine the changes of climate means and extremes. The direction of the vertical axis represents changes in means, whereas the direction of the horizontal axis represents changes in extremes. Therefore, the M-E vector can clearly reflect both the amplitude and direction of changes in climate means and extremes. Nine types of M-E vectors are defined. They are named as MuEu, MuEd, MuEz, MdEu, MdEd, MdEz, MzEu, MzEd, and MzEz. Here M and E stand for climate means and extremes, respectively, whereas u, d, and z indicate an upward, downward trend and no trend, respectively. Both temperature mean and extremely high temperature days are consistently increased (MuEu) in nearly whole China throughout four seasons. However, the MuEd-type vector dominates in some regions. The MuEd-type vector appears over the Huang Huai river basin in spring, summer and winter. For the M-E vector of temperature mean and extremely low temperature days, the MuEd-type spreads the entire China for all seasons. The M-E vector for precipitation mean and the extreme precipitation days possesses identical trends (MuEu or MdEd) despite of seasons. The MuEu-type dominates in northeastern China and west of 105°E in spring, northwestern and central/southern China in summer, west of 100°E and northeastern China in autumn, and nearly whole China in winter. Precipitation mean and extreme precipitation days are all decreased (MdEd) in the rest of China for all reasons. The trends relationship in means and extremes over China presented herein could provide a scientific foundation to predict change of extremes using change of mean as the predictor.

  10. Identifying and attributing common data quality problems: temperature and precipitation observations in Bolivia and Peru

    Science.gov (United States)

    Hunziker, Stefan; Gubler, Stefanie; Calle, Juan; Moreno, Isabel; Andrade, Marcos; Velarde, Fernando; Ticona, Laura; Carrasco, Gualberto; Castellón, Yaruska; Oria Rojas, Clara; Brönnimann, Stefan; Croci-Maspoli, Mischa; Konzelmann, Thomas; Rohrer, Mario

    2016-04-01

    Assessing climatological trends and extreme events requires high-quality data. However, for many regions of the world, observational data of the desired quality is not available. In order to eliminate errors in the data, quality control (QC) should be applied before data analysis. If the data still contains undetected errors and quality problems after QC, a consequence may be misleading and erroneous results. A region which is seriously affected by observational data quality problems is the Central Andes. At the same time, climatological information on ongoing climate change and climate risks are of utmost importance in this area due to its vulnerability to meteorological extreme events and climatic changes. Beside data quality issues, the lack of metadata and the low station network density complicate quality control and assessment, and hence, appropriate application of the data. Errors and data problems may occur at any point of the data generation chain, e.g. due to unsuitable station configuration or siting, poor station maintenance, erroneous instrument reading, or inaccurate data digitalization and post processing. Different measurement conditions in the predominantly conventional station networks in Bolivia and Peru compared to the mostly automated networks e.g. in Europe or Northern America may cause different types of errors. Hence, applying QC methods used on state of the art networks to Bolivian and Peruvian climate observations may not be suitable or sufficient. A comprehensive amount of Bolivian and Peruvian maximum and minimum temperature and precipitation in-situ measurements were analyzed to detect and describe common data quality problems. Furthermore, station visits and reviews of the original documents were done. Some of the errors could be attributed to a specific source. Such information is of great importance for data users, since it allows them to decide for what applications the data still can be used. In ideal cases, it may even allow to

  11. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Directory of Open Access Journals (Sweden)

    M. Vrac

    2007-12-01

    Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.

    To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.

    Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of

  12. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  13. Preliminary analysis on the relationships between Tibetan Plateau NDVI change and its surface heat source and precipitation of China

    Institute of Scientific and Technical Information of China (English)

    HUA Wei; FAN GuangZhou; ZHOU DingWen; NI ChangJian; LI XueMin; WANG YongLi; LIU YaQin; HUANG XianLun

    2008-01-01

    Using the automatic weather station data obtained from the Tibetan Plateau (TP), the normalized dif-ference vegetation index and the monthly precipitation data of China and by the methods of correlation and composite analysis, preliminary analytical results are achieved concerning the relationships be-tween TP NDVI change and its surface heat source and precipitation of China. The results of our re-search may lead to the following conclusions: (1) A positive correlation relationship exists between TP NDVI change and its surface heat source, including the sensible heat and the latent heat. As to the correlation of the former, it is more remarkable in western TP than in eastern TP, and as to the correla-tion of the latter, however it turns out contrary. (2) With the improvement of TP vegetation, its surface heat source of every season is also mainly reinforced, especially in summer. As to the contribution of the sensible heat and the latent heat to the increment of the TP surface heat source intensity, the for-mer is comparatively more significant than the latter in winter and spring, while in summer and autumn, the two have almost the same importance. (3) The correlation coefficient between summer NDVI over TP and the corresponding period precipitation of China displays a belt distribution of "+-+" from south to north China. (4) Anomalous surface heating field over TP derived from vegetation change is probably an important factor to affect summer precipitation of China.keywords Tibetan Plateau, vegetation change, surface heat source, precipitation of China.

  14. Climate Reconstructions of the Younger Dryas: An ELA Model Investigating Variability in ELA Depressions, Temperature, and Precipitation Changes for the Graubϋnden Alps

    Science.gov (United States)

    Keeler, D. G.; Rupper, S.; Schaefer, J. M.; Finkel, R. C.

    2015-12-01

    The high sensitivity of mountain glaciers to even small perturbations in climate, combined with a near global distribution, make alpine glaciers an important target for terrestrial paleoclimate reconstructions. The geomorphic remnant of past glaciers can yield important insights into past climate, particularly in regions where other methods of reconstruction are not possible. The quantitative conversion of these changes in geomorphology to a climate signal, however, presents a significant challenge. A particular need exists for a versatile climate reconstruction method applicable to diverse glacierized regions around the globe. Because the glacier equilibrium line altitude (ELA) provides a more explicit comparison of climate than properties such as glacier length or area, ELA methods lend themselves well to such a need, and allow for a more direct investigation of the primary drivers of mountain glaciations during specific events. Here, we present an ELA model for quantifying changes in climate based on changes in glacier extent, while accounting for differences in glacier width, glacier shape, bed topography, ice thickness, and glacier length. The model furthermore provides bounds on the ΔELA using Monte Carlo simulations. These methods are validated using published mass balances and ELA measurements from 4 modern glaciers in the European Alps. We then use this ELA model, combined with a surface mass and energy balance model, to estimate the changes in temperature/precipitation between the Younger Dryas (constrained by 10Be surface exposure ages) and the present day for three glacier systems in the Graubϋnden Alps. Our results indicate an ELA depression in this area of 257 m ±45 m during the Younger Dryas (YD) relative to today. This corresponds to a 1.3 °C ±0.36 °C decrease in temperature or a 156% ±30% increase in precipitation relative to today. These results indicate the likelihood of a predominantly temperature-driven change rather than a strong

  15. Changes in inter-annual variability of precipitation and temperature over Mexico and Central America from RegCM projections

    Science.gov (United States)

    Fuentes-Franco, Ramon; Coppola, Erika; Tefera Diro, Gulilat; Giorgi, Filippo; Pavia, Edgar G.; Graef, Federico

    2013-04-01

    Future climate projections performed with the Regional Climate Model (RegCM4) are used to analyze the future changes on inter-annual variability of precipitation and temperature over Mexico and Central America. Two different global circulation models from the Couple Model Intercomparison Project phase 5 (CMPI5) are used as boundary conditions for two different RegCM4 configurations, which result in four different climate projections. Through a comparison of the precipitation annual cycles in reference period with future simulations, a shift in the annual cycle is found over Northwestern Mexico and Central America. During the rainy season (June to September), it is found an increase in the inter-annual variability of precipitation and temperature, together with a warming greater than 4°C in the mean seasonal temperature and a drying of more than 20%. An increased warming on the Eastern Pacific Ocean compared to the Tropical North Atlantic Ocean potentially generates a strengthened North Atlantic Subtropical High Pressure and also a stronger Caribbean Low Level Jet. This future ENSO-like state appears to be the mechanism driving the drying over the region

  16. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  17. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  18. Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles

    Science.gov (United States)

    Fang, Mei; Ström, Valter; Olsson, Richard T.; Belova, Lyubov; Rao, K. V.

    2012-04-01

    Magnetite nanoparticles have been prepared by co-precipitation using a custom-designed jet mixer to achieve rapid mixing (RM) of reactants in a timescale of milliseconds. The quick and stable nucleation obtained allows control of the particle size and size distribution via a more defined growth process. Nanoparticles of different sizes were prepared by controlling the processing temperature in the first few seconds post-mixing. The average size of the nanoparticles investigated using a Tecnai transmission electron microscope is found to increase with the temperature from 3.8 nm at 1 ± 1 °C to 10.9 nm for particles grown at 95 ± 1 °C. The temperature dependence of the size distribution follows the same trend and is explained in terms of Ostwald ripening of the magnetite nanoparticles during the co-precipitation of Fe2+ and Fe3+. The magnetic properties were studied by monitoring the blocking temperature via both DC and AC techniques. Strikingly, the obtained RM particles maintain the high magnetization (as high as ˜88 A m2 kg-1 at 500 kA m-1) while the coercivity is as low as ˜12 A m-1 with the expected temperature dependence. Besides, by adding a drop of tetramethylammonium hydroxide, aqueous ferrofluids with long term stability are obtained, suggesting their suitability for applications in ferrofluid technology and biomedicine.

  19. The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble

    Institute of Scientific and Technical Information of China (English)

    XU Chong-Hai; XU Ying

    2012-01-01

    Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011–2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.

  20. Assessment of High-Resolution Simulations of Precipitation and Temperature Characteristics Over Western Canada Using WRF Model

    Science.gov (United States)

    Asong, Z. E.

    2016-12-01

    Lack of accurate estimates of precipitation are an important limitation for hydrological and earth systems modelling in Canada. Ground-based measurements are inevitably limited, given the large land area and small population density, fail to capture the effects of mountain topography in important runoff-producing areas and suffer from gross inaccuracies associated with cold climate precipitation processes. The capability of the current generation of atmospheric models to represent precipitation is therefore of major interest for hydrological practice. The skill of a high-resolution 4-km convection resolving regional climate model (RCM)―Weather Research and Forecasting (WRF) in capturing the statistics of daily-scale precipitation (P) and temperature (T) over western Canada within the period 2002 - 2013, using observational data sets for comparison is evaluated in this study. We analyze not only the mean pattern of P and T distributions, but also the inter-annual variability and trends in higher order climate statistics such as wet-dry day frequency, spell lengths, 95th percentile daily maximum T, 5th percentile daily minimum T, and 95th percentile daily P are evaluated against ground observations. This preliminary assessment should enable more informed application of high-resolution RCMs for the investigation of current and future changes in socio-economic and environmentally relevant hydro-climatic characteristics over this topographically complex region of western Canada.

  1. Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change

    Science.gov (United States)

    Moon, Suyeon; Ha, Kyung-Ja

    2017-05-01

    Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models' MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models' MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced

  2. Quantifying the present-day human influence on temperature, precipitation, and runoff in an pre-Alpine Swiss catchment

    Science.gov (United States)

    Mülchi, Regula; Rössler, Ole; Romppainen-Martius, Olivia; Pall, Pardeep; Weingartner, Rolf

    2017-04-01

    Understanding the influence of anthropogenic greenhouse gas (GHG) emissions on climate and environmental variables is still a challenge in science. Many detection and attribution studies have been carried out focusing on global and regional scales or on single events. However, the influence of anthropogenic greenhouse gas emission on both, runoff regime and driving meteorological characteristics is still an open question. This study assesses the influence of anthropogenic GHG emissions on temperature, precipitation, and river runoff in a pre-Alpine catchment in Switzerland. For this purpose, thousands of one-year (April 2000-March 2001) simulations representing both, a present-day climate with actual anthropogenic GHG concentrations (A2000), and a climate with pre-industrial GHG concentrations (A2000N) were bias-corrected and used to analyze changes in temperature and precipitation. The two variables were then used to drive the hydrological model GR4J including the snow module Cemaneige for the river Thur (1700 km2). Comparing the runoff of the two scenarios and calculating the fraction of attributable risk (FAR) as well as the change in probability of occurrence (PR) for specific runoff thresholds enabled the assessment of the influence of anthropogenic GHG emissions. We found higher mean runoff in winter and spring in the A2000 scenario compared to the A2000N scenario. This is mainly caused by the combination of higher precipitation and higher temperatures in winter resulting in less snow accumulation in the A2000 scenario. Therefore, more liquid water is available in the hydrological model leading to enhanced runoff. In contrast, the A2000 simulations exhibit lower runoff in summer and autumn than the A2000N simulations. We relate this to higher temperatures in the A2000 scenario enhancing evapotranspiration and lower precipitation amounts. The calculation of FAR and PR for different runoff thresholds indicates that the FAR and PR increase with higher thresholds

  3. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2017-07-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  4. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2016-03-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  5. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  6. Applications of remote sensing and GIS in surface hydrology: Snow cover, soil moisture and precipitation

    Science.gov (United States)

    Wang, Xianwei

    Studies on surface hydrology can generally be classified into two categories, observation for different components of surface water, and modeling their dynamic movements. This study only focuses on observation part of surface water components: snow cover, soil moisture, and precipitation. Moreover, instead of discussion on the detailed algorithm and instrument technique behind each component, this dissertation pours efforts on analysis of the standard remotely sensed products and their applications under different settings. First in Chapter 2, validation of MODIS Terra 8-day maximum snow cover composite (MOD10A2) in the Northern Xinjiang, China, from 2000-2006, shows that the 8-day MODIS/Terra product has high agreements with in situ measurements as the in situ snow depth is larger or equal to 4 cm, while the agreement is low for the patchy snow as the in situ snow depth less than 4 cm. According to the in situ observation, this chapter develops an empirical algorithm to separate the cloud-covered pixels into snow and no snow. Continued long-term production of MODIS-type snow cover product is critical to assess water resources of the study area, as well as other larger scale global environment monitoring. Terra and Aqua satellites carry the same MODIS instrument and provide two parallel MODIS daily snow cover products at different time (local time 10:30 am and 1:30 pm, respectively). Chapter 3 develops an algorithm and automated scripts to combine the daily MODIS Terra (MOD10A1) and Aqua (MYD10A1) snow cover products, and to automatically generate multi-day Terra-Aqua snow cover image composites, with flexible starting and ending dates and a user-defined cloud cover threshold. Chapter 4 systematically compares the difference between MODIS Terra and Aqua snow cover products within a hydrologic year of 2003-2004, validates the MODIS Terra and Aqua snow cover products using in situ measurements in Northern Xinjiang, and compares the accuracy among the standard MODIS

  7. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  8. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  9. Room Temperature Synthesis of Magnetite (Fe3-δO4) Nanoparticles by a Simple Reverse Co-Precipitation Method

    Science.gov (United States)

    Mahmed, N.; Heczko, O.; Söderberg, O.; Hannula, S.-P.

    2011-10-01

    Magnetite (Fe3-δO4) nanoparticles with the size less than 30 nm have been synthesized by using a simple reverse co-precipitation method at room temperature. During the process, ferrous sulfate (FeSO4·7H2O) powder was used as an iron precursor, and ammonium hydroxide (NH4OH) as a precipitating agent. The experiment was carried out in ambient atmosphere without any surfactant added. In this method, the base solution for the precipitation process was adjusted to have a pH value suitable for the formation of the magnetite phase. The iron salt precursor was added into the solution during the synthesis by two different synthesis protocols. The phase, morphology and magnetic characteristic of differently synthesized magnetite particles were characterized by using an X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The morphologies of the particles were spherical or irregular in shape depending on the synthesis protocol used. Magnetic measurement shows that the particles are ferromagnetic at room temperature with relatively high saturation magnetization and low hysteresis. The saturation magnetization and magnetic hysteresis of the particles varied with preparation reaction conditions and the resulting oxidation state of the particles.

  10. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  11. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  12. The seasonal in-situ mass balance, temperature and precipitation of Yala Glacier, Langtang Valley, Nepal, from 2011 to 2015

    Science.gov (United States)

    Stumm, Dorothea; Fujita, Koji; Gurung, Tika; Joshi, Sharad; Litt, Maxime; Shea, Joseph; Sherpa, Mingma; Sinisalo, Anna; Wagnon, Patrick

    2016-04-01

    In-situ glacier mass balance measurements are still scarce in the Hindu Kush Himalayan (HKH) region and little is known about the seasonal balances. The glaciers in the Nepalese Himalaya have been considered summer accumulation glacier types because of the assumption that the majority of the accumulation occurs in the summer months during the monsoon. The glacier mass balance of Yala Glacier in the Langtang Valley of Nepal has been measured using the glaciological method since autumn 2011. Stakes were measured biannually in pre- and post-monsoon, usually in early May and in November, respectively. The measured mass balance gradient for the summer balance was larger than the winter balance, which is typical for glaciers with distinct ablation and accumulation seasons. On Yala Glacier, the summer balance was negative, and the winter balance was positive in all years with measurements. However, the annual net balance was negative for all four mass balance years from 2011 to 2015. The mass balances were further compared to temperature and precipitation data measured at nearby climate stations during the same time periods. In October 2013 and 2014, the Central Himalayas received large amounts of precipitation brought by the cyclones Phailin and Hudhud. These precipitation events contributed to the summer balance since the measurements were taken after the cyclones passed. In conclusion, on Yala Glacier accumulation processes dominated ablation processes during the winter, and ablation processes dominated during the summer, which could be explained by the low elevation range of Yala Glacier and precipitation from westerlies in the winter. Hence, this should be kept in mind when using the term 'summer accumulation glacier' for Yala Glacier. For future research in the HKH region, seasonal mass balances should be measured, and the processes impacting the mass balance and the role of winter precipitation should be investigated for other glaciers in the HKH region.

  13. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  14. On the dynamics of the July 2010 Pakistan precipitation events and the central role of land surface - atmosphere interactions

    Science.gov (United States)

    Martius, O.; Sodemann, H.; Joos, H.; Pfahl, S.; Winnschall, A.; Croci-Maspoli, M.; Graf, M.; Madonna, E.; Mueller, B.; Schemm, S.; Sedlacek, J.; Sprenger, M.; Wernli, H.

    2012-04-01

    In July and early August 2010 Russia was afflicted by an unprecedented heat wave and by drought conditions that lead to the death of several thousand people, forest fires, and significant losses in crop harvest. Concomitantly several severe precipitation events and ensuing floods affected Pakistan. At times more than 20% of the country was submerged, causing a humanitarian catastrophe and resulting in significant agricultural and economical losses. The two events did not occur independently and were dynamically closely linked. At upper-levels the flow over western Russia was dominated by the recurrent formation of long-lived anticyclones, so-called blocks during July and early August. Along the downstream flank of these blocks several upper-level troughs formed. These troughs were positive upper-level potential vorticity (PV) anomalies that significantly influenced the low-level wind field over Pakistan. The upper-level anomalies enforced the surface flow component perpendicular to the Himalaya mountains. The ensuing forced lifting of very moist air masses resulted in significant precipitation amounts. Compared to climatology the frequency of upper-level troughs was highly unusual. Besides the upper-level forcing, evapotranspiration and large-scale advection over land was of fundamental importance for the precipitation events. Detailed analyses of the moisture pathways from the Indian Ocean to northeastern Pakistan using trajectory analyses revealed that a substantial fraction of the moisture that was rained-out over northeastern Pakistan stemmed from the land surface. This is confirmed by model experiments where the moisture flux from the land surface into the atmosphere over Pakistan was turned off 48 hours prior to the onset of a major precipitation event. For this event the area mean precipitation over northeastern Pakistan was reduced by 60% in the experiment compared to a control simulation (this corresponds to a reduction of the area mean 48-hour

  15. The hydrological cycle in the high Pamir Mountains: how temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan

    Science.gov (United States)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2014-12-01

    Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual

  16. Assessing the impacts of changing precipitation and temperature extremes on the current and future ecohydrology of grassland ecosystems

    Science.gov (United States)

    Brunsell, N. A.; Nippert, J. B.; Ocheltree, T.

    2012-12-01

    Extreme weather events have profound impacts on water and carbon cycling. However, events of similar magnitude may have very different impacts depending upon the timing of the event in the phenological cycle. We assess these impacts of extreme daily weather events including precipitation, maximum and minimum temperature using data collected from the Konza Prairie Long Term Ecological Research site in the central U.S. We utilize the long term weather and biomass collection data at the LTER site to examine the historical variability of extreme events and the impacts on annual carbon dynamics. Timescales of interactions between daily weather and fluxes are quantified through a multiscale information theoretic approach. In addition, we quantify the impacts of the timing and magnitude of extreme events through a Critical Climate Period (CCP) analysis. Results indicate a strong sensitivity to spring precipitation and summer temperature. Using six years of eddy covariance data, we can isolate more of the biophysical mechanisms governing the responses to extreme weather events. Of particular interest is the heat wave of July, 2011, where daily maximum temperatures were over 38 C for 24 consecutive days and resulted in drastically reduced above ground carbon allocation than in previous years. In addition, we employ the Agro-BGC model to assess the biophysical processes responsible for determining the response of water and carbon dynamics to extreme weather events. This is done by employing a stochastic weather generator with prescribed changes in annual precipitation and temperature conistent with GCM projections. Developing a more thorough understanding of extreme events and the differential responses due to the timing and magnitude of the events will potentially assist in the mitigation of future climate change.

  17. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  18. The use of partial thickness method and zero wet bulb temperature for discriminating precipitation type during winter months at the Ebro basin in Spain

    Science.gov (United States)

    Buisan, S.; Revuelto, J.

    2010-09-01

    The forecast office of the State Meteorological Agency of Spain (AEMET) which is located in the city of Zaragoza provides weather forecast, warnings and aviation forecast products for Aragón, Navarra and La Rioja regions. This area of Spain lies mainly on the Ebro river basin. Although the likelihood of snowfall in this territory is low, a forecasting of snow-depth higher than 5cm for low elevations activates the orange warning which must be issued to local emergency management and civil protection authorities. Zero wet bulb temperature has been historically the main tool for forecasting the altitude of snow-rain boundary at the forecast office; it shows the freezing level limit due to evaporational cooling when lower troposphere is saturated from aloft. This work adds two new parameters, the 1000-850 mb and the 850-700 mb thickness in order to characterize the thermal structure of surface based cold air and atmospheric mid-levels. The three main airports in this area Zaragoza-Aragón, Logroño-La Rioja and Pamplona-Navarra are located at altitudes below 500 m. They are thus suitable for this study. In addition, more than 16 years of meteorological observations every hour, known as METAR (Meteorological Aerodrome Report), are available at these locations. These observations were analysed and the predominant precipitation type during a six-hour period was characterized. The 00h, 06h, 12h and 18h analysis time of the ECMWF Forecast model were employed in order to get the parameters at the day and time when the precipitation took place. The most representative grid point of the model for each airport was chosen in order to illustrate the atmospheric conditions. A correlation between precipitation type and zero wet bulb temperature, 1000-850 mb and the 850-700 mb thickness was done for more than 230 different situations during a 16 year period. As a result, we plotted a series of site specific charts for each airport based on these parameters, in order to describe the

  19. GHCN Version 3 Land Temperature and Version 2 Land Precipitation Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains gridded mean temperature anomalies from the Global Historical Climatology Network-Monthly (GHCN-M) version 3.3.0 temperature data set. The...

  20. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  1. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  2. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  3. 2003 Average Monthly Sea Surface Temperature for California