WorldWideScience

Sample records for surface temperature due

  1. Investigating the Impacts of Surface Temperature Anomalies Due to Wildfires in Northern Sub-Saharan Africa

    Science.gov (United States)

    Gabbert, T.; Ichoku, C. M.; Matsui, T.; Capehart, W. J.

    2014-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense study due to the recent severe droughts that have dire consequences on the population, which relies mostly on rainfed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate some of the fire-induced surface temperature anomalies and other environmental processes. In this presentation, we will report the strategy for these simulations, and show some preliminary results.

  2. Temperature dependent surface modification of molybdenum due to low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Novakowski, T.J.; Joseph, G. [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Hassanein, A. [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-09-15

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He{sup +} ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10{sup 24} ions m{sup −2} (with a flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1}). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO{sub 3} 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.

  3. Errors of five-day mean surface wind and temperature conditions due to inadequate sampling

    Science.gov (United States)

    Legler, David M.

    1991-01-01

    Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.

  4. Investigating the Impacts of Surface Temperature Anomalies due to Burned Area Albedo in Northern sub-Saharan Africa

    Science.gov (United States)

    Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.

    2015-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.

  5. An Updated Estimation of Radiative Forcing due to CO2 and Its Effect on Global Surface Temperature Change

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; ZHANG Ruoyu; SHI Guangyu

    2013-01-01

    New estimations of radiative forcing due to CO2 were calculated using updated concentration data of CO2 and a high-resolution radiative transfer model.The stratospheric adjusted radiative forcing (ARF)due to CO2 from the year 1750 to the updated year of 2010 was found to have increased to 1.95 W m-2,which was 17% larger than that of the IPCC's 4th Assessment Report because of the rapid increase in CO2 concentrations since 2005.A new formula is proposed to accurately describe the relationship between the ARF of CO2 and its concentration.Furthermore,according to the relationship between the ARF and surface temperature change,possible changes in equilibrium surface temperature were estimated under the scenarios that the concentration of CO2 increases to 1.5,2,2.5,3,3.5 and 4 times that of the concentration in the year 2008.The result was values of +2.2℃,+3.8℃,+5.1℃,+6.2℃,+7.1℃ and +8.0℃ respectively,based on a middle-level climate sensitivity parameter of 0.8 K (W m-2)-1.Non-equilibrium surface temperature changes over the next 500 years were also calculated under two kinds of emission scenarios (pulsed and sustained emissions) as a comparison,according to the Absolute Global Temperature change Potential (AGTP) of CO2.Results showed that CO2 will likely continue to contribute to global warming if no emission controls are imposed,and the effect on the Earth-atmosphere system will be difficult to restore to its original level.

  6. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  7. External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions

    Science.gov (United States)

    Lee, Kwan; Jang, Jung-tak; Nakano, Hiroshi; Nakagawa, Shigeki; Paek, Sun Ha; Bae, Seongtae

    2017-02-01

    Although the blocking temperature of superparamagnetic nanoparticles (SPNPs) is crucial for various spintronics and biomedical applications, the precise determination of the blocking temperature is still not clear. Here, we present ‘intrinsic’ and ‘extrinsic’ characteristics of the blocking temperature in SPNP systems. In zero-field-cooled/field-cooled (ZFC-FC) curves, there was no shift of ‘intrinsic blocking temperature’ at different applied external (excitation) magnetic fields. However, ‘extrinsic blocking temperature’ shift is clearly dependent on the external (excitation) magnetic field. According to our newly proposed physical model, the ‘intermediate spin layer’ located between the core and surface disordered spin layers is primarily responsible for the physical nature of the shift of extrinsic blocking temperature. Our new findings offer possibilities for characterizing the thermally induced physical properties of SPNPs. Furthermore, these findings provide a new empirical approach to indirectly estimate the qualitative degree of the disordered surface spin status in SPNPs.

  8. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  9. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    Science.gov (United States)

    Novakowski, T. J.; Tripathi, J. K.; Hassanein, A.

    2015-12-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He+ ion irradiation at different temperatures in the range of 823-1223 K. The samples were irradiated at normal incidence with 100 eV He+ ions at constant flux of 1.2 × 1021 ions m-2 s-1 to a total fluence of 4.3 × 1024 ions m-2. An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 1025 ions m-2 (at the same flux of 1.2 × 1021 ions m-2 s-1), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  10. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    Science.gov (United States)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2017-04-01

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment and understanding of fire’s influence on the global annual land surface air temperature and energy budget through its impact on terrestrial ecosystems. Fire impacts are quantified by comparing fire-on and fire-off simulations with the Community Earth System Model (CESM). Results show that, for the 20th century average, fire-induced changes in terrestrial ecosystems significantly increase global land annual mean surface air temperature by 0.18 °C, decrease surface net radiation and latent heat flux by 1.08 W m-2 and 0.99 W m-2, respectively, and have limited influence on sensible heat flux (-0.11 W m-2) and ground heat flux (+0.02 W m-2). Fire impacts are most clearly seen in the tropical savannas. Our analyses suggest that fire increases surface air temperature predominantly by reducing latent heat flux, mainly due to fire-induced damage to the vegetation canopy, and decreases net radiation primarily because fire-induced surface warming significantly increases upward surface longwave radiation. This study provides an integrated estimate of fire and induced changes in ecosystems, climate, and energy budget at a global scale, and emphasizes the importance of a consistent and integrated understanding of fire effects.

  11. Assessment of surface dryness due to deforestation using satellite-based temperature-vegetation dryness index (TVDI) in Rondônia, Amazon

    Science.gov (United States)

    Ryu, J. H.; Cho, J.

    2016-12-01

    The Rondônia is the most deforested region in the Amazon due to human activities such as forest lumbering for the several decades. The deforestation affects to water cycle because evapotranspiration was reduced, and then soil moisture and precipitation will be changed. In this study, we assess surface dryness using satellite-based data such as moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST), normalized difference vegetation index (NDVI), albedo, TRMM Multi-sensor Precipitation Analysis (TMPA) precipitation from 2002 to 2014, and Global Ozone Monitoring Experiment-2 (GOME-2) sun-induced fluorescence (SIF) from 2007 to 2014. Temperature-vegetation dryness index (TVDI) was calculated using LST and NDVI to evaluate surface dryness during dry season (June-July). TVDI relatively represents the surface dryness on specific area and period. Forest, deforesting and deforested regions were selected in the Rondônia to assess the relative changes on surface dryness occurred from human activity. The relative TVDI (rTVDI) at deforesting region increased because of deforestation, it means that surface in deforesting region became more dryness. We also found that to assess the impact of deforestation using satellite-based precipitation and vegetation conditions such as NDVI and sun-induced fluorescence (SIF) is possible. The relative NDVI (rNDVI) and SIF decreased when TVDI increased, and two variables (rTVDI-rNDVI, rTVDI-SIF) had linear correlation. Thesis results can be helpful to comprehend impact of deforestation in Amazon, and to validate simulations of deforestation from hydrological models.

  12. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  13. Unsteady laminar mixed convection boundary layer flow near a vertical wedge due to oscillations in the free-stream and surface temperature

    Directory of Open Access Journals (Sweden)

    Roy N.C.

    2016-02-01

    Full Text Available The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.

  14. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  15. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  16. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  17. Climatic change due to land surface alterations

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, S.H.; Rao, V.B.

    1992-01-01

    A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones. Deforestation, desertification, and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation, and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.

  18. Segmental equivalent temperature determined by means of a thermal manikin: A method for correcting errors due to incomplete contact of the body with a surface

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Janieas, N.R.D.J.; Silva, M.C.G.

    2004-01-01

    The segmental equivalent temperature determined by means of a thermal manikin is often correlated with the local thermal sensation of people and is used for indoor environment assessment. It is also used to assess performance of heated/cooled/ventilated car seats, etc. However, the body of the th...

  19. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  20. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  1. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    Science.gov (United States)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  2. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  3. Insulator Surface Flashover Due to UV Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Javedani, J B; Houck, T L; Lahowe, D A; Vogtlin, G E; Goerz, D A

    2009-07-27

    The surface of an insulator under vacuum and under electrical charge will flashover when illuminated by a critical dose of ultra-violet (UV) radiation - depending on the insulator size and material, insulator cone angle, the applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx}16 MW, 30 ns FWHM,), a vacuum chamber, and a negative polarity dc high voltage power supply ({le} -60 kV) were assembled to test 1.0 cm thick angled insulators for surface-flashover. Several candidate insulator materials, e.g. High Density Polyethylene (HDPE), Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex, of varying cone angles were tested against UV illumination. Commercial energy meters were used to measure the UV fluence of the pulsed laser beam. In-house designed and fabricated capacitive probes (D-dots, >12 GHz bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of UV arrival and time of flashover. Of the tested insulators, the +45 degree Rexolite insulator showed more resistance to UV for surface flashover; at UV fluence level of less than 13 mJ/cm{sup 2}, it was not possible to induce a flashover for up to -60 kV of DC potential across the insulator's surface. The probes also permitted the electrical charge on the insulator before and after flashover to be inferred. Photon to electron conversion efficiency for the surface of Rexolite insulator was determined from charge-balance equation. In order to understand the physical mechanism leading to flashover, we further experimented with the +45 degree Rexolite insulator by masking portions of the UV beam to illuminate only a section of the insulator surface; (1) the half nearest the cathode and subsequently, (2) the half nearest the anode. The critical UV fluence and time to flashover were measured and the results in each case were then compared with the base case of full-beam illumination. It was discovered that the time for the

  4. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  5. Investigation of differential surface removal due to electropolishing at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Folkie, James [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Surface chemistry carried out for Superconducting Radio Frequency (SRF) cavities such as Buffered Chemical Polishing (BCP) and Electropolishing (EP) aims to uniformly remove the internal surface of a cavity along the entire structure and within each cell from equator to iris in order to obtain an equally etched surface. A uniform removal, however, is not readily achievable due to the complex fluid flow and varying temperatures of the acid mixture, which can lead to differential etching. This needs to be considered when envisaging a certain surface damage removal throughout the interior. The process-specific differential etching influences the target frequency set at the manufacturing stage as well as the field flatness and length of the as-built cavity. We report on analyses of JLab's present EP system using experimental data for six nine-cell cavities that have been processed recently in the frame of the LCLS-II high-Q development plan. In conjunction with numerical simulations, the differential etching and the impact on field flatness is assessed.

  6. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  7. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  8. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  9. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  10. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  11. Room temperature ferromagnetism in Teflon due to carbon dangling bonds.

    Science.gov (United States)

    Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J

    2012-03-06

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  12. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  13. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  14. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  15. Hydrologic property alterations due to elevated temperatures at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Flint, A.L. [Geological Survey, Mercury, NV (United States); Nash, M.H.; Nash, M.S. [Foothill Engineering, Mercury, NV (United States)

    1994-12-31

    Drying experiments were conducted on fifty core samples of welded tuff and fifty core samples of zeolitic, nonwelded tuff. Initially, all core samples were vacuum saturated, and weights and volumes were measured. The samples were dried in a relative humidity oven at 60 degrees C and 45 percent relative humidity. Sorptivity was measured to obtain information on flow properties. The samples from each type of tuff were divided into five sets of ten samples with similar mean porosities. Each sample set was subjected to a different drying temperature; 60, 105, 200, 300 or 400 degrees C with the fifth group left as a control. After drying, the samples were resaturated and all the measurements repeated. Calculated porosity, particle density, and sorptivity increased; and bulk density decreased with increasing temperature. Air and water permeability increased on the nonwelded tuff samples, however air permeability was unchanged for the welded tuff. All bulk properties recovered to the original values following drying, while the flow properties (sorptivity and air and water permeability) were permanently altered. At the completion of the flow measurements, one core from each temperature treatment, was cut into small disks. Water retention curves were measured on these disks (subsamples). There were no differences in measured water retention curves due to drying at different temperatures.

  16. Temperature reduction due to the application of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Conrad; Kornadt, Oliver [Department of Building Physics, Bauhaus-University Weimar, Coudraystrasse 11a, 99423 Weimar (Germany); Ostry, Milan [Faculty of Civil Engineering, Brno University of Technology, Department of Building Structures, Veveri 95, 602 00 Brno (Czech Republic)

    2008-07-01

    Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model. (author)

  17. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  18. Adhesion between silica surfaces due to hydrogen bonding

    Science.gov (United States)

    Bowen, James; Rossetto, Hebert L.; Kendall, Kevin

    2016-09-01

    The adhesion between surfaces can be enhanced significantly by the presence of hydrogen bonding. Confined water at the nanoscale can display behaviour remarkably different to bulk water due to the formation of hydrogen bonds between two surfaces. In this work we investigate the role of confined water on the interaction between hydrophilic surfaces, specifically the effect of organic contaminants in the aqueous phase, by measuring the peak adhesive force and the work of adhesion. Atomic force microscope cantilevers presenting hemispherical silica tips were interacted with planar single crystals of silica in the presence of dimethylformamide, ethanol, and formamide; solution compositions in the range 0-100 mol% water were investigated for each molecule. Each molecule was chosen for its ability to hydrogen bond with water molecules, with increasing concentrations likely to disrupt the structure of surface-bound water layers. With the exception of aqueous solutions containing low concentrations of ethanol, all molecules decreased the ability of confined water to enhance the adhesion between the silica surfaces in excess of the predicted theoretical adhesion due to van der Waals forces. The conclusion was that adhesion depends strongly on the formation of a hydrogen-bonding network within the water layers confined between the silica surfaces.

  19. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  20. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  1. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  2. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  3. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  4. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  5. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  6. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  7. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  8. Heat transfer for Marangoni convection over a vapor-liquid interface due to an imposed temperature gradient

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Sheng; Liancun Zheng; Xinxin Zhang

    2008-01-01

    A similarity analysis for Marangoni convection induced flow over a vapor-liquid interface due to an imposed temperature gradient was carried out. The analysis assumes that the surface tension varies linearly with temperature but the temperature variation is a power law function of the location. The similarity solutions are presented numerically and the associated transfer characteristics are discussed.

  9. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  10. Limitations of Heat Conductivity in Cryogenic Sensors Due to Surface Roughness

    NARCIS (Netherlands)

    Moktadir, Z.; Bruijn, M.P.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Ridder, M.; Mels, W.A.

    2002-01-01

    The limitation of heat conductivity in cryogenic sensors due to surface roughness was discussed. It was found that at macroscopic scale and high temperatures, the transport coefficients were characteristic properties of the material and were independent of the shape and size of specimen. An

  11. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  12. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  13. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  14. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  15. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  16. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  17. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  18. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  19. Boussinesq modeling of surface waves due to underwater landslides

    Directory of Open Access Journals (Sweden)

    D. Dutykh

    2013-05-01

    Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

  20. Boussinesq modeling of surface waves due to underwater landslides

    CERN Document Server

    Dutykh, Denys

    2013-01-01

    Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion which govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced which is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It also found that the fi...

  1. Variation in surface fractal of graphite due to the adsorption of polyoxyethylene sorbitan monooleate

    Energy Technology Data Exchange (ETDEWEB)

    Hou Qingfeng [Research Center of Surface and Interface Chemical Engineering Technology, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Lu Xiancai [State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Nanjing 210093 (China); Liu Xiandong [State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Nanjing 210093 (China); Hu Baixing [Research Center of Surface and Interface Chemical Engineering Technology, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)]. E-mail: houqingfeng@nju.org.cn; Lu Zhijun [State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Nanjing 210093 (China); Shen Jian [Research Center of Surface and Interface Chemical Engineering Technology, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2005-02-15

    The fractal analysis is carried out to study the influence of adsorption of polyoxyethylene sorbitan monooleate (Tween 80) on the surface properties of graphite. The surface fractal dimension (dSF), BET surface area (SBET) and pore size distribution (PSD) are calculated from low temperature nitrogen adsorption isotherms. The decline in the dSF of graphite surface is found as the adsorption amount of Tween 80 increases, which suggests that the adsorbed Tween 80 smoothes the graphite surface. Additionally, the observation of atomic force microscopy (AFM) proves that the original slit pores in pure graphite are blocked up and the step defect sites are screened by Tween 80, which may result in the reduction of graphite roughness. The PSD pattern of graphite changes after the adsorption due to the pore blocking effect. SBET of the graphite decreases as the adsorption amount of Tween 80 increases, which is attributed to both pore blocking effect and surface screening effect.

  2. Image current heating on a metal surface due to charged bunches

    Directory of Open Access Journals (Sweden)

    Xintian E. Lin

    2000-10-01

    Full Text Available When charged particles pass through a metal pipe, they are accompanied by an image current on the metal surface. With intense short bunches passing near or even into the metal surface, the peak image current density can be very high. This current may result in substantial temperature rise on the surface, especially in high peak current, multibunch operation. In this paper, we derive an explicit formula for the surface temperature rise due to this previously unrecognized pulsed heating effect and show that this effect dominates the proposed linear coherent light source collimator spoiler and wire scanner heating. Without proper account, it can result in component and instrument failures. The result also applies to optical transition radiation screens, profile screens, wire scanners, exit windows, and targets, which the beam crosses.

  3. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  4. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  5. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  6. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  7. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  8. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  9. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  10. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  11. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  12. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  13. Hydrologic property alterations due to elevated temperatures at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Flint, A.L. [Geological Survey, Mercury, NV (United States); Nash, M.H.; Nash, M.S. [Foothill Engineering, Mercury (United States)

    1994-12-31

    Yucca Mountain is currently being evaluated as a potential site for a high level nuclear waste repository. The pre-emplacement hydrologic properties of the rock are important in determining the suitability of the site; however, post emplacement thermal loads and associated drying may permanently alter the character of the rock. A preliminary study was undertaken to determine the effects of elevated temperatures on hydrologic properties of the welded Topopah Spring member of the Paintbrush Tuff and a zeolitic, nonwelded tuff from the Tuffaceous Beds of Calico Hills. Rock outcrop samples were collected and dried in the laboratory at different temperatures (up to 400 degrees C). Hydrologic and physical properties -were tested before and after each of the drying cycles.

  14. SHAPE BIFURCATION OF AN ELASTIC WAFER DUE TO SURFACE STRESS

    Institute of Scientific and Technical Information of China (English)

    闫琨; 何陵辉; 刘人怀

    2003-01-01

    A geometrically nonlinear analysis was proposed for the deformation of a freestanding elastically isotropic wafer caused by the surface stress change on one surface. Thelink between the curvature and the change in surface stress was obtained analytically fromenergetic consideration. In contrast to the existing linear analysis, a remarkableconsequence is that, when the wafer is very thin or the surface stress difference between thetwo major surfaces is large enough, the shape of the wafer will bifurcate.

  15. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  16. The dependence of surface temperature on IGBTs load and ambient temperature

    Science.gov (United States)

    Alexander, Čaja; Marek, Patsch

    2015-05-01

    Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT) elements by loop heat pipe (LHP). IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  17. The dependence of surface temperature on IGBTs load and ambient temperature

    Directory of Open Access Journals (Sweden)

    Alexander Čaja

    2015-01-01

    Full Text Available Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT elements by loop heat pipe (LHP. IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  18. Accumulation of Microswimmers due to Their Collisions with a Surface

    CERN Document Server

    Li, Guanglai

    2008-01-01

    In this letter we propose a kinematic model to show how collisions with a surface and rotational Brownian motion give rise to the accumulation of micro-swimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from any incident angle. It then swims away from the surface after some time, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming in confinement.

  19. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  20. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  1. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  2. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  3. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  4. A surface acoustic wave ICP sensor with good temperature stability.

    Science.gov (United States)

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  5. Enhanced diffusion due to active swimmers at a solid surface

    CERN Document Server

    Miño, Gaston; Darnige, Thierry; Hoyos, Mauricio; Dauchet, Jeremy; Dunstan, Jocelyn; Soto, Rodrigo; Wang, Yang; Rousselet, Annie; Clement, Eric

    2010-01-01

    We consider two systems of active swimmers moving close to a solid surface, one being a living population of wild-type \\textit{E. coli} and the other being an assembly of self-propelled Au-Pt rods. In both situations, we have identified two different types of motion at the surface and evaluated the fraction of the population that displayed ballistic trajectories (active swimmers) with respect to those showing random-like behavior. We studied the effect of this complex swimming activity on the diffusivity of passive tracers also present at the surface. We found that the tracer diffusivity is enhanced with respect to standard Brownian motion and increases linearly with the activity of the fluid, defined as the product of the fraction of active swimmers and their mean velocity. This result can be understood in terms of series of elementary encounters between the active swimmers and the tracers.

  6. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  7. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  8. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  9. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  10. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  11. Structural Changes in the Surface Layer of Deep Rolled Samples Due to Thermal Loads

    Directory of Open Access Journals (Sweden)

    Strunk, R

    2017-01-01

    Full Text Available Deep rolling processes initiate plastic deformations in the surface layer. The local characteristics of deformation are dependent on the induced stress expressed by the local stress tensor. Equivalent stresses above yield strength cause plastic deformation. Additionally the intrinsic energy, e. g. the dislocation density, is enhanced and the residual stress state is changed. The effects to a deep rolled surface from an increase in temperature are mainly dependent on the material, the microstructure, the initial residual stress state, the inclusion density, the distribution of soluted alloying elements and the plastic deformation. In the described experiments the interactions between deformation and temperature of the steel grade AISI 4140 (42 CrMo 4 used for all further experiments in a transregional Collaborative Research Center (CRC were to be examined. The most simple investigation methods were chosen deliberately to allow a better statistical support of correlations between introduced strains and material reactions for a wide variation of process parameters. Since the visual effects by light microscopy in AISI 4140 were very small, the experiments were repeated with german grade 18 CrNiMo 7-6 (comparable to AISI 4820. This paper focuses on the micro structural changes in defined deep rolled surface regions due to an increase in temperature. The work described is part of the Collaborative Research Center “Process Signatures”, collaboration between Bremen University, Technical University Aachen, Germany and Oklahoma State University Stillwater, USA.

  12. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  13. Vertical Crustal Displacements Due to Surface Fluid Changes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shiyu; ZHONG Min

    2007-01-01

    Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.

  14. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  15. Measurement of Mode Interaction Due to Waveguide Surface Roughness.

    Science.gov (United States)

    1984-12-01

    Speed of Mode 1 over Wedge Roughness at 7813 Hz Due to Cycle Error q. 104 q cprI (mis) Cr r 100M% -2 335.33 6.94 -1 346.16 3.93 0 357.73 0.72 1370.07...4.4 Mode 2 Energy Attenuation Freq (Hz) Smooth (dB/m) Rough (dB/m) 7750 2.0 4.8 15750 2.8 10.5 23500 3.5 12.2 31250 4.3 10.1 110 c -c q CprI (m/s) .pr... cprI x 100(%)C pr -1 377.30 1.86 0 398.58 -3.68 Table 35. Change in Phase Speed of Mode I over Random Roughness at 7750 Hz Due to Cycle Error q. 124

  16. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  17. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  18. Electromagnetic power absorption and temperature changes due to brain machine interface operation.

    Science.gov (United States)

    Ibrahim, Tamer S; Abraham, Doney; Rennaker, Robert L

    2007-05-01

    To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018 degrees C in the single-chip configuration and 0.06 degrees C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34 degrees C in the single-chip configuration and 7.72 degrees C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0 degrees C temperature

  19. Dynamic behavior of a vibrated droplet on a low-temperature micropillared surface

    Science.gov (United States)

    Tan, Chen-chuan; Jia, Zhi-hai; Yang, Hui-nan; Zhang, Zhi-tao

    2017-02-01

    The dynamic behavior of a vibrated droplet on a micropillared hydrophobic surface under low temperature was investigated in this paper. It was observed that solidified time of droplets on the micropillared surface were much larger than on the smooth surface due to the existence of wetting transition at low temperature, without vibration. The solidified time of droplets was longer while vibration was exerted on the surfaces, even though the wetting transition time of droplets at low temperature was shorter than at room temperature. It was found that resonance frequency of droplet increased as surface tension increased due to low temperature. Moreover, when a droplet was in its resonance frequency, the wetting area between the droplet and the micropillared surface increased obviously and its solidified time decreased substantially, and it led to the decline of anti-icing performance. This work is helpful to design a more efficient anti-icing device.

  20. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  1. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br-→ O2 + OBr- (R1) OBr- + H+ ↔ HOBr (R2) HOBr + H+ + Br-→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum, K.W., et

  2. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Directory of Open Access Journals (Sweden)

    Laura Charalambous

    2016-09-01

    Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  3. A New Estimate of the Earth's Land Surface Temperature History

    Science.gov (United States)

    Muller, R. A.; Curry, J. A.; Groom, D.; Jacobsen, B.; Perlmutter, S.; Rohde, R. A.; Rosenfeld, A.; Wickham, C.; Wurtele, J.

    2011-12-01

    The Berkeley Earth Surface Temperature team has re-evaluated the world's atmospheric land surface temperature record using a linear least-squares method that allow the use of all the digitized records back to 1800, including short records that had been excluded by prior groups. We use the Kriging method to estimate an optimal weighting of stations to give a world average based on uniform weighting of the land surface. We have assembled a record of the available data by merging 1.6 billion temperature reports from 16 pre-existing data archives; this data base will be made available for public use. The former Global Historic Climatology Network (GHCN) monthly data base shows a sudden drop in the number of stations reporting monthly records from 1980 to the present; we avoid this drop by calculating monthly averages from the daily records. By using all the data, we reduce the effects of potential data selection bias. We make an independent estimate of the urban heat island effect by calculating the world land temperature trends based on stations chosen to be far from urban sites. We calculate the effect of poor station quality, as documented in the US by the team led by Anthony Watts by estimating the temperature trends based solely on the stations ranked good (1,2 or 1,2,3 in the NOAA ranking scheme). We avoid issues of homogenization bias by using raw data; at times when the records are discontinuous (e.g. due to station moves) we break the record into smaller segments and analyze those, rather than attempt to correct the discontinuity. We estimate the uncertainties in the final results using the jackknife procedure developed by J. Tukey. We calculate spatial uncertainties by measuring the effects of geographical exclusion on recent data that have good world coverage. The results we obtain are compared to those published by the groups at NOAA, NASA-GISS, and Hadley-CRU in the UK.

  4. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  5. A NUMERICAL SIMULATION OF THE EFFECT ON CHINESE REGIONAL CLIMATE DUE TO SEASONAL VARIATION OF LAND SURFACE PARAMETERS (PART I)

    Institute of Scientific and Technical Information of China (English)

    孙健; 李维亮; 周秀骥

    2001-01-01

    Sensitivity experiment is an important method to study the effect on regional climate due to seasonal variation of land surface parameters. Using China Regional Climate Model (CRCM)nested in CCM1, we first simulate Chinese regional climate, then two numerical sensitivity experiments on the effect of vegetation and roughness length are made. The results show that:(1) If the vegetation is replaced with the monthly data of 1997, precipitation and land-surface temperature are both changed clearly, precipitation decreases and land surface temperature increases, but there is no regional correspondence between these changes. And the results are much better than the results when climate average vegetation was used in the CRCM. (2) If the roughness length is replaced with the monthly data of 1997, there is significant change on land surface temperature, and there is very good regional correspondence between these changes. But the effect on precipitation is very small.

  6. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  7. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  8. Detection and attribution of near surface temperature changes over homogenous temperature zones in India

    Science.gov (United States)

    Achutarao, K. M.; R, D.

    2015-12-01

    The IPCC Fifth Assessment Report concluded, "More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations." Detecting and attributing the changes over regional scales can provide more relevant information to policymakers at the national level but the low signal-to-noise ratios at smaller spatial scales make this a harder problem. In this study, we analyze changes in temperature (annual and seasonal means of mean, minimum, and maximum temperatures) over 7 homogeneous temperature zones of India from 1901 -2005 using models from the CMIP5 database and multiple observational datasets (CRU-3.22, and IITM). We perform Detection and Attribution (D&A) analysis using fingerprint methods by defining a signal that concisely express both spatial and temporal changes found in the model runs with the CMIP5 individual forcing runs; greenhouse (historicalGHG), natural (historicalNat), anthropogenic (historicalAnthro), and anthropogenic aerosols (historicalAA). We are able to detect changes in annual mean temperature over many of the homogenous temperature zones as well as seasonal means in some of the homogenous zones. We quantify the contributions resulting from individual forcings in these cases. Preliminary results indicate large contributions from anthropogenic, forcings with a negligible contribution from natural forcings.

  9. Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition

    Science.gov (United States)

    Ishizaki, Takahiro; Sasagawa, Keisuke; Furukawa, Takuya; Kumagai, Sou; Yamamoto, Erina; Chiba, Satoshi; Kamiyama, Naosumi; Kiguchi, Takayoshi

    2016-08-01

    The surface wettability of the native Si oxide surfaces were tuned by chemical adsorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) molecules through thermal CVD method at different temperature. Water contact angle measurements revealed that the water contact angles of the TMCTS-modified Si oxide surfaces at the temperature of 333-373 K were found to be in the range of 92 ± 2-102 ± 2°. The advancing and receding water contact angle of the surface prepared at 333 K were found to be 97 ± 2/92 ± 2°, showing low contact angle hysteresis surface. The water contact angles of the surfaces prepared at the temperature of 373-413 K increased with an increase in the treatment temperature. When the treatment temperature was more than 423 K, the water contact angles of TMCTS-modified surfaces were found to become more than 150°, showing superhydrophobic surface. AFM study revealed that the surface roughness of the TMCTS-modified surface increased with an increase in the treatment temperature. This geometric morphology enhanced the surface hydrophobicity. The surface roughness could be fabricated due to the hydrolysis/condensation reactions in the gas phase during CVD process. The effect of the treatment temperature on the reactivity of the TMCTS molecules were also investigated using a thermogravimetric analyzer.

  10. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  11. Global Surface Temperature Response Explained by Multibox Energy Balance Models

    Science.gov (United States)

    Fredriksen, H. B.; Rypdal, M.

    2016-12-01

    We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.

  12. Measuring the temperature of high-luminous exitance surfaces with infrared thermography in LED applications

    Science.gov (United States)

    Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    Recently, light-emitting diode (LED) lighting systems have become popular due to their increased system performance. LED lighting system performance is affected by heat; therefore, it is important to know the temperature of a target surface or bulk medium in the LED system. In-situ temperature measurements of a surface or bulk medium using intrusive methods cause measurement errors. Typically, thermocouples are used in these applications to measure the temperatures of the various components in an LED system. This practice leads to significant errors, specifically when measuring surfaces with high-luminous exitance. In the experimental study presented in this paper, an infrared camera was used as an alternative to temperature probes in measuring LED surfaces with high-luminous exitance. Infrared thermography is a promising method because it does not respond to the visible radiation spectrum in the range of 0.38 to 0.78 micrometers. Usually, infrared thermography equipment is designed to operate either in the 3 to 5 micrometer or the 7 to 14 micrometer wavelength bands. To characterize the LED primary lens, the surface emissivity of the LED phosphor surface, the temperature dependence of the surface emissivity, the temperature of the target surface compared to the surrounding temperature, the field of view of the target, and the aim angle to the target surface need to be investigated, because these factors could contribute towards experimental errors. In this study, the effects of the above-stated parameters on the accuracy of the measured surface temperature were analyzed and reported.

  13. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  14. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  15. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  16. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2017-09-12

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH4 emission. The results show that the CH4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH4 emission in India in 2012 were 1030 Tg CO2e (GTP20) and 62 Tg CO2e (GTP100) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  18. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  19. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  20. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  1. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  2. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  3. A New Global Climatology of Annual Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Benjamin Bechtel

    2015-03-01

    Full Text Available Land surface temperature (LST is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual cycle parameters (ACP has been proposed before but so far not been tested on larger scale. In this study, a new global climatology of annual LST based on daily 1 km MODIS/Terra observations was processed and evaluated. The derived global parameters were robust and free of missing data due to clouds. They allow estimating LST patterns under largely cloud-free conditions at different scales for every day of year and further deliver a measure for its accuracy respectively variability. The parameters generally showed low redundancy and mostly reflected real surface conditions. Important influencing factors included climate, land cover, vegetation phenology, anthropogenic effects, and geology which enable numerous potential applications. The datasets will be available at the CliSAP Integrated Climate Data Center pending additional processing.

  4. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  5. Impacts of wind farms on surface air temperatures

    Science.gov (United States)

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  6. Stresses and strains in pavement structures due to the effect of temperatures

    Directory of Open Access Journals (Sweden)

    Svilar Mila

    2016-01-01

    Full Text Available At its absolute amount, stresses due to the effect of temperature in the pavement structures, especially those rigid, are often of the same order of magnitude as those resulting from vehicles' load, but it happens that due to such impact many slabs become cracked before the road is handed over into operation. The temperature stresses which occur in pavement structures include stresses due to bending and buckling, stresses due to friction and hidden stresses. Stresses caused by the influence of temperature in the pavement structure during the day are generally below the strength of the component materials so they do not cause the consequences for structure. However, appearance of residual stresses and their accumulation after a sufficiently long period of time may lead to failure in structure, i.e. thermal fatigue. The paper presents the effects of temperature changes on the pavement structures in the physical and mechanical terms, and the manner in which the temperature is taken into account during the design of pavement structures.

  7. Modeling the influence of open water surfaces on summertime temperatures and thermal comfort in the city

    NARCIS (Netherlands)

    Theeuwes, N.E.; Solcerova, A.; Steeneveld, G.J.

    2013-01-01

    [1] Due to the combination of rapid global urbanization and climate change, urban climate issues are becoming relatively more important and are gaining interest. Compared to rural areas, the temperature in cities is higher (the urban heat island effect ) due to the modifications in the surface radia

  8. Modeling the influence of open water surfaces on summertime temperatures and thermal comfort in the city

    NARCIS (Netherlands)

    Theeuwes, N.E.; Solcerova, A.; Steeneveld, G.J.

    2013-01-01

    [1] Due to the combination of rapid global urbanization and climate change, urban climate issues are becoming relatively more important and are gaining interest. Compared to rural areas, the temperature in cities is higher (the urban heat island effect ) due to the modifications in the surface radia

  9. Detecting climate rationality and homogeneities of sea surface temperature data in Longkou marine station using surface air temperature

    Science.gov (United States)

    Li, Yan; Li, Huan; Wang, Qingyuan; Wang, Guosong; Fan, Wenjing

    2017-08-01

    This study presents a systematic evaluation of the climate rationality and homogeneity of monthly sea surface temperature (SST) in Longkou marine station from 1960 to 2011. The reference series are developed using adjacent surface air temperature (SAT) on a monthly timescale. The results suggest SAT as a viable option for use in evaluating climate rationality and homogeneity in the SST data on the coastal China Seas. According to the large-scale atmospheric circulation patterns and SAT of the adjacent meteorological stations, we confirm that there is no climate shift in 1972/1973 and then the climate shift in 1972/1973 is corrected. Besides, the SST time series has serious problems of inhomogeneity. Three documented break points have been checked using penalized maximum T (PMT) test and metadata. The changes in observation instruments and observation system are the main causes of the break points. For the monthly SST time series, the negative adjustments may be greatly due to the SST decreasing after automation. It is found that the increasing trend of annual mean SST after adjustment is higher than before, about 0.24 °C/10 yr.

  10. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; Li, Y.-Y.; Titus, T. N.; Russell, C. T.; Raymond, C. A.; Mittlefehldt, D. W.; Toplis, M. J.; Forni, O.; Sykes, M. V.

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  11. A Preliminary Study of Surface Temperature Cold Bias in COAMPS

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H-N S; Leach, M J; Sugiyama, G A; Aluzzi, F J

    2001-04-27

    It is well recognized that the model predictability is more or less hampered by the imperfect representations of atmospheric state and model physics. Therefore, it is a common problem for any numerical models to exhibit some sorts of biases in the prediction. In this study, the emphasis is focused on the cold bias of surface temperature forecast in Naval Research Laboratory's three-dimensional mesoscale model, COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System). Based on the comparison with the ground station data, there were two types of ground temperature cold biases identified in LLNL (Lawrence Livermore National Laboratory) operational forecasts of COAMPS over the California and Nevada regions during the 1999 winter and the 2000 spring. The first type of cold bias appears at high elevation regions covered by snow, and its magnitude can be as large as 30 F - 40 F lower than observed. The second type of cold bias mainly exists in the snow-free clear-sky regions, where the surface temperature is above the freezing point, and its magnitude can be up to 5 F - 10 F lower than observed. These cold biases can affect the low-level stratification, and even the diurnal variation of winds in the mountain regions, and therefore impact the atmospheric dispersion forecast. The main objective of this study is to explore the causes of such cold bias, and to further the improvement of the forecast performance in COAMPS. A series of experiments are performed to gauge the sensitivity of the model forecast due to the physics changes and large-scale data with various horizontal and vertical resolutions.

  12. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  13. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  14. Screen level temperature increase due to higher atmospheric carbon dioxide in calm and windy nights revisited

    NARCIS (Netherlands)

    Steeneveld, G.J.; Holtslag, A.A.M.; McNider, R.T.; Pielke sr., R.A.

    2011-01-01

    Long-term surface observations over land have shown temperature increases during the last century, especially during nighttime. Observations analyzed by Parker [2004] show similar long-term trends for calm and windy conditions at night, and on basis of this it was suggested that the possible effect

  15. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  16. Some Estimations for Correlation Between the RF Cavity Surface Temperature and Electrical Breakdown Possibility

    CERN Document Server

    Paramonov, V V

    2004-01-01

    The electrical breakdown in accelerating cavities is the complicated phenomenon and depends on many parameters. Some reasons for breakdown can be avoided by appropriate vacuum system design and the cavity surface cleaning. This case, for normal conducting accelerating cavities free electrons - the dark currents due to Fowler-Nordheim emission can be considered as the main reason of possible electrical breakdown. It is known from the practice - the combination of the high electric field at the cavity surface with high surface temperature is the subject for risk in the cavity operation. In this paper the dependence on the surface temperature is considered and 'effective' electric field enhancement is discussed.

  17. A protocol for validating Land Surface Temperature from Sentinel-3

    Science.gov (United States)

    Ghent, D.

    2015-12-01

    One of the main objectives of the Sentinel-3 mission is to measure sea- and land-surface temperature with high-end accuracy and reliability in support of environmental and climate monitoring in an operational context. Calibration and validation are thus key criteria for operationalization within the framework of the Sentinel-3 Mission Performance Centre (S3MPC).Land surface temperature (LST) has a long heritage of satellite observations which have facilitated our understanding of land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. These observations have been acquired from a variety of satellite instruments on platforms in both low-earth orbit and in geostationary orbit. Retrieval accuracy can be a challenge though; surface emissivities can be highly variable owing to the heterogeneity of the land, and atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. As such, a rigorous validation is critical in order to assess the quality of the data and the associated uncertainties. The Sentinel-3 Cal-Val Plan for evaluating the level-2 SL_2_LST product builds on an established validation protocol for satellite-based LST. This set of guidelines provides a standardized framework for structuring LST validation activities, and is rapidly gaining international recognition. The protocol introduces a four-pronged approach which can be summarised thus: i) in situ validation where ground-based observations are available; ii) radiance-based validation over sites that are homogeneous in emissivity; iii) intercomparison with retrievals from other satellite sensors; iv) time-series analysis to identify artefacts on an interannual time-scale. This multi-dimensional approach is a necessary requirement for assessing the performance of the LST algorithm for SLSTR which is designed around biome-based coefficients, thus emphasizing the importance of

  18. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  19. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  20. Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    2015-01-01

    Full Text Available Land surface temperature (LST is a key parameter in the interaction of the land-atmosphere system. However, clouds affect the retrieval of LST data from thermal-infrared remote sensing data. Thus, it is important to determine a method for estimating LSTs at times when the sky is overcast. Based on a one-dimensional heat transfer equation and on the evolution of daily temperatures and net shortwave solar radiation (NSSR, a new method for estimating LSTs under cloudy skies (Tcloud from diurnal NSSR and surface temperatures is proposed. Validation is performed against in situ measurements that were obtained at the ChangWu ecosystem experimental station in China. The results show that the root-mean-square error (RMSE between the actual and estimated LSTs is as large as 1.23 K for cloudy data. A sensitivity analysis to the errors in the estimated LST under clear skies (Tclear and in the estimated NSSR reveals that the RMSE of the obtained Tcloud is less than 1.5 K after adding a 0.5 K bias to the actual Tclear and 10 percent NSSR errors to the actual NSSR. Tcloud is estimated by the proposed method using Tclear and NSSR products of MSG-SEVIRI for southern Europe. The results indicate that the new algorithm is practical for retrieving the LST under cloudy sky conditions, although some uncertainty exists. Notably, the approach can only be used during the daytime due to the assumption of the variation in LST caused by variations in insolation. Further, if there are less than six Tclear observations on any given day, the method cannot be used.

  1. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  2. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    Science.gov (United States)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  3. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  4. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  5. Micromechanical modeling of master curve temperature shifts due to constraint loss

    Science.gov (United States)

    Odette, G. R.; He, M. Y.

    2002-12-01

    The effects of constitutive and local fracture properties on constraint loss effects in fracture toughness tests of small specimens was carried out within the framework of the MC-Δ T method. Constraint loss (CL) decreases the temperature at a specified reference toughness. This temperature shift increases with decreasing: (a) specimen size, (b) ratio of the critical cleavage stress to yield stress and (c) strain hardening. The toughness-temperature curve shift due to CL increases with higher reference toughness and reference toughness-temperature. These results can guide the development and interpretation of small specimen fracture tests, as well as the use of even smaller specimens for particular applications, like comparative studies of irradiation variable effects on embrittlement. While they are only briefly noted in this work, additional consideration of both statistical and three dimensional size effects will be carried out in the future.

  6. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  7. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  8. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  9. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  10. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    2 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 3University of ... Keywords: Urban growth, urban heat Island, land surface temperatures, satellite remote sensing .... observed target includes green vegetation or not.

  11. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  12. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  13. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  14. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  15. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  16. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  17. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  18. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  19. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  20. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  1. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  2. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to late

  3. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    Science.gov (United States)

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-01

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  4. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  5. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  6. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  7. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  8. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  9. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  10. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  11. A new interpolation method for Antarctic surface temperature

    Institute of Scientific and Technical Information of China (English)

    Yetang Wang; Shugui Hou

    2009-01-01

    We propose a new methodology for the spatial interpolation of annual mean temperature into a regular grid with a geographic resolution of 0.01° for Antarctica by applying a recent compilation of the Antarctic temperature data.A multiple linear regression model of the dependence of temperature on some geographic parameters (i.e.,latitude,longitude,and elevation) is proposed empirically,and the kriging method is used to determine the spatial distribution of regional and local deviations from the temperature calculated from the multiple linear regression model.The modeled value and residual grids are combined to derive a high-resolution map of surface air temperature.The performance of our new methodology is superior to a variety of benchmark methods (e.g.,inverse distance weighting,kriging,and spline methods) via cross-validation techniques.Our simulation resembles well with those distinct spatial features of surface temperature,such as the decrease in annual mean surface temperature with increasing latitude and the distance away from the coast line;and it also reveals the complex topographic effects on the spatial distribution of surface temperature.

  12. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  13. Seasonal Spatial Patterns of Surface Water Temperature, Surface Heat Fluxes and Meteorological Forcing Over Lake Geneva

    Science.gov (United States)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2015-12-01

    In many lakes, surface heat flux (SHF) is the most important component controlling the lake's energy content. Accurate methods for the determination of SHF are valuable for water management, and for use in hydrological and meteorological models. Large lakes, not surprisingly, are subject to spatially and temporally varying meteorological conditions, and hence SHF. Here, we report on an investigation for estimating the SHF of a large European lake, Lake Geneva. We evaluated several bulk formulas to estimate Lake Geneva's SHF based on different data sources. A total of 64 different surface heat flux models were realized using existing representations for different heat flux components. Data sources to run the models included meteorological data (from an operational numerical weather prediction model, COSMO-2) and lake surface water temperature (LSWT, from satellite imagery). Models were calibrated at two points in the lake for which regular depth profiles of temperature are available, and which enabled computation of the total heat content variation. The latter, computed for 03.2008-12.2012, was the metric used to rank the different models. The best calibrated model was then selected to calculate the spatial distribution of SHF. Analysis of the model results shows that evaporative and convective heat fluxes are the dominant terms controlling the spatial pattern of SHF. The former is significant in all seasons while the latter plays a role only in fall and winter. Meteorological observations illustrate that wind-sheltering, and to some extent relative humidity variability, are the main reasons for the observed large-scale spatial variability. In addition, both modeling and satellite observations indicate that, on average, the eastern part of the lake is warmer than the western part, with a greater temperature contrast in spring and summer than in fall and winter whereas the SHF spatial splitting is stronger in fall and winter. This is mainly due to negative heat flux

  14. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  15. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Understanding the spatial variation of Land Surface Temperature. (LST), will be ... positive correlation between mean of surface emissivity with date and ... deviation of 1.92 of LST and coefficient determinant R2 (0.46) show a ... (LST), as the prime and basic physical parameter of the earth's ..... thorough review of the paper.

  16. Recent surface temperature trends in the interior of East Antarctica from borehole firn temperature measurements and geophysical inverse methods

    Science.gov (United States)

    Muto, A.; Scambos, T.A.; Steffen, K.; Slater, A.G.; Clow, G.D.

    2011-01-01

    We use measured firn temperatures down to depths of 80 to 90 m at four locations in the interior of Dronning Maud Land, East Antarctica to derive surface temperature histories spanning the past few decades using two different inverse methods. We find that the mean surface temperatures near the ice divide (the highest-elevation ridge of East Antarctic Ice Sheet) have increased approximately 1 to 1.5 K within the past ???50 years, although the onset and rate of this warming vary by site. Histories at two locations, NUS07-5 (78.65S, 35.64E) and NUS07-7 (82.07S, 54.89E), suggest that the majority of this warming took place in the past one or two decades. Slight cooling to no change was indicated at one location, NUS08-5 (82.63S, 17.87E), off the divide near the Recovery Lakes region. In the most recent decade, inversion results indicate both cooler and warmer periods at different sites due to high interannual variability and relatively high resolution of the inverted surface temperature histories. The overall results of our analysis fit a pattern of recent climate trends emerging from several sources of the Antarctic temperature reconstructions: there is a contrast in surface temperature trends possibly related to altitude in this part of East Antarctica. Copyright 2011 by the American Geophysical Union.

  17. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  18. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  19. Surface evolution of lanthanum strontium cobalt ferrite thin films at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Newby, D., E-mail: dnewby@bu.edu [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Kuyyalil, J.; Laverock, J. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Ludwig, K.F. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 St. Mary' s Street, Brookline, MA 02446 (United States); Yu, Y.; Davis, J. [Division of Materials Science and Engineering, Boston University, 15 St. Mary' s Street, Brookline, MA 02446 (United States); Gopalan, S.; Pal, U.B.; Basu, S. [Division of Materials Science and Engineering, Boston University, 15 St. Mary' s Street, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA 02215 (United States); Smith, K.E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 St. Mary' s Street, Brookline, MA 02446 (United States); School of Chemical Sciences and The MacDiarmid Institute for Advanced Materials and Nanotechnology, The University of Auckland, Auckland 1142 (New Zealand)

    2015-08-31

    The ultra-high vacuum surface preparation of heteroepitaxial lanthanum strontium cobalt ferrite thin films has been studied using soft X-ray photoelectron spectroscopy. Specifically, the effect of annealing the films at low temperatures in low partial pressures of oxygen and argon has been investigated. We find that atmospheric surface carbon contamination of the films can be removed in select anneal temperature regimes in argon, but remains bound to the surface with oxygen annealing at any temperature. Irrespective of the gas used, an insulating phase transition occurs near 300 °C due to strontium segregation at the surface. The surface develops more insulating character if annealed with oxygen. Different species are proposed to be responsible for the discrepancy in insulating character.

  20. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  1. Biophysical effects on temperature and precipitation due to land cover change

    Science.gov (United States)

    Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut

    2017-05-01

    Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for

  2. Influence of Annealing Temperature on CZTS Thin Film Surface Properties

    Science.gov (United States)

    Feng, Wenmei; Han, Junfeng; Ge, Jun; Peng, Xianglin; Liu, Yunong; Jian, Yu; Yuan, Lin; Xiong, Xiaolu; Cha, Limei; Liao, Cheng

    2017-01-01

    In this work, copper zinc tin sulfide (CZTS) films were deposited by direct current sputtering and the samples were annealed in different oven-set temperatures and atmosphere (Ar and H2S). The surface evolution was investigated carefully by using scanning electron microscopy (SEM), Raman spectroscopy and x-ray photoelectron spectroscopy. The surface of the as-sputtered precursor contained little Cu and large amounts of Zn and Sn. The metallic precursor was continuous and compact without pinholes or cracks. With the increase of the temperature from room temperature to 250°C, Cu atoms diffused to the film surface to form Cu1- x S and covered other compounds. Some small platelets were smaller than 500 nm spreading randomly in the holes of the film surfaces. When the temperature reached 350°C, Zn and Sn atoms began to diffuse to the surface and react with S or Cu1- x S. At 400°C, SEM showed the melting of large particles and small particles with a size from 100 nm to 200 nm in the background of the film surface. Excess Zn segregated towards the surface regions and formed ZnS phase on the surface. In addition, the signal of sodium in the CZTS surface was observed above 400°C. At 600°C, a large amount of regular structures with clear edges and corners were observed in the film surface in SEM images. A clear recrystallized process on the surface was assumed from those observations.

  3. Climate Change Signal Analysis for Northeast Asian Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Byungsoo KIM; Keon-Tae SOHN; Won-Tae KOWN; Seung-Ki MIN

    2005-01-01

    Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

  4. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Masatoshi [Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Sánchez, Diego Paul [Senior Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu [Richard Seebass Chair, Professor, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States)

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  5. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation

    Science.gov (United States)

    Zhang, B.; Xu, C. L.; Wang, S. M.

    2016-07-01

    The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.

  6. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    Science.gov (United States)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-P.; McCord, T. B.; Li, J.-Y.; Russell, C. T.; Ryamond, C. A.; Mittlefehldt, D.; Toplis, M.; Forni, O.; Sykes, M. V.

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  7. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  8. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  9. NUMERICAL ANALYSIS OF SATURATED-UNSATURATED SEEPAGE FLOW IN FRACTURED ROCK MASS DUE TO SURFACE INFILTRATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Seepage flow in fractured rock mass due to surface infiltration is a saturated-unsaturated seepage process. Aimed at rock mass with large fracture density, which can be equivalent to continuum, a mathematical model for saturated-unsaturated seepage flow in fractured rock mass due to surface infiltration was established in this paper. The Galerkin finite element method was used in numerical simulation and a finite element program used to calculate saturated-unsaturated seepage flow due to surface infiltration was worked out. A model experiment was employed examine the reasonableness of the program. The results show that the proposed model and program are reasonable. The application of the analysis method in this paper in an engineering project shows that the method is reliable and feasible.

  10. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  11. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  12. Unsteady mixed convection flow from a slender cylinder due to impulsive change in wall velocity and temperature

    Directory of Open Access Journals (Sweden)

    Patil P.M.

    2013-01-01

    Full Text Available An unsteady mixed convection flow of a viscous incompressible fluid over a non-permeable linear stretching vertical slender cylinder is considered to investigate the combined effects of buoyancy force and thermal diffusion. It is assumed that the slender cylinder is in line with the flow. The unsteadiness in the flow and temperature fields is caused due to the impulsive change in the wall velocity and wall temperature of linearly stretching vertical slender cylinder. The effect of surface curvature is also taken into account, particularly for the applications as wire and fiber drawing where exact predictions are expected. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting system of coupled non-linear partial differential equations is solved by an implicit finite difference scheme in combination with the quasi-linearization technique. Numerical computations are performed to understand the physical situations of linear stretching surface for different values of parameters to display the velocity and temperature profiles graphically. The numerical results for the local skin-friction coefficient and local Nusselt number are also presented. Present results are compared with previously published work and are found to be in excellent agreement.

  13. Effect of the overconsolidation ratio of soils in surface settlements due to tunneling

    Institute of Scientific and Technical Information of China (English)

    Ludmila Strokova

    2013-01-01

    Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions based on field studies, and very few analytical studies have been carried out. The available analytical solutions are not sufficient to include complex ground conditions;hence, a comprehensive analytical solution coupled with numerical modeling is necessary to model the effect of surface subsidence due to tunneling. This paper presents the results of modeling of surface settlements due to tunneling using the finite element method. The effect of the overconsolidation ratio of soils expressed in terms of the co-efficient of earth pressure at rest (K0) on surface subsidence due to tunneling is investigated. It is demonstrated that surface settlements appear to be sensitive to K0 values, and for geotechnical calculations pertaining to overconsolidated sand and clay soil, K0 values of 0.6 and 0.8, respectively, are proposed.

  14. Internal Structure of Asteroids Having Surface Shedding due to Rotational Instability

    CERN Document Server

    Hirabayashi, Masatoshi; Scheeres, Daniel J

    2015-01-01

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to such surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-Sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this pa...

  15. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    Science.gov (United States)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  16. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  17. A tool to evaluate local biophysical effects on temperature due to land cover change transitions

    Science.gov (United States)

    Perugini, Lucia; Caporaso, Luca; Duveiller, Gregory; Cescatti, Alessandro; Abad-Viñas, Raul; Grassi, Giacomo; Quesada, Benjamin

    2017-04-01

    Land Cover Changes (LCC) affect local, regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. Assessment of the full climate impacts of anthropogenic LCC are incomplete without considering biophysical effects, but the high level of uncertainties in quantifying their impacts to date have made it impractical to offer clear advice on which policy makers could act. To overcome this barrier, we provide a tool to evaluate the biophysical impact of a matrix of land cover transitions, following a tiered methodological approach similar to the one provided by the IPCC to estimate the biogeochemical effects, i.e. through three levels of methodological complexity, from Tier 1 (i.e. default method and factors) to Tier 3 (i.e. specific methods and factors). In particular, the tool provides guidance for quantitative assessment of changes in temperature following a land cover transition. The tool focuses on temperature for two main reasons (i) it is the main variable of interest for policy makers at local and regional level, and (ii) temperature is able to summarize the impact of radiative and non-radiative processes following LULCC. The potential changes in annual air temperature that can be expected from various land cover transitions are derived from a dedicated dataset constructed by the JRC in the framework of the LUC4C FP7 project. The inputs for the dataset are air temperature values derived from satellite Earth Observation data (MODIS) and land cover characterization from the ESA Climate Change Initiative product reclassified into their IPCC land use category equivalent. This data, originally at 0.05 degree of spatial resolution, is aggregated and analysed at regional level to provide guidance on the expected temperature impact following specific LCC transitions.

  18. Increases in external cause mortality due to high and low temperatures: evidence from northeastern Europe

    Science.gov (United States)

    Orru, Hans; Åström, Daniel Oudin

    2016-11-01

    The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00-Y99) and maximum temperatures over the period 1997-2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1-3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14-1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03-1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.

  19. Zooplankton incidence in abnormally high sea surface temperature in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Zooplankton in an abnormally high sea surface temperature (33.1 to 33.8 degrees C) and alternate bands of slick formation were studied in the Eastern Arabian Sea during 26 and 29 April 1981. The phenomenon which may be due to intense diurnal heating...

  20. Assessment, management rehabilitation of surface water losses due to longwall coal mining subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Dawkins, A.P. [Coffey Geosciences Pty. Ltd., Sydney, NSW (Australia)

    1999-07-01

    Subsidence due to longwall coal mining has generated notable effects on surface water and groundwater above numerous longwall coal mines in Queensland and NSW. This paper deals with the methods which can be used to assess, predict and rehabilitate the effects of longwall surface subsidence on surface water bodies. Aspects discussed cover the subsidence model, hydrological and hydrogeological assessment, hydrogeochemical changes and subsidence rehabilitation issues. The paper concludes that longwall surface subsidence can significantly affect the mine's local environment. However, with sufficient baseline data and a thorough assessment of site specific issues, longwalls can be planned to account for subsidence effects on surface water, and possible deleterious effects can be mitigated. 20 refs., 4 figs.

  1. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  2. Investigation of surface properties of high temperature nitrided titanium alloys

    Directory of Open Access Journals (Sweden)

    E. Koyuncu

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, X-Ray diffraction and Vickers hardness.Findings: Two layers were determined by optic inspection on the samples that were called the compound and diffusion layers. Compound layer contain TiN and Ti2N nitrides, XRD results support in this formations. Maximum hardness was obtained at 10h treatment time and 1000°C treatment temperature. Micro hardness tests showed that hardness properties of the nitrided samples depend on treatment time and temperature.Practical implications: Titanium and its alloys have very attractive properties for many industries. But using of titanium and its alloys is of very low in mechanical engineering applications because of poor tribological properties.Originality/value: The nitriding of titanium alloy surfaces using plasma processes has already reached the industrial application stage in the biomedical field.

  3. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ ...... is covered with adsorbed oxygen which vanishes at high temperature (1000øC). On Ni (YSZ) a specific layer of NiO is observed abovethe equilibrium potential while no surface species can identified at SOFC anode conditions....

  4. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  5. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse;

    1998-01-01

    in contact with YSZ is covered with adsorbed oxygen which vanishes at high temperature (1000 degrees C). On Ni (YSZ) a specific layer of NiO is observed above the equilibrium potential while no surface species involving hydrogen can be identified at SOFC anode conditions. (C) 1998 Published by Elsevier......The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  6. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  7. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    Science.gov (United States)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  8. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Institute of Scientific and Technical Information of China (English)

    Laura Charalambous a; Wolfgang Potthast c; Gareth Irwin b

    2016-01-01

    Background: Artificial turf is considered a feasible global alternative to natural turf by many sports governing bodies. Consequently, its ability to provide a safe and consistent playing surface regardless of climate becomes essential. The aims of this study were to determine the effects of artificial surface temperature on:(1) mechanical properties of the turf and (2) the kinematics of a turf-sport related movement. Methods: Two identical artificial turf pitches were tested:one with a cold surface temperature (1.8°C–2.4°C) and one with a warm surface temperature (14.5°C–15.2°C). Mechanical testing was performed to measure the surface properties. Four amateur soccer players performed a hurdle jump to sprint acceleration movement, with data (contact time, step length and hip, knee and ankle kinematics) collected using CODASport (200 Hz). Results: The temperature difference had a significant influence on the mechanical properties of the artificial turf, including force absorption, energy restitution, rotational resistance, and the height where the head injury criterion was met. Both step length (p=0.008) and contact time (p=0.002) of the initial step after the landing were significantly longer on the warm surface. In addition, significant range of motion and joint angular velocity differences were found. Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  9. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  10. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  11. The Land Surface Temperature Impact to Land Cover Types

    Science.gov (United States)

    Ibrahim, I.; Abu Samah, A.; Fauzi, R.; Noor, N. M.

    2016-06-01

    Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R2 = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.

  12. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    Science.gov (United States)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  13. New indexing and surface temperature analysis of exoplanets

    CERN Document Server

    Kashyap, J M; Safonova, M

    2016-01-01

    Study of exoplanets is the holy grail of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth\\-the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity,...

  14. INVESTIGATION OF SURFACE TEMPERATURE IN HIGH-EFFICIENCY DEEP GRINDING

    Institute of Scientific and Technical Information of China (English)

    Zhao Henghua; Cai Guangqi; Jin Tan

    2005-01-01

    A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.

  15. Causes of twentieth-century temperature change near the Earth's surface

    Science.gov (United States)

    Tett, Simon F. B.; Stott, Peter A.; Allen, Myles R.; Ingram, William J.; Mitchell, John F. B.

    1999-06-01

    Observations of the Earth's near-surface temperature show a global-mean temperature increase of approximately 0.6K since 1900 (ref. 1), occurring from 1910 to 1940 and from 1970 to the present. The temperature change over the past 30-50 years is unlikely to be entirely due to internal climate variability and has been attributed to changes in the concentrations of greenhouse gases and sulphate aerosols due to human activity. Attribution of the warming early in the century has proved more elusive. Here we present a quantification of the possible contributions throughout the century from the four components most likely to be responsible for the large-scale temperature changes, of which two vary naturally (solar irradiance and stratospheric volcanic aerosols) and two have changed decisively due to anthropogenic influence (greenhouse gases and sulphate aerosols). The patterns of time/space changes in near-surface temperature due to the separate forcing components are simulated with a coupled atmosphere-ocean general circulation model, and a linear combination of these is fitted to observations. Thus our analysis is insensitive to errors in the simulated amplitude of these responses. We find that solar forcing may have contributed to the temperature changes early in the century, but anthropogenic causes combined with natural variability would also present a possible explanation. For the warming from 1946 to 1996 regardless of any possible amplification of solar or volcanic influence, we exclude purely natural forcing, and attribute it largely to the anthropogenic components.

  16. Displacements and stresses in composite multi-layered media due to varying temperature and concentrated load

    Institute of Scientific and Technical Information of China (English)

    M. K. Ghosh; M. Kanoria

    2007-01-01

    This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.

  17. Dependence of implantation sequence on surface blistering characteristics due to H and He ions co-implanted in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J.H. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Hsieh, H.Y.; Wu, C.W. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, C.M. [Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan, ROC (China)

    2015-12-15

    This study investigated surface blistering characteristics due to H and He ions co-implanted in silicon at room temperature. The H and He ion energies were 40 and 50 keV, respectively, so that their depth profiles were similar. The total implantation fluence for the H and He ions was 5 × 10{sup 16} cm{sup −2} under various fluence fractions in the H ions. The implantation sequences under investigation were He + H and H + He. Dynamic optical microscopy (DOM) was employed in order to dynamically analyze surface blistering characteristics. This study used DOM data to construct so-called time–temperature–transformation (T–T–T) curves to easily predict blistering and crater transformation at specific annealing times and temperatures. The results revealed that the curves of blister initialization, crater initialization, and crater completion in the He + H implant occurred at a lower annealing temperature but with a longer annealing time compared to those in the H + He implant. Furthermore, the threshold annealing temperatures for blister and crater formation in the He + H implant were lower than they were in the H + He implant. The size distributions of the blisters and craters in the He + H implant extended wider than those in the H + He implant. In addition, the He + H implant exhibited larger blisters and craters compared to the ones in the H + He implant. Since the former has a higher percentage of exfoliation area than the latter, it is regarded as the more optimal implantation sequence.

  18. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  19. High-temperature vesuvianite: crystal chemistry and surface considerations

    Science.gov (United States)

    Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano

    2011-06-01

    A multi-methodical approach has been applied for characterizing the bulk and surface crystal chemical features of a high-temperature vesuvianite crystal from skarns of Mount Somma-Vesuvius Volcano (Naples, Italy). Vesuvianite belongs to the space group P4/ nnc with unit cell parameters a = 15.633(1) Å, c = 11.834(1) Å and chemical formula (Ca18.858 Na0.028 Ba0.004 K0.006 Sr0.005 □0.098)19.000 (Al8.813 Ti0.037 Mg2.954 Mn0.008 Fe{0.114/2+} Fe{1.375/3+} Cr0.008 B0.202)13.511 Si18.000(O0.261 F0.940 OH7.799)9.000. Structure refinement, which converges at R = 0.0328, demonstrates a strong positional disorder down the fourfold axes, indicating that the Y1 site is split into two positions (Y1A and Y1B) alternatively occupied. However, because of X4 proximity to Y1B and Y1A, X4 cannot be occupied if Y1B or Y1A are. Overall Y1 occupancy (Y1A + Y1B) reaches approximately 0.5, as common in vesuvianite and occupancy of Y1B site is extremely limited. Moreover, T1 position, limitedly occupied, accommodates the excess of cations generally related to Y position. A small quantity (0.202 apfu) of boron is sited at the T2 site that, like T1, is poorly occupied. The determination of the amount of each element on the (100) vesuvianite surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s, and Ca2p core levels, evidences that a greater amount of aluminum and a smaller amount of calcium characterize the surface with respect to the bulk. Although both of these features require further investigation, we may consider the Al increase can be related to preferential orientation of Al-rich sites on the (100) plane. Furthermore, the surface structure of vesuvianite suggests that Al, Ca, and Mg cations maintain coordination features at the surface similar to the bulk. Silica, however, while presenting fourfold coordination, shows also a [1]-fold small coordinated component at binding energy 99.85 eV, due to broken Si-O bonds at

  20. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  1. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  2. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold

  3. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold surfa

  4. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  5. Quantifying and specifying the solar influence on terrestrial surface temperature

    NARCIS (Netherlands)

    de Jager, C.; Duhau, S.; van Geel, B.

    2010-01-01

    This investigation is a follow-up of a paper in which we showed that both major magnetic components of the solar dynamo, viz. the toroidal and the poloidal ones, are correlated with average terrestrial surface temperatures. Here, we quantify, improve and specify that result and search for their caus

  6. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  7. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  8. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  9. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  10. Surface temperature maps for II Peg during 1999-2002

    CERN Document Server

    Lindborg, M; Tuominen, I; Hackman, T; Ilyin, I; Piskunov, N

    2009-01-01

    The active RS CVn star II Peg has been spectroscopically monitored for almost 18 years with the SOFIN spectrograph at NOT, La Palma, Spain. In this paper we present five new surface temperature maps of the object for the years 1999 (two maps), 2001 (one map) and 2002 (two maps).

  11. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  12. Modeling the surface temperature of Earth-like planets

    CERN Document Server

    Vladilo, G; Murante, G; Filippi, L; Provenzale, A

    2015-01-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...

  13. A model of the tropical Pacific sea surface temperature climatology

    Science.gov (United States)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  14. Temperature maps measurements on 3D surfaces with infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Cardone, Gennaro; Ianiro, Andrea [University of Naples Federico II, Department of Aerospace Engineering (DIAS), Naples (Italy); Ioio, Gennaro dello [University of Cambridge, BP Institute for Multiphase Flow, Cambridge, England (United Kingdom); Passaro, Andrea [Alta SpA, Ospedaletto, PI (Italy)

    2012-02-15

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel. (orig.)

  15. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014

    Science.gov (United States)

    Kuipers Munneke, P.; Ligtenberg, S. R. M.; Noël, B. P. Y.; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; van den Broeke, M. R.

    2015-11-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960-2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1-5 cm yr-1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20-50 cm yr-1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at -3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.

  16. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva;

    2014-01-01

    of four state equations. Taking advantage of the psychrometric relationship between temperature and vapor pressure, the present method also estimates the near surface moisture availability (M) from TS, air temperature (TA) and relative humidity (RH), thereby being capable of decomposing λ...

  17. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    Science.gov (United States)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  18. Infrared camera assessment of skin surface temperature--effect of emissivity.

    Science.gov (United States)

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account.

  19. Accumulation of microswimmers near surface due to steric confinement and rotational Brownian motion

    Science.gov (United States)

    Li, Guanglai; Tang, Jay

    2009-03-01

    Microscopic swimmers display some intriguing features dictated by Brownian motion, low Reynolds number fluid mechanics, and boundary confinement. We re-examine the reported accumulation of swimming bacteria or bull spermatozoa near the boundaries of a fluid chamber, and propose a kinematic model to explain how collision with surface, confinement and rotational Brownian motion give rise to the accumulation of micro-swimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from any incident angle. It then takes off and swims away from the surface after some time due to rotational Brownian motion. Based on this analysis, we obtain through computer simulation steady state density distributions that reproduce the ones measured for the small bacteria E coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming near surfaces. These results suggest strongly that Brownian dynamics and surface confinement are the dominant factors for the accumulation of microswimmers near a surface.

  20. Surface damage of metallic implants due to mechanical loading and chemical reactions

    Science.gov (United States)

    Ryu, Jaejoong

    The present study investigates interfacial damage mechanism of modular implants due to synergetic action of mechanical contact loading and corrosion. Modular implants are manufactured such that surfaces have a characteristic degree of roughness determined by tool tip size and motion of tool path or feeding speed. The central hypothesis for this work is that during contact loading of metallic implants, mechanisms of damage and dissolution are determined by contact loads, plastic deformation, residual stresses and environmental conditions at the nanoscale surface asperities; while during subsequent rest periods, mechanism of metallic dissolution is determined by the environmental conditions and residual stress field induced due to long range elastic interactions of the plastically deformed asperities. First part of the thesis is focused on investigating the mechanisms underlying surface roughness evolution due to stress-assisted dissolution during the rest period. The latter part is focused on investigating material removal mechanisms during single asperity contact of implant surfaces. Experimental study was performed to elucidate the roughness evolution mechanism by combined effect of multi-asperity contact and environmental corrosion. Cobalt-chromium-molybdenum specimen was subjected to either contact loading alone or alternating contact loading and exposure to reactive environment. Roughness of the specimen surface was monitored by optical profilometry and Fast Fourier Transform (FFT) calculation was used to characterize the evolving behavior of roughness modes. Finite element analysis (FEA) was employed to identify influences of surface morphological configurations and contact pressures on the residual stress development. Analytical model of multi-asperity contact has been developed for prediction of residual stress field for different roughness configurations during varying magnitude of contact loads based on elastic inclusion theory. Experimental results

  1. ESA DUE GlobTemperature project: Infrared-based LST Product

    Science.gov (United States)

    Ermida, Sofia; Pires, Ana; Ghent, Darren; Trigo, Isabel; DaCamara, Carlos; Remedios, John

    2016-04-01

    One of the purposes of the GlobTemperature project is to provide a product of global Land Surface Temperature (LST) based on Geostationary Earth Orbit (GEO) and Low Earth polar Orbit (LEO) satellite data. The objective is to use existing LST products, which are obtained from different sensors/platforms, combining them into a harmonized product for a reference view angle. In a first approach, only infra-red based retrievals are considered, and LEO LSTs will be used as a common denominator among geostationary sensors. LST data is provided by a wide range of sensors to optimize spatial coverage, namely: (i) 2 LEO sensors - the Advanced Along Track Scanning Radiometer (AATSR) series of instruments on-board ESA's Envisat, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and (ii) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). The merged LST product is generated in two steps: 1) calibration between each LEO and each GEO that consists in the removal of systematic differences (associated to sensor type and LST algorithms, including calibration, atmospheric and surface emissivity corrections, amongst others) represented by linear regressions; 2) angular correction that consists in bringing all LST data to reference (nadir) view. Angular effects on LST are estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as function of viewing and illumination geometry. The model is adjusted to MODIS and SEVIRI/MSG LST estimates and validated against LST retrievals from those sensors obtained for other years (not used in the calibration). It is shown that the model leads to a reduction of LST

  2. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Yoann, E-mail: levy@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Derrien, Thibault J.-Y. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Bulgakova, Nadezhda M. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); S.S. Kutateladze Institute of Thermophysics SB RAS, 1 Lavrentyev ave., 630090 Novosibirsk (Russian Federation); Gurevich, Evgeny L. [Chair of Applied Laser Technologies, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Mocek, Tomáš [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2016-06-30

    Highlights: • The surface temperature dynamics in Ti and Si is studied upon fs laser irradiation. • To model conditions of LIPSS formation, the laser energy coupling is modulated. • Temperature modulation survives more than 10 ps in Ti and more than 50 ps in Si. • Under certain conditions, periodic nano-melting develops along the surface. - Abstract: Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  3. Suppressing high-frequency temperature oscillations in microchannels with surface structures

    Science.gov (United States)

    Zhu, Yangying; Antao, Dion S.; Bian, David W.; Rao, Sameer R.; Sircar, Jay D.; Zhang, Tiejun; Wang, Evelyn N.

    2017-01-01

    Two-phase microchannel heat sinks are attractive for thermal management of high heat flux electronic devices, yet flow instability which can lead to thermal and mechanical fatigue remains a significant challenge. Much work has focused on long-timescale (˜seconds) flow oscillations which are usually related to the compressible volume in the loop. The rapid growth of vapor bubbles which can also cause flow reversal, however, occurs on a much shorter timescale (˜tens of milliseconds). While this high-frequency oscillation has often been visualized with high-speed imaging, its effect on the instantaneous temperature has not been fully investigated due to the typical low sampling rates of the sensors. Here, we investigate the temperature response as a result of the high-frequency flow oscillation in microchannels and the effect of surface microstructures on this temperature oscillation with a measurement data acquisition rate of 1000 Hz. For smooth surface microchannels, fluid flow oscillated between complete dry-out and rewetting annular flow due to the short-timescale flow instability, which caused high-frequency and large amplitude temperature oscillations (10 °C in 25 ms). In comparison, hydrophilic surface structures on the microchannel promoted capillary flow which delayed and suppressed dry-out in each oscillation cycle, and thus significantly reduced the temperature oscillation at high heat fluxes. This work suggests that promoting capillary wicking via surface structures is a promising technique to reduce thermal fatigue in high heat flux two-phase microchannel thermal management devices.

  4. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Science.gov (United States)

    Levy, Yoann; Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.; Gurevich, Evgeny L.; Mocek, Tomáš

    2016-06-01

    Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  5. Computational simulation of surface waviness in graphite/epoxy woven composites due to initial curing

    Science.gov (United States)

    Sanfeliz, Jose G.; Murthy, Pappu L. N.; Chamis, Christos C.

    1992-01-01

    Several models simulating plain weave, graphite/epoxy woven composites are presented, along with the effects that the simultaneous application of pressure and thermal loads have on their surfaces. The surface effects created by moisture absorption are also examined. The computational simulation consisted of using a two-dimensional finite element model for the composite. The properties of the finite element (FE) model are calculated by using the in-house composite mechanics computer code ICAN (Integrated Composite ANalyzer). MSC/NASTRAN is used for the FE analysis which yields the composite's top surface normalized displacements. These results demonstrate the importance of parameters such as the cure temperature (T sub o) and the resin content in the curing process of polymer-matrix composites. The modification of these parameters will help tailor the composite system to the desired requirements and applications.

  6. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  7. Surface layer temperature inversion in the Bay of Bengal

    Science.gov (United States)

    Thadathil, Pankajakshan; Gopalakrishna, V. V.; Muraleedharan, P. M.; Reddy, G. V.; Araligidad, Nilesh; Shenoy, Shrikant

    2002-10-01

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November-February). Although the inversion in the northeastern Bay is sustained until February (with remnants seen even in March), in the western Bay it becomes less organized in January and almost disappears by February. Inversion is confined to the fresh water induced seasonal halocline of the surface layer. Inversions of large temperature difference (of the order of 1.6-2.4°C) and thin layer thickness (10-20 m) are located adjacent to major fresh water inputs from the Ganges, Brahmaputra, Irrawaddy, Krishna and Godavari rivers. The inversion is stable with a mean stability of 3600×10 -8 m -1. Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling in the northern Bay. Fresh water flux leads the occurrence process in association with surface heat flux and advection. The leading role of fresh water flux is understood from the observation that the two occurrence regions of inversion (the western and northeastern Bay) have proximity to the two low salinity (with values about 28-29‰) zones. In the western Bay, the East India Coastal Current brings less saline and cold water from the head of the Bay to the south-west Bay, where it advects over warm, saline water, promoting temperature inversion in this region in association with the surface heat loss. For inversion occurring in the northeastern Bay (where the surface water gains heat from atmosphere), surface advection of the less saline

  8. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  9. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  10. Surface emissivity and temperature retrieval for a hyperspectral sensor

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  11. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  12. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A. [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  13. Elevation change of the Greenland ice sheet due to surface mass balance and firn processes, 1960-2013

    Science.gov (United States)

    Kuipers Munneke, P.; Ligtenberg, S. R. M.; Noël, B. P. Y.; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; van den Broeke, M. R.

    2015-06-01

    Observed changes in the surface elevation of the Greenland ice sheet are caused by ice dynamics, basal elevation change, surface mass balance (SMB) variability, and by compaction of the overlying firn. The latter two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960-2013. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. We find that the firn layer in the high interior is generally thickening slowly (1-5 cm yr-1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20-50 cm yr-1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s, and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2013 is estimated at -3900 ± 1030 km3 due to firn and SMB, corresponding to an ice-sheet average thinning of 2.32 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.

  14. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    Science.gov (United States)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  15. Reconstruction of MODIS daily land surface temperature under clouds

    Science.gov (United States)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  16. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  17. Piglets’ Surface Temperature Change at Different Weights at Birth

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  18. Piglets' surface temperature change at different weights at birth.

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; Dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva Dos Santos, Rita

    2014-03-01

    The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  19. Piglets’ Surface Temperature Change at Different Weights at Birth

    Directory of Open Access Journals (Sweden)

    Fabiana Ribeiro Caldara

    2014-03-01

    Full Text Available The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW: T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS. Images of piglets’ surface by thermal imaging camera were recorded at birth (STB and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815 with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  20. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  1. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    Science.gov (United States)

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  2. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    Science.gov (United States)

    McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.

    2015-01-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  3. Analysis of surface degradation of high density polyethylene (HDPE) insulation material due to tracking

    Indian Academy of Sciences (India)

    R Sarathi; S Chandrasekar; V Sabari Giri; C Venkataseshaiah; R Velmurugan

    2004-06-01

    In the present work, tracking phenomena has been studied with HDPE material under a.c. voltage, with ammonium chloride as the contaminant. It is noticed that the tracking time depends on the conductivity and flow rate of the contaminant. The diffusion coefficient of the material was obtained. The thermal and chemical stability of the material were identified by carrying out a methodical experimental study. The physico-chemical analyses viz. wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), were carried out and it was concluded that the mechanism of tracking process is due to the surface degradation. The surface condition of the insulation structure was characterized for any surface discharges or tracking, using the leakage current measurement, utilizing the wavelet concepts.

  4. Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Directory of Open Access Journals (Sweden)

    C. L. Pérez Díaz

    2015-08-01

    Full Text Available Land Surface Temperature (LST is a key variable (commonly studied to understand the hydrological cycle that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air and snow skin temperature (T-skin helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  5. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Science.gov (United States)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  6. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    Science.gov (United States)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  7. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  8. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  9. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  10. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  11. Effect of floor surface temperature on blood flow and skin temperature in the foot.

    Science.gov (United States)

    Song, G-S

    2008-12-01

    A total of 16 healthy college students participated as subjects to elucidate the hypothesis that blood flow and skin temperature in foot are affected by the floor surface temperature. The floor surface temperature was controlled by varying the temperature of water (tw) flowing underneath the floor, and it ranged from tw 15 to 40 degrees C at 5 degrees C intervals. The blood flow rate was measured in the dorsal right toe, and skin temperatures were measured for 60 min at 8 points: the neck, right scapular, left hand, right shin, left bottom of the toe, right instep, left finger, and rectum. The blood flow rate in the foot tissue was increased until the foot skin temperature warmed up to 34 degrees C (P = 0.000). The final skin temperatures on the bottom of the toe were 19.4 +/- 2.44 degrees C for tw 15 degrees C, 22.4 +/- 2.45 degrees C for tw 20 degrees C, 24.8 +/- 2.80 degrees C for tw 25 degrees C, 27.7 +/- 2.13 degrees C for tw 30 degrees C, 30.6 +/- 2.06 degrees C for tw 35 degrees C, 33.2 +/- 1.45 degrees C for tw 40 degrees C, 34.2 +/- 1.55 degrees C for tw 45 degrees C, and 35.2 +/- 1.65 degrees C for tw 50 degrees C. Considering blood flow and comfort, the partial floor heating system is suggested and the recommended floor surface temperature range is 27-33 degrees C. A warm floor surface can serve to satisfy occupants when the ambient temperature maintained at 20 degrees C which represents an energy conscious temperature. A warm floor can induce high blood perfusion in the feet and consequently improve an occupant's health by treating many vascular-related disorders. Even in a well-insulated residential building, a partially heated floor system could prevent overheating while providing surface warmth.

  12. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  13. Land surface temperature shaped by urban fractions in megacity region

    Science.gov (United States)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2017-02-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation ( R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  14. High temperature surface degradation of III-V nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D.; Lambers, E.S. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01

    The surface stoichiometry, surface morphology and electrical conductivity of AlN, GaN, InN, InGaN and InAlN was examined at rapid thermal annealing temperatures up to 1,150 C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1,000 C. Auger Electronic Spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1,150 C. GaN root mean square (RMS) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1,000 C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 C, and scanning electron microscopy (SEM) showed significant degradation. In contrast to the binary nitrides the sheet resistance of InAlN was found to increase by {approximately} 10{sup 2} from the as grown value after annealing at 800 C and then remain constant up to 1,000 C, while that of InGaN increased rapidly above 700 C. The RMS roughness increased above 800 C and 700 C respectively for InAlN and InGaN samples. In droplets began to form on the surface at 900 C for InAlN and at 800 C for InGaN, and then evaporate at 1,000 C leaving pits. AES analysis showed a decrease in the N concentration in the top 500 {angstrom} of the sample for annealing {ge} 800 C in both materials.

  15. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    Science.gov (United States)

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.

    2016-12-01

    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  16. Influence of high-temperature processing on the surface properties of bulk AlN substrates

    Science.gov (United States)

    Tojo, Shunsuke; Yamamoto, Reo; Tanaka, Ryohei; Thieu, Quang Tu; Togashi, Rie; Nagashima, Toru; Kinoshita, Toru; Dalmau, Rafael; Schlesser, Raoul; Murakami, Hisashi; Collazo, Ramón; Koukitu, Akinori; Monemar, Bo; Sitar, Zlatko; Kumagai, Yoshinao

    2016-07-01

    Deep-level luminescence at 3.3 eV related to the presence of Al vacancies (VAl) was observed in room temperature photoluminescence (RT-PL) spectra of homoepitaxial AlN layers grown at 1450 °C by hydride vapor-phase epitaxy (HVPE) and cooled to RT in a mixture of H2 and N2 with added NH3. However, this luminescence disappeared after removing the near surface layer of AlN by polishing. In addition, the deep-level luminescence was not observed when the post-growth cooling of AlN was conducted without NH3. Secondary ion mass spectrometry (SIMS) studies revealed that although the point defect density of the interior of the AlN layers remained low, the near surface layer cooled in the presence of NH3 was contaminated by Si impurities due to both suppression of the surface decomposition by the added NH3 and volatilization of Si by decomposition of the quartz reactor walls at high temperatures. The deep-level luminescence reappeared after the polished AlN wafers were heated in presence of NH3 at temperatures above 1400 °C. The surface contamination by Si is thought to generate VAl near the surface by lowering their formation energy due to the Fermi level effect, resulting in deep-level luminescence at 3.3 eV caused by the shallow donor (Si) to VAl transition.

  17. Surface Tensions and Their Variations with Temperature and Impurities

    Science.gov (United States)

    Hardy, S. C.; Fine, J.

    1985-01-01

    The surface tensions in this work were determined using the sessile drop technique. This method is based on a comparison of the profile of a liquid drop with the profile calculated by solving the Young-Laplace equation. The comparison can be made in several ways; the traditional Bashforth-Adams procedure was used in conjunction with recently calculated drop shape tables which virtually eliminate interpolation errors. Although previous study has found little difference in measurements with pure and oxygen doped silicon, there is other evidence suggesting that oxygen in dilute concentrations severely depresses the surface tension of silicon. The surface tension of liquid silicon in purified argon atmospheres was measured. A temperature coefficient near -0.28 mJ/square meters K was found. The experiments show a high sensitivity of the surface tension to what is believed are low concentrations of oxygen. Thus one cannot rule out some effect of low levels of oxygen in the results. However, the highest surface tension values obtained in conditions which minimized the residual oxygen pressure are in good agreement with a previous measurement in pure hydrogen. Therefore, depression of the surface tension by oxygen is insignificant in these measurements.

  18. Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows

    Institute of Scientific and Technical Information of China (English)

    LUDong-qiang; AllenT.CHWANG

    2004-01-01

    The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.

  19. Investigation of reasons for small changes in energy of UCN due to their interaction with surface

    CERN Document Server

    Lychagin, E V; Nekhaev, G V; Strelkov, A V; Kartashov, D G; Nesvizhevsky, V V

    2002-01-01

    The nature of the phenomenon of small changes in energy of ultracold neutrons (UCN) has been investigated. This phenomenon occurs during collisions of UCN with a surface, which increase the UCN energy by approx 10 sup - sup 7 eV with a probability of 10 sup - sup 8 -10 sup - sup 5 per collision. Such neutrons are named VUCN. It was observed that the preliminary warming up of samples at 500-600 K leads to an increase of the small heating probability P sub V sub U sub C sub N by at least a factor of 100 for a surface of stainless steel and by a factor of 10 for a copper surface. Extremely intensive UCN small heating by a diamond nanopowder has been observed for the first time. The spectrum of these VUCN and the temperature dependence of their heating probability P sub V sub U sub C sub N are similar to those measured earlier for stainless steel, beryllium, and copper. It is not observed small UCN heating, nor nanoparticles on a monocrystalline sapphire surface. That leads to the conclusion that VUCN are produce...

  20. Increased dose near the skin due to electromagnetic surface beacon transponder.

    Science.gov (United States)

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  1. UNSTEADY WAVES DUE TO AN IMPULSIVE OSEENLET BENEATH THE CAPILLARY SURFACE OF A VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    LU Dong-qiang; CHEN Xiao-bo

    2008-01-01

    The two-dimensional free-surface waves due to a point force steadily moving beneath the capillary surface of an incompressible viscous fluid of infinite depth were analytically investigated. The unsteady Oseen equations were taken as the governing equations for the viscous flows. The kinematic and dynamic conditions including the combined effects of surface tension and viscosity were linearized for small-amplitude waves on the free-surface. The point force is modeled as an impulsive Oseenlet. The complex dispersion relation for the capillary-gravity waves shows that the wave patterns are characterized by the Weber number and the Reynolds number. The asymptotic expansions for the wave profiles were explicitly derived by means of Lighthill's theorem for the Fourier transform of a function with a finite number of singularities. Furthermore, it is found that the unsteady wave system consists of four families, that is, the steady-state gravity wave, the steady-state capillary wave, the transient gravity wave, and the transient capillary wave. The effect of viscosity on the capillary-gravity was analytically expressed.

  2. Spontaneous Emulsification of a Metal Drop Immersed in Slag Due to Dephosphorization: Surface Area Quantification

    Science.gov (United States)

    Assis, Andre N.; Warnett, Jason; Spooner, Stephen; Fruehan, Richard J.; Williams, Mark A.; Sridhar, Seetharaman

    2015-04-01

    When a chemical reaction occurs between two immiscible liquids, mass transfer is continuously taking place at the liquid-liquid interface. Several studies have shown that if the species being exchanged between the two liquids are surface-active, a very pronounced decrease in interfacial tension can occur which can lead to a phenomenon called spontaneous emulsification. In steelmaking, this behavior has been observed for several reactions that involve the transfer of impurities from molten steel to a molten-oxide slag but little quantification has been made. This work focuses on spontaneous emulsification due to the dephosphorization of a Fe-P drop immersed in a basic oxygen furnace type slag. An Au-image furnace attached to a confocal scanning laser microscope was used to rapidly heat and cool the samples at different times, and X-ray computerized tomography was used to perform the surface area calculations of the samples where the slag/steel reaction was allowed to occur for distinct times. The results show that the surface area of the metal drop rapidly increases by over one order of magnitude during the first 60 seconds of the reaction while the chemical reaction is occurring at a fast rate. Once the reaction slows down, approximately after 60 seconds, the droplets start to coalesce back together minimizing the surface area and returning to a geometry close to its equilibrium shape.

  3. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  4. High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings

    CERN Document Server

    Seltzer, S J

    2009-01-01

    Anti-relaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling free motion of the alkali atoms and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of anti-relaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free (SERF) atomic magnetometer with sensitivi...

  5. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  6. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  7. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  8. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.

    Science.gov (United States)

    Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J

    2014-02-01

    Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.

  9. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Liu, Yi; Zhang, Jun

    2016-07-01

    Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor

  10. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  11. Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    CERN Document Server

    Heiter, U; Gustafsson, B; Korn, A J; Soubiran, C; Thévenin, F

    2015-01-01

    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bol...

  12. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  13. Alteration of the carbon and nitrogen isotopic composition in the Martian surface rocks due to cosmic ray exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-06-01

    13C/12C and 15N/14N isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce 13C and 15N isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both 13C and 15N due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is Mars can explain its high-temperature heavy nitrogen isotopic composition (15N/14N). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  14. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  15. Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling

    Institute of Scientific and Technical Information of China (English)

    JU Yaping; ZHANG Chuhua

    2016-01-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  16. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  17. Geostatistical Solutions for Downscaling Remotely Sensed Land Surface Temperature

    Science.gov (United States)

    Wang, Q.; Rodriguez-Galiano, V.; Atkinson, P. M.

    2017-09-01

    Remotely sensed land surface temperature (LST) downscaling is an important issue in remote sensing. Geostatistical methods have shown their applicability in downscaling multi/hyperspectral images. In this paper, four geostatistical solutions, including regression kriging (RK), downscaling cokriging (DSCK), kriging with external drift (KED) and area-to-point regression kriging (ATPRK), are applied for downscaling remotely sensed LST. Their differences are analyzed theoretically and the performances are compared experimentally using a Landsat 7 ETM+ dataset. They are also compared to the classical TsHARP method.

  18. Effect of surface nanostructure on temperature programmed reaction spectroscopy

    Science.gov (United States)

    Rieger, Michael; Rogal, Jutta; Reuter, Karsten

    2008-03-01

    Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction (TPR) spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can cause inhomogeneities that cannot be grasped by prevalent mean-field data analysis procedures, which thus lead to wrong conclusions on the reactivity of the different surface species. The RuO2(110) surface studied here exhibits only two prominent active sites, arranged in simple alternating rows. Yet, the mere neglection of this still quite trivial nanostructure leads mean-field TPR data analysis [1] to extract kinetic parameters that are in error by several orders of magnitude and that do not even reflect the relative reactivity of the different surface species correctly [2].[1] S. Wendt, M. Knapp, and H. Over, JACS 126, 1537 (2004).[2] M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett (in press).

  19. Modeling of surface temperature effects on mixed material migration in NSTX-U

    Science.gov (United States)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  20. Temperature measurements on solid surfaces in rack-storage fires using IR thermography

    Science.gov (United States)

    de Vries, J.; Ren, N.; Chaos, M.

    2015-05-01

    The development of fire modeling tools capable of predicting large-scale fire phenomena is of great value to the fire science community. To this end, FM Global has developed an open-source CFD fire simulation code, FireFOAM. The accuracy of this code relies fundamentally on high-quality experimental validation data. However, at larger scales, detailed measurements of local quantities (e.g., surface temperatures) needed for model validation are difficult to obtain. Often, the information obtained from large-scale fire tests is limited to the global heat release rates (HRR) or point temperature or heat flux measurements from embedded thermocouples or heat flux gauges, respectively. The present study addresses this limitation by introducing IR thermographic measurements in a three- and a five-tier-high rack storage scenario. IR temperatures are compared against modeled results. The tested and modeled cases represent realistic industrial warehouse fire scenarios. The rack-stored commodity consisted of corrugated paperboard boxes wrapped around a steel cubic liners, placed on top of a hardwood pallet. The global heat release rate was measured using a 20- MW fire products collector located inside FM Global's Fire Technology Laboratory. An in-house calibrated microbolometer IR camera was used to obtain two-dimensional temperature measurements on the fuel surfaces and on the surfaces inside the flue spaces. Maximum temperatures up to 1200 K were observed on the external surfaces of the test array. Inside the flue spaces between pallet loads, temperatures up to 1400 K were measured. The modeled fire spread results match well fire spread shown in the IR thermographic images. The peak modeled surface temperatures obtained inside some of the horizontal flue spaces were ~1400K, which agreed well with the peak temperatures seen by the IR camera. The effect of the flames present between the surfaces of interest and the IR camera only contribute to about 50 K increase in measured

  1. Assessment of surface temperatures of buffalo bulls (Bubalus bubalis raised under tropical conditions using infrared thermography

    Directory of Open Access Journals (Sweden)

    D.V. Barros

    2016-04-01

    Full Text Available This paper aimed to evaluate the surface temperatures of buffalo bulls using infrared thermography, considering four distinct anatomical parts over time, and to correlate surface temperatures and thermal comfort indexes. The humid tropical climate (Köppen's Afi was predominant in the research station where the experiment was performed and the trial lasted from April to August. Ten bulls (n=10 were evaluated every 25 days (morning: 6:00-9:00; afternoon: 12:00-15:00 and the parameters assessed were respiratory rate (RR, rectal temperature (RT, and the thermograms of surface temperature for orbital area (ORB, right flank (RF, left flank (LF and scrotum (SCR. Climatological data was continuously monitored and the Temperature and Humidity Index (THI and the Index of Comfort of Benezra (ICB were calculated. The average values of THI were ≥78, and significant differences between shifts were observed (P<0.05. The ICB ranged from 1.96 to 2.25 and significant differences were observed for shifts and throughout the months (P<0.05. The averages of surface temperatures were RT=38.2±0.5°C, ORB=36.1±0.8°C, LF=33.5±2.5°C, RF=35.4±1.7ºC and SCR=33.3±1.1°C, which exhibited significant differences for shifts and throughout the months (P<0.05. Positive correlations were obtained between THI and ORB (0.72, RF (0.77, LF (0.75 and SCR (0.41 (P<0.0001. The maximum temperature of ORB showed the highest correlation with RT (0.58, P<0.0001. Therefore, the surface temperatures are subject to climatic variations and increase throughout the day, due to the variation in thermal comfort indexes, and the maximum ORB temperature was the parameter most related to rectal temperature. Lastly, the results indicate that IRT may be a useful non-invasive and accurate tool to detect the variations in ORB, LF, RF and SCR temperature in buffalo bulls.

  2. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  3. Afforestation in China cools local land surface temperature.

    Science.gov (United States)

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z X; Myneni, Ranga B; Yin, Yi; Zeng, Hui

    2014-02-25

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects.

  4. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  5. MHD Homogeneous-Heterogeneous Reactions in a Nanofluid due to a Permeable Shrinking Surface

    Directory of Open Access Journals (Sweden)

    Syahira Mansur

    2016-01-01

    Full Text Available The MHD homogeneous-heterogeneous reaction in a nanofluid flow due to a permeable shrinking surface is studied. The bvp4c program in MATLAB is used to obtain the numerical solutions for several values of parameters such as suction parameter, magnetic parameter, nanoparticle volume fraction, heterogeneous reaction and homogeneous reaction rates. The results show that dual solutions exist and the magnetic parameter and the nanoparticle volume fraction widen the range of the solution domain. Suction parameter, magnetic parameter and nanoparticle volume fraction cause the skin friction coefficient to increase and the velocity to decrease. The concentration increases as the nanoparticle volume fraction increases but decrease as the homogeneous reaction rate and heterogeneous reaction rate increase.

  6. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic MOC

    Directory of Open Access Journals (Sweden)

    S.-E. Brunnabend

    2014-04-01

    Full Text Available As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC are simulated. Two versions of the same ocean-only model are used to study the effect of ocean model resolution on these SSH changes: a high-resolution (HR strongly eddying version and a low-resolution (LR version in which the effect of eddies are parameterized. The weakening of the AMOC is induced in both model versions by applying strong freshwater perturbations around Greenland. A rapid decrease of the AMOC in the HR version induces much shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the LR version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.

  7. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  8. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    Science.gov (United States)

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  9. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  10. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2015-12-01

    Full Text Available Monitoring Land Surface Temperature (LST via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  11. An assessment of precipitation and surface air temperature over China by regional climate models

    Science.gov (United States)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  12. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  13. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  14. Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects

    Science.gov (United States)

    Gaube, P.; Chelton, D. B.; O'Neill, L. W.

    2011-12-01

    Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction

  15. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  16. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  17. Measuring surface temperature of isolated neutron stars and related problems

    Science.gov (United States)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  18. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    Science.gov (United States)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  19. Sequence and Temperature Influence on Kinetics of DNA Strand Displacement at Gold Electrode Surfaces.

    Science.gov (United States)

    Biala, Katarzyna; Sedova, Ada; Flechsig, Gerd-Uwe

    2015-09-16

    Understanding complex contributions of surface environment to tethered nucleic acid sensing experiments has proven challenging, yet it is important because it is essential for interpretation and calibration of indispensable methods, such as microarrays. We investigate the effects of DNA sequence and solution temperature gradients on the kinetics of strand displacement at heated gold wire electrodes, and at gold disc electrodes in a heated solution. Addition of a terminal double mismatch (toehold) provides a reduction in strand displacement energy barriers sufficient to probe the secondary mechanisms involved in the hybridization process. In four different DNA capture probe sequences (relevant for the identification of genetically modified maize MON810), all but one revealed a high activation energy up to 200 kJ/mol during hybridization, that we attribute to displacement of protective strands by capture probes. Protective strands contain 4 to 5 mismatches to ease their displacement by the surface-confined probes at the gold electrodes. A low activation energy (30 kJ/mol) was observed for the sequence whose protective strand contained a toehold and one central mismatch, its kinetic curves displayed significantly different shapes, and we observed a reduced maximum signal intensity as compared to other sequences. These findings point to potential sequence-related contributions to oligonucleotide diffusion influencing kinetics. Additionally, for all sequences studied with heated wire electrodes, we observed a 23 K lower optimal hybridization temperature in comparison with disc electrodes in heated solution, and greatly reduced voltammetric signals after taking into account electrode surface area. We propose that thermodiffusion due to temperature gradients may influence both hybridization and strand displacement kinetics at heated microelectrodes, an explanation supported by computational fluid dynamics. DNA assays with surface-confined capture probes and temperature

  20. STAND FOR TEMPERATURE SURFACE EVALUATION OF FRAGMENTS OF NATURAL ENVIRONMENTS AND ITS IMITATORS

    Directory of Open Access Journals (Sweden)

    V. V. Lobunov

    2016-01-01

    Full Text Available Research in the field of development of natural environments imitators that used for thermal cloaking of military machinery always connected with high material costs due to big sizes of cloaking objects. In this way we decided to create laboratory stand and methodic for obtaining data about temperature surface of fragments of natural environments and its imitators affected by the electromagnetic radiation of the optical wavelength range. We proposed to use a thermal imaging camera instead of the traditionally used spectrophotometric equipment for obtaining spectral characteristics of the objects under study affected by the optical radiation. This method allows us to evaluate the surface temperature of the object at different angles of lighting and viewing. Obtained data allows us to estimate the degree to which the imitator corresponds to a natural environment by the temperature and it’s dynamic of change.The construction of the stand allows to select angles of source of radiation and thermal detector in range 25–75 degrees from normal to the surface of object under study. The source of radiation consists of halogen lamps of MR16 type. The number of selected lamps and its power were chosen taking into account of imitation of intensity of sun radiation.The thermal camera MobIR M4 was used as infrared detecting unit in the range of 8–12 μm. This device has a matrix with a resolution of 160 × 120 pixels and its optical field of view, both vertically and horizontally is 25 to 19 degrees. Special remotely controlled device was created to automate the process of obtaining thermal images. Proposed methodic of measuring surface temperature of objects under study consists in obtaining thermal images at equal time intervals, their analysis using special software and plotting graphs. Thus we can use the developed laboratory stand and the methodic not only for temperature surface evaluation of fragments of natural environments but for its imitators. 

  1. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  2. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  3. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  4. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  5. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  6. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  7. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  8. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  9. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  10. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  11. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  12. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  13. Assessment of surface temperatures of buffalo bulls (Bubalus bubalis) raised under tropical conditions using infrared thermography

    National Research Council Canada - National Science Library

    Barros, D.V; Silva, L.K.X; Kahwage, P.R; Lourenço Júnior, J.B; Sousa, J.S; Silva, A.G.M; Franco, I.M; Martorano, L.G; Garcia, A.R

    2016-01-01

    This paper aimed to evaluate the surface temperatures of buffalo bulls using infrared thermography, considering four distinct anatomical parts over time, and to correlate surface temperatures and thermal comfort indexes...

  14. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  15. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  16. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  17. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  18. Wind flow modulation due to variations of the water surface roughness

    Science.gov (United States)

    Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana

    2016-04-01

    Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described

  19. Future trends of the Sea Surface Temperature for the Caribbean and the Western Mediterranean Seas

    Directory of Open Access Journals (Sweden)

    L. Garcies

    2006-01-01

    Full Text Available Global Climate Models foresee a general warming of the atmosphere, with varying intensity depending on the characteristics of each model and the hypotheses made on the release of gases of antropic origin. The warming is not expected to be homogeneous over the planet. In this work we focus on the evolution of the sea surface temperature of the Caribbean and the Mediterranean seas, and its linked with the likely prolongation of the hurricane season and the increase of strength of the hurricanes in the Caribbean, as well as with the more apt conditions for severe weather in the Mediterranean sea. In both areas more frequent occurence and intensity of severe weather events are expected due to the predicted increment of the sea surface temperature, 1.5ºC for the Caribbean sea and 2.5ºC for the Mediterranean sea.

  20. Effects of temperature on surface modification of W exposed to He particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Yuan, Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Böswirth, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Fu, B.Q.; Xu, H.Y.; Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    Highlights: • Blisters were observed on W surface under He beam heating at ∼950 °C. • He-induced blistering shows a clear grain orientation dependence. • An evolution to a coral-like structure was observed under loading at ∼2700 °C. • A texture with 〈0 0 1〉 parallel to the surface normal direction will be beneficial. - Abstract: The effect of combined heating and helium particle flux on annealed tungsten samples has been studied in the neutral beam facility GLADIS. He beams with power densities of 2.4 MW/m{sup 2} and 9.5 MW/m{sup 2} were used to adiabatically load the samples to peak surface temperatures from ∼950 °C (1223 K) to ∼2700 °C (2973 K). Changes in the surface morphology resulting from combined heat and the flux exposure were studied for He fluences up to 3 × 10{sup 22}/m{sup 2}. Typical structures for the sample loaded at ∼950 °C (1223 K) were blisters with a clear grain orientation dependence and the largest blisters formed on grains with 〈0 0 1〉 surface normal. However at higher temperatures, blistering was more easily suppressed for grains near this orientation because the growth of larger blister takes place more slowly. An evolution from a “porous structure” to a “coral-like structure” with increasing fluence was observed on the samples loaded at the highest temperature. Based on these results mechanisms for surface modification at different temperatures are discussed and a texture with 〈0 0 1〉 parallel to the normal direction of the grains is suggested to optimize the plasma facing material due to their stronger resistance to early stage blistering.

  1. An Open and Transparent Databank of Global Land Surface Temperature

    Science.gov (United States)

    Rennie, J.; Thorne, P.; Lawrimore, J. H.; Gleason, B.; Menne, M. J.; Williams, C.

    2013-12-01

    The International Surface Temperature Initiative (ISTI) consists of an effort to create an end-to-end process for land surface air temperature analyses. The foundation of this process is the establishment of a global land surface databank. The databank builds upon the groundbreaking efforts of scientists who led efforts to construct global land surface datasets in the 1980's and 1990's. A primary aim of the databank is to improve aspects including data provenance, version control, temporal and spatial coverage, and improved methods for bringing dozens of source data together into an integrated dataset. The databank consists of multiple stages, with each successive stage providing a higher level of processing, quality and integration. Currently more than 50 sources of data have been added to the databank. An automated algorithm has been developed that merges these sources into one complete dataset by removing duplicate station records, identifying two or more station records that can be merged into a single record, and incorporating new and unique stations. The program runs iteratively through all the sources which are ordered based upon criteria established by the ISTI. The highest preferred source, known as the target, runs through all the candidate sources, calculating station comparisons that are acceptable for merging. The process is probabilistic in approach, and the final fate of a candidate station is based upon metadata matching and data equivalence criteria. If there is not enough information, the station is withheld for further investigation. The algorithm has been validated using a pseudo-source of stations with a known time of observation bias, and correct matches have been made nearly 95% of the time. The final product, endorsed and recommended by ISTI, contains over 30,000 stations, however slight changes in the algorithm can perturb results. Subjective decisions, such as the ordering of the sources, or changing metadata and data matching thresholds

  2. HadISDH land surface multi-variable humidity and temperature record for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2014-06-01

    Full Text Available HadISDH.2.0.0 is the first gridded, multi-variable humidity and temperature climate-data product that is homogenised and annually updated. It provides physically consistent estimates for specific humidity, vapour pressure, relative humidity, dew point temperature, wet bulb temperature, dew point depression and temperature. It is a monthly-mean gridded (5° by 5° product with uncertainty estimates that account for spatio-temporal sampling, climatology calculation, homogenisation and irreducible random measurement effects. It provides a unique tool for the monitoring of a variety of humidity-related variables which have different impacts and implications for society. HadISDH.2.0.0 is shown to be in good agreement both with other estimates where they are available, and with theoretical understanding. The dataset is available from 1973 to the present. The theme common to all variables is of a warming world with more water vapour present in the atmosphere. The largest increases in water vapour are found over the tropics and Mediterranean. Over the tropics and high northern latitudes the surface air over land is becoming more saturated. However, despite increasing water vapour over the mid-latitudes and Mediterranean, the surface air over land is becoming less saturated. These observed features may be due to atmospheric circulation changes, land–sea warming disparities and reduced water availability or changed land surface properties.

  3. Surface temperature measurements of a levitated water drop during laser irradiation

    Science.gov (United States)

    Brownell, Cody; Tracey, Timothy

    2016-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high liklihood of turbulence, fog, and rain or sea spray within the beam path. Laser interactions with large water drops (diameters of approximately 1-mm), such as those found in a light rain, have received relatively less attention. In this regime a high energy laser will rapidly heat and vaporize a water drop as it traverses the beam path, but the exact heating / vaporization rate, its dependence on impurities, and ancillary effects on the drop or surroundings are unclear. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 500 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, yet based on the time history of the drop volume vaporization begins almost immediately upon laser strike. Inferences on the turbulence characteristics within the drop are also made from measurements of the fluctuations in the surface temperature. Supported by ONR, HEL-JTO, and USNA Trident Scholar Program.

  4. Change point detection of the Persian Gulf sea surface temperature

    Science.gov (United States)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  5. Low temperature diffusion of Li atoms into Si nanoparticles and surfaces

    Science.gov (United States)

    Nienhaus, Hermann; Karacuban, Hatice; Krix, David; Becker, Felix; Hagemann, Ulrich; Steeger, Doris; Bywalez, Robert; Schulz, Christof; Wiggers, Hartmut

    2013-07-01

    The diffusion of Li atoms deposited on hydrogen-passivated Si(001) surfaces, chemically oxidized Si(001) surfaces, Si nanoparticle films, and thick SiO2 layers is investigated with electron-beam induced Auger electron spectroscopy. The nanoparticles exhibit an average diameter of 24 nm. The Li metal film is evaporated at a sample temperature below 120 K. The reappearance of the Si substrate Auger signal as a function of time and temperature can be measured to study the Li diffusion into the bulk material. Values for the diffusion barrier of 0.5 eV for H:Si(001) and 0.3 eV for the ox-Si(001) and Si nanoparticle films are obtained. The diffusion of the Li atoms results in the disruption of the crystalline Si surfaces observed with atomic force microscopy. Contrasting to that, the Si nanoparticle films show less disruption by Li diffusion due to filling of the porous films detected with cross section electron microscopy. Silicon dioxide acts as a diffusion barrier for temperatures up to 300 K. However, the electron beam induces a reaction between Li and SiO2, leading to LiOx and elemental Si floating on the surface.

  6. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    Science.gov (United States)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  7. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    Science.gov (United States)

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  8. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    , the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets + heavy fuel oil + gas. Some reaction products due to the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....

  9. European seasonal mortality and influenza incidence due to winter temperature variability

    Science.gov (United States)

    Ballester, Joan; Rodó, Xavier; Robine, Jean-Marie; Herrmann, François Richard

    2016-10-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (see ref. ) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe.

  10. Calculation of change in brain temperatures due to exposure to a mobile phone.

    Science.gov (United States)

    Van Leeuwen, G M; Lagendijk, J J; Van Leersum, B J; Zwamborn, A P; Hornsleth, S N; Kotte, A N

    1999-10-01

    In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 degrees C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg(-1). Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.

  11. Ocular Surface Temperature in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Andrea Sodi

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320. The ocular surface temperature (OST of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272. OST in AMD patients was significantly lower than in controls (P>0.05. Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  12. Thermal calculation of a thermogenerator at changing temperatures along thermocontact surfaces

    Science.gov (United States)

    Varshavskiy, G. A.; Rezgol, I. A.

    1986-01-01

    The article finds expressions for the output power of efficiency of a thermoelectric generator and temperature distribution along the heat carrier under the condition that temperatures of the thermocontact surfaces vary due to the cooling and heating of the heat carriers. Simple approximation calculation formulas are given for the particular cases examined. This work is devoted to the finding of analytical bonds, which make it possible to make the calculation of the thermogenerator at changing (as a result of heat transfer) temperatures of the solderings. The obtained expressions can be useful in the preliminary determination of the optimal parameters of the generators (maximal power and efficiency, minimal weight, etc.) and an analysis of processes of regulation.

  13. Light mediated emergence of surface patterns in azopolymers at low temperatures

    CERN Document Server

    Teboul, V; Tajalli, P; Ahmadi-Kandjani, S; Tajalli, H; Zielinska, S; Ortyl, E

    2015-01-01

    Polymer thin films doped with azobenzene molecules do have the ability to organize themselves in spontaneous surface relief gratings (SRG) under irradiation with a single polarized beam. To shed some light in this still unexplained phenomenon, we use a new method that permits us to access experimentally the very first steps of the pattern formation process. Decreasing the temperature, we slow down the formation and organization of patterns, due to the large increase of the viscosity and relaxation time of the azopolymer. As a result decreasing the temperature allows us to access and study much shorter time scales,in the physical mechanisms underlying the pattern formation, than previously reported. We find that the patterns organize themselves in sub-structures which size increase with the temperature, following the diffusion coefficient evolution of the material. That result suggests that the pattern formation and organization is mainly governed by diffusive processes, in agreement with some theories of the ...

  14. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    Science.gov (United States)

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing

    2016-05-01

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.

  15. Decadal modulation of global surface temperature by internal climate variability

    Science.gov (United States)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  16. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    Science.gov (United States)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  17. The covariance of temperature and ozone due to planetary-wave forcing

    Science.gov (United States)

    Fraser, G. J.

    1976-01-01

    The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.

  18. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    have made an attempt to study the annual and inter-annual variability of certain prominent processes occurring over the tropical Indian Ocean. The monthly mean values of Wind Speed (FSU), Sea Surface Temperature (REYNOLDS) and Sea Surface Height Anomaly...

  19. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren;

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  20. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Shen, Jing; Solem, Christian; Jensen, Peter Ruhdal;

    2013-01-01

    . These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C...

  1. Computer Modeling of Planetary Surface Temperatures in Introductory Astronomy Courses

    Science.gov (United States)

    Barker, Timothy; Goodman, J.

    2013-01-01

    Barker, T., and Goodman, J. C., Wheaton College, Norton, MA Computer modeling is an essential part of astronomical research, and so it is important that students be exposed to its powers and limitations in the first (and, perhaps, only) astronomy course they take in college. Building on the ideas of Walter Robinson (“Modeling Dynamic Systems,” Springer, 2002) we have found that STELLA software (ISEE Systems) allows introductory astronomy students to do sophisticated modeling by the end of two classes of instruction, with no previous experience in computer programming or calculus. STELLA’s graphical interface allows students to visualize systems in terms of “flows” in and out of “stocks,” avoiding the need to invoke differential equations. Linking flows and stocks allows feedback systems to be constructed. Students begin by building an easily understood system: a leaky bucket. This is a simple negative feedback system in which the volume in the bucket (a “stock”) depends on a fixed inflow rate and an outflow that increases in proportion to the volume in the bucket. Students explore how changing inflow rate and feedback parameters affect the steady-state volume and equilibration time of the system. This model is completed within a 50-minute class meeting. In the next class, students are given an analogous but more sophisticated problem: modeling a planetary surface temperature (“stock”) that depends on the “flow” of energy from the Sun, the planetary albedo, the outgoing flow of infrared radiation from the planet’s surface, and the infrared return from the atmosphere. Students then compare their STELLA model equilibrium temperatures to observed planetary temperatures, which agree with model ones for worlds without atmospheres, but give underestimates for planets with atmospheres, thus introducing students to the concept of greenhouse warming. We find that if we give the students part of this model at the start of a 50-minute class they are

  2. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data.

    Science.gov (United States)

    Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan

    2014-04-01

    The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.

  3. Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading.

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Li, Li; Liu, Hongliang; Liu, Guang; Zhang, Liwen; Zhang, Deyuan; Jiang, Lei

    2017-02-15

    Unidirectional liquid spreading without energy input has attracted considerable attention due to various potential applications such as biofluidics devices and self-lubrication. Introducing a surface wettable gradient or asymmetric nanostructures onto the surface has successfully harnessed the liquid to spread unidirectionally. However, these surfaces are still plagued with problems that restrict their practical applications: fixed spreading state for a fixed surface, and spreading slowly over a short distance. Herein, bioinspired from the fast continuous unidirectional water transport on the peristome of Nepenthes alata, we report a smart peristome with temperature-controlled unidirectional water spreading. The smart artificial peristome was fabricated by grafting the thermoresponsive material PNIPAAm onto the artificial PDMS peristome. Unidirectional water spreading on the smart peristome can be dynamically regulated by changing the surface temperature. Besides, the water spreading is demonstrated with a remarkable reversibility and stability. By investigating the relationship between liquid spreading distance and wettability, the underlying mechanism was revealed. This work gives a new way to achieve the control of unidirectional liquid spreading available for controllable microfluidics and medical devices.

  4. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  5. Numerical investigation of temperature distribution in a confined heterogeneous geothermal reservoir due to injection-production

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, M.S.

    The present study deals with the modeling of transient temperature distribution in a heterogeneous geothermal reservoir in response to the injection-production process. The heterogeneous geothermal aquifer considered here is a confined aquifer with homogeneous layers of finite length and overlain

  6. Calculation of change in brain temperatures due to exposure to a mobile phone

    NARCIS (Netherlands)

    Leeuwen, G.M.J. van; Lagendijk, J.J.W.; Leersum, B.J.A.M. van; Zwamborn, A.P.M.; Hornsleth, S.N.; Kotte, A.N.T.J.

    1999-01-01

    In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction

  7. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014

    OpenAIRE

    2015-01-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results...

  8. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change.

    Directory of Open Access Journals (Sweden)

    Henrik Seth

    Full Text Available Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C. Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna.

  9. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change.

    Science.gov (United States)

    Seth, Henrik; Gräns, Albin; Sandblom, Erik; Olsson, Catharina; Wiklander, Kerstin; Johnsson, Jörgen I; Axelsson, Michael

    2013-01-01

    Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C). Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna.

  10. Geocenter motion due to surface mass transport from GRACE satellite data

    Science.gov (United States)

    Riva, R. E. M.; van der Wal, W.; Lavallée, D. A.; Hashemi Farahani, H.; Ditmar, P.

    2012-04-01

    Measurements of mass redistribution from satellite gravimetry are insensitive to geocenter motions. However, geocenter motions can be constrained by satellite gravity data alone if we partition mass changes between land and oceans, under the assumption that the ocean is passive (i.e., in gravitational equilibrium with the land load and the solid earth). Here, we make use of 8 years (2003-2010) of optimally filtered monthly GRACE-based solutions produced at TU Delft to determine changes in the land load and the corresponding geocenter motion, through an iterative procedure. We pay particular attention to correcting for signal leakage caused by the limited spatial resolution of GRACE. We also investigate how the choice of a model of glacial isostatic adjustment (GIA) affects the estimated geocenter motion trend due to present-day surface mass transport. Finally, we separate the contribution of ice masses from that of land hydrology and show how they have a different sensitivity to the chosen GIA model and observational time-span.

  11. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  12. NOAA Climate Data Record (CDR) of Sea Surface Temperature -WHOI, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  13. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  14. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin;

    2014-01-01

    , manganese and cobalt (NMC) based and the anode is graphite based. In order to measure the surface temperature, thermal infrared (IR) camera and contact thermocouples were used. A fairly uniform temperature distribution was observed over the cell surface in case of continuous charge and discharge up to 100A...

  15. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2017-02-01

    The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are

  16. The middle atmospheric circulation of a tidally locked Earth-like planet and the role of the sea surface temperature

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens; Wurz, Peter

    2016-12-01

    We investigate the influence of the sea surface temperature (SST) changes on the middle atmosphere of a tidally locked Earth-like planet orbiting a G star using the coupled 3D chemistry-climate model CESM1(WACCM). We perform three 90 day simulations. The first simulation is a present-day Earth (PDE) simulation, the second is a simulation of a tidally locked Earth-like planet with a tidally locked aquaplanet sea surface temperature (cold TLE (CLTE)) and the third is a hybrid simulation of a tidally locked Earth-like planet with a present-day Earth sea surface temperature (warm TLE (WTLE)). Our results show that changes in the SST have an influence on the lower stratospheric temperature and the secondary ozone layer. Both atmospheres exhibit a dayside upwelling and a nightside downwelling extending from the surface to the mesosphere. They are also characterised by comparable lower and middle stratospheric horizontal winds and relatively different mesospheric horizontal winds. The temperature of the WTLE atmosphere is altered as a result of the SST changes, compared to the CTLE. Specifically, the WTLE lower tropospheric temperature is increased by 3.7 K on average, due to the absorption of the increased upwelling longwave radiation and the increased sensible and latent heat. The WTLE upper troposphere temperature is decreased by 4 K on average, is adiabatic in nature, and is generated by the increased WTLE upwelling. The WLTE lower stratospheric temperature is increased by 3.8 K on average due to the absorption of the increased upwelling longwave radiation. The lower mesospheric temperature is decreased by 1.13 K on average due to increased mesospheric wave breaking. The upper mesospheric temperature is increased by 4.3 K, and its generation mechanism is currently unknown. Furthermore, the secondary ozone volume mixing ratio is increased by 40.5 %. The occurrence of large-scale vortices and variable jet streams depends, to some extent, on the SST distribution.

  17. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  18. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    Science.gov (United States)

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (pcities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision

  19. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-bo; OUYANG Zhi-yun; ZHENG Hua; LI Wei-feng; SCHIENKE Erich W; WANG Xiao-ke

    2007-01-01

    Land surface temperature (LST), which is heavily influenced by urban surface structures, is a significant parameter in urban environmental analysis. This study examined the effect impervious surfaces (IS) spatial patterns have on LST in Beijing, China. A classification and regression tree model (CART) was adopted to estimate IS as a continuous variable using Landsat images from two seasons combined with QuickBird. LST was retrieved from the Landsat Thematic Mapper (TM) image to examine the relationships between IS and LST. The results revealed that CART was capable of consistently predicting LST with acceptable accuracy (correlation coefficient of 0.94 and the average error of 8.59%). Spatial patterns of IS exhibited changing gradients across the various urban-rural transects, with LST values showing a concentric shape that increased as you moved from the outskirts towards the downtown areas.Transect analysis also indicated that the changes in both IS and LST patterns were similar at various resolution levels, which suggests a distinct linear relationship between them. Results of correlation analysis further showed that IS tended to be positively correlated with LST, and that the correlation coefficients increased from 0.807 to 0.925 with increases in IS pixel size. The findings identified in this study provide a theoretical basis for improving urban planning efforts to lessen urban temperatures and thus dampen urban heat island effects.

  20. Temperature Isotropization in Solar Flare Plasmas due to the Electron Firehose Instability

    CERN Document Server

    Messmer, P

    2002-01-01

    The isotropization process of a collisionless plasma with an electron temperature anisotropy along an external magnetic field ($T_\\| ^e\\gg T_\\perp^e$, $\\|$ and $\\perp$ with respect to the background magnetic field) and isotropic protons is investigated using a particle-in-cell(PIC) code. Restricting wave growth mainly parallel to the external magnetic field, the isotropization mechanism is identified to be the Electron Firehose Instability (EFI). The free energy in the electrons is first transformed into left-hand circularly polarized transverse low-frequency waves by a non-resonant interaction. Fast electrons can then be scattered towards higher perpendicular velocities by gyroresonance, leading finally to a complete isotropization of the velocity distribution. During this phase of the instability, Langmuir waves are generated which may lead to the emission of radio waves. A large fraction of the protons is resonant with the left-hand polarized electromagnetic waves, creating a proton temperature anisotropy ...

  1. A NONLINEAR THERMOCAPILLARY MIGRATION OF DROPLETS DUE TO DEPENDENCE OF PHYSICAL PROPERTIES ON TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    SUN Ren

    2006-01-01

    A slow thermocapillary migration of a droplet at vanishingly small Reynolds and Marangoni numbers was theoretically investigated. A force on the droplet released in another liquid subjected to arbitrary configuration of the gravitational field and an imposed thermal gradient for the case of constant liquid properties was derived using the general solutions given by Lamb. A solution to the migration was thereby obtained, which corresponds to the well-known YGB result as t →∞. In the case of variable physical properties with temperature, a nonlinear migration of the droplet was described by the dynamical equation of motion, and the numerical results were compared with available experimental data. The comparison exhibits a reasonable agreement between the theoretical prediction and the experimental results, which shows the dependence of physical properties on temperature is a primary cause of the continuous velocity variation in the thermocapillary droplet migration.

  2. Quantum correlations of light due to a room temperature mechanical oscillator

    CERN Document Server

    Sudhir, Vivishek; Fedorov, Sergey A; Schuetz, Hendrik; Wilson, Dalziel J; Kippenberg, Tobias J

    2016-01-01

    The coupling of laser light to a mechanical oscillator via radiation pressure leads to the emergence of quantum mechanical correlations in the amplitude and phase quadrature of the laser beam. These correlations form a generic non-classical quantum resource which can be employed for quantum enhanced force metrology, and gives rise to ponderomotive squeezing in the limit of strong correlations. To date, this resource has only been observed in a handful of cryogenic cavity optomechanical experiments. Here, we demonstrate the ability to efficiently resolve optomechanical quantum correlations imprinted on an optical laser beam interacting with a room temperature nanomechanical oscillator. Direct measurement of the optical beam in a detuned homodyne detector ("variational readout") at frequencies far from the resonance frequency of the oscillator, reveal quantum correlations at a few percent level. We use these correlations to realize a $7\\%$ quantum-enhancement in thermal force estimation at room temperature. The...

  3. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size.

    Science.gov (United States)

    Loman, Jon

    2016-09-01

    Frog breeding phenology in temperate zones is usually compared to progress of spring temperatures at a regional scale. However, local populations may differ substantially in phenology. To understand this, local climate and other aspects must be studied. In this study, breeding phenology of the common frog, Rana temporaria, in a set of ponds in southern Sweden is analyzed. There was within year a variation of up to 3 weeks in start of breeding among local populations. Water temperature was measured in the ponds, and breeding tended to be earlier in warmer ponds (surprise!). Breeding was also earlier in ponds with a large breeding congregation. Alternative reasons for these patterns are suggested and discussed. There was a large residual variation. The common frog has a wide range of acceptable wintering sites, and I hypothesize that the particular choice by a local population may explain part of this residual variation.

  4. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  5. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  6. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.

  7. Transient temperature rise in a mouse due to low-frequency regional hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Trakic, Adnan; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Qld 4072 (Australia)

    2006-04-07

    A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 deg. C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

  8. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  9. Definition of the linearity loss of the surface temperature in static tensile tests

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  10. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  11. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2011-09-01

    Full Text Available Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one having shallow groundwater – to the same meteorological forcing, and inspected their different responses regarding surface soil moisture, temperature and energy balance. We found that the two profiles differed in the absorbed and emitted amounts of energy, in portioning out the available energy and in heat fluency within the soil. We conclude that shallow groundwater areas reflect less shortwave radiation due to their lower albedo and therefore they get higher magnitude of net radiation. When potential evaporation demand is high enough, a large portion of the energy received by these areas is spent on evaporation. This makes the latent heat flux predominant, and leaves less energy to heat the soil. Consequently, this induces lower magnitudes of both sensible and ground heat fluxes. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. In view of remote sensors' capability of detecting shallow groundwater effect, we conclude that this effect can be sufficiently clear to be sensed if at least one of two conditions is met: high potential evaporation and big contrast in air temperature between day and night. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  12. Long-term surface temperature modeling of Pluto

    Science.gov (United States)

    Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.

    2017-05-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed at high resolution the striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as the sharpness of boundaries for longitudinal variations. These contrasts suggest that Pluto must undergo dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, we explore the surface temperature variations driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (peak-to-peak amplitude of 23° over 3 million years) and regression of the orbital longitude of perihelion (3.7 million years). These orbital variations create epochs of ;Extreme Seasons; where one pole receives a short, relatively warm summer and long winter, while the other receives a much longer, but less intense summer and short winter. We use thermal modeling to build upon the long-term insolation history model described by Earle and Binzel (2015) and investigate how these seasons couple with Pluto's albedo contrasts to create temperature effects. From this study we find that a bright region at the equator, once established, can become a site for net deposition. We see the region informally known as Sputnik Planitia as an example of this, and find it will be able to perpetuate itself as an ;always available; cold trap, thus having the potential to survive on million year or substantially longer timescales. Meanwhile darker, low-albedo, regions near the equator will remain relative warm and generally not attract volatile deposition. We argue that the equatorial region is a ;preservation zone; for whatever albedo is seeded there. This offers insight as to why the equatorial band of Pluto displays the planet's greatest albedo contrasts.

  13. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  14. Thermal Sprayed Aluminium for Subsea Heat Exchanger Surfaces : Effect of Temperature on Protection Current Requirement and Calcareous Development

    OpenAIRE

    Wilson, Håvard

    2014-01-01

    More and more equipment in the Oil and Gas Industry are being placed Subsea. Thisincludes subsea coolers with high internal temperatures. With high temperatures comewith challenges within material selection and corrosion. Traditional material choices like carbon steel and organic coatings with cathodic protection (CP) is not an option for subsea coolers. This is due to insulating properties to the organic coatings and the dense calcareous deposits which form on the surface of the steel.Therma...

  15. Surface deformation due to slow slip source considering a non-elastic medium

    Science.gov (United States)

    Voss, N. K.; Malservisi, R.; Dixon, T. H.; Protti, M.

    2016-12-01

    Slow slip events (SSEs) are now recognized as a feature common in many subduction zones. They have been recognized in both the shallow part of subduction interface as well as deeper, beneath the seismogenic zone. While shallow events are difficult to image due to lack of resolution with onshore instrumentation, deep events appear to correlate well with seismic phenomena including tremor and low frequency events. However, uncertainty regarding source properties of the events and their surrounding medium remains high at these depths. Deep slow slip appears to be located between 60 and 25 km depth at many locations worldwide (Schwartz and Rokosky , 2007). This places the events at depths at or near the mantle wedge corner. Serpentinization of the mantle wedge is thought to be one source of fluids commonly attributed as the source of SSEs and tremor (Wada et al., 2008) but also leads to drastic changes in rheology of the down going slab and near by mantle. Traditionally, measured geodetic transients are inverted for slip distributions using a simple elastic "Okada" type models. Often the shape of these transients is attributed to variance in slip rate on the fault. Here we explore the response of the surrounding lithosphere to the transient stress propagation induced by SSE and the effects on observed surface deformation using varying rheologies within a finite element model. Understanding these effects allows a better estimation of the uncertainty in the geodetically derived slip distributions thus is important to consider when evaluating SSEs role in earthquake hazard as well as deciphering the relationship between tremor and slip.

  16. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  17. The mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of Western Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western Pacific using an improved high truncated spectral model. Our results show that the wave-wave interaction and the wave-mean flow interactions are weaker in the inner dynamic process of atmospheric circulation, when atmospheric circulation is forced by the sea surface temperature of El Ni-o pattern. With the external thermal forcing changed from winter to summer pattern, the range of ridgeline surface of western Pacific moving northward is smaller, which causes the ridgeline surface of western Pacific on south of normal. On the contrary, the wave-wave interaction and the wave-mean flow interaction are stronger, when atmospheric circulation is forced by the sea surface temperature of La Ni-a pattern. With the external thermal forcing turning from winter to summer pattern, the ridgeline surface of western Pacific shifts northward about 19 latitude degrees, which conduces the ridgeline surface of western Pacific on north of normal. After moving to certain latitude, the ridgeline surface of western Pacific oscillates with the most obvious 30-60 d period and the 4°-7° amplitude. It is one of the important reasons for the interannual variation of ridgeline surface of Western Pacific that the at- mospheric inner dynamical process forced out by different sea surface temperature anomaly pattern is different.

  18. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2012-07-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  19. Apparent temperature anisotropies due to wave activity in the solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2011-05-01

    Full Text Available The fast solar wind is a collisionless plasma permeated by plasma waves on many different scales. A plasma wave represents the natural interplay between the periodic changes of the electromagnetic field and the associated coherent motions of the plasma particles. In this paper, a model velocity distribution function is derived for a plasma in a single, coherent, large-amplitude wave. This model allows one to study the kinetic effects of wave motions on particle distributions. They are by in-situ spacecraft measured by counting, over a certain sampling time, the particles coming from various directions and having different energies. We compare our results with the measurements by the Helios spacecraft, and thus find that by assuming high wave activity we are able to explain key observed features of the measured distributions within the framework of our model. We also address the recent discussions on nonresonant wave–particle interactions and apparent heating. The applied time-averaging procedure leads to an apparent ion temperature anisotropy which is connected but not identical to the intrinsic temperature of the underlying distribution function.

  20. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  1. Spatial Statistical Estimation for Massive Sea Surface Temperature Data

    Science.gov (United States)

    Marchetti, Y.; Vazquez, J.; Nguyen, H.; Braverman, A. J.

    2015-12-01

    We combine several large remotely sensed sea surface temperature (SST) datasets to create a single high-resolution SST dataset that has no missing data and provides an uncertainty associated with each value. This high resolution dataset will optimize estimates of SST in critical parts of the world's oceans, such as coastal upwelling regions. We use Spatial Statistical Data Fusion (SSDF), a statistical methodology for predicting global spatial fields by exploiting spatial correlations in the data. The main advantages of SSDF over spatial smoothing methodologies include the provision of probabilistic uncertainties, the ability to incorporate multiple datasets with varying footprints, measurement errors and biases, and estimation at any desired resolution. In order to accommodate massive input and output datasets, we introduce two modifications of the existing SSDF algorithm. First, we compute statistical model parameters based on coarse resolution aggregated data. Second, we use an adaptive spatial grid that allows us to perform estimation in a specified region of interest, but incorporate spatial dependence between locations in that region and all locations globally. Finally, we demonstrate with a case study involving estimations on the full globe at coarse resolution grid (30 km) and a high resolution (1 km) inset for the Gulf Stream region.

  2. Quality control methods for KOOS operational sea surface temperature products

    Institute of Scientific and Technical Information of China (English)

    YANG Chansu; KIM Sunhwa

    2016-01-01

    Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System (KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC (OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.

  3. Bias correction methods for decadal sea-surface temperature forecasts

    Directory of Open Access Journals (Sweden)

    Balachandrudu Narapusetty

    2014-04-01

    Full Text Available Two traditional bias correction techniques: (1 systematic mean correction (SMC and (2 systematic least-squares correction (SLC are extended and applied on sea-surface temperature (SST decadal forecasts in the North Pacific produced by Climate Forecast System version 2 (CFSv2 to reduce large systematic biases. The bias-corrected forecast anomalies exhibit reduced root-mean-square errors and also significantly improve the anomaly correlations with observations. The spatial pattern of the SST anomalies associated with the Pacific area average (PAA index (spatial average of SST anomalies over 20°–60°N and 120°E–100°W is improved after employing the bias correction methods, particularly SMC. Reliability diagrams show that the bias-corrected forecasts better reproduce the cold and warm events well beyond the 5-yr lead-times over the 10 forecasted years. The comparison between both correction methods indicates that: (1 prediction skill of SST anomalies associated with the PAA index is improved by SMC with respect to SLC and (2 SMC-derived forecasts have a slightly higher reliability than those corrected by SLC.

  4. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice, Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  5. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  6. Molecular Dynamics of Carbon Nanotubes Deposited on a Silicon Surface via Collision: Temperature Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Leton C.; Mian, Shabeer A.; Kim, Hyo Jeong; Saha, Joyanta K.; Matin, Mohammad A.; Jang, Joon Kyung [Pusan National University, Miryang (Korea, Republic of)

    2011-02-15

    We investigated how temperature influences the structural and energetic dynamics of carbon nanotubes (CNTs) undergoing a high-speed impact with a Si (110) surface. By performing molecular dynamics simulations in the temperature range of 100 - 300 K, we found that a low temperature CNT ends up with a higher vibrational energy after collision than a high temperature CNT. The vibrational temperature of CNT increases by increasing the surface temperature. Overall, the structural and energy relaxation of low temperature CNTs are faster than those of high temperature CNTs.

  7. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pelletsþheavy fuel oilþgas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...

  8. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  9. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Phil [Cardiff University (United Kingdom). Welsh School of Architecture; Alexandri, Eleftheria

    2008-04-15

    This paper discusses the thermal effect of covering the building envelope with vegetation on the microclimate in the built environment, for various climates and urban canyon geometries. A two-dimensional, prognostic, micro scale model has been used, developed for the purposes of this study. The climatic characteristics of nine cities, three urban canyon geometries, two canyon orientations and two wind directions are examined. The thermal effect of green roofs and green walls on the built environment is examined in both inside the canyon and at roof level. The effects of this temperature decrease on outdoors thermal comfort and energy savings are examined. Conclusions are drawn on whether plants on the building envelope can be used to tackle the heat island effect, depending on all these parameters taken into consideration. (author)

  10. Temperature Measurements On Semi-Permanent Mold Surfaces Using Infrared Thermography

    Science.gov (United States)

    Hurley, Ronald G.

    1983-03-01

    Die surface temperature and internal die thermal balance are critical to the quality of semi-permanent mold die castings. Measurements of the surface temperature are currently made using either hand-held contact temperature probes or optical pyrometers. Neither measurement technique provides a thermal map of the entire die surface. This paper discusses the use of infrared thermography for die surface temperature measurement. Using infrared thermographic techniques, scans were made over the surface of an experimental 302 CID semi-permanent mold cylinder head die during several casting cycles. The results obtained were in reasonable agreement with the temperature measurements made using optical pyrometers and the contact probes. In addition, using gray-level conversion the IR technique provided a measure of the temperature gradient over the surface of the die. Such thermal mapping has not been practical using optical or contact temperature probes.

  11. Quasilinear transport due to the magnetic drift resonance with the ion temperature gradient instability in a rotating plasma

    Science.gov (United States)

    Zhang, Debing; Xu, Yingfeng; Wang, Shaojie

    2017-08-01

    The quasilinear transport fluxes due to the ion temperature gradient instability are calculated in a toroidal plasma, in which the magnetic drift resonance is treated rigorously. The effects of the equilibrium parallel flow and flow shear on the radial particle and heat fluxes are studied numerically in detail. In the radial component of parallel viscosity, there exist the pinches driven by the density gradient, the temperature gradient, and the curvature of the background magnetic field. The direction of these pinches is discussed. It is found that each pinch can be inward or outward, which depends crucially on the resonance condition.

  12. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area

    Science.gov (United States)

    Nie, Qin; Xu, Jianhua

    2015-06-01

    It is well known that urban impervious surface (IS) has a warming effect on urban land surface temperature (LST). However, the influence of an IS's structure, components, and spatial distribution on LST has rarely been quantitatively studied within strictly urban areas. Using ETM+ remote sensing images from the downtown area of Shanghai, China in 2010, this study characterized and quantified the influence of the IS spatial pattern on LST by selecting the percent cover of each IS cover feature and ten configuration metrics. The IS fraction was estimated by linear spectral mixture analysis (LSMA), and LST was retrieved using a mono-window algorithm. The results indicate that high fraction IS cover features account for the majority of the study area. The high fraction IS cover features are widely distributed and concentrated in groups, which is similar with that of high temperature zones. Both the percent composition and the configuration of IS cover features greatly affect the magnitude of LST, but the percent composition is a more important factor in determining LST than the configuration of those features. The significances and effects of the given configuration variables on LST vary greatly among IS cover features.

  13. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  14. Hydrogel Inverse Replicas of Breath Figures Exhibit Superoleophobicity Due to Patterned Surface Roughness.

    Science.gov (United States)

    Arora, Jaspreet Singh; Cremaldi, Joseph C; Holleran, Mary Kathleen; Ponnusamy, Thiruselvam; He, Jibao; Pesika, Noshir S; John, Vijay T

    2016-02-02

    The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value.

  15. The pressure and temperature dependence of vertical cavity surface emitting semiconductor lasers

    CERN Document Server

    Knowles, G

    2002-01-01

    The factors affecting the performance of GalnP/AIGalnP vertical-cavity surface-emitting lasers (VCSELs) emitting at an attenuation minimum of PMMA plastic optical fibres (650nm) have been investigated. Using wide temperature-range and high pressure measurement techniques on equivalent (i.e the same active region) edge emitting lasers (EELs), emitting at 672nm, the temperature sensitive leakage current into the indirect X-minima is shown to be approx 20% of the total threshold current at room temperature. This is then estimated to rise to approx 70% for 655nm emission, but may be reduced to approx 50% by using a graded-index separate confinement heterostructure (GRINSCH). By making the same measurements on the full VCSEL structures and using a combination of thermal and gain spectrum models the performance modifying effect of the Bragg stacks have then been evaluated. It is found that temperature dependent tuning/detuning of the gain-peak and the cavity mode is significant at low temperature due to the relativ...

  16. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  17. Climate Variability in Coastal Ecosystems - Use of MODIS Land Surface and Sea Surface Temperature Observations

    Science.gov (United States)

    Chintalapati, S.; Lakshmi, V.

    2007-12-01

    The intertidal zone, with its complex blend of marine and terrestrial environments, is one of the intensively studied ecosystems, in understanding the effects of climate change on species abundance and distribution. As climatic conditions change, the geographic limits of the intertidal species will likely move towards more tolerable coastal conditions. Traditionally, understanding climate change effects through species physiologic response have involved use of in situ measurements and thermal engineering models. But these approaches are constrained by their data intensive requirements and may not be suitable for predicting change patterns relevant to large scale species distributions. Satellite remote sensing provides an alternate approach, given the regular global coverage at moderate spatial resolutions. The present study uses six years of land surface temperature (LST) and sea surface temperature (SST) data from MODIS/Terra instrument along various coastlines around the globe - East and West Coast US, Southern Africa, Northern Japan and New Zealand. Apart from the dominant annual cycle in LST and SST, the other seasonal cycles vary from dominant semi-annual cycles in lower latitudes to 1.5 and 2 year cycles at higher latitudes. The monthly anomalies show strong spatial structure at lower latitudes when compared to higher latitudes, with the exception of US east coast, where the spatial structure extended almost along the whole coastline, indicating strong regulation from the Gulf Stream. The patterns along different coast lines are consistent with the atmospheric and ocean circulation patterns existing at those regions. These results suggest that the climatology at the coastal regions can be adequately represented using satellite-based temperature data, thus enabling further research in understanding the effects of climate change on species abundance and distribution at larger scales.

  18. Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields.

    Science.gov (United States)

    Agrawal, Akhil; An, Dongshan; Cavallaro, Adriana; Voordouw, Gerrit

    2014-09-01

    Produced waters from the Barrancas and Chihuido de la Salina (CHLS) fields in Argentina had higher concentrations of sulfate than were found in the injection waters, suggesting that the formation waters in these reservoirs had a high sulfate concentration and that sulfate-reducing bacteria were inactive downhole. Incubation of produced waters with produced oil gave rapid reduction of sulfate to sulfide (souring) at 37 °C, some at 60 °C, but none at 80 °C. Alkylbenzenes and alkanes served as electron donor, especially in incubations with CHLS oil. Dilution with water to decrease the ionic strength or addition of inorganic phosphate did not increase souring at 37 or 60 °C. These results indicate that souring in these reservoirs is limited by the reservoir temperature (80 °C for the Barrancas and 65-70 °C for the CHLS field) and that souring may accelerate in surface facilities where the oil-water mixture cools. As a result, significant sulfide concentrations are present in these surface facilities. The activity and presence of chemolithotrophic Gammaproteobacteria of the genus Thiomicrospira, which represented 85% of the microbial community in a water plant in the Barrancas field, indicated reoxidation of sulfide and sulfur to sulfate. The presence of these bacteria offers potential for souring control by microbial oxidation in aboveground facilities, provided that formation of corrosive sulfur can be avoided.

  19. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the surface air temperature and surface humidity is analysed by fitting a polynomial between the two for different regions of the Indian Ocean in different seasons. Taking into account the variation in surface air temperatures, the Indian Ocean is split in 14...

  20. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction

    NARCIS (Netherlands)

    Muntendam-Bos, A.G.; Kroon, I.C.; Fokker, P.A.

    2008-01-01

    We introduce a novel, time-dependent inversion scheme for resolving temporal reservoir pressure drop from surface subsidence observations (from leveling or GPS data, InSAR, tiltmeter monitoring) in a single procedure. The theory is able to accommodate both the absence of surface subsidence estimates

  1. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang’E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.

  2. Vegetation, land surface brightness, and temperature dynamics after aspen forest die-off

    Science.gov (United States)

    Huang, Cho-ying; Anderegg, William R. L.

    2014-07-01

    Forest dynamics following drought-induced tree mortality can affect regional climate through biophysical surface properties. These dynamics have not been well quantified, particularly at the regional scale, and are a large uncertainty in ecosystem-climate feedback. We investigated regional biophysical characteristics through time (1995-2011) in drought-impacted (2001-2003), trembling aspen (Populus tremuloides Michx.) forests by utilizing Landsat time series green and brown vegetation cover, surface brightness (total shortwave albedo), and daytime land surface temperature. We quantified the temporal dynamics and postdrought recovery of these characteristics for aspen forests experiencing severe drought-induced mortality in the San Juan National Forest in southwestern Colorado, USA. We partitioned forests into three categories from healthy to severe mortality (Healthy, Intermediate, and Die-off) by referring to field observations of aspen canopy mortality and live aboveground biomass losses. The vegetation cover of die-off areas in 2011 (26.9% of the aspen forest) was significantly different compared to predrought conditions (decrease of 7.4% of the green vegetation cover and increase of 12.1% of the brown vegetation cover compared to 1999). The surface brightness of the study region 9 years after drought however was comparable to predrought estimates (12.7-13.7%). Postdrought brightness was potentially influenced by understory shrubs, since they became the top layer green canopies in disturbed sites from a satellite's point of view. Satellite evidence also showed that the differences of land surface temperature among the three groups increased substantially (≥45%) after drought, possibly due to the reduction of plant evapotranspiration in the Intermediate and Die-off sites. Our results suggest that the mortality-affected systems have not recovered in terms of the surface biophysical properties. We also find that the temporal dynamics of vegetation cover holds

  3. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  4. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  5. Evaluation and Monitoring of Jpss Land Surface Temperature Data

    Science.gov (United States)

    Yu, Y.; Yu, P.; Liu, Y.; Csiszar, I. A.

    2016-12-01

    Land Surface Temperature (LST) is one of environmental data records (EDRs) produced operationally through the U.S. Joint Polar Satellite System (JPSS) mission. LST is an important parameter for understanding climate change, modeling the hydrological and biogeochemical cycles, and is a prime candidate for Numerical Weather Prediction (NWP) assimilation models. Recently, the international LST and Emissivity Working Ggroup (ILSTE-WG) is promoting to the inclusion of the LST as essential climate variable (ECV) in the Global Climate Observation System (GCOS) of the Word Meteorological Organization (WMO). At the Center for Satellite Applications and Research (STAR) of National Atmospheric and Oceanic Administration (NOAA), we, are as a science team, are responsible to for the science of JPSS LST production. In this work, we present our activities and accomplishments on the JPSS LST evaluation and monitoring since the launch of the first JPSS satellite, i.e. S-NPP, satellite. Beta version, provisional version, and validated stage 1 version of the S-NPP LST products which were announced in May 2013, July 2014, and March 2015, respectively. Evaluation of the LST products have been performed versus ground measurements and other polar-orbiting satellite LST data (e,g. MODIS LSTs); some results will be illustrated. A daily monitoring system of the JPSS LST production has been developed, which presents daily, weekly and monthly global LST maps and inter-comparison results on the STAR JPSS program website. Further, evaluation of the enterprise LST algorithm for JPSS mission which is in development at STAR currently are presented in this work. Finally, evaluation and monitoring plan of the LST production for the JPSS-1 satellite are also presented.

  6. Surface Acoustic Wave Sensor with Pd/ZnO Bilayer Structure for Room Temperature Hydrogen Detection.

    Science.gov (United States)

    Viespe, Cristian; Miu, Dana

    2017-06-29

    A Surface Acoustic Wave (SAW) hydrogen sensor with a Pd/ZnO bilayer structure for room temperature sensing operation has been obtained by Pulsed Laser Deposition (PLD). The sensor structure combines a Pd layer with optimized porosity for maximizing mass effects, with the large acoustoelectric effect at the Pd/ZnO interface. The large acoustoelectric effect is due to the fact that ZnO has a surface conductivity which is highly sensitive to chemisorbed gases. The sensitivity of the sensor was determined for hydrogen concentrations between 0.2% and 2%. The limit of detection (LOD) of the bilayer sensor was about 4.5 times better than the single ZnO films and almost twice better than single Pd films.

  7. A new algorithm for microwave radiometer remote sensing of sea surface salinity and temperature

    Institute of Scientific and Technical Information of China (English)

    YIN; Xiaobin; LIU; Yuguang; WANG; Zhenzhan

    2006-01-01

    The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface temperature, sea surface salinity and incidence angle of observation are investigated. Based on the investigations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.

  8. Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies

    Science.gov (United States)

    Bréon, F.-M.; Boucher, O.; Brender, P.

    2017-07-01

    It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.

  9. Sensitivity of summer precipitation to tropical sea surface temperatures over East Asia in the GRIMs GMP

    Science.gov (United States)

    Chang, Eun-Chul; Yeh, Sang-Wook; Hong, Song-You; Wu, Renguang

    2013-05-01

    In this study, uncoupled atmospheric general circulation model experiments are conducted to examine the sensitivity of tropical Ocean basins from the Indian Ocean to the tropical Pacific Ocean on the summer precipitation variability over East Asia. It is remarkable that the Indian Ocean basin sea surface temperature (SST) and the tropical Pacific basin SST act on summer precipitation variability over Northeast Asia and southern China quite differently. That is, SST warming in the Indian Ocean largely contributes to the increase in the amount of summer precipitation over East Asia, which is in contrast to the warming of the western tropical Pacific Ocean. Our further analysis indicates that an altered large-scale atmospheric circulation over the western tropical Pacific contributes to contrasting atmospheric motion over East Asia due to the tropics-East Asia teleconnections, which results in changes in the amount of summer precipitation due to the warming of the Indian and western tropical Pacific Oceans.

  10. The effect of instrument attachment on the surface temperature of juvenile grey seals ( Halichoerus grypus) as measured by infrared thermography

    Science.gov (United States)

    McCafferty, Dominic J.; Currie, John; Sparling, Carol E.

    2007-02-01

    Previous research has highlighted the importance of minimising hydrodynamic drag from biologging instruments fitted to marine mammals. However, there is a need to investigate other possible impacts of instruments on animals. The aim of this study was to examine the effect of deploying instruments on the surface temperature distribution of grey seals ( Halichoerus grypus). Infrared (IR) thermography was used to record the surface temperature of two juveniles that had been fitted with heart rate recorders and mounting straps for the attachment of a time depth recorder. When animals were fully wet and inactive, the surface temperature pattern was unaffected by instruments. However, as animals dried out regions of high temperature were recorded around the edges of attachment sites compared to surrounding fur. This appeared to be due to heat leakage around the sides of instruments and mounting straps that provided an additional layer of insulation. There were no obvious changes in the surface temperature distribution around instruments associated with duration of deployment. This work shows that attachment of relatively small biologging instruments will produce localised effects on heat transfer in air but will not significantly change the total heat exchange of grey seals on land or at sea. IR thermography was also shown to be a useful method of detecting surface temperature patterns associated with epidural anaesthesia and blubber biopsy.

  11. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimamura, Kohei; Shimojo, Fuyuki [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  12. Using Self-Similarity to Simulate Meniscus Evolution Around TMV Due to Surface Diffusion

    Science.gov (United States)

    Potter, Richard; Zhang, Yue; Fakhraai, Zahra

    It has been hypothesized that enhanced surface diffusion allows the formation of stable molecular glasses during physical vapor deposition. The improved properties of these glasses, such as increased density and kinetic stability can help improve material properties in pioneering fields of technology such as organic electronics and pharmaceutical drug delivery. While surface diffusion has been measured previously on the surfaces of organic glasses, direct measurements on the surface of vapor-deposited stable glasses has proven more challenging. This research focuses on a straightforward method for measuring the surface diffusion coefficients of molecular glasses through the use of tobacco mosaic virus (TMV) nanorods as probe particles. In conjunction, mathematical models based on the thin film equation were used to simulate fast meniscus formation around the nanorods on the glassy surface. The evolution of the meniscus is self-similar, which allows quick quantification of the diffusion coefficient, by solving the time evolution for a single experiment. Experimental data were compared and fit to these simulations to derive a quantity for the surface diffusion coefficient, Ds. Nsf-CAREER DMR-1350044.

  13. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2014-09-01

    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  14. Effects of Low Temperature Anneal on the Interface Properties of Thermal Silicon Oxide for Silicon Surface Passivation.

    Science.gov (United States)

    Balaji, Nagarajan; Park, Cheolmin; Chung, Sungyoun; Ju, Minkyu; Raja, Jayapal; Yi, Junsin

    2016-05-01

    High quality surface passivation has gained a significant importance in photovoltaic industry for reducing the surface recombination and hence fabricating low cost and high efficiency solar cells using thinner wafers. The formation of good-quality SiO2 films and SiO2/Si interfaces at low processing temperatures is a prerequisite for improving the conversion efficiency of industrial solar cells with better passivation. High-temperature annealing in inert ambient is promising to improve the SiO2/Si interface. However, annealing treatments could cause negative effects on SiO2/Si interfaces due to its chemical at high temperatures. Low temperature post oxidation annealing has been carried out to investigate the structural and interface properties of Si-SiO2 system. Quasi Steady State Photo Conductance measurements shows a promising effective carrier lifetime of 420 μs, surface recombination velocity of 22 cm/s and a low interface trap density (D(it)) of 4 x 10(11) states/cm2/eV after annealing. The fixed oxide charge density was reduced to 1 x 10(11)/cm2 due to the annealing at 500 degrees C. The FWHM and the Si-O peak wavenumber corresponding to the samples annealed at 500 degrees C reveals that the Si dangling bonds in the SiO2 films due to the oxygen defects was reduced by the low temperature post oxidation annealing.

  15. Linking Satellite Derived Land Surface Temperature with Cholera: A Case Study for South Sudan

    Science.gov (United States)

    Aldaach, H. S. V.; Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    A sudden onset of cholera in South Sudan, in April 2014 in Northern Bari in Juba town resulted in more than 400 cholera cases after four weeks of initial outbreak with a case of fatality rate of CFR 5.4%. The total number of reported cholera cases for the period of April to July, 2014 were 5,141 including 114 deaths. With the limited efficacy of cholera vaccines, it is necessary to develop mechanisms to predict cholera occurrence and thereafter devise intervention strategies for mitigating impacts of the disease. Hydroclimatic processes, primarily precipitation and air temperature are related to epidemic and episodic outbreak of cholera. However, due to coarse resolution of both datasets, it is not possible to precisely locate the geographical location of disease. Here, using Land Surface Temperature (LST) from MODIS sensors, we have developed an algorithm to identify regions susceptible for cholera. Conditions for occurrence of cholera were detectable at least one month in advance in South Sudan and were statistically sensitive to hydroclimatic anomalies of land surface and air temperature, and precipitation. Our results indicate significant spatial and temporal averaging required to infer usable information from LST over South Sudan. Preliminary results that geographically location of cholera outbreak was identifiable within 1km resolution of the LST data.

  16. Remote Sensing of the North American Laurentian Great Lakes’ Surface Temperature

    Directory of Open Access Journals (Sweden)

    Sitthisak Moukomla

    2016-03-01

    Full Text Available The Great Lakes Surface Temperature (GLST is the key to understanding the effects of climate change on the Great Lakes (GL. This study provides the first techniques to retrieve pixel-based GLST under all sky conditions by merging skin temperature derived from the MODIS Land Surface Temperature (MOD11L2 and the MODIS Cloud product (MOD06L2 from 6 July 2001 to 31 December 2014, resulting in 18,807 scenes in total 9373 (9434 scenes for MOD11L2 (MOD06L2. The pixel-based GLST under all sky conditions was well-correlated with the in situ observations (R2 = 0.9102 with a cool bias of −1.10 °C and a root mean square error (RMSE of 1.39 °C. The study also presents the long-term trends of GLST. Contrary to expectations, it decreased slightly due to the impact of an anomalously cold winter in 2013–2014.

  17. Experimental studies of the streaming flow due to the adsorption of particles at a liquid surface

    Science.gov (United States)

    Singh, Pushpendra; Musunuri, Naga; Fischer, Ian

    2016-11-01

    The particle image velocimetry (PIV) technique is used to study the streaming flow that is induced when particles are adsorbed at a liquid surface. The flow develops within a fraction of second after the adsorption of the particle and persists for several seconds. The fluid directly below the particle rises upward, and near the surface, it moves away from the particle. The flow causes powders sprinkled on a liquid surface to disperse on the surface. The flow strength, and the volume over which it extends, decreases with decreasing particle size. The streaming flow induced by the adsorption of two or more particles is a combination of the flows which they induce individually. The work was supported by National Science Foundation.

  18. Numerical study on cavitating flow due to a hydrofoil near a free surface

    Directory of Open Access Journals (Sweden)

    Ping-Chen Wu

    2016-09-01

    Full Text Available A numerical strategy is proposed for a viscous uniform flow past a 2-D partially cavitating hydrofoil placed at a finite depth from the free surface. The flow was modeled by the Reynolds-averaged Navier–Stokes (RANS equations. A finite-volume method with the SIMPLE scheme and k-ε turbulence model were employed for computations. The “full cavitation model,” which included the effects of vaporization, noncondensible gases and compressibility, was incorporated in the computation of cavitating flow. The cavity shape and free surface were updated iteratively till a reasonable convergence was reached. As for the determination of the free surface, the VOF approach was adopted. The test cases show the accuracy and stability of our procedure to capture the cavitating flow near the free surface.

  19. Targeted Temperature Management After Pediatric Cardiac Arrest Due To Drowning: Outcomes and Complications

    Science.gov (United States)

    Moler, Frank W.; Hutchison, Jamie S.; Nadkarni, Vinay M.; Silverstein, Faye S.; Meert, Kathleen L.; Holubkov, Richard; Page, Kent; Slomine, Beth S.; Christensen, James R.; Dean, J. Michael

    2016-01-01

    Objective To describe outcomes and complications in the drowning subgroup from the Therapeutic Hypothermia After Pediatric Cardiac Arrest Out-of-Hospital (THAPCA-OH) Trial. Design Exploratory post hoc cohort analysis Setting Twenty-four PICUs Patients Pediatric drowning cases Interventions Therapeutic hypothermia versus therapeutic normothermia Measurements and Main Results An exploratory study of pediatric drowning from the THAPCA-OH Trial was conducted. Comatose patients >2 days and VABS-II) score ≥70, 1-year survival rate, change in VABS-II score pre-arrest to 12-months, and select safety measures. Seventy-four drowning cases were randomized. In patients with pre-arrest VABS-II ≥70 (n=65), there was no difference in 12-month survival with VABS-II score ≥70 between hypothermia and normothermia groups [29% vs. 17%; relative risk (RR) 1.74; 95% confidence interval (CI) 0.61 to 4.95; p=0.27]. Among all evaluable patients (n=68), the VABS-II score change from baseline to 12-months did not differ (p=0.46) and one-year survival was similar (49%, hypothermia vs. 42%, normothermia; RR 1.16; 95% CI 0.68 to 1.99; p=0.58). Hypothermia was associated with a higher incidence of positive bacterial culture (any blood, urine or respiratory sample) (67% vs. 43%; p=0.04), however, the rate per 100 days at risk did not differ (11.1 vs. 8.4; p=0.46). Cumulative incidence of blood product use, serious arrhythmias and 28-day mortality were not different. Among patients with CPR durations >30 minutes or epinephrine doses >4, none had favorable Pediatric Cerebral Performance Category (PCPC) outcomes (≤3). Conclusions In comatose survivors of out-of-hospital pediatric cardiac arrest due to drowning, hypothermia did not result in a statistically significant benefit in survival with good functional outcome or mortality at one year, as compared with normothermia. High-risk of culture-proven bacterial infection was observed in both groups. PMID:27362855

  20. Targeted Temperature Management After Pediatric Cardiac Arrest Due To Drowning: Outcomes and Complications.

    Science.gov (United States)

    Moler, Frank W; Hutchison, Jamie S; Nadkarni, Vinay M; Silverstein, Faye S; Meert, Kathleen L; Holubkov, Richard; Page, Kent; Slomine, Beth S; Christensen, James R; Dean, J Michael

    2016-08-01

    Performance Category outcomes (≤ 3). In comatose survivors of out-of-hospital pediatric cardiac arrest due to drowning, hypothermia did not result in a statistically significant benefit in survival with good functional outcome or mortality at 1 year, as compared with normothermia. High risk of culture-proven bacterial infection was observed in both groups.

  1. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  2. Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses

    Science.gov (United States)

    Bellenger, Hugo; Drushka, Kyla; Asher, William; Reverdin, Gilles; Katsumata, Masaki; Watanabe, Michio

    2017-01-01

    The Zeng and Beljaars (2005) sea surface temperature prognostic scheme, developed to represent diurnal warming, is extended to represent rain-induced freshening and cooling. Effects of rain on salinity and temperature in the molecular skin layer (first few hundred micrometers) and the near-surface turbulent layer (first few meters) are separately parameterized by taking into account rain-induced fluxes of sensible heat and freshwater, surface stress, and mixing induced by droplets penetrating the water surface. Numerical results from this scheme are compared to observational data from two field studies of near-surface ocean stratifications caused by rain, to surface drifter observations and to previous computations with an idealized ocean mixed layer model, demonstrating that the scheme produces temperature variations consistent with in situ observations and model results. It reproduces the dependency of salinity on wind and rainfall rate and the lifetime of fresh lenses. In addition, the scheme reproduces the observed lag between temperature and salinity minimum at low wind speed and is sensitive to the peak rain rate for a given amount of rain. Finally, a first assessment of the impact of these fresh lenses on ocean surface variability is given for the near-equatorial western Pacific. In particular, the variability due to the mean rain-induced cooling is comparable to the variability due to the diurnal warming so that they both impact large-scale horizontal surface temperature gradients. The present parameterization can be used in a variety of models to study the impact of rain-induced fresh and cool lenses at different spatial and temporal scales.

  3. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  4. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  5. Oxidation of the Martian surface - Constraints due to chemical processes in the atmosphere

    Science.gov (United States)

    Mcelroy, M. B.; Kong, T. Y.

    1976-01-01

    Dissociation of water in the Martian atmosphere may supply oxygen to the surface and may result in the formation of minerals such as goethite, as proposed by Huguenin. The supply rate is limited by chemical processes in the atmosphere which regulate the abundance of O2. The net surface sink for atmospheric oxygen can be as large as 33 million atoms per sq cm per sec which compares to the escape rate of 60 million atoms per sq cm per sec.

  6. Effect of Grinding Temperatures on the Surface Integrity of a Nickel-based Superalloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e response at the wheel-workpiece interface was measured using a grindable foil /workpiece thermocouple. Specimens with different grinding temperatures were obt ained through changing grinding conditions including depth of cut, workpiece fee d speed, and coolant supply. Changes in surface roughnes...

  7. Studying randomness and determinism in surface temperature anomaly indices using the recurrence plot method

    Science.gov (United States)

    Kiselev, B. V.

    2016-01-01

    Surface temperature anomalies are studied using the methods of recurrence plots and statistical R/S analysis, as well as the Higuchi method for determining fractal dimension. Anomalies of the surface temperature above continents and the temperature in the World Ocean regions and in the Northern and Southern hemispheres are considered independently. It has been indicated that anomalies are more stochastic and deterministic for land and ocean surfaces, respectively.

  8. Long-term evolution of tidal heating and surface temperature on extrasolar planets

    Science.gov (United States)

    Kanova, Michaela; Behounkova, Marie

    2015-04-01

    Increasing number of detected extrasolar planets provides a unique statistical set that may help us to improve our knowledge about planetary evolution. Indirect detection methods employed in search for exoplanets are most sensitive to objects orbiting close to their host star and this criterion gets particularly important in the case of low-mass terrestrial planets. Here, we focus on long-term orbital and thermal evolution of a single planet subjected to stellar tides. Our approach combines evaluation of surface temperature as well as numerical computation of tidal effects on planetary orbit and internal heating. By calculating the tidal evolution of the orbit [1], we analyze the effect of initial orbital parameters (eccentricity, semi-major axis and rotational frequency) on secular changes in surface temperature and tidal dissipation. The maximum surface temperature and temperature gradient is computed during the process and it evolves together with the semi-major axis, the eccentricity and the ratio of spin and orbital frequency. Significant increase in the surface temperature is observed when the planet encounters a spin-orbit resonance. We solve the heat diffusion equation numerically for both 1D and 3D geometry in a thin spherical shell corresponding to a subsurface layer (see e.g. [2]), where the upper boundary condition is given by energy equilibrium and is strongly non-linear in temperature due to Stefan-Boltzmann law. Additionally, we solve the viscoelastic response to the tidal loading during orbital evolution. Following the method of [3,4], the tidal heating is evaluated for Maxwell or Andrade rheology in the time domain. We study disturbing potential caused by the body's deformation, the time dependence of phase lag and time lag during one orbit and compare our results with traditionally used constant tidal lag models (e.g. [1,5]). The effect of a 3D internal structure on the disturbing potential is investigated as well. This study is our first step

  9. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  10. Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment.

    Science.gov (United States)

    Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo

    2014-11-01

    Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces.

  11. A quality-control procedure for surface temperature and surface layer inversion in the XBT data archive from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.; Pattanaik, J.; Ratnakaran, L.

    and surface layer temperature inversion. XBT surface temperatrues (XST) are compared with the surface temperature from simultaneous CTD observations from four cruises and the former were found to be erroneous in a number of stations. XSTs are usually corrected...

  12. Temperature Calculation in Respect of Basic Elements of Power Oil Transformer on the Basis of Its Tank Surface Temperature Analysis

    Directory of Open Access Journals (Sweden)

    D. Zalizny

    2012-01-01

    Full Text Available The paper proposes a real-time calculation algorithm of oil, winding and magnetic core temperature of power transformer on the basis of measured values of tank surface temperature and air temperature without measuring current. The algorithm is based on the calculation of the equivalent load factor of the transformer. Imitation simulation has confirmed efficiency of the algorithm. After tests on functioning transformers the algorithm can be used in thermal protection devices and diagnostic devices for power oil transformers.

  13. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    . The uncertainty analysis takes into account the expected performance of the retrieval algorithm under varying surface and atmospheric conditions. We characterise the uncertainties in terms of: radiometric noise; fractional vegetation cover as representative of surface emissivity; atmospheric water vapour; and uncertainties as a result of the coefficient fitting process. The total uncertainty budget is a combination of these four components added together in quadrature. The uncertainty due to misclassification of cloudy pixels is difficult to propagate to LST uncertainty bars and has yet to be evaluated in the framework of the current study. The progress made here will allow other time series of LST to be compared with the record from AATSR with greater certainty and hence increases confidence in our knowledge of recent surface temperature changes over the land. References Ghent, D., Corlett, G., and Remedios, J. Advancing the AATSR land surface temperature retrieval with higher resolution auxiliary datasets, in prep. Kogler, C., Pinnock, S., Arino, O., Casadio, S., Corlett, G., Prata, F., and Bras, T. Note on the quality of the (A)ATSR land surface temperature record from 1991 to 2009, International Journal of Remote Sensing, 33, 4178-4192, 2012

  14. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  15. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present contribtion gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanded austenite "layers" on stainless steel are addressed....

  16. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  17. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field

    Science.gov (United States)

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.

    1998-01-01

    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  18. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    CERN Document Server

    Bhattacharya, Jishnu; Antia, H M

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun....

  19. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    Science.gov (United States)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  20. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  1. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    Institute of Scientific and Technical Information of China (English)

    Qin NIE; Jianhua XU; Wang MAN

    2016-01-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem.It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods.This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis,utilizing data from downtown Shanghai,China.UIS estimates were obtained from linear spectral mixture analysis,and LST was retrieved through application of the mono-window algorithm,using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010.These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai.LST has a long memory for a certain spatial range of UIS values,such that a large increment in UIS is likely to be followed by a large increment in LST.While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010),these observed correlations show a weakening during the study period as urbanization increased.

  2. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    Science.gov (United States)

    Nie, Qin; Xu, Jianhua; Man, Wang

    2016-03-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem. It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods. This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis, utilizing data from downtown Shanghai, China. UIS estimates were obtained from linear spectral mixture analysis, and LST was retrieved through application of the mono-window algorithm, using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010. These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai. LST has a long memory for a certain spatial range of UIS values, such that a large increment in UIS is likely to be followed by a large increment in LST. While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010), these observed correlations show a weakening during the study period as urbanization increased.

  3. IDENTIFYING THE LOCAL SURFACE URBAN HEAT ISLAND THROUGH THE MORPHOLOGY OF THE LAND SURFACE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-06-01

    Full Text Available Current characterization of the Land Surface Temperature (LST at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1 it extends the understanding of the SUHI to the local scale, and (2 the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.

  4. Low Friction Surfaces for Low Temperature Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar and other extraterrestrial environments put extreme demands on moving mechanical components. Gears must continue to function and surfaces must continue to...

  5. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities

    Science.gov (United States)

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-01

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium

  6. Land use changes and its impact on land surface temperature of Yancheng City from 2000 to 2009 analysis

    Science.gov (United States)

    Wang, Xinghan

    2014-02-01

    In the paper, based on the technology of remote sensing and geographic information system, and according to the Landsat TM images obtained the land use database and land surface temperature of Yancheng city in the year of 2000 and 2009. Five land use types were identified, namely: farmland, building site, forest and grassland, water, and beach wetland. And then analysis of the urban expansion model based on the Defense Meteorological satellite data. The results show that: (1) In the five kinds of land use types, the largest rate of land use change is beach wetland, which is -8.23, followed by water as -5.17, forest and grassland is 3.27, building site is 2.24, farmland is 0.69. (2) During the 2000-2009, the towns of Yancheng city continuous outward expansion. In the old town, the expansion model is similar to the concentric circles spread to the periphery, but in the new district, which mainly concentrated in the northeast and southeast, the expansion model is re-planning, development and construction. (3) The land use structure change, especially the changes of beach wetland have a largest influence on the land surface temperature of Yancheng city. Among them, the average land surface temperature has increased over 8 degrees. However, the farmland change due to the overall land surface temperature decreased. And the increase of building site, making the urban heat island effect has been enhanced, while the town where the land surface temperature increases in value added in 0 to 5 degrees. At the same time, the water changes, this due to the land surface temperature increases and the added value in the range of 5 to 8 degrees.

  7. Analysis of past surface temperature reconstructions based on the tree-ring chronologies and borehole temperature measurements

    Science.gov (United States)

    Nagornov, O. V.; Nikitaev, V. G.; Pronichev, A. N.; Tyuflin, S. A.; Bukharova, T. I.

    2016-06-01

    There have been done many past surface temperature reconstructions based on the temperature measurements in rock and glacier boreholes. However, the reliability of these reconstructions connected with the uniqueness and stability properties is not studied. We carried out the reconstruction by search of the past surface temperature in form of the finite set of the Fourier series that provides the unique and stable solution. The tree-ring chronologies are used as the high-resolution proxy climate indicator to find out the dominant periods of the Fourier series. The Tikhonov regularization method is applied to solve the inverse problem.

  8. Infrared spectroscopy of Mercury analogue materials under simulated Mercury surface temperature conditions

    Science.gov (United States)

    Reitze, Maximilian; Morlok, Andreas; Hiesinger, Harald; Weber, Iris; Stojic, Aleksandra

    2017-04-01

    Infrared spectroscopy is a powerful technique for the exploration of planetary surfaces with remote sensing observations [e.g., 1]. The MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument onboard the BepiColombo spacecraft is designed to explore the surface mineralogy of Mercury in the wavelength region from 7 μ m to 14 μ m [2]. Mercury's surface reaches dayside temperatures of about 700 K [3]. It is well known that bondings between atoms change with temperature, resulting in infrared spectra changes with temperature [4]. In particular, rock-forming minerals like silicates show distinct absorption bands in the infrared due to molecular vibrations, for example, of Si-O bondings [4]. To accurately understand and correctly interpret returned MERTIS data, it is necessary to collect laboratory data of analogue materials under condition similar to Mercury [5]. It is known from previous investigations [5] that the Reststrahlenbands of olivine shift with temperature. In this work we report on temperature effects on Mercury analogue materials in ambient air. At the IRIS (Infrared & Raman for Interplanetary Spectroscopy) laboratory in Münster we used a Bruker VERTEX 70v IR spectrometer together with a Harrick heating stage in a Praying Mantis Diffuse Reflectance Accessory to measure mid-infrared reflectance of mineral powder samples with different grain sizes at increasing temperatures. We report on our spectral results for a natural olivine with Fo91 with a grain size range between 63 μ m and 125 μ m as well as a natural labradorite with a grain size range between 90 μ m and 125 μ m. Spectra were collected at 26, 75, 150, 200, 250, 300, and 350 degrees Celsius with a liquid nitrogen cooled MCT detector under normal ambient pressure. To ensure complete thermal equilibrium of our measured samples, we heated them to higher temperatures and subsequently cooled them to the temperatures at which the spectra were taken. For background calibration, we

  9. Experimental Determination of Drag Modifications Due to Elastic Compliant Surfaces Using Quantitative Visual Techniques.

    Science.gov (United States)

    1988-04-27

    developed in the 5.49 mn by 0.4572 m by 0.1524 m test section of a recirculating liquid flow facility, in which deodorized kerosene was used as the...pulses. The aluminum and gelatin surfaces were reflective enough to result in a sharp reflection of the photochromic time line. The point at which the

  10. Assessment of Cold Welding Between Separable Contact Surfaces Due to Impact and Fretting under Vacuum

    Science.gov (United States)

    Merstallinger, A.; Sales, M.; Semerad, E.; Dunn, B. D.

    2009-11-01

    A common failure mode seen during the testing and operation of spacecraft is termed "cold welding". European laboratories refer to this as "adhesion", "sticking" or "stiction". This publication is intended to provide the space community with the most recent understanding of the phenomenon of "cold welding" in relation to spacecraft mechanisms with separable contact surfaces. It presents some basic theory and describes a test method and the required equipment. Cold welding between two contacting surfaces can occur under conditions of impact or fretting. These surfaces may be bare metals, or inorganically or organically coated metals and their alloys. Standard procedures for quantifying the propensity of material surface pairs to cold weld to each other are proposed. Of particular interest will be the contact data of different materials, which are presented in numerical form and as tables summarising contacts between materials that can be either recommended or considered unsuitable for use under vacuum. The data have been compiled in a database that can be accessed online.

  11. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status

    DEFF Research Database (Denmark)

    Sandholt, Inge; Rasmussen, Kjeld; Andersen, Jens Asger

    2002-01-01

    A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing interpre......A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing...... interpretations of the T-s/NDVI space, the index is conceptually and computationally straightforward. It is based on satellite derived information only, and the potential for operational application of the index is therefore large. The spatial pattern and temporal evolution in TVDI has been analysed using 37 NOAA...

  12. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from...... and parallel; as well as the iterative algorithm included in the TSM to disaggregate the soil-surface composite temperature into its separate components. Continuous field measurements of composite soil-vegetation surface temperature (T) and bare soil temperature (T) from thermal infrared sensors were used...... T and the simplified version that uses separate inputs of T and T' were minor. This demonstrates the robustness of the iterative procedure to disaggregate a composite soil-vegetation temperature into separate soil and vegetation components in semiarid environments with good prospects for image...

  13. Causality between energy consumption, emissions of CO{sub 2} and surface air temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mariam, Y.K.G.; Barre, M. [Environment Canada, Hull, Quebec (Canada)

    1998-12-31

    Climate research has been one of the focal points of the scientific community for the past few decades. However, most of the studies tended to examine the scientific basis to understand the mechanisms that resulted in changes in global climate. There was less emphasis on issues of mitigating the causes of climate change. Due to the fact that climate change is primarily the result of emission of green houses gases, especially carbon dioxide, and due to the fact that most these emissions are anthropogenic, social scientists have to address strategies in which emissions are reduced. Of particular significance is that global climate is a common good. Private companies and individuals, in an effort to maximize income or welfare, dump increased emission to the atmosphere. As a typical example of the classic work of the tragedy of the commons, there is a desperate need for all disciplines of the social and natural sciences to develop ways of mitigating the dangers of changes in the global common climate. Energy consumption, particularly fossil fuels, has been attributed as the driving force for the increased emission of CO{sub 2} and rise in global surface air temperature. While many studies have been carried out regarding the relationship between global energy consumption, emissions of CO{sub 2} and indicators of climate change such as temperature, there are only a few studies that have examined linkages between these factors at the level of individual countries. Increased consumption of carbon-intensive sources of energy will continue to exacerbate existing climate change problems. On the other hand, not only will energy consumption influence climate change but also changes in climate change may influence the patterns of energy consumption. The objectives of this research are to examine trends in energy consumption and emissions of CO{sub 2}, and causal linkages between energy consumption, emission of CO{sub 2} and mean annual surface temperature for 21 OECD countries.

  14. Bayesian Estimation for Land Surface Temperature Retrieval: The Nuisance of Emissivities

    CERN Document Server

    Morgan, J A

    2004-01-01

    An approach to the remote sensing of land surface temperature is developed using the methods of Bayesian inference. The starting point is the maximum entropy estimate for the posterior distribution of radiance in multiple bands. In order to convert this quantity to an estimator for surface temperature and emissivity with Bayes' theorem, it is necessary to obtain the joint prior probability for surface temperature and emissivity, given available prior knowledge. The requirement that any pair of distinct observers be able to relate their descriptions of radiance under arbitrary Lorentz transformations uniquely determines the prior probability. Perhaps surprisingly, surface temperature acts as a scale parameter, while emissivity acts as a location parameter, giving the prior probability P(T,emissivity|K)=const./T dT d(emissivity). Given this result, it is a simple matter to construct estimators for surface temperature and emssivity. Monte Carlo simulations of land surface temeprature retrieval in selected MODIS ...

  15. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  16. Predicting temperature timit values for cold touchable surfaces

    NARCIS (Netherlands)

    Hartog, E.A. den

    2005-01-01

    During some occupational activities, workers have to handle objects or tools in cold environments. In other circumstances, contact between the hand and the cold surface might be accidental (e.g., when a worker touches a cold surface, a cooler, etc). In both cases, contact between the hands and the c

  17. High-Emissivity Coatings For High-Temperature Surfaces

    Science.gov (United States)

    Deininger, William D.; King, David Q.

    1988-01-01

    Plasma-sprayed coatings increase cooling by thermal radiation. Coating of zirconium diboride on tungsten or molybdenum increases emissivity of surface to more than 0.6 at 2,000 degree C. Applied by plasma-arc spraying after surface cleaned and roughened to ensure adhesion.

  18. Quantification of the advected CO2 concentration due to upstream surface fluxes in aircraft vertical profiles

    Science.gov (United States)

    Font, A.; Morguí, J.-A.; Curcoll, R.; Rodó, X.

    2009-04-01

    A model framework which couples the Lagrangian Particle Dispersion Model FLEXPART (LPDM) with the new global surface flux inversion CarbonTracker from NOAA-ESRL (2007B release) is used to quantify the advected CO2 concentration from outbound surface fluxes to measured vertical profiles carried out during different seasons in 2006 at La Muela site in Spain (LMU; 41.60°N, 1.1°W). The Lagrangian Particle Dispersion Model FLEXPART (LPDM) calculates the influence of surface CO2 fluxes upwind of the study area, allowing us to identify those sources or sink areas that strongly modify the CO2 content of air masses that arrives at different altitudes of measured profiles. CarbonTracker is a new assimilation system that informs of global carbon fluxes at 1°x1° at 3 hours resolution. Coupling LPDM results with surface fluxes allows assessing the net CO2 contribution of identified areas to measured concentrations along the profiles above a reference or background concentration. Furthermore, it allows the quantification of the percentage of each component flux (biospheric, anthropogenic and oceanic) to each vertical layer. At LMU, biospheric fluxes account ~70% of total CO2 advection; fossil fuel ~25%; and ~5% is attributed to the oceanic ones. By far, late spring and summer profiles are largely influence by the biospheric component (~90%). Finally, the CO2 concentration above the background value of profiles measured on 22nd February, 13th October and 30th November 2006 are well explained by the advection of upstream surface fluxes. In other profiles examined, the variation of CO2 along the profile is partially explained by the advection of CO2 outbound fluxes.

  19. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  20. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  1. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  2. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    Science.gov (United States)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  3. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data

    Science.gov (United States)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.

    2014-12-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  4. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  5. A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory

    Science.gov (United States)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1994-01-01

    We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean

  6. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    Science.gov (United States)

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  7. Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

    CERN Document Server

    Greve, Ralf

    2009-01-01

    Simulations of the Greenland Ice Sheet are carried out with a high-resolution version of the ice-sheet model SICOPOLIS for several global-warming scenarios for the period 1990-2350. In particular, the impact of surface-meltwater-induced acceleration of basal sliding on the stability of the ice sheet is investigated. A parameterization for the acceleration effect is developed for which modelled and measured mass losses of the ice sheet in the early 21st century agree well. The main findings of the simulations are: (i) the ice sheet is generally very susceptible to global warming on time-scales of centuries, (ii) surface-meltwater-induced acceleration of basal sliding leads to a pronounced speed-up of ice streams and outlet glaciers, and (iii) this ice-dynamical effect accelerates the decay of the Greenland Ice Sheet as a whole significantly, but not catastrophically, in the 21st century and beyond.

  8. Surface uplift and time-dependent seismic hazard due to fluid-injection in eastern Texas

    Science.gov (United States)

    Shirzaei, M.; Ellsworth, W. L.; Tiampo, K. F.; González, P. J.; Manga, M.

    2015-12-01

    US states such as Texas and Oklahoma that produce high-volumes of unconventional oil and gas, are facing a sharp increase in seismicity. Observations of the associated surface deformation and accompanying physical models that unequivocally link the seismicity and waste water injection are scarce. Here, we find that the waste water injection in eastern Texas causes uplift, detectable using radar interferometric data. Combining the uplift and injection data through a poroelastic model allows for the resolution of a complex crustal distribution of hydraulic conductivity and pore pressure. We find that the ~5 years pore pressure increase is capable of triggering the 17 May 2012, Mw 4.8 earthquake, the largest event recorded in east Texas. This study shows that surface deformation data are vital in order to constrain the spatiotemporal variations of the stress field in the vicinity of injection sites.

  9. In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements

    Science.gov (United States)

    van Duinen, Raimond NB; Shahid, Saroash; Hill, Robert

    2016-01-01

    The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods:The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results:The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion: It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice. PMID:28275275

  10. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2015-06-20

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  11. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    Science.gov (United States)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  12. How can we use MODIS land surface temperature to validate long-term urban model simulations?

    Science.gov (United States)

    Hu, Leiqiu; Brunsell, Nathaniel A.; Monaghan, Andrew J.; Barlage, Michael; Wilhelmi, Olga V.

    2014-03-01

    High spatial resolution urban climate modeling is essential for understanding urban climatology and predicting the human health impacts under climate change. Satellite thermal remote-sensing data are potential observational sources for urban climate model validation with comparable spatial scales, temporal consistency, broad coverage, and long-term archives. However, sensor view angle, cloud distribution, and cloud-contaminated pixels can confound comparisons between satellite land surface temperature (LST) and modeled surface radiometric temperature. The impacts of sensor view angles on urban LST values are investigated and addressed. Three methods to minimize the confounding factors of clouds are proposed and evaluated using 10years of Moderate Resolution Imaging Spectroradiometer (MODIS) data and simulations from the High-Resolution Land Data Assimilation System (HRLDAS) over Greater Houston, Texas, U.S. For the satellite cloud mask (SCM) method, prior to comparison, the cloud mask for each MODIS scene is applied to its concurrent HRLDAS simulation. For the max/min temperature (MMT) method, the 50 warmest days and coolest nights for each data set are selected and compared to avoid cloud impacts. For the high clear-sky fraction (HCF) method, only those MODIS scenes that have a high percentage of clear-sky pixels are compared. The SCM method is recommended for validation of long-term simulations because it provides the largest sample size as well as temporal consistency with the simulations. The MMT method is best for comparison at the extremes. And the HCF method gives the best absolute temperature comparison due to the spatial and temporal consistency between simulations and observations.

  13. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    Science.gov (United States)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  14. Convection due to surface-tension gradients. [in reduced gravity spacecraft environments

    Science.gov (United States)

    Ostrach, S.

    1978-01-01

    The use of dimensionless parameters to study fluid motions that could occur in a reduced-gravity environment is discussed. The significance of the Marangoni instability is considered, and the use of dimensionless parameters to investigate problems such as thermo and diffusocapillary flows is described. Characteristics of fluid flow in space are described, and the relation and interaction of motions due to capillarity and buoyancy is examined.

  15. Relationship between ocular surface temperature and peripheral vasoconstriction in healthy subjects: A thermographic study

    DEFF Research Database (Denmark)

    Matteoli, Sara; Vannetti, Federica; Finocchio, Lucia

    2014-01-01

    vasoconstriction might be detected by measuring the ocular surface temperature. The ocular surface temperature was evaluated in a group of 38 healthy young subjects (28 males and 10 females; mean age: 25.4 6 4.1 years) by infrared thermography. For each subject, the experimental procedure consisted of two...

  16. LUBRICATION BASIS THEORY OF WORM PAIR AND TEMPERATURE DISTRIBUTION ON WORM GEAR SURFACE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The lubrication basis theory of worm pair is given. The lubrication state of worm gear is analyzed. It is found that the temperature distribution on the tooth surface of worm gear is closely related with the lubrication state and that the temperature on the tooth surface of worm gear is consistent with the characteristic term of mesh and motion of worm pair.

  17. Low-temperature gaseous surface hardening of stainless steel: the current status

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    The present review addresses the state of the art of low-temperature gaseous surface engineering of (austenitic) stainless steel and is largely based on the authors' own work in the last 10 years. The main purpose of low temperature gaseous surface engineering of stainless steel is to develop a h...

  18. Estimation of the radius of a star based on its effective temperature and surface gravity

    Science.gov (United States)

    Sichevskij, S. G.

    2016-06-01

    Amethod for determining the radius of a star using its effective temperature and surface gravity is proposed. The method assumes that the relationship between the radius, effective temperature, and surface gravity can be approximated using models for the internal structure and evolution of the star. The method is illustrated using the Geneva-Toulouse evolutionary computations for two metal abundances—solar and one-tenth of solar. Analysis of the systematic errors shows that the accuracy of the method is better than 10% over most part of the Hertzsprung-Russell diagram, and is about 5% for main-sequence stars. The maximum relative systematic error due to the simplifications underlying the method is about 15%. A test using eclipsing binaries confirms the viability of the proposed method for estimating stellar radii. In the region of the main sequence, systematic deviations do not exceed 2%, and the relative standard deviation is ≤4.7%. It is expected that th maximum relative error over the rest of the Hertzsprung-Russell diagram will likewise be close to the systematic error, about 15-20%. The method is applied to estimate the radii of model stellar atmospheres. Such estimates can be used to synthesize the color index and luminosity of a star. The method can be used whenever accuracies of about 10% in the estimated stellar radius and luminosity are acceptable.

  19. Atmospheric response to orbital forcing and 20th century sea surface temperatures

    Science.gov (United States)

    Mantsis, Damianos F.

    This study investigates modes of atmospheric variability in response to changes in Earth's orbit and changes in 20th century sea surface temperatures (SST). The orbital forcing is manifested by a change in obliquity and precession, and changes the distribution of the top-of-atmosphere insolation. A smaller obliquity reduces the annual insolation that the poles receive and increases the annual insolation in the tropics. As the meridional insolation gradient increases, the zonal mean atmospheric-ocean circulation increases. The resulting climate also has a reduced global mean temperature due to the effect of climate feedbacks. This cooling can be attributed to a reduced lapse rate, increased cloud fraction, reduced water vapor in the atmosphere, and an increase in the surface albedo. A change in the precession, as the perihelion shifts from the winter to the summer solstice, causes a strengthening as well as an expansion of the N. Pacific summer subtropical anticyclone. This anticyclonic anomaly can be attributed to the weakening of the baroclinic activity, but also represents the circulation response to remote and local diabatic heating. The remote diabatic heating is associated with monsoonal activity in the SE Asia and North Africa. Regarding the 20th century SST forcing, it is represented by a multidecadal variability in the inter-hemispheric SST difference. This change in the SST causes a latitudinal shift in the ascending branch of the Hadley cell and precipitation in the tropics, as well as an increase in the atmospheric meridional heat transport from the warmer to the colder hemisphere.

  20. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods.

    Science.gov (United States)

    Huang, Fu-Chun; Chen, Yung-Yu; Wu, Tsung-Tsong

    2009-02-11

    A surface acoustic wave (SAW) sensor with Pt coated ZnO nanorods as the selective layer has been investigated for hydrogen detection. The SAW sensor was fabricated based on a 128 degrees YX-LiNbO(3) substrate with a operating frequency of 145 MHz. A dual delay line configuration was adopted to eliminate external environmental fluctuations. The Pt coated ZnO nanorods were chosen as a selective layer due to their high surface-to-volume ratio, large penetration depth, and fast charge diffusion rate. The ZnO nanorods were synthesized by an aqueous solution method and coated with the noble metal Pt as a catalyst. Finally, the SAW sensor responses to humidity and hydrogen were tested. Results show that the sensor is not sensitive to humidity; moreover, the frequency shift for a hydrogen concentration variation of 6000 ppm is 26 kHz while operating at room temperature. It can be concluded that the Pt coated ZnO nanorod based SAW hydrogen sensor exhibits fast response, good sensitivity and short-term repeatability. It is worth noting that not only is the sensor sensitive enough to operate at room temperature, but also it can avoid the influence of humidity.