WorldWideScience

Sample records for surface temperature cold

  1. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  2. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  3. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold

  4. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold surfa

  5. A Preliminary Study of Surface Temperature Cold Bias in COAMPS

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H-N S; Leach, M J; Sugiyama, G A; Aluzzi, F J

    2001-04-27

    It is well recognized that the model predictability is more or less hampered by the imperfect representations of atmospheric state and model physics. Therefore, it is a common problem for any numerical models to exhibit some sorts of biases in the prediction. In this study, the emphasis is focused on the cold bias of surface temperature forecast in Naval Research Laboratory's three-dimensional mesoscale model, COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System). Based on the comparison with the ground station data, there were two types of ground temperature cold biases identified in LLNL (Lawrence Livermore National Laboratory) operational forecasts of COAMPS over the California and Nevada regions during the 1999 winter and the 2000 spring. The first type of cold bias appears at high elevation regions covered by snow, and its magnitude can be as large as 30 F - 40 F lower than observed. The second type of cold bias mainly exists in the snow-free clear-sky regions, where the surface temperature is above the freezing point, and its magnitude can be up to 5 F - 10 F lower than observed. These cold biases can affect the low-level stratification, and even the diurnal variation of winds in the mountain regions, and therefore impact the atmospheric dispersion forecast. The main objective of this study is to explore the causes of such cold bias, and to further the improvement of the forecast performance in COAMPS. A series of experiments are performed to gauge the sensitivity of the model forecast due to the physics changes and large-scale data with various horizontal and vertical resolutions.

  6. Predicting temperature timit values for cold touchable surfaces

    NARCIS (Netherlands)

    Hartog, E.A. den

    2005-01-01

    During some occupational activities, workers have to handle objects or tools in cold environments. In other circumstances, contact between the hand and the cold surface might be accidental (e.g., when a worker touches a cold surface, a cooler, etc). In both cases, contact between the hands and the c

  7. Temperature limit values for cold touchable surfaces ' ColdSurf ' : final report

    NARCIS (Netherlands)

    Holmer, I.; Havenith, G.; Hartog, E.A. den; Rintamaki, H.; Malchaire, J.

    2000-01-01

    The aim of the project was to find and compile information on human responses to contact with cold surfaces. The work has covered 1) literature search and field survey; 2) experimental studies with human subjects; 3) simulation by modeling; 4) instrumentation (artificial finger), 5) establishment of

  8. Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau

    Science.gov (United States)

    Chen, X.; Liu, Y.; Wu, G. X.

    2016-12-01

    Recent studies have demonstrated that the majority of the Phase-5 Coupled Model Inter-comparison Project (CMIP5) models underestimate annual and seasonal mean surface air temperatures (Ta) over the Tibetan Plateau (TP). In addition, half of the models underestimate annual and seasonal mean surface temperatures (Ts) over the TP. These cold biases are larger over the western TP. By decomposing the Ts bias using the surface energy budget equation, this study investigates the contributions to the cold surface temperature bias on the Tibetan Plateau from various factors, including the surface albedo-induced bias (SAF), surface cloud radiative forcing (CRF), clear-sky shortwave (SW) radiation, downward clear-sky longwave radiation (DLR), surface sensible heat flux and latent heat flux, and heat storage. The results suggest that SAF and DLR are the main factors causing the cold surface temperature bias. Because SAF and DLR are respectively affected by the snow coverage fraction and water vapor distribution produced by the models, these results then imply that the snow coverage fraction parameterization and water vapor distribution over the TP require further improvements.

  9. Thermovision Analysis Changes of Human Hand Surface Temperature in Cold Pressor Test

    Directory of Open Access Journals (Sweden)

    Agnieszka Chwałczyńska

    2015-01-01

    Full Text Available The cold pressor test (CTP as a diagnostic method of the circulatory system reactivity may be a basis for the qualification for thermal stimulation therapy. The aim of the work was a thermovisual assessment of the reaction to the Hines and Brown cold pressor test. A group of 30 healthy men in the age of 23.5 ± 0.8 years were examined. The average weight of the examinees was 78.4 ± 9.2 kg, their height 180.7 ± 5.9 cms, and BMI 23.9 ± 2.2 kg/m2. A thermovisual picture of a tested and not tested hand of all the subjects was taken before and after the cold pressor test. Under the influence of cold water the surface temperature of a tested hand has decreased in a statistically significant way by 8.3°C on average, which is 29% of the temperature before the test, whilst the temperature of an untested hand dropped by 0.67°C. The decreases of temperature were not even and there was a statistically significant difference between the dorsal and palmar side of the hand. The correlation between the changes of systolic blood pressure and the hand surface temperature before and after CTP was observed.

  10. Effects of local heat and cold treatment on surface and articular temperature of arthritic knees

    NARCIS (Netherlands)

    Oosterveld, Frederikus G.J.; Rasker, Johannes J.

    1994-01-01

    Objective: To evaluate and compare the effects of locally applied heat and cold treatments on skin and intraarticular temperature in patients with arthritis. Methods. Thirty-nine patients with arthritis of the knee were divided at random into 4 treatment groups (ice chips, nitrogen cold air, ligno-

  11. The Effect of Local Heat and Cold Therapy on the Intraarticular and Skin Surface Temperature of the Knee

    OpenAIRE

    1992-01-01

    Objective. To evaluate the effects of local application of ice chips, ligno-paraffin, short-wave diathermy, and nitrogen-cold air on skin and intraarticular temperature. Methods. Forty-two healthy subjects were divided into 4 treatment groups. A temperature probe was inserted into the knee joint cavity and another placed on the overlying skin, and changes in temperature over 3 hours, by treatment group, were recorded. Results. The mean skin surface temperature dropped from 27.9°C to 11.5°C af...

  12. Delimitation of the warm and cold period of the year based on the variation of the Aegean sea surface temperature

    Directory of Open Access Journals (Sweden)

    A. MAVRAKIS

    2012-12-01

    Full Text Available Knowledge of the warm and cold season onset is important for the living conditions and the occupational activities of the inhabitants of a given area, and especially for agriculture and tourism. This paper presents a way to estimate the onset/end of the cold and warm period of the year, based on the sinusoidal annual variation of the Sea Surface Temperature. The method was applied on data from 8 stations of the Hellenic Navy Hydrographic Service, covering the period from 1965-1995. The results showed that the warm period starts sometime between April 28th and May 21st while it ends between October 27th and November 19th in accordance with the findings of other studies. Characteristic of the nature of the parameter used is the very low variance per station – 15 days at maximum. The average date of warm period onset is statistically the same for the largest part of the Aegean, with only one differentiation, that between Kavala and the southern stations ( Thira and Heraklion.

  13. The Effect of Local Heat and Cold Therapy on the Intraarticular and Skin Surface Temperature of the Knee

    NARCIS (Netherlands)

    Oosterveld, F.G.J.; Rasker, J.J.; Jacobs, J.W.G.; Overmars, H.J.A.

    1992-01-01

    Objective. To evaluate the effects of local application of ice chips, ligno-paraffin, short-wave diathermy, and nitrogen-cold air on skin and intraarticular temperature. Methods. Forty-two healthy subjects were divided into 4 treatment groups. A temperature probe was inserted into the knee joint ca

  14. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach

    Science.gov (United States)

    Gilbert, A.; Vincent, C.; Six, D.; Wagnon, P.; Piard, L.; Ginot, P.

    2014-04-01

    Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy balance (SEB) model accounting for water percolation and radiation penetration in firn was applied to identify the main processes that control the subsurface temperatures in cold firn. Results agree well with subsurface temperatures measured at Col du Dôme (4250 m above sea level (a.s.l.)), France. In the second step, a simplified model using only daily mean air temperature and potential solar radiation was developed. This model properly simulates the spatial variability of surface melting and subsurface firn temperatures and was used to accurately reconstruct the deep borehole temperature profiles measured at Col du Dôme. Results show that percolation and refreezing are efficient processes for the transfer of energy from the surface to underlying layers. However, they are not responsible for any higher energy uptake at the surface, which is exclusively triggered by increasing energy flux from the atmosphere due to SEB changes when surface temperatures reach 0 °C. The resulting enhanced energy uptake makes cold accumulation zones very vulnerable to air temperature rise.

  15. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps: from a physical to a semi-parameterized approach

    Directory of Open Access Journals (Sweden)

    A. Gilbert

    2013-11-01

    Full Text Available Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy-balance (SEB model accounting for water percolation was applied to identify the main processes that control the subsurface temperatures in cold firn. Results agree well with subsurface temperatures measured at Col du Dôme (4250 m a.s.l., France. In the second step, a simplified model using only daily mean air temperature and potential solar radiation was developed. This model properly simulates the spatial variability of surface melting and subsurface firn temperatures and was used to accurately reconstruct the deep borehole temperature profiles measured at Col du Dôme. Results show that percolation and refreezing are efficient processes for the transfer of energy from the surface to underlying layers. However, they are not responsible for any higher energy uptake at the surface, which is exclusively triggered by increasing energy flux from the atmosphere due to SEB changes when surface temperature reach 0 °C. The resulting enhanced energy uptake makes cold accumulation zones very vulnerable to air temperature rise.

  16. Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011

    Science.gov (United States)

    Lee, Joon-ho; Pang, Ig-Chan; Moon, Jae-Hong

    2016-06-01

    Satellite-based sea surface temperature (SST) measurements revealed an abnormal cooling anomaly over the Yellow Sea (YS) in the summer of 2011. Using in situ hydrographic profiles, meteorological fields, and an ocean circulation model with a passive tracer experiment, we identified the cold SST anomaly and its connection with the YS Bottom Cold Water (YSBCW), which occupies the central part of the YS below the thermocline in the summer. The summer SST anomalies in the YS showed three cold peaks in 1993, 2003, and 2011 over the past 20 years, but the reasons for the cooling events were different, as one was due to weakened surface heating and the other was attributed to mixing with the YSBCW. In 1993 and 2003, relatively weak surface heating made the surface water cooler compared with that during the other years, whereas in 2011, a strong vertical mixing of water was induced by a typhoon that passed through the central YS, causing the surface water to cool by ˜8°C and the bottom water to warm up by ˜4°C. A tracer experiment further confirmed that the vertical heat transfers between the warm surface and the cold bottom water masses when the typhoon passed through the YS interior.

  17. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  18. Cold Pool and Surface Flux Interactions in Different Environments

    Science.gov (United States)

    Grant, L. D.; van den Heever, S. C.

    2015-12-01

    Cold pools play important roles in tropical and midlatitude deep convective initiation and organization through their influence on near-surface kinematic and thermodynamic fields. Because temperature, moisture, and winds are perturbed within cold pools, cold pools can also impact surface sensible and latent heat fluxes. In turn, surface fluxes both within the cold pool and in the environment can modify the characteristics of cold pools and their evolution, with subsequent implications for convective initiation and organization. The two-way interaction between cold pools and surface energy fluxes has not been well studied and is likely to vary according to the environment and surface type. The goal of this study is therefore to investigate the mechanisms by which surface fluxes and cold pools interact in environmental conditions ranging from tropical oceanic to dry continental. This goal will be accomplished using high-resolution (grid spacings as fine as 10 m), idealized, 2D simulations of isolated cold pools; such modeling experiments have proven useful for investigating cold pools and their dynamics in many previous studies. In the proposed experiments, the surface flux formulation, surface type, and environmental conditions will be systematically varied. The impact of surface fluxes on various cold pool characteristics and their evolution, including the buoyancy, maximum vertical velocity, and moisture distribution, will be analyzed and presented. Results suggest that the mechanisms by which surface fluxes and cold pools interact vary substantially with the environment. Additionally, the indirect effects of surface fluxes on turbulent entrainment rates into the cold pool are found to play an important role in cold pool evolution. These results suggest that surface fluxes can impact the timing and manner in which cold pools initiate convection, and that their effects may be important to incorporate into cold pool parameterizations for climate simulations.

  19. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  20. A Reconstruction of Sea Surface Temperature Gradients and an Assessment of the Suspected Presence of Continental Ice During the Cold Mid-Paleocene (61-57 Ma)

    Science.gov (United States)

    Bijl, P.; Cramwinckel, M.; Frieling, J.; Peterse, F.

    2016-12-01

    The early Eocene `hothouse' climate experienced paratropical vegetation on high latitudes and high (>1100 ppmv) atmospheric CO2 concentrations. It is generally considered as analogous to the endmember climate state should we use up all available fossil fuels. However, we do not know exactly through which processes this long-term warm episode came to be nor do we understand what the initial climate state was at the onset of this long-term climate. Deep-sea warming towards early Eocene hothouse conditions started in the mid-Paleocene, ending a 2 Myr time interval of relatively cold deep ocean temperatures. Reconstructed pCO2 concentrations of the mid-Paleocene seem to have been close to those of present-day, although data is scarce. The mid-Paleocene is notoriously sparsely represented in shelf sedimentary records, as most records show a conspicuous hiatus between 58 and 60 Mys. This gives the suggestion of a major global low in sea level, which is inconsistent with estimates of global ocean spreading rates, which suggest a relatively high sea level on long time scales for the Cretaceous-early Paleogene. The cold deep-sea temperatures, the conspicuously low sea level and low atmospheric CO2 during the mid-Paleocene have stimulated suggestions of the presence of major ice sheets on the poles, yet the absence of any trace for continental ice, either direct ice-proximal evidence or from benthic foraminiferal oxygen isotope records, calls the presence of such ice sheets into question. I will present a number of high resolution sea surface temperature records (based mostly on organic geochemical biomarker proxies) which start to reveal a latitudinal temperature gradient for the mid-Paleocene. Reconstructions come from shelf sediments from Tasmania, Australia, Tanzania, Tropical Atlantic Ocean, New Jersey). With these new records, I put Paleogene climate evolution into context. I will further present a review of shelf sedimentary records across the mid-paleocene to assess

  1. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach

    OpenAIRE

    2014-01-01

    Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy balance (SEB) model accounting for water percolation and radiation p...

  2. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  3. Draught Risk from Cold Vertical Surfaces

    DEFF Research Database (Denmark)

    Heiselberg, Per

    Glazed facades and atria have had a boom in the 1980's as an architectural feature in building design. Natural convective flows from these cold surfaces are in winter time, however, often the cause of thermal discomfort and there is a need for research to improve the design methods. The objective...

  4. Change of Martian surface height associated with polar cold spots

    Science.gov (United States)

    Ford, P. G.; Pettengill, G. H.

    2003-12-01

    For the past 30 years, orbiting microwave radiometers have observed anomalously low emission temperatures during Martian polar winters. While the physical surface temperature cannot drop significantly below 148K---the point at which CO2 starts to condense---radiometric temperatures of 110K or lower at 25μ wavelength are commonly found in isolated ``cold spots'' throughout both northern and southern polar winters. These form roughly circular patches, tens to hundreds of km in diameter, and persist for no more than a few days. Three models have been proposed to account for them: (a) an atmospheric effect that accompanies CO2 snowfall; (b) fresh surface deposits of CO2 snow; or (c) a change in the properties of CO2 slab ice. Following the success of Smith et al.1 in using the MOLA laser altimeter aboard Mars Global Surveyor to directly measure the growth of the winter polar caps, we have applied the same technique to ask whether cold spots are accompanied by a sudden change in surface height. To identify the cold spots, we first examined all polar observations made by the TES radiometer that was co-boresited with MOLA, and made gridded images of ∂ T / ∂ λ , the derivative of the brightness temperature wrt wavelength, 20μ 50cm) CO2 snow deposits, but it cannot help us decide between the alternatives of CO2 snowfall or a change in slab ice properties. 1 Smith, Zuber, and Neumann, Science, {294}, 2141-2146, 2001.

  5. Evaporative cooling of cold atoms at surfaces

    CERN Document Server

    Märkle, J; Federsel, P; Jetter, B; Günther, A; Fortágh, J; Proukakis, N P; Judd, T E

    2014-01-01

    We theoretically investigate the evaporative cooling of cold rubidium atoms that are brought close to a solid surface. The dynamics of the atom cloud are described by coupling a dissipative Gross-Pitaevskii equation for the condensate with a quantum Boltzmann description of the thermal cloud (the Zaremba-Nikuni-Griffin method). We have also performed experiments to allow for a detailed comparison with this model and find that it can capture the key physics of this system provided the full collisional dynamics of the thermal cloud are included. In addition, we suggest how to optimize surface cooling to obtain the purest and largest condensates.

  6. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.; Pokorny, Richard; Hrma, Pavel R.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features in a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.

  7. Cold atom microtraps above a videotape surface

    CERN Document Server

    Retter, J A

    2002-01-01

    Much progress has been made in the last two years towards miniaturizing magnetic traps for cold atoms. This will enable manipulation of coherent samples of atoms, such as Bose-Einstein condensates, or single atoms, on the scale of the atomic de Broglie wavelength. This thesis concerns an array of microscopic magnetic potentials formed close to the surface of magnetized videotape, when a uniform bias field is applied. The recorded magnetization is a 100 mu m sine wave, which covers a 12.5mm x 22mm piece of commercial videotape. This videotape is glued flat onto a thin glass substrate and is gold coated by evaporation so that atoms can be trapped close to the surface in a mirror-MOT. An 'atom chip' has been developed, incorporating the videotape and current-carrying wires located below the magnetized surface. A single wire and bias field create a magnetic tube potential, oriented parallel with the microtraps and with a quadrupole radial field. This allows the mirror-MOT to be compressed and distorted in order t...

  8. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  9. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  10. Field experiment on coalmine heat disaster governance using cold source from surface water

    Institute of Scientific and Technical Information of China (English)

    Guo Pingye; Zhu Guolong; Liu Yuqing; Duan Mengmeng; Wu Junyin

    2014-01-01

    Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ?C after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection.

  11. A composite sea surface temperature record of the northern South China Sea for the past 2,500 years: A unique look into seasonality and seasonal climate changes during warm and cold periods

    Science.gov (United States)

    Yan, H.; Soon, W.

    2015-12-01

    High-resolution late Holocene climate records that can resolve seasonality are essential for confirming past climatic dynamics, understanding the late 20th century global warming and predicting future climate. Here a new composite record of the sea surface temperature, SST, variation in the northern South China Sea (SCS) during the late Holocene is constructed by combining seven seasonally-resolved coral and T. gigas Sr/Ca-based SST time-windows with the instrumental SST record from modern interval between 1990 and 2000. This composite multi-proxy marine record, together with the reconstructions from mainland China and tropical western Pacific, indicates that the late Holocene warm periods, the Roman Warm Period (RWP) and Medieval Warm Period (MWP), were prominently imprinted and documented in the climatic and environmental history of the East Asia-Western Pacific region. Meanwhile, substantial and significant SST seasonality variations during the late Holocene were observed in the composite record. The observed increase in seasonality (or amplitude of seasonal cycles) during the cold periods around our study area was probably caused by the different amplitudes between winter versus summer SST variations in northern SCS, with much larger SST variation during winters than during summers for the late Holocene. In addition, the distinctive warm, cold and neutral climatic episodes identified in our northern SCS composite SST record correspond well with other paleo reconstructions from mainland China and especially well with the Northern Hemisphere-wide composites by Moberg et al. (2005) and Ljungqvist (2010). The overall agreement however also calls for more information and insights on how seasonal temperatures and their ranges vary on multidecadal to bicentennial timescales.

  12. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  13. Low temperature tolerance and cold hardening of cacti

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1982-12-01

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 3000 m altitude in southern Wyoming, were quite cold tolerant (50% inhibition of staining occurred from -17/sup 0/ to -20/sup 0/C), while O. bigelovii and O. ramosissima, which are restricted to much warmer habitats, were not very cold tolerant (50% inhibition from -4/sup 0/ to -7/sup 0/). Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the =600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs. Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Differences in both morphology and tissue cold sensitivity apparently influenced the relative northern ranges of Lophocereus schottii with respect to the other columnar cacti and F. covillei with respect to the other barrel cacti, as well as the relative elevational range of Denmoza rhodacantha with respect to Trichocereus candicans in northcentral Argentina. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species.

  14. Low-temperature tolerance and cold hardening of cacti

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1982-12-01

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.

  15. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires...

  16. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  17. Numerical simulation and experimental study of the submarine's cold wake temperature character

    Science.gov (United States)

    Chen, Shengtao; Zhong, Jingjun; Sun, Peng

    2014-06-01

    The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the submarine's hull is studied by solving the three dimensional N-S equations. The results show that under the condition of sea temperature surroundings of minus gradient, such as in summer the upper water's temperature is higher than the lower water, it is cold wake on the sea surface and hot wake on the submarine's plane. The temperature difference between the wake and the water around in the wake's initial part becomes more and more obvious as the wake's distance gets longer. Through the IR camera, the submarine's propeller wake is studied under the same temperature status. Obvious IR temperature difference signals can be observed and it is consistent with the numerical simulation for the submarine.

  18. Performance measurements of multilayer insulation at variable cold temperature

    Science.gov (United States)

    Funke, Thomas; Haberstroh, Christoph

    2012-06-01

    Multilayer insulation (MLI) is commonly used in most cryogenic devices such as LHe-cryostats or superconductive cables. Typically thermal performance measurements have been carried out using bath cryostats. Inherent to all this devices is a fixed cold temperature at the boiling point of the particular cryogenic liquid. A recent approach for cryogenic pressure vessels covers a broad temperature range, i.e. hydrogen storage from 20 K to ambient temperature. Thus, a new calorimeter cryostat has been designed at TU Dresden to meet these requirements. The design as a flow cryostat allows the measurement of the thermal performance with variable cold temperature between 20 K and 300 K. It can be operated in vertical as well as in horizontal orientation. The insulation material is wrapped around a nearly isothermal cylinder which is held at the desired temperature by a cooling fluid. Preferably LHe respectively helium cold gas is used. Several design features reduce undesired interference errors. It is reported about design and equipment of this cryostat plus first experiences in operation

  19. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  20. What caused the recent ``Warm Arctic, Cold Continents'' trend pattern in winter temperatures?

    Science.gov (United States)

    Sun, Lantao; Perlwitz, Judith; Hoerling, Martin

    2016-05-01

    The emergence of rapid Arctic warming in recent decades has coincided with unusually cold winters over Northern Hemisphere continents. It has been speculated that this "Warm Arctic, Cold Continents" trend pattern is due to sea ice loss. Here we use multiple models to examine whether such a pattern is indeed forced by sea ice loss specifically and by anthropogenic forcing in general. While we show much of Arctic amplification in surface warming to result from sea ice loss, we find that neither sea ice loss nor anthropogenic forcing overall yield trends toward colder continental temperatures. An alternate explanation of the cooling is that it represents a strong articulation of internal atmospheric variability, evidence for which is derived from model data, and physical considerations. Sea ice loss impact on weather variability over the high-latitude continents is found, however, to be characterized by reduced daily temperature variability and fewer cold extremes.

  1. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  2. Surface quality of cold rolling aluminum strips under lubrication condition

    Institute of Scientific and Technical Information of China (English)

    Jianlin Sun; Wang Lu; Yanli Ma; Qingbing Shi; Aihua Zhang; Jian Li

    2008-01-01

    The effects of oil fill on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thick-nesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by λ, which is the ratio of oil film thickness to the combined surface roughness. When λ > 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when λ < 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.

  3. Murder or Not? Cold Temperature Makes Criminals Appear to Be Cold-Blooded and Warm Temperature to Be Hot-Headed

    OpenAIRE

    Christine Gockel; Kolb, Peter M.; Lioba Werth

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature rega...

  4. Sauna, shower, and ice water immersion. Physiological responses to brief exposures to heat, cool, and cold. Part III. Body temperatures.

    Science.gov (United States)

    Kauppinen, K

    1989-04-01

    Nine active winter swimmer men were subjected to four exposures each imitating a form of hot or cold exposures or their combination practiced among the Finns: (A) sauna and head-out ice water immersion; (B) sauna and 15 degrees C shower; (C) sauna and room temperature; (D) head-out ice water immersion and room temperature. All exposures were repeated and ended with recovery at room temperature. Body core and surface temperatures were recorded. One surface probe was placed between the scapulae to detect any signs of thermogenic activity by brown adipose tissue upon cold exposures. In the sauna control of core temperature was lost at esophageal temperature Tes 38 degrees C where the mean skin temperature exceeded the Tes. The brief ice water immersions did not disturb the thermal balance of the body core. The interscapular surface temperature recording provided circumstantial evidence of functioning thermogenic tissue in the area.

  5. Finger and toe temperature response to cold water and cold air exposure

    NARCIS (Netherlands)

    Struijs, N.R. van der; Es, E.M. van; Raymann, R.J.E.M.; Daanen, H.A.M.

    2008-01-01

    Introduction: Subjects with a weak cold-induced vasodilatation response (CIVD) to experimental cold-water immersion of the fingers in a laboratory setting have been shown to have a higher risk for local cold injuries when exposed to cold in real life. Most of the cold injuries in real life, however,

  6. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  7. Surface tension in the cold and dense chiral transition and astrophysical applications

    CERN Document Server

    Palhares, L F

    2011-01-01

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...

  8. Cold temperature delays wound healing in postharvest sugarbeet roots

    Science.gov (United States)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  9. Probe for temperature logging of deep cold boreholes

    Science.gov (United States)

    Zangirolami, M.; Cavagnero, G.; Rossi, A.

    2003-04-01

    A new probe has been developed for measuring some physical parameters in deep cold boreholes such as those of the European Project for Ice Coring in Antarctica (EPICA), which is targeted to drill two holes through the ice sheet down to the bedrock at DOME C and at Dronning Maud Land, Antarctica. The probe is operative in the temperature range 0 to -60^oC and for pressures up to 35 MPa, down to 3500 m depth and in the presence of aggressive fluid filling. The probe is equipped with : 1) a set of four thermometers. Three are fitted in the expandable arms of the probe, to log the temperature of the ice-wall. The fourth thermometer is fitted into a static arm in a central position, between the previous three, and logs the temperature of the borehole fluid, for comparison. Thermistor-type sensors have been selected, with a resolution of 2 mK in the interval near 0^oC. During laboratory tests a time constant of 2.7 s was obtained for the thermal sensors fitted in their protective case. After final assemblage of the probe the sensors were calibrated in the laboratory against a standard precision thermometer, over the range 0 to -60^oC; 2) a sensor for differential measurement of the pressure of the liquid column of the drill fluid, with a resolution of a few 10-6 MPa, sufficient to detect any convective cells, induced by the dishomogeneous composition of the mixing fluids; 3) a manometer (strain gauge) for measuring the hydrostatic pressure of the fluid column in the full range 0 to 35 MPa, from the surface to bottom hole, with a resolution better than 0.001 of the full range; 4) a vertical depth meter for direct measurement of depth on the wall of the borehole, to eliminate any uncertainties caused by variations in the length of the electro-mechanical drilling wire due to the fatigue and strain of drilling operations. The progressive depths are measured by a wheel counter and encoder on the upper arms of the probe, with an expected resolution better than 10-3; 5) a

  10. A Calorimeter for Measurements of Multilayer Insulation at Variable Cold Temperature

    Science.gov (United States)

    Funke, Thomas; Haberstroh, Christoph

    An improved calorimeter cryostat for MLI thermal performance measurements has been designed and put into operation at the TU Dresden. Based on a liquid helium cooled flow cryostat, it allows the setting of any cold level temperature between approx. 30 K and ambient temperature. Thermal shields and all-embracing radiation guards at both ends can be kept at nearly identical temperature. This is done by means of two separate cooling circuits. Both the actual cold test surface temperature and the cooling of the mechanical support and radiation shields can be independently controlled. Insulation specimens are wrapped around a test cylinder with a surface of 0.9 m2. The heat transfer through the MLI is measured by recording the mass flow and the inlet and outlet temperature of the cooling fluid. Measurements both in horizontal and vertical orientation can be performed or compared, respectively. Moreover the effect of an additional vacuum degradation as it might occur by decreasing getter material performance in real systems at elevated temperatures can be studied by controlled inlet of an elective gas. It is reported about the design and the equipment of this cryostat and measurements of a 10 layer MLI specimen.

  11. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    Directory of Open Access Journals (Sweden)

    Christine Gockel

    Full Text Available Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  12. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    Science.gov (United States)

    Gockel, Christine; Kolb, Peter M; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  13. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    Science.gov (United States)

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure.

  14. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    Science.gov (United States)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  15. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  16. Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts.

    Science.gov (United States)

    Røssvoll, Elin; Rønning, Helene Thorsen; Granum, Per Einar; Møretrø, Trond; Hjerpekjøn, Marianne Røine; Langsrud, Solveig

    2014-08-18

    It is crucial for the quality and safety of ready-to-eat (RTE) foods to maintain the cold chain from production to consumption. The effect of temperature abuse related to daily meals and elevated refrigerator temperatures on the growth and toxin production of Bacillus cereus, Bacillus weihenstephanensis and Staphylococcus aureus and the growth of Listeria monocytogenes and Yersinia enterocolitica was studied. A case study with temperature loggings in the domestic environment during Easter and Christmas holidays was performed to select relevant time and temperature courses. A model for bacterial surface growth on food using nutrient agar plates exposed to variations in temperatures was used to simulate food stored at different temperatures and exposed to room temperature for short periods of time. The results were compared with predicted growth using the modeling tool ComBase Predictor. The consumers exposed their cold cuts to room temperatures as high as 26.5°C with an average duration of meals was 47 min daily for breakfast/brunch during the vacations. Short (≤ 2 h) daily intervals at 25°C nearly halved the time the different pathogens needed to reach levels corresponding to the levels associated with human infection or intoxication, compared with the controls continuously stored at refrigerator temperature. Although the temperature fluctuations affected growth of both B. weihenstephanensis and S. aureus, toxin production was only detected at much higher cell concentrations than what has been associated with human intoxications. Therefore, growth of L. monocytogenes and Y. enterocolitica was found to be the limiting factor for safety. In combination with data on temperature abuse in the domestic environment, modeling programs such as ComBase Predictor can be efficient tools to predict growth of some pathogens but will not predict toxin production. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  18. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed

    National Research Council Canada - National Science Library

    Gockel, Christine; Kolb, Peter M; Werth, Lioba

    2014-01-01

    .... Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences...

  19. Electrostatic Surface Trap for Cold Polar Molecules with a Charged Circular Wire

    Institute of Scientific and Technical Information of China (English)

    MA Hui; ZHOU Bei; LIAO Bin; YIN Jian-Ping

    2007-01-01

    We propose a novel scheme to trap cold polar molecules on the surface of an insulating substrate (i.e. a chip) by using an inhomogeneous electrostatic field, which is generated by the combination of a circular charged wire (a ring electrode) and a grounded metal plate. The spatial distributions of the electrostatic field from the above charged wire layout and its Stark potentials for CO molecules are calculated. Our study shows that when the voltage applied to the wire is U = 15 kV, a ring radius is R = 5 mm, the thickness of the insulating substrate is b = 5 mm, and a wire radius is r = 1 mm, the maximum efficient trapping potential (i.e., as equivalent temperature) for CO molecules is greater than 141.7mK, which is high enough to trap cold polar molecules with a temperature of 50 mK in the low-field-seeking states.

  20. Effects of ambient room temperature on cold air cooling during laser hair removal.

    Science.gov (United States)

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  1. An imaging radiometer for measurement of lunar polar cold trap temperatures

    Science.gov (United States)

    Lucey, Paul G.; Blasius, Karl R.; Bussey, Ben; Hoelter, Roger L.; Gillis, Jeffrey J.; Lawson, Stefanie L.; Mellon, Michael; Spencer, John; Urquhart, Mary; Vasavada, Ashwin R.; Wang, Angel T.

    2004-12-01

    The LRO Radiometer Investigation is an experiment proposed for NASA"s Lunar Reconnaisance Orbiter mission that will use a simple but extremely sensitive radiometer to measure the temperatures of the region of permanent shade at the lunar poles. Temperature governs the ability of these surfaces to act as cold traps, and tightly constrains the identity and lifetimes of potential volatile resources. The LRO Radiometer will also measure the night time temperature of the Moon, and use the extensive modeling experience of the team to use these data to produce maps of meter-scale rocks that constitute a significant hazard to landing and operations. The LRO Radiometer also supports LRO objectives by measuring the global abundance of meter scale rocks at 1 km resolution. This measurement is accomplished in four (4) months of observations.

  2. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    Directory of Open Access Journals (Sweden)

    M Langeveld

    2016-04-01

    Full Text Available Background Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. Methods We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold or 24°C (thermoneutrality for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. Results We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. Conclusions It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure.

  3. Mild cold effects on hunger, food intake, satiety and skin temperature in humans.

    Science.gov (United States)

    Langeveld, M; Tan, C Y; Soeters, M R; Virtue, S; Ambler, G K; Watson, L P E; Murgatroyd, P R; Chatterjee, V K; Vidal-Puig, A

    2016-03-01

    Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold) or 24°C (thermoneutrality) for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure. © 2016 The authors.

  4. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease.

  5. Intestinal temperature does not reflect rectal temperature during prolonged, intense running with cold fluid ingestion.

    Science.gov (United States)

    Savoie, Félix A; Dion, Tommy; Asselin, Audrey; Gariepy, Carolanne; Boucher, Pierre M; Berrigan, Félix; Goulet, Eric D B

    2015-02-01

    It is generally assumed that intestinal temperature (Tint), as measured with a telemetric pill, agrees relatively well with rectal temperature (Trec) during exercise. However, whether Tint reflects Trec during prolonged, intense and continuous exercise when cold fluids are consumed is unknown. Therefore, we compared Trec and Tint during a half-marathon during which cold water was ingested to prevent bodyweight (BW) losses >2%. Nine endurance athletes (age 30  ±  5 years) underwent a 21.1 km running time-trial (TT) in the heat (~30 °C and 44% RH) while BW losses were maintained to ~1% with continuous cold (4 °C) water provision. Tint and Trec were monitored throughout the TT. Hypohydration level, TT time and fluid intake were 1.2  ±  0.4% BW, 93.2  ±  9.9 min and 2143  ±  264 ml, respectively. Trec was systematically higher than Tint by 0.25 °C (95% CI: 0.14-0.37 °C). Tint and Trec showed an excellent relative (r = 0.90, p < 0.01), but poor absolute agreement as reflected by a 95% limit of agreement of ±1.07 °C and a standard error of measurement of ±0.39 °C. In conclusion, Tint does not mirror Trec during prolonged, intense running with cold fluid ingestion and, therefore, these measures should not be used interchangeably under this scenario.

  6. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Karen Klotz Fugate

    2016-04-01

    Full Text Available Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L. roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12 °C for 28 d. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12 °C, transpiration rate from the wounded surface declined within 14 d and wounded roots lost weight at a rate similar to unwounded controls. At 6 °C, transpiration rate from the wounded surface did not decline in the 28 d after injury, and wounded roots lost 44% more weight than controls after 28 d storage. Melanin formation, lignification, and suberization occurred more rapidly at 12 °C than at 6 °C, and a continuous layer of lignified and suberized cells developed at 12 °C, but not at 6 °C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12 °C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12 °C than at 6 °C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12 °C, and over 28 d, the increase in respiration due to injury was 52% greater in roots stored at 6 °C than in roots stored at 12 °C. The data indicate that storage at 6 °C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12 °C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled

  7. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species.

    Science.gov (United States)

    Yamori, Wataru; Noguchi, Ko; Hikosaka, Kouki; Terashima, Ichiro

    2009-02-01

    Some plant species show constant rates of respiration and photosynthesis measured at their respective growth temperatures (temperature homeostasis), whereas others do not. However, it is unclear what species show such temperature homeostasis and what factors affect the temperature homeostasis. To analyze the inherent ability of plants to acclimate respiration and photosynthesis to different growth temperatures, we examined 11 herbace-ous crops with different cold tolerance. Leaf respiration (R(area)) and photosynthetic rate (P(area)) under high light at 360 microl l(-1) CO(2) concentrations were measured in plants grown at 15 and 30 degrees C. Cold-tolerant species showed a greater extent of temperature homeostasis of both R(area) and P(area) than cold-sensitive species. The underlying mechanisms which caused differences in the extent of temperature homeostasis were examined. The extent of temperature homeostasis of P(area) was not determined by differences in leaf mass and nitrogen content per leaf area, but by differences in photosynthetic nitrogen use efficiency (PNUE). Moreover, differences in PNUE were due to differences in the maximum catalytic rate of Rubisco, Rubisco contents and amounts of nitrogen invested in Rubisco. These findings indicated that the temperature homeostasis of photosynthesis was regulated by various parameters. On the other hand, the extent of temperature homeostasis of R(area) was unrelated to the maximum activity of the respiratory enzyme (NAD-malic enzyme). The R(area)/P(area) ratio was maintained irrespective of the growth temperatures in all the species, suggesting that the extent of temperature homeostasis of R(area) interacted with the photosynthetic rate and/or the homeostasis of photosynthesis.

  8. Mapping the cold dust temperatures and masses of nearby Kingfish galaxies with Herschel

    CERN Document Server

    Galametz, M; Albrecht, M; Aniano, G; Armus, L; Bertoldi, F; Calzetti, D; Crocker, A F; Croxall, K V; Dale, D A; Meyer, J Donovan; Draine, B T; Engelbracht, C W; Hinz, J L; Roussel, H; Skibba, R A; Tabatabaei, F S; Walter, F; Weiss, A; Wilson, C D; Wolfire, M G

    2012-01-01

    Taking advantage of the sensitivity and angular resolution of the Herschel Space Observatory at far-infrared and submm wavelengths, we aim to characterize the physical properties of cold dust within nearby galaxies and study the robustness of the parameters we derive using different modified blackbody models. For a pilot subsample of the KINGFISH program, we perform 2 temperature fits of the Spitzer and Herschel photometric data (24 to 500um), with a warm and a cold component, globally and in each resolution element.At global scales, we observe ranges of values for beta_c(0.8 to 2.5) and Tc(19.1 to 25.1K).We compute maps of our parameters with beta fixed or free to test the robustness of the temperature and dust surface density maps we deduce. When the emissivity is fixed, we observe temperature gradients as a function of radius.When the emissivity is fitted as a free parameter, barred galaxies tend to have uniform fitted emissivities.Gathering resolved elements in a Tc-beta_c diagram underlines an anti-corre...

  9. Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

    Science.gov (United States)

    Shine, Richard

    2004-08-01

    Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.

  10. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  11. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  12. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.

    Directory of Open Access Journals (Sweden)

    Geir Villy Isaksen

    2014-08-01

    Full Text Available Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution.

  13. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2014-08-01

    Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution.

  14. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  15. Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    In this study,the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at norrnal room temperature was investigated.The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen.Based on the experimental results,an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed.The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures.It is shown that the predictions obtained from the proposed model agree well with the test results.Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.

  16. Baby, It's Cold Outside: Host-Microbiota Relationships Drive Temperature Adaptations.

    Science.gov (United States)

    Gomez de la Torre Canny, Sol; Rawls, John F

    2015-12-09

    When exposed to cold temperatures, mammals undergo remarkable physiological adaptations including thermogenesis, increased intake of dietary energy, and enhanced capacity for intestinal absorption. In a recent Cell paper, Chevalier, Stojanović, and colleagues reveal that these key adaptations to life in the cold are facilitated by the intestinal microbiota (Chevalier et al., 2015). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Change in Unusually Hot and Cold Temperatures in the Contiguous 48 States, 1948-2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows trends in unusually hot and cold temperatures at individual weather stations that have operated consistently since 1948. In this case, the term...

  18. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  19. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  20. Numerical analysis for random temperature fields of embankment in cold regions

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiQiang; LAI YuanMing; ZHANG MingYi; ZHANG XueFu

    2007-01-01

    The stochastic finite element equations for random temperature are obtained using the first-order perturbation technique taking into account the random thermal properties and boundary condition,based on heat transfer variational principle.The local average method for 2-D is used to discretize random fields.Then,the random temperature fields of embankment in cold regions are investigated on condition that the thermal properties and boundary condition are taken as random fields,respectively,by using the program,which is written by the methods.The expected value of temperature field and the standard deviation of the temperature field of embankment in cold regions are obtained and analyzed.

  1. Numerical analysis for random temperature fields of embankment in cold regions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stochastic finite element equations for random temperature are obtained using the first-order per-turbation technique taking into account the random thermal properties and boundary condition, based on heat transfer variational principle. The local average method for 2-D is used to discretize random fields. Then, the random temperature fields of embankment in cold regions are investigated on condi-tion that the thermal properties and boundary condition are taken as random fields, respectively, by using the program, which is written by the methods. The expected value of temperature field and the standard deviation of the temperature field of embankment in cold regions are obtained and analyzed.

  2. Thermographic Evaluation of the Hands of Pig Slaughterhouse Workers Exposed to Cold Temperatures

    Science.gov (United States)

    Ramos, Eliane

    2017-01-01

    Brazil was rated the fourth leading producer and exporter of pork meat in the world. The aim of this study was to evaluate the temperature of the hands of pig slaughterhouse workers and its relation to the thermal sensation of the hands and the use of a cutting tool. The study included 106 workers in a pig slaughterhouse. An infrared camera FlirThermaCAM E320 (Flir Systems, Wilsonville, OR, USA) was used to collect the images of the dorsal and palmar surfaces of both hands. A numerical scale was used to obtain the thermal sensation. Chi-square test, Pearson correlation and Student’s t test or Wilcoxon were used (p ≤ 0.05). The majority of workers felt cold in the hands (66%) and workers who used the knife felt the coldest. There was an association between the thermal sensation and the use of knife (p = 0.001). Workers who used the tool showed correlation between the thermal sensation and the temperatures of the left fingers, with a difference between the temperatures of the right and left hands of those who used the knife (p ≤ 0.05). The hands (left) that manipulated the products presented the lowest temperatures. Findings indicate that employers of pig slaughterhouses should provide gloves with adequate thermal insulation to preserve the health of workers’ hands.

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  4. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  5. Determinants and nature of intramuscular temperature changes during cold therapy.

    Science.gov (United States)

    Lowdon, B J; Moore, R J

    1975-10-01

    The purpose of this study was to examine the intramuscular temperature response during an ice massage treatment. In addition, the effect of subcutaneous tissue thickness and limb circumference on temperature changes was investigated. Intramuscular temperature was measured by intramuscular thermocouples each minute during ice massage treatments of five, ten and fifteen minutes. It was shown that ice massage produces a significant drop in intramuscular temperature. However, there was no significant difference in temperature change after five minutes of treatment. In addition it was shown that there is a high multiple correlation between logarithmic time, subcutaneous tissue thickness, limb circumference, and intramuscular temperature change.

  6. Hydrogen Surface Contamination in the Storage of Ultra-Cold Neutrons.

    Science.gov (United States)

    La Marche, Paul Henry

    Neutrons will, for sufficiently low energy (10 -('7) eV), be reflected from many material surfaces with nearly unit probability at any angle of incidence. Such neutrons are called ultra-cold (UCN). Ultra-cold neutrons can, therefore, be stored in an enclosed container for some period of time; the observed storage time being disappointingly shorter than the neutron's beta decay lifetime (10('3) sec). One mechanism for ultra-cold neutron loss is their recoil to higher energy from scattering with hydrogen in thermal equilibrium with the walls. With this higher energy the neutrons can then penetrate the walls. We have measured the hydrogen surface concentration on several materials used in UCN containers and have found sufficient amounts of hydrogen (1-10 x 10('16) atoms/cm('2)) to account for the anomalously short confinement times which have been observed. In light of this result, we have studied the desorption and adsorption properties of hydrogen on surfaces in the context of extending the storage time of these neutrons. The technique we use to measure the hydrogen concentration employs a resonance in the nuclear cross section of ('1)H(('15)N,(alpha)(gamma))('12)C. In the course of this work, we have measured the width of the first resonance of this reaction to be 0.3 (+OR-) 0.1 keV in the rest frame of the ('15)N. We have found that at pressures of 10('-6) Torr it is possible to reduce the surface concentration to the level of several monolayers using either glow discharge sputtering in oxygen or heating to high temperatures (10('3)(DEGREES)C). Attempts to replace hydrogen with deuterium and to bury the hydrogen under evaporated layers were not as successful. We have completely desorbed hydrogen at these pressures by high temperature heating and measured the rate at which it re -adsorbs. We have found that if the heating is severe enough to evaporate the surface of the material, the apparent rate of re-adsorption is greatly reduced. This effect can be explained by

  7. Neural models on temperature regulation for cold-stressed animals

    Science.gov (United States)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  8. Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell

    Institute of Scientific and Technical Information of China (English)

    黄家强; 张建伟; 王时光; 王力军

    2015-01-01

    We report an experimental study on the temperature and number evolution of cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)→62P3/2(F0=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. The number of cold atoms first declines slowly from 2.1 × 109 to 3.7 × 108 and then falls drastically. A theoretical model for the number evolution is built and includes the instantaneous temperature of the cold atoms and a fraction p, which represents the part of cold cesium atoms elastically reflected by the coated cell wall. The theory is overall in good agreement with the experimental result, and a nonzero value is obtained for the fraction p, which indicates that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the coated cell wall. These results can provide helpful insight for precision measurements based on diffuse laser cooling.

  9. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  10. Investigating temperature breaks in the summer fruit export cold chain: A case study

    Directory of Open Access Journals (Sweden)

    Heinri W. Freiboth

    2013-05-01

    Full Text Available There is concern in the South African fruit industry that a large amount of fruit and money is lost every season due to breaks in the fruit export cold chain. The possibility of a large percentage of losses in a significant sector of the economy warranted further investigation. This article attempted to highlight some of the possible problem areas in the cold chain, from the cold store to the port, by analysing historic temperature data from different fruit export supply chains of apples, pears and grapes. In addition, a trial shipment of apples was used to investigate temperature variation between different pallets in the same container. This research has added value to the South African fruit industry by identifying the need to improve operational procedures in the cold chain.

  11. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Vergara

    2017-09-01

    Full Text Available Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT, a flanker task (FT and a counting task (CT. Using multiple linear regression models, we evaluated which variable(s were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  12. An Integrated Snow Radiance and Snow Physics Modeling Framework for Cold Land Surface Modeling

    Science.gov (United States)

    Kim, Edward J.; Tedesco, Marco

    2006-01-01

    Recent developments in forward radiative transfer modeling and physical land surface modeling are converging to allow the assembly of an integrated snow/cold lands modeling framework for land surface modeling and data assimilation applications. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. Together these form a flexible framework for self-consistent remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. Each element of this framework is modular so the choice of element can be tailored to match the emphasis of a particular study. For example, within our framework, four choices of a FRTM are available to simulate the brightness temperature of snow: Two models are available to model the physical evolution of the snowpack and underlying soil, and two models are available to handle the water/energy balance at the land surface. Since the framework is modular, other models-physical or statistical--can be accommodated, too. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster at the NASA Goddard Space Flight Center. The advantages of such an integrated modular framework built on the LIS will be described through examples-e.g., studies to analyze snow field experiment observations, and simulations of future satellite missions for snow and cold land processes.

  13. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid

    NARCIS (Netherlands)

    Struchtrup, H.; Kjelstrup, S.H.; Bedeaux, D.

    2012-01-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [ Pao Phys. Fluids 14 306 (1971)] and mass transfer from a cold to a

  14. Packhouse to port: Investigating temperature breaks in the South African summer fruit export cold chain

    CSIR Research Space (South Africa)

    Freiboth, H

    2014-10-01

    Full Text Available in refrigerated containers, as it moves from the pack house through the cold storage and transport segments towards the port of export. Historic temperature data collected with temperature monitoring devices from different fruit export supply chains of apples...

  15. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid

    NARCIS (Netherlands)

    Struchtrup, H.; Kjelstrup, S.H.; Bedeaux, D.

    2012-01-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [ Pao Phys. Fluids 14 306 (1971)] and mass transfer from a cold to a

  16. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes

    Science.gov (United States)

    Liu, Shibin; Razavidezfuly, Baharsadat; Kuzyakov, Yakov

    2016-04-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in cold environment soil, where warming is expected to be greatest is crucial. Based on Michaelis-Menten kinetics and Arrhenius function, we hypothesized that cold-adapted microorganisms will produce high efficient enzymes at cold temperatures (enzymes with lower apparent activation energy (Ea) at cold temperature ranges). To test our hypothesis, 30 g soil of Tibetan Plateau (4100 m a.s.l., annual temperature 2.4 °C) in 4 replicates were incubated for one month over a temperature range of 0-40 °C (with 5 °C steps) and determined the kinetic parameters of six enzymes involved in decomposing organics: cellobiohydrolase and β-glucosidase, which are commonly measured as enzymes responsible for consecutive stages of cellulose degradation; xylanase, which is responsible for breaking down hemicelluloses; acid phosphatase, which mineralizes organic P to phosphate by hydrolyzing phosphoric (mono) ester bonds under acidic conditions. Activities of leucine aminopeptidase and tyrosine aminopeptidase were analyzed to assess the hydrolysis of L-peptide bonds. The apparent activation energy varied between enzymes from 42 (phosphatase) to 54 (cellobiohydrolase) kJ mol-1 corresponding to the Q10 values of the enzyme reactions of 1.8-2.3. The increase of substrate affinity (Km) with temperature was gradual for most tested enzymes from 0-20 °C (enzymes involved in C cycle), (proteases) and 0-40 °C (phosphatase). However, within a high range of temperatures (25-40 °C) the hydrolytic activity was governed by enzymes with nearly constant substrate affinity. Overall, for enzymes involved in C cycle and proteases, a strong increase (30-40%) in Km at high temperatures (25 °C) reflects an expression of multiple isoenzymes each with different temperature optima and probable shift of microbial community. The general trend of catalytic efficiency (Vmax/Km) demonstrated a gradual increase with

  17. Effects of Rice Yield and Quality Across Accumulated Temperature Zone Planting in Cold Area

    Institute of Scientific and Technical Information of China (English)

    Wang Qiu-ju; Liu Feng; Gao Pan; Gao Zhong-chao; Chang Ben-chao; Liu Yan-xia; Zhang Li-li

    2015-01-01

    Five rice varieties were planted to determine the variation of the yield and quality traits in five different regions in a cold area of China. The results showed that the number of the panicles, the number of grains per panicle and percentage of head-milled rice displayed quadratic curves against the accumulated temperature, and the sterile rate decreased with greater accumulated temperature. However, 1 000-grain weight had no correlation with the accumulated temperature and protein content, amylose content and taste also had no obvious relation with the accumulated temperature. The results from the accumulated temperature differed with rice variety, so the temperature insensitive type variety should be proposed for production.

  18. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  19. Effect of cold-water immersion duration on body temperature and muscle function.

    Science.gov (United States)

    Peiffer, Jeremiah J; Abbiss, Chris R; Watson, Greig; Nosaka, Ken; Laursen, Paul B

    2009-08-01

    This study compared the effect of 5, 10 and 20 min of cold-water (14 degrees C) immersion on rectal and muscle temperature and neuromuscular function. Twelve cyclists performed four cycling time-to-exhaustion trials in hot conditions (40 degrees C and 40%rh), followed 25 min later by cold-water immersion for 5, 10 or 20 min or 20 min in room temperature (24 degrees C; control). Rectal temperature was measured continuously, and muscle temperature was measured before, immediately after and 45 min after the time-to-exhaustion-test, as well as before and after water immersion. Sixty-second maximal voluntary isometric torque and isokinetic torque of the knee extensors were measured before, immediately after and 55 min after time-to-exhaustion-test. A greater rate of decrease in rectal temperature was observed in all water immersion conditions 45-80 min after time-to-exhaustion-test compared with control. Compared with control, muscle temperature 45 min after time-to-exhaustion-test was lower for all water immersion conditions; however, muscle temperature was lower for the 10- and 20-min conditions compared with 5 min. Isometric torque measured 55 min after time-to-exhaustion-test was lower for all conditions. Isokinetic torque was lower for all conditions immediately and 55-min post-time-to-exhaustion-test. Of the durations measured, 5 min of cold-water immersion appeared as the most appropriate duration for reducing rectal temperature but limiting decreases in muscle temperature.

  20. The Net Energy Budget at the Surface Interface of the "Cold Tongue" Region

    Science.gov (United States)

    Bentamy, Abderrahim; Pinker, Rachel; Zhang, Banglin; Ma, Yingtao

    2016-04-01

    The southern tropical Pacific region also known as the "cold tongue" region is of great interest in terms of understanding the atmosphere-ocean coupling, and the observed strong seasonal cycle in sea surface temperature. The primary goal of our study is to investigate the spatial and temporal variability of air-sea interaction through the analysis of the net heat budget over the "cold tongue" region. Such analysis requires high quality heat budget estimates which are impacted by the complex and extensive low-level stratocumulus clouds in this region. The accuracy at which current satellite and numerical model methods can estimate this net heat budget is of interest. In this paper, the heat budget at the ocean-atmosphere interface in a region bound by 0o S - 30o S, 110o W - 70o W has been derived using satellite observations and compared to in situ measurements and to predictions from numerical models. The approach is based on multi-satellite sensors, buoy observations and numerical analyses. The fluxes are generated at daily and monthly time scales for a 10 year period (2002-2012) at a nominal 10 resolution (some parameters are available at higher resolution). Once the metrics on the accuracy of the satellite estimates are known, they can serve as "ground truth" for evaluating numerical models.

  1. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  2. Ecosystem Respiration Rates of Arctic Tundra Mesocosms in Response to Cold-Season Temperatures

    Science.gov (United States)

    Oberbauer, S. F.; Moser, J. G.; Olivas, P. C.; Starr, G.; Mortazavi, B.

    2013-12-01

    The cold season in the Arctic extends over 8 to 9 mo, during which air temperatures often reach as low as -40 °C. However, as a result of the insulating layer created by snow cover, temperatures seldom fall below -15 °C, and are likely warm enough to support some metabolism. Little research has been conducted on arctic plants and tundra during the cold season, despite its length and the fact that warming is predicted to be greatest during this period. The primary focus of cold-season research has been on rates of winter ecosystem respiration (ER) for estimates of annual carbon balance. The majority of these measurements during the winter or at winter temperatures indicate that some respiration is occurring. Although rates are low, they may contribute substantially to the annual carbon balance because of the length of the cold season. However, estimates of respiration at low temperatures differ substantially, have been taken at different temperatures using different methodologies, and importantly almost none provide quantitative relationships across a range of temperatures. We measured respiration rates of intact arctic tundra monoliths from 15 to -15 °C at 5 °C steps to facilitate improved model estimates of tundra respiration. Six tundra monoliths (~900 cm2) taken from Toolik Field Station, Alaska were conditioned for the cold season in growth chambers at shortened photoperiods and low, but above-freezing temperatures. Desired temperatures were obtained with a combination of growth chambers and a modified freezer. The average of five samplings of [CO2] at each temperature step was used to estimate the ER rates. Measurements were conducted with a closed system using incubation periods of 30 to 180 min, depending on the temperature. Carbon dioxide concentrations were measured by syringe samples injected into a N2 gas stream flowing through an infrared gas analyzer. Rates of ER calculated on an area basis were close to zero at -15 °C, but increased steadily with

  3. Muscle temperature at the point of filleting--Subsequent effect on storage quality of prerigor filleted raw- and cold-smoked Atlantic salmon.

    Science.gov (United States)

    Lerfall, Jørgen; Rotabakk, Bjørn Tore

    2016-03-01

    The impact of increased muscle temperature at the point of filleting on fillet quality of raw- and cold-smoked Atlantic salmon was investigated. Commercially reared fish (5.65 kg, Kf: 1.23, pH: 7.29, muscle temperature: 6.68 ℃) were killed and immediately tempered in three different containers. Muscle temperatures after filleting (muscle pH and the reflective properties of the fillet surface during 14 days' ice storage. Of cold-smoked fillets, however, a more distinct effect of raised temperature was observed on visual perception resulting in lighter and more yellowish cold-smoked fillets after 14 days' storage. In addition, raised temperature also affects the development of muscle pH in cold-smoked fillets during refrigerated storage. No effects of raised muscle temperature were found regarding drip loss, water-holding capacity, or fillet firmness either for raw- or cold-smoked fillets throughout the storage period. © The Author(s) 2015.

  4. Surface layer temperature inversion in the Bay of Bengal

    Science.gov (United States)

    Thadathil, Pankajakshan; Gopalakrishna, V. V.; Muraleedharan, P. M.; Reddy, G. V.; Araligidad, Nilesh; Shenoy, Shrikant

    2002-10-01

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November-February). Although the inversion in the northeastern Bay is sustained until February (with remnants seen even in March), in the western Bay it becomes less organized in January and almost disappears by February. Inversion is confined to the fresh water induced seasonal halocline of the surface layer. Inversions of large temperature difference (of the order of 1.6-2.4°C) and thin layer thickness (10-20 m) are located adjacent to major fresh water inputs from the Ganges, Brahmaputra, Irrawaddy, Krishna and Godavari rivers. The inversion is stable with a mean stability of 3600×10 -8 m -1. Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling in the northern Bay. Fresh water flux leads the occurrence process in association with surface heat flux and advection. The leading role of fresh water flux is understood from the observation that the two occurrence regions of inversion (the western and northeastern Bay) have proximity to the two low salinity (with values about 28-29‰) zones. In the western Bay, the East India Coastal Current brings less saline and cold water from the head of the Bay to the south-west Bay, where it advects over warm, saline water, promoting temperature inversion in this region in association with the surface heat loss. For inversion occurring in the northeastern Bay (where the surface water gains heat from atmosphere), surface advection of the less saline

  5. Temperature-driven groundwater convection in cold climates

    Science.gov (United States)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  6. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  7. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  8. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  9. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  10. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  11. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  12. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  13. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  14. Computational study of the interaction of cold atmospheric helium plasma jets with surfaces

    Science.gov (United States)

    Breden, Douglas; Raja, Laxminarayan L.

    2014-12-01

    We describe a computational modeling study of a cold atmospheric pressure plasma jet interacting with a dielectric surface placed normal to the jet axis. The plasma jet is generated by the application of a nanosecond pulse voltage applied to a dielectric tube through which the jet issues into ambient air. A base fluid flow field is pre-computed using a Navier-Stokes model for the helium jet impinging on the dielectric target surface with a two-species description for laminar diffusional mixing of the helium and ambient air streams. A self-consistent, multiple species, two-temperature model is used to describe the non-equilibrium plasma discharge dynamics in the presence of the base jet flow field. A single nanosecond pulse discharge event starting from initial breakdown in the dielectric tube, to propagation into the open gap, and finally the interaction with the dielectric surface is simulated. Initially, the plasma forms within the dielectric tube and propagates along the tube surface as a surface discharge driven by large induced electric fields produced by trapped charge on the dielectric surface. When the discharge reaches the end of the dielectric tube, the discharge transitions to a constricted fast ionization wave that propagates along the helium-air interface. The fast ionization wave eventually reaches the dielectric target surface where charged species are deposited as the discharge propagates parallel to the wall as a surface driven discharge. The surface driven discharge ceases to propagate once the quantity of air to helium is sufficient enough to quench the hot electrons and prevent further ionization. Due to the low speed of the flow discharge and the short life times of the radical species such as O, most of the radical species delivered to the surface are a result of the surface discharge that forms after the plasma bullet impinges against the surface. It is found that factors such as the thickness of the target dielectric and the profile of the

  15. An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures.

    Science.gov (United States)

    Hoang, Valerie; Delatolla, Robert; Laflamme, Edith; Gadbois, Alain

    2014-01-01

    Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temperature nitrification. In this study, two laboratory MBBRs were used to investigate MBBR nitrification rates at 20, 5, and 1 degree C. Furthermore, the solids detached by the MBBR reactors were investigated and Arrhenius temperature correction models used to predict nitrification rates after long-term low-temperature exposure was evaluated. The nitrification rate at 5 degrees C was 66 +/- 3.9% and 64 +/- 3.7% compared to the rate measured at 20 degrees C for reactors 1 and 2, respectively. The nitrification rates at 1 degree C over a 4-month exposure period compared to the rate at 20 degrees C were 18.7 +/- 5.5% and 15.7 +/- 4.7% for the two reactors. The quantity of solids detached from the MBBR biocarriers was low and the mass of biofilm per carrier did not vary significantly at 20 degrees C compared to that after long-term exposure at 1 degree C. Lastly, a temperature correction model based on exposure time to cold temperatures showed a strong correlation to the calculated ammonia removal rates relative to 20 degrees C following a gradual acclimatization period to cold temperatures.

  16. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.

    OpenAIRE

    Geir Villy Isaksen; Johan Åqvist; Bjørn Olav Brandsdal

    2014-01-01

    Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less se...

  17. A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor

    Science.gov (United States)

    Kirana, Firman Ahmad; Husein, Irzaman Sulaiman

    2016-01-01

    We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process. PMID:27774102

  18. A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor

    Directory of Open Access Journals (Sweden)

    Firman Ahmad Kirana

    2016-01-01

    Full Text Available We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.

  19. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions.

    Science.gov (United States)

    Sagué, G; Vetsch, E; Alt, W; Meschede, D; Rauschenbeutel, A

    2007-10-19

    The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

  20. Characterization of evaporation rate, temperature, velocity and humidity fields in a cold chamber

    OpenAIRE

    LECOQ L.; Flick, D.; Plana Fattori, A.; Laguerre, O.

    2014-01-01

    3rd IIR International Conference on Sustainability and the Cold Chain, ICCC 2014, London, , 23-/06/2014 - 25/06/2014; International audience; In a food factory some pathogenic bacteria can grow even at low temperature, especially Listeria Monocytogenes which resists to temperature around 0°C. Currently, two ways are used to prevent bacterial growth; product treatment (pasteurization, pH decrease) and cleaning but it's not sufficient to eliminate all microorganisms. This work takes part of a f...

  1. Measuring and manipulating the temperature of cold molecules trapped on a chip

    CERN Document Server

    Marx, Silvio; Sartakov, Boris G; Meijer, Gerard; Santambrogio, Gabriele

    2014-01-01

    We demonstrate the measurement and manipulation of the temperature of cold CO molecules in a microchip environment. Through the use of time-resolved spatial imaging, we are able to observe the phase-space distribution of the molecules, and hence deduce the corresponding temperature. We do this both by observing the expansion of the molecular ensemble in time and through the use of numerical trajectory simulations. Furthermore, we demonstrate the adiabatic cooling of the trapped molecular sample and discuss this process.

  2. Online application of automatic surface quality inspection system to finishing line of cold rolled strips

    Institute of Scientific and Technical Information of China (English)

    Hao Sun; Ke Xu; Jinwu Xu

    2003-01-01

    An autonatic surface quality inspection system installed on a finishing line of cold rolled strips is introduced. The system is able to detect surface defects on cold rolled strips, such as scratches, coil breaks, rusts, roll imprints, and so on. Multiple CCD area scan canteras were equipped to capture images of strip surface simultaneously. Defects were detected through "Dark-field illumination' which is generated by LED illuminators. Parallel computation technique and fast processing algorithms were developed for real-time data processing. The application to the production line shows that the system is able to detect defects effectively.

  3. Observations of the cold mid-latitude mesopause using airglow-derived temperatures and SABER data

    Science.gov (United States)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.; Mlynczak, M. G.; Reid, I. M.

    2016-12-01

    Aerospace imagers deployed at Alice Springs (23o42'S, 133o53'E) and Adelaide (34o55'S, 138o36'E) have been operating nearly continuously since 2001. The imagers employ filters measuring OH Meinel (6, 2) and O2 Atmospheric (0, 1) band emission intensities and temperatures, as well as atmospheric gravity wave parameters. Airglow imaging provides a unique means by which to study many wave-related phenomena in the 80 to 100 km altitude regime. Observations reveal quasi-monochromatic disturbances associated with atmospheric gravity waves (AGWs) as well as small-scale instabilities (e.g., ripples). The airglow imager located at Adelaide captured the unusual occurrence of a reflected gravity wave on the night of Aug 1, 2008. Subsequent examination of SABER temperature profiles over the site show extremely cold mesopause temperatures, near 120K, over the observation site near this time. Although such temperatures are common in summertime at high latitudes, their occurrence at midlatitudes is believed to be relatively uncommon. We explore the conditions responsible for the bright, reflecting wave feature observed in the airglow images. We also explore the frequency of cold temperatures observed by the SABER instrument and compare to the observations of cold temperatures found in airglow images.

  4. Surface Treatment of Cr12MoV Steel towards Long-Life Cold-Work Dies

    Institute of Scientific and Technical Information of China (English)

    SHI Wen; WANG Jun-Li; WANG Zhen; WAN Zi; XU Luo-Ping

    2004-01-01

    With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness,scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Cr12MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.

  5. Surface Treatment of Cr12MoV Steel towards Long-Life Cold-Work Dies

    Institute of Scientific and Technical Information of China (English)

    SHIWen; WANGJun-Li; WANGZhen; WANZi; XULuo-Ping

    2004-01-01

    With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Cr12MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by mierohardness,scratch and wear tests, The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Cr12MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Cr12MoV. the micropolishing action of the counterface dominates in surface engineered material.

  6. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  7. 40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.

    Science.gov (United States)

    2010-07-01

    ... is not an intermediate useful life standard for cold temperature NMHC standards. (c) Altitude. Altitude requirements for cold temperature NMHC standards are provided in § 86.1810-09(f). (d) Small volume... used to control emissions at high altitude conditions, and software used to control emissions or...

  8. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  9. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  10. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  11. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  12. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  13. Cold Plasma Surface Modification of NiTi for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Jun YANG; Jianhua WANG

    2004-01-01

    Surface-grafted poly(ethylene glycol) (PEG) molecules are known to prevent protein adsorption to the surface. Nitinol samples were coated under tetraglyme ECR cold plasma conditions to enhance its biocompatibility. The modified Nitinol surfaces were characterized by high resolution ESCA and contact angle, it was demonstrated that the deposited PEG-like coatings were built up mainly of -CH2-CH2-O- linkages in surfaces. The surface wettability of the modified Nitinol was increased compared with the control surface. Human plasma protein was adsorbed on Nitinol evaluated by SEM, the protein adsorption on modified surfaces decreased rapidly. Thus, the potential benefits of cold plasma technique will be of use to the biomedical industries improving the biocompatibility of metals.

  14. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  15. Surface modification of polymeric materials by cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G., E-mail: kostov@feg.unesp.br [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Nishime, T.M.C.; Castro, A.H.R. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Toth, A. [Institute of Material and Environmental Chemistry, Hungarian Academy of Science P.O. Box 17, H-1525, Budapest (Hungary); Hein, L.R.O. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil)

    2014-09-30

    Highlights: • We investigate polymer surface modification by atmospheric pressure plasma jet APPJ. • Jet operation conditions for uniform surface modification were determined. • The APPJ added O atoms to the polymer surface and also enhanced the roughness. • The degree of polymer surface modification by APPJ and DBD were compared. • The APPJ is more efficient in attaching O atoms and produces less polymer fragments. - Abstract: In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source – the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  16. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    Directory of Open Access Journals (Sweden)

    Christine Yao-Yun Chang

    2015-03-01

    Full Text Available Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE experiment and exposed EWP seedlings to ambient (Control or elevated temperature (ET, +1.5°C/+3°C during day/night. Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC, and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20-30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis , enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our

  17. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L(-1)) or elevated (800 μmol mol(-1)) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature

  18. Body temperature regulation during acclimation to cold and hypoxia in rats.

    Science.gov (United States)

    Cadena, V; Tattersall, G J

    2014-12-01

    Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4 ± 0.13) than in room temperature (Tb=35.74 ± 0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5°C and ~1.4°C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how

  19. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs

    Directory of Open Access Journals (Sweden)

    John McGlone

    2014-05-01

    Full Text Available The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA, non-ambulatory (NA, and total dead and down (D&D data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1 and fall/spring (Experiment 2. Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P < 0.01. In conclusion, over-use of bedding may be economically inefficient. Pig skin surface temperature could be a useful measure of pig welfare during or after transport.

  20. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  1. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    Science.gov (United States)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  2. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  3. Surface modification of polymeric materials by cold atmospheric plasma jet

    Science.gov (United States)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  4. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  5. Modeling and Extended State Observer Based Dynamic Surface Control for Cold Rolling Mill System

    Directory of Open Access Journals (Sweden)

    Xu Li

    2016-01-01

    Full Text Available The modeling and control problems are investigated for cold rolling mill system. Firstly, we establish a monitor automatic gauge control (MAGC model for a practical cold rolling mill system. The new model is with mismatched uncertainties. Then, an extended state observer (ESO is developed to estimate uncertainties. In the general high-order systems, the ESO is also used to estimate states. By dynamic surface control method, we design the controller to guarantee stabilization of the cold rolling mill system. Furthermore, we extend proposed method to general high-order systems, in which we analyze the difference from cold rolling mill system. Finally, simulation results for MAGC system are presented to demonstrate the effectiveness of the proposed control strategy.

  6. Cold pressor stimulus temperature and resting masseter muscle haemodynamics in normal humans.

    Science.gov (United States)

    Maekawa, K; Kuboki, T; Clark, G T; Shinoda, M; Yamashita, A

    1998-11-01

    Cold pressor stimulation reportedly increases sympathetic nerve activity in human skeletal muscles. This study examined the effect of cold pressor stimulation on the resting haemodynamics of the right masseter muscle in normal individuals, using near-infrared spectroscopy. Nine healthy non-smoking males with no history of chronic muscle pain or vascular headaches participated. Their right hand was immersed in a water bath (4, 10, 15 degrees C) for exactly 1 min. Each trial lasted 7 min (1 min before, 1 min during, 5 min after stimulation) and a strictly random order was utilized for the three test temperatures and the mock trial. Masseter muscle haemoglobin concentration and oxygen saturation, as well as heart rate and blood pressure, were continuously recorded in each trial. After completing the four trials, each participant produced and sustained a 30-s maximum voluntary clench in the intercuspal position. Data across the four trials were baseline-corrected and then magnitude-normalized to the individual's highest absolute haemoglobin and oxygen signal during the 30-s maximal clenching effort. Haemoglobin and oxygen saturation increased progressively during cold pressor stimulation as the water temperature decreased (Hb, p cold pressor, stimulation induces a strong increase in intramuscular blood volume which appears to be due to both a local vasodilative response and increased cardiac output.

  7. Cold wire constant voltage anemometry to measure temperature fluctuations and its application in a thermoacoustic system

    Science.gov (United States)

    Cleve, Sarah; Jondeau, Emmanuel; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2017-04-01

    The knowledge of temperature fluctuations is essential for most thermoacoustic systems. In the present paper, cold wire constant-voltage anemometry (CVA) to measure temperature fluctuations is presented. Corrections for the thermal inertia and for the end losses of the wire are applied during the post-processing. The correction for the thermal inertia of the cold wire is achieved by applying a time dependent thermal lag as proposed originally for a constant-current anemometry (CCA) system. This thermal lag is measured in parallel by a hot wire. The thermal end losses of the wires to their supports are also considered and approximate corrections are proposed. The procedure for the cold wire CVA is validated in the acoustic field of an acoustic resonator with wires of different lengths. A comparison between a CVA and a CCA measurement also confirms the CVA measurement. Furthermore, the proposed measurement procedure is applied close to the stack of a thermoacoustic refrigerator. Supposing a two-dimensional flow, the simultaneous measurement of velocity and temperature fluctuations is possible. This allows a detailed examination of the acoustic field close to the stack, including the study of the correlation between temperature and velocity.

  8. Sudden cold temperature regulates the time-lag between plant CO2 uptake and release

    Science.gov (United States)

    Barthel, M.; Cieraad, E.; Zakharova, A.; Hunt, J. E.

    2013-11-01

    Since substrates for respiration are supplied mainly by recent photo-assimilates, there is a strong but time-lagged link between short-term above- and belowground carbon (C) cycling. However, regulation of this coupling by environmental variables is poorly understood. Whereas recent studies focussed on the effect of drought and shading on the link between above and belowground short-term C cycling, the effect of temperature remains unclear. We used a 13CO2 pulse-chase labelling experiment to investigate the effect of a sudden temperature change from 25 °C to 10 °C on the short-term coupling between assimilatory C uptake and respiratory loss. The study was done in the laboratory using two month old perennial rye-grass plants (Cold temperature (10 °C) reduced the short-term coupling between shoot and roots by delaying belowground transfer of recent assimilates and its subsequent respiratory use, as indicated by the δ13C signal of root respiration (δ13CRR). That is, the time-lag from the actual shoot labelling to the first appearance of the label in 13CRR was about 1.5 times longer under cold temperature (time-lags of 1 h and 1.5 h in the warm and cold treatments, respectively). Moreover, analysis of bulk shoot and root material revealed that plants at cold temperature invest relatively more carbon into respiration compared to growth or storage. These results increase our understanding of environmental controls on the link between short-term above- and belowground C cycling.

  9. A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean

    Science.gov (United States)

    Kandiano, Evgenia S.; Meer, Marcel T. J.; Bauch, Henning A.; Helmke, Jan; Damsté, Jaap S. Sinninghe; Schouten, Stefan

    2016-10-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve this contradiction by complementing SST data based on planktic foraminiferal abundances with surface salinity changes using hydrogen isotopic compositions of alkenones in a core from the central Nordic Seas. The data indicate the prevalence of a relatively cold, low-salinity, surface water layer in the Nordic Seas during most of MIS 11. In spite of the low-density surface layer, which was kept buoyant by continuous melting of surrounding glaciers, warmer Atlantic water was still propagating northward at the subsurface thus maintaining meridional overturning circulation. This study can help to better constrain the impact of continuous melting of Greenland and Arctic ice on high-latitude ocean circulation and climate.

  10. Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms.

    Science.gov (United States)

    Perni, Stefano; Shama, Gilbert; Kong, M G

    2008-08-01

    The efficacy of cold atmospheric gas plasmas against Escherichia coli type 1, Saccharomyces cerevisiae, Gluconobacter liquefaciens, and Listeria monocytogenes Scott A was examined on inoculated membrane filters and inoculated fruit surfaces. Inoculated samples were exposed to a cold atmospheric plasma plume generated by an AC voltage of 8 kV at 30 kHz. The cold atmospheric plasma used in this study was very efficient in reducing the microbial load on the surfaces of filter membranes. However, its efficacy was markedly reduced for microorganisms on the cut surfaces. This lack of effect was not the result of quenching of reactive plasma species responsible for microbial inactivation but principally the result of the migration of microorganisms from the exterior of the fruit tissue to its interior. The velocity of migration through melon tissues was estimated to be around 300 microm min(-1) for E. coli and S. cerevisiae and through mango tissues to be 75 to 150 microm min(-1). These data can serve as operational targets for optimizing the performance of gas plasma inactivation processes. The current capabilities of cold atmospheric plasmas are reviewed and ways to improve their bactericidal efficacy are identified and discussed. Considerable scope exists to enhance significantly the efficacy of cold atmospheric plasmas for decontaminating fresh cut fruits.

  11. Computational analysis of contact forces influence on cold forming processes in the dies with complex surfaces

    Science.gov (United States)

    Dragnea, D.; Lixandru, P.; Chereches, T.; Velicu, St.

    2016-08-01

    Interaction forces between the workpiece and the die appear during the cold forming process of metals in dies. Surface forces of high-intensity influence the mesh structure and internal structure of the finished piece by mechanical action. Frictional forces hinder the flow of the material in contact with the die walls, especially on surfaces of complex shape. Under certain conditions, the material can adhere to the wall of the die, leading to the blocking of the cold forming process. In order to highlight the influence of contact forces on cold forming processes in dies with complex surfaces there were used numerical simulation methods with finite elements. Numerical simulations of the process of axial cold forming in the die were carried out for analysis data acquisition necessary, in order to achieve HTD pulleys, for an ordinary range of friction coefficients. The analysis was directed to the gearing area of the HTD pulleys (head, flank and base of the tooth). The analysis highlighted the negative effects of friction forces on the shape and quality of the products and the need to use quality lubricants. Also, using the cold forming process they can be achieved substantial savings by redistribution of the material without removing it.

  12. Upwelling filaments are cold, typically narrow features in surface ...

    African Journals Online (AJOL)

    spamer

    strong offshore flows and often terminate in eddy-like structures ... model initiated with observed velocity profiles. Mc-. Creary et al. ... These are a forced equatorward flow at the surface ...... 1991 — Dynamical simulations of filament formation and evolution in ... MOOERS, C. N. K. and A. R. ROBINSON 1984 — Turbulent jets.

  13. Closed cycle cryocooler for low temperature electronics circuits: Cold end test

    Science.gov (United States)

    Pirtle, F. W.

    1983-08-01

    A fabricated MACOR cold end including a metallic coating to prevent helium permeation and a fabricated die post displacer support bearing were combined with a compressor and motor which are standard CTI-CRYOGENICS products. A mechanical test was performed on the test cryocooler to determine that the mechanical test was performed on the test cryocooler to determine that the MACOR displacer was successfully guided by the die post bearing. Thermodynamic tests were conducted to determine the lowest temperature of the 4th (coldest) stage as a function of operating speed, helium charge pressure, 4th stage electrical heat load, and transfer tube diameter. Cooldown and steady state results are reported. Results indicate a low temperature limit of approximately 95K with the current test hardware. Although this represents an improvement from 122K during the program, a resizing will be necessary to reach 10K. The die post displacer support bearing and the MACOR cold finger construction are mechanically satisfactory.

  14. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  15. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  16. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  17. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures

    Science.gov (United States)

    Contartese, Daniela S.; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B.; Loidl, Cesar F.; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  18. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma.

    Science.gov (United States)

    Qian, Kun; Pan, Hong; Li, Yinglong; Wang, Guomin; Zhang, Jue; Pan, Jie

    2016-01-01

    The changes of denture base acrylic resin surface properties under cold plasma and the relationships with time were investigated. Cold plasma treated the specimens for 30 s, 60 s, 90 s, and 120 s, respectively. Water contact angles were measured immediately after the treatment, 48 h, 15 days and 30 days later. Surface roughness was measured with 3-D laser scanning microscope. Candida albicans adherence was evaluated by CFU counting. Chemical composition was monitored by X-ray photoelectron spectroscopy analysis. Water contact angle reduced after treated for 30 s. No changes were observed with time prolonged, except the durability. There were no differences in roughness among all groups. However, treatment groups showed significantly lower C. albicans adherence. XPS demonstrated a decrease in C/O, and this reduction was affected by treatment time. Cold plasma was an effective means of increasing hydrophilicity of acrylic resin and reducing C. albicans adherence without affecting physical properties.

  19. Miniaturized implantable sensors for in vivo localized temperature measurements in mice during cold exposure.

    Science.gov (United States)

    Padovani, R; Lehnert, T; Cettour-Rose, P; Doenlen, R; Auwerx, J; Gijs, M A M

    2016-02-01

    We report on in vivo temperature measurements performed in mice at two specific sites of interest in the animal body over a period of several hours. In particular, the aim of this work was to monitor mouse metabolism during cold exposure, and to record possible temperature differences between the body temperature measured in the abdomen and the temperature of the brown adipose tissue (BAT) situated in the interscapular area. This approach is of biological interest as it may help unravelling the question whether biochemical activation of BAT is associated with local increase in metabolic heat production. For that purpose, miniaturized thermistor sensors have been accurately calibrated and implanted in the BAT and in the abdominal tissue of mice. After 1 week of recovery from surgery, mice were exposed to cold (6 °C) for a maximum duration of 6 h and the temperature was acquired continuously from the two sensors. Control measurements with a conventional rectal probe confirmed good performance of both sensors. Moreover, two different mouse phenotypes could be identified, distinguishable in terms of their metabolic resistance to cold exposure. This difference was analyzed from the thermal point of view by computational simulations. Our simple physical model of the mouse body allowed to reproduce the global evolution of hypothermia and also to explain qualitatively the temperature difference between abdomen and BAT locations. While with our approach, we have demonstrated the importance and feasibility of localized temperature measurements on mice, further optimization of this technique may help better identify local metabolism variations.

  20. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  1. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  2. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    Science.gov (United States)

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  3. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  4. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  5. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures

    Science.gov (United States)

    Weilenmann, Martin; Soltic, Patrik; Saxer, Christian; Forss, Anna-Maria; Heeb, Norbert

    The emissions of modern cars are usually reduced in warm engine conditions by catalysts. Consequently emissions are significantly higher during the cold start, i.e. the warm-up phase of the car. The duration of this period and the emissions produced during it depend on the ambient temperature as well as on the initial temperature of the car's systems. The cold start emissions of Euro-3 gasoline cars, Euro-2 diesel cars and old pre-Euro-1 gasoline cars were investigated at cold ambient temperatures. Since the goal was to get real-world emissions, the measurements were done with cars belonging to private owners taken straight from the road with no maintenance. The chassis dynamometer tests were carried out at +23, -7 and -20 °C. The test cycle employed is a representative urban ride from a real-world driving behaviour study. Besides the regulated pollutants, methane, benzene and toluene were also measured online by chemical ionisation mass spectrometry.

  6. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories

    Science.gov (United States)

    Weilenmann, Martin; Favez, Jean-Yves; Alvarez, Robert

    The emissions of modern gasoline and diesel passenger cars are reduced by catalysts except in cold-starting. Since catalysts require a certain temperature (typically above 300 °C) to work to full efficiency, emissions are significantly higher during the warm-up phase of the car. The duration of this period and the emissions produced depend on the ambient temperature as well as on the initial temperature of the car's propulsion systems. The additional emissions during a warm-up phase, known as "cold-start extra emissions" (CSEEs) for emission inventory modelling, are mostly assessed by emission measurements at an ambient temperature of 23 °C. However, in many European countries average ambient temperatures are below 23 °C. This necessitates emission measurements at lower temperatures in order to model and assess cold-start emissions for real-world temperature conditions. This paper investigates the influence of regulated pollutants and CO 2 emissions of recent gasoline and diesel car models (Euro-4 legislation) at different ambient temperatures, 23, -7 and -20 °C. We present a survey and model of the evolution of cold-start emissions as a function of different car generations (pre-Euro-1 to Euro-4 legislations). In addition the contribution of CSEEs to total fleet running emissions is shown to highlight their increasing importance. For gasoline cars, it turns out that in average real-world driving the majority of the CO (carbon monoxide) and HC (hydrocarbon) total emissions are due to cold-start extra emissions. Moreover, the cold-start emissions increase considerably at lower ambient temperatures. In contrast, cold-start emissions of diesel cars are significantly lower than those of gasoline cars. Furthermore, the transition from Euro-3 to Euro-4 gasoline vehicles shows a trend for a smaller decline for cold-start extra emissions than for legislative limits. Particle and NO x emission of cold-starts are less significant.

  7. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  8. INFLUENCE OF SURFACE DEFECTS, INHERITED FROM ROLLED WIRE, ON QUALITY OF A COLD-DRAWN WIRE

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2012-01-01

    Full Text Available Researches of the most often occurred surface defects of rolled wires, their modification at drawing and influence on technological process and quality of cold-drawn wire with regard to working conditions of hardware shops of OAO “BMZ” are  presented.

  9. INFLUENCE OF THE SURFACE DEFECTS INHERITED FROM ROLLED WIRE ON QUALITY OF COLD DRAWN WIRE

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2012-01-01

    Full Text Available Researches of the most often occurred surface defects of rolled wires, their modification at drawing and influence on technological process and quality of cold-drawn wire with regard to working conditions of hardware shops of BMZ are presented.

  10. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms

    Science.gov (United States)

    Cross-contamination of fresh produce and other foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its abili...

  11. Assessment of Cold Welding Between Separable Contact Surfaces Due to Impact and Fretting under Vacuum

    Science.gov (United States)

    Merstallinger, A.; Sales, M.; Semerad, E.; Dunn, B. D.

    2009-11-01

    A common failure mode seen during the testing and operation of spacecraft is termed "cold welding". European laboratories refer to this as "adhesion", "sticking" or "stiction". This publication is intended to provide the space community with the most recent understanding of the phenomenon of "cold welding" in relation to spacecraft mechanisms with separable contact surfaces. It presents some basic theory and describes a test method and the required equipment. Cold welding between two contacting surfaces can occur under conditions of impact or fretting. These surfaces may be bare metals, or inorganically or organically coated metals and their alloys. Standard procedures for quantifying the propensity of material surface pairs to cold weld to each other are proposed. Of particular interest will be the contact data of different materials, which are presented in numerical form and as tables summarising contacts between materials that can be either recommended or considered unsuitable for use under vacuum. The data have been compiled in a database that can be accessed online.

  12. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    Science.gov (United States)

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (pcities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision

  13. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  14. Dynamic Wettability of Different Adhesives on Wheat Straw Surface Modified by Cold Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xuehui Yang

    2014-02-01

    Full Text Available The effects of cold oxygen plasma treatment on the exterior and interior surfaces and wettability of wheat straw were investigated. The wheat straw was treated with oxygen plasma for 150 s, and the radio-frequency power was set at 100 W. The surface wettability was evaluated by measuring the contact angles and the K values of urea-formaldehyde, phenol-formaldehyde, and methylene diphenyl diisocyanate resins. Specimens with different gluing surfaces were bonded together with urea-formaldehyde and phenol-formaldehyde and then hot-pressed to assess bonding strength. Results indicate that the dynamic wettability and the shear strength of wheat straw were remarkably improved after it was exposed to the cold oxygen plasma. Additionally, the adhesive type and the wheat straw surface characteristics had significant effects on the dynamic wettability and bonding strength of both untreated and plasma-treated wheat straw.

  15. On the influence of cold work on the oxidation behavior of some austenitic stainless steels: High temperature oxidation

    NARCIS (Netherlands)

    Langevoort, J.C.; Fransen, T.; Gellings, P.J.

    1984-01-01

    AISI 304, 314, 321, and Incoloy 800H have been subjected to several pretreatments: polishing, milling, grinding, and cold drawing. In the temperature range 800–1400 K, cold work improves the oxidation resistance of AISI 304 and 321 slightly, but has a relatively small negative effect on the

  16. Mathematical model for strip surface roughness of stainless steel in cold rolling process

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng; Zhu, Tao; Han, Wenlong; Cao, Yong

    2013-05-01

    Surface roughness control is one of the most important subjects during producing stainless steel strips. In this paper, under the conditions of introducing to the concepts of transferring ratio and genetic factor and through the further theoretical analysis, a set of theoretical models about strip surface roughness were put forward in stainless steel cold tandem rolling. Meanwhile, the lubrication experiment in cold rolling process of SUS430 stainless steel strip was carried out in order to comprehensively study surface roughness. The effect of main factors on transferring ratio and genetic factor was analyzed quantitatively, such as reduction, initial thickness, deformation resistance, emulsion technological parameters and so on. Attenuation function equations used for describing roll surface roughness were set up, and also strip surface roughness at the entry of last mill was solved approximately. Ultimately, mathematical model on strip surface roughness for cold tandem rolling of stainless steel was built, and then it was used into the practical production. A great number of statistical results show that experimental data is in excellent agreement with the given regression equations, and exactly, the relative deviation on roughness between calculated and measured is less than 6.34%.

  17. Sudden cold temperature delays plant carbon transport and shifts allocation from growth to respiratory demand

    Science.gov (United States)

    Barthel, M.; Cieraad, E.; Zakharova, A.; Hunt, J. E.

    2014-03-01

    Since substrates for respiration are supplied mainly by recent photo-assimilates, there is a strong but time-lagged link between short-term above- and belowground carbon (C) cycling. However, regulation of this coupling by environmental variables is poorly understood. Whereas recent studies focussed on the effect of drought and shading on the link between above- and belowground short-term C cycling, the effect of temperature remains unclear. We used a 13CO2 pulse-chase labelling experiment to investigate the effect of a sudden temperature change from 25 to 10 °C on the short-term coupling between assimilatory C uptake and respiratory loss. The study was done in the laboratory using two-month-old perennial rye-grass plants (Lolium perenne L.). After label application, the δ13C signal of respired shoot and root samples was analysed at regular time intervals using laser spectroscopy. In addition, δ13C was analysed in bulk root and shoot samples. Cold temperature (10 °C) reduced the short-term coupling between shoot and roots by delaying belowground transfer of recent assimilates and its subsequent respiratory use, as indicated by the δ13C signal of root respiration (δ13CRR). That is, the time lag from the actual shoot labelling to the first appearance of the label in 13CRR was about 1.5 times longer under cold temperature. Moreover, analysis of bulk shoot and root material revealed that plants at cold temperature invest relatively more carbon into respiration compared to growth or storage. While the whole plant C turnover increased under cold temperature, the turnover time of the labile C pool decreased, probably because less 13C is used for growth and/or storage. That is, (almost) all recent C remained in the labile pool serving respiration under these conditions. Overall, our results highlight the importance of temperature as a driver of C transport and relative C allocation within the plant-soil system.

  18. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    Science.gov (United States)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (depression the Botanical Gardens are located in. Here, the deeper cold

  19. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  20. Electrostatic surface guiding of cold polar molecules with double charged wires

    Institute of Scientific and Technical Information of China (English)

    Yong Xia; Lianzhong Deng; Jinming Liu; Jianping Yin

    2005-01-01

    We propose a novel scheme to guide cold polar molecules on the surface of an insulating substrate (i.e., a chip) using a static electric field generated by the combination of a pair of parallel charged wires and a grounded metal plate. We calculate the spatial distributions of the electric fields from the above chargedwire layout and their Stark potentials for cold CO molecules, and analyze the relationships between the electric field and the parameters of the charged-wire layout. The result shows that this charged-wire scheme can be used to guide cold polar molecules in the weak-field-seeking state and to form various molecule-optical elements, even to realize a single-mode molecular waveguide on a molecule chip under certain conditions.

  1. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate.

    Science.gov (United States)

    Ikäheimo, Tiina M; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J K

    2016-09-02

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was -9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m³. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00-1.15)) and maximal (OR 1.08 (1.01-1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03-1.40)) and maximal decrease (OR 1.13 (CI 0.96-1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m³ decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00-1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects.

  2. Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions

    Directory of Open Access Journals (Sweden)

    H. Roshan

    2014-07-01

    Full Text Available Studies of surface water–groundwater interactions using fiber optic distributed temperature sensing (FO-DTS has increased in recent years. However, only a few studies to date have explored the limitations of FO-DTS in detecting groundwater discharge to streams. A FO_DTS system was therefore tested in a flume under controlled laboratory conditions for its ability to accurately measure the discharge of hot or cold groundwater into a simulated surface water flow. In the experiment the surface water (SW and groundwater (GW velocities, expressed as ratios (vgw/vsw, were varied from 0.21% to 61.7%; temperature difference between SW-GW were varied from 2 to 10 °C; the direction of temperature gradient were varied with both cold and-hot water injection; and two different bed materials were used to investigate their effects on FO_DTS's detection limit of groundwater discharge. The ability of the FO_DTS system to detect the discharge of groundwater of a different temperature in the laboratory environment was found to be mainly dependent upon the surface and groundwater flow velocities and their temperature difference. A correlation was proposed to estimate the groundwater discharge from temperature. The correlation is valid when the ratio of the apparent temperature response to the source temperature difference is above 0.02.

  3. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  4. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  5. Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids.

    Science.gov (United States)

    Silva, Ana L Patrício; Enggrob, Kirsten; Slotsbo, Stine; Amorim, Mónica J B; Holmstrup, Martin

    2014-08-19

    Due to global warming it is predicted that freeze-thaw cycles will increase in Arctic and cold temperate regions. The effects of this variation becomes of particular ecological importance to freeze-tolerant species when it is combined with chemical pollutants. We compared the effect of control temperature (2 °C), daily freeze-thaw cycles (2 to -4 °C) and constant freezing (-2 °C) temperatures on the cold-tolerance of oligochaete worms (Enchytraeus albidus) and tested how survival was influenced by pre-exposure to 4-nonylphenol (4-NP), a common nonionic detergent found in sewage sludge amended soils. Results showed that combined effect of 4-NP and daily freeze-thaw cycles can cause higher mortality to worms as compared with sustained freezing or control temperature. Exposure to 4-NP caused a substantial depletion of glycogen reserves which is catabolized during freezing to produce cryoprotective concentrations of free glucose. Further, exposure to freeze-thaw cycles resulted in higher concentrations of 4-NP in worm tissues as compared to constant freezing or control temperature (2 °C). Thus, worms exposed to combined effect of freeze-thaw cycles and 4-NP suffer higher consequences, with the toxic effect of the chemical potentiating the deleterious effects of freezing and thawing.

  6. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  7. Low Temperature Preparation and Cold Manufacturing Techniques for Femoral Head of Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The hip joint femoral head prosthesis was prepared using the Al2O3 material, which was synthesized by high purity alumina micro-powder and Mg- Zr- Y composite additives, the cold manufacturing techniques of lathe turning, grade polishing and the matching size correction of the sintered femoral head were studied. The results showed, after being pressed under 200 MPa cold isostatic pressure and being pre-sintered at 1 150 ℃, the biscuit' s strength can meet the demands of lathe turning; After being grade polished by SiC micro-powder and diamond abrading agent and being size corrected by special instruments, the femoral head prosthesis of Al2O3 ceramic has good surface degree of finish and articulates tightly with femoral handle.

  8. What drives cold-related excess mortality in a south Asian tropical monsoon climate-season vs. temperatures and diurnal temperature changes

    Science.gov (United States)

    Burkart, Katrin; Kinney, Patrick L.

    2016-12-01

    Despite the tropical climate which is characterized by generally high temperatures and persistent mild temperatures during the winter season, Bangladesh, along with many other tropical countries, experiences strong winter and cold-related excess mortality. The objective of this paper was to analyse the nature of these cold effects and understand the role of season vs. temperature and diurnal changes in temperature. For approaching these questions, we applied different Poisson regression models. Temperature as well as diurnal temperature range (DTR) were considered as predictor variables. Different approaches to seasonality adjustment were evaluated and special consideration was given to seasonal differences in atmospheric effects. Our findings show that while seasonality adjustment affected the magnitude of cold effects, cold-related mortality persisted regardless the adjustment approach. Strongest effects of low temperatures were observed at the same day (lag 1) with an increase of 1.7% (95% CI = 0.86-2.54%) per 1 °C decrease in temperature during the winter season. Diurnal temperature affected mortality with increasing levels at higher ranges. Mortality increased with 0.97% (95% CI = 0.17-1.75%) when looking at the entire season, but effects of DTR were not significant during winter when running a seasonal model. Different from effects observed in the mid-latitudes, cold effects in Bangladesh occurred on a very short time scale highlighting the role of temperature versus season. Insufficient adaptation with regard to housing and clothing might lead to such cold-related increases in mortality despite rather moderate temperature values. Although the study did not demonstrate an effect of DTR during the cold season, the strong correlation with (minimum) temperature might cause a multicollinearity problem and effects are difficult to attribute to one driver.

  9. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  10. Aging meat at room and cold temperatures on meat quality and aging loss of sheep carcass

    Directory of Open Access Journals (Sweden)

    Roswita Sunarlim

    2001-03-01

    Full Text Available The aim of this research is to compare the quality of meat of local carcass sheep between fresh and aging meat stored at room temperature for 12 hours, at 4oC for one day and one week. For that purpose a study of aging carcass involving 12 local sheep (male and female with different ages was carried out by separating carcass into two parts: (1 the right portion was aged on 4oC for one day and one week, room temperature for 12 hours, and (2 the left portion as control without aging. A factorial design 2x2 (2 sexes and aging vs without aging for three kinds of aging on quality of meat. A factorial design 2x3 (2 sexes and 3 kinds of aging on aging loss. Replicate twice was carried out with different ages (old and young sheep. Parameter measured were pH, warter-holding capacity, cooking loss, color, tenderness, carcass weight loss. There was decrease in pH, increase in tenderness value for aged meat that stored at room temperature for 12 hours (1.84 kg, at cold temperature for one day (2.03 kg, but tenderness value was the most (0.92 kg at cold temperature for one week compared to fresh meat (3.41, 4.06, and 3.66 kg. Lightness color (l, red color (a and yellow color (b for aged meat is usually increase compare to fresh meat, except for aged meat stored at room temperature for 12 hours was decrease significant. Water-holding capacity and cooking loss value of aged meat was not significant compared to fresh meat. Aging loss of aged meat stored at 4oC for one week (13.58% was significant compared to aged meat stored at room temperature (2.42% and 4oC for one day (2.90%.

  11. Synthesis and Characterization of PEG-like Structures on Nitinol Surface under ECR-cold-plasma

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; WANG Jianhua; Tong Sheyi

    2005-01-01

    The synthesis and characterization of PEG-like macromolecular structures on Nitinol surface from tri (ethylene glycol) dimethyl-ether under ECR-cold-plasma conditions were discussed. It was demonstrated that based on high-resolution ESCA, ATR-FTIR and contact angle investigations, the deposited PEG-like layers are composed mainly of -CH2-CH2-O- linkages. These structures have a relatively low contact angle. Compared to the unmodified surfaces, the plasma-treated Nitinol surfaces are more hydrophilic. Plasma enhanced coatings of PEG-like layers can prevent Ni ion from releasing, thereby improving the biocompatibility of Nitinol.

  12. How cold can you get in space? Quantum Physics at cryogenic temperatures in space

    CERN Document Server

    Hechenblaikner, Gerald; Burkhardt, Johannes; Kiesel, Nikolai; Johann, Ulrich; Aspelmeyer, Markus; Kaltenbaek, Rainer

    2013-01-01

    Although it is often believed that the coldness of space is ideally suited for performing measurements at cryogenic temperatures, this must be regarded with caution for two reasons: Firstly, the sensitive instrument must be completely shielded from the strong solar radiation and therefore, e.g. either be placed inside a satellite or externally on the satellite's shaded side. Secondly, any platform hosting such an experiment in space generally provides an environment close to room temperature for the accommodated equipment. To obtain cryogenic temperatures without active cooling, one must isolate the instrument from radiative and conductive heat exchange with the platform as well as possible. We investigate the limits of this passive cooling method in the context of a recently proposed experiment to observe the decoherence of quantum superpositions of massive objects. The analyses and conclusions are applicable to a host of similar experimental designs requiring a cryogenic environment in space.

  13. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  14. Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating

    Institute of Scientific and Technical Information of China (English)

    Xianming Meng; Junbao Zhang; Jie Zhao; Yongli Liang; Yujun Zhang

    2011-01-01

    In the present study, 304 stainless steel coatings were deposited on interstitial-free steel substrates by cold gas dynamic spray technology. The effect of gas temperature on microstructure, micro-hardness, cohesive strength, and electrochemical property of the coatings were investigated and compared. The results showed that increasing gas temperature had a great contribution to enhancing the bonding strength between the deposited particles and making the microstructure more density. Therefore, the porosity of the coatings decreased from 0%4-0.5% to 2%4-0.3%, and the tensile strength of the coatings increased from 564-4 MPa up to 734-3 MPa. In addition, the corrosion resistance of the coatings was also deeply influenced by process gas temperature. The corrosion kinetics of the coatings were affected by both of the plastic deformation of deposited particles and the porosity in the coatings.

  15. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera).

    Science.gov (United States)

    Retschnig, Gina; Williams, Geoffrey R; Schneeberger, Annette; Neumann, Peter

    2017-02-09

    Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera) colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary) over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday). The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  16. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    2017-02-01

    Full Text Available Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday. The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  17. Possible influence of stratospheric circulation on January surface air temperature over China

    Science.gov (United States)

    Tan, Guirong; Zhu, Weijun; Zeng, Gang; Sun, Zhaobo; Peng, Lixia

    2009-08-01

    In terms of monthly NCEP/NCAR and 160 site temperature data from NCC (National Climate Center), the main modes of January surface air temperature in 1979-2008 over China and possible mechanism of typical cold/warm episodes are investigated. Results show that the first mode for January temperature is characterized by consist variation in China, which is closely related to circulation anomalies in stratosphere. From the wave source over East Asian in stratosphere wave fluxes propagate downward and westward, and in upper troposphere over North Atlantic there is a remarkable convergent area of wave flux leading to the ridge enhanced with stronger heat transforming to the North and front zone moving to more northerly. Thereby jet stream becomes strong and expands to East Atlantic with positive (negative) NAO anomaly pattern and higher pressure occurs south to Baikal indicating stronger (weaker) than normal cold air, which is helpful for lower (higher) temperature appearing over China

  18. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels

    Institute of Scientific and Technical Information of China (English)

    赖远明; 吴紫汪; 朱元林; 何春雄; 朱林楠

    1999-01-01

    The governing differential equations of the coupled problem of temperature and seepage fields with phase change are first derived from the theory of heat transfer and the theory of seepage. The finite element formulae of this problem are obtained from Galerkin’ s method. And considering the seepage influence, an illustrative example of thetemperature field in a cold-region tunnel is provided.The example shows that the influence of seepage on the frozen depth of the tunnel is very great, and thus the effect of the seepage factor should be taken into account in the engineering design.

  19. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  20. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  1. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  2. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  3. Estrous cycle fluctuations in sex and ingestive behavior are accentuated by exercise or cold ambient temperatures.

    Science.gov (United States)

    Abdulhay, Amir; Benton, Noah A; Klingerman, Candice M; Krishnamoorthy, Kaila; Brozek, Jeremy M; Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". In female Syrian hamsters (Mesocricetus auratus), low circulating levels of ovarian steroids are associated with increased food hoarding and decreased sexual motivation, but these effects are exaggerated in food-restricted females. To determine whether cold ambient temperature has the same effects as food restriction, groups of hamsters were fed ad libitum while they were housed at either 5 °C or 22 °C, and then tested for behavior for 90 min on each day of the estrous cycle. In females housed at 22 °C, high levels of sexual motivation and low levels of food hoarding were seen every day of the estrous cycle. In females housed at 5 °C, high levels of sexual motivation were restricted to the periovulatory day. On the three nonestrous days, these females showed high levels of food hoarding, but not food intake. A separate cohort of females were provided with access to running wheels and housed at 22 °C. They showed high levels of sexual motivation restricted to the periovulatory day, similar to the pattern of sexual motivation seen in cold-housed females. Unlike cold-housed females, those with running wheels showed low levels of food hoarding and high levels of food intake. Food restriction, cold housing, and access to wheels had no significant effect on plasma estradiol or progesterone concentrations, but significantly decreased plasma leptin concentrations. All three energetic challenges unmask estrous cycle fluctuations in sexual motivation that are obscured in laboratory conditions, i.e., isolation in a small cage with an overabundance of food.

  4. The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips

    Science.gov (United States)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza

    2011-03-01

    It is the objective of this article to investigate the influence of surface preparation on the cold roll bonding (CRB) process. In this context, the effects of surface preparation parameters consisting of surface preparation method, surface roughness, scratch-brushing parameters, and the delay time between surface preparation and rolling are investigated on the bond strength of aluminum strips. The bond strength of two adjacent aluminum strips produced by the CRB process is evaluated by the peeling test. Furthermore, the interface region is investigated by metallographic observations. Our findings indicate that higher surface roughness values and shorter delay times improve the bond strength. It is also found that degreasing followed by scratch-brushing yield the best bonding properties.

  5. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Directory of Open Access Journals (Sweden)

    H. Portner

    2009-08-01

    Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not understood. Thus, we made an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.

    We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter uncertainty ranges of the functions by nonlinear regression analysis based on eight experimental datasets from northern hemisphere ecosystems. We sampled over the uncertainty bounds of the parameters and run simulations for each pair of temperature response function and calibration site. The uncertainty in both long-term and short-term soil carbon dynamics was analyzed over an elevation gradient in southern Switzerland.

    The function of Lloyd-Taylor turned out to be adequate for modelling the temperature dependency of soil organic matter decomposition, whereas the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the uncertainty in the parameter estimates of the response functions, which increased with increasing temperature and (2 the uncertainty in the simulated size of carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. The higher uncertainty in carbon pools with slow turn-over rates has important implications for the uncertainty in the projection of the change of soil carbon stocks driven by climate change, which turned out to be more uncertain for higher elevations and hence higher latitudes, which are of key importance for the global terrestrial carbon

  6. The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke

    Directory of Open Access Journals (Sweden)

    Paula Cristina Cola

    2010-03-01

    Full Text Available CONTEXT: The effect of sour taste and food temperature variations in dysphagic patients has not been entirely clarified. OBJECTIVE: To determine the effect of sour and cold food in the pharyngeal transit times of patients with stroke. METHODS: Patients participating in this study were 30 right-handed adults, 16 of which were male and 14 were female, aged 41 to 88 (average age 62.3 years with ictus varying from 1 to 30 days (median of 6 days. To analyze the pharyngeal transit time a videofluoroscopy swallow test was performed. Each patient was observed during swallow of a 5 mL paste bolus given by spoon, totaling four different stimuli (natural, cold, sour and cold sour, one at a time, room temperature (22ºC and cold (8ºC were used. Later, the tests were analyzed using specific software to measure bolus transit time during the pharyngeal phase. RESULTS: The results showed that the pharyngeal transit time was significantly shorter during swallow of cold sour bolus when compared with other stimuli. Conclusion - Sour taste stimuli associated to cold temperature cause significant change in swallowing patterns, by shortening the pharyngeal transit time, which may lead to positive effects in patients with oropharyngeal dysphagia.CONTEXTO: O efeito do sabor azedo e as variações da temperatura dos alimentos em indivíduos disfágicos, ainda não foi totalmente esclarecidos. OBJETIVO: Verificar o efeito do sabor azedo e da temperatura fria no tempo de trânsito faríngeo da deglutição em indivíduos após acidente vascular encefálico hemisférico isquêmico. MÉTODOS: Participaram deste estudo 30 indivíduos adultos, sendo 16 do gênero masculino e 14 do feminino, destros, com faixa etária variando de 41 a 88 anos (média de 62,3 anos e ictus que variou de 1 a 30 dias (mediana de 6 dias. Para analisar o tempo de trânsito faríngeo da deglutição foi realizado o exame de videofluoroscopia da deglutição. Cada indivíduo foi observado durante a

  7. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...... adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform...

  8. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Science.gov (United States)

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions.

  9. Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects

    Science.gov (United States)

    Gaube, P.; Chelton, D. B.; O'Neill, L. W.

    2011-12-01

    Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction

  10. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate

    Directory of Open Access Journals (Sweden)

    Tiina M. Ikäheimo

    2016-09-01

    Full Text Available Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892 seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH during the three preceding days of the onset (hazard period and two reference periods (a week prior and after the onset were obtained. The average daily temperature preceding HRV infections was −9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m3. An average (odds ratios (OR 1.07 (95% confidence interval (CI 1.00–1.15 and maximal (OR 1.08 (1.01–1.17 change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03–1.40 and maximal decrease (OR 1.13 (CI 0.96–1.34 in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m3 decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00–1.15. A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects.

  11. Temperature thresholds in assessment of the clinical course of acquired cold contact urticaria: a prospective observational one-year study.

    Science.gov (United States)

    Martinez-Escala, M Estela; Curto-Barredo, Laia; Carnero, Lluïsa; Pujol, Ramon M; Giménez-Arnau, Ana M

    2015-03-01

    Cold contact urticaria is the second most common subtype of physical urticaria. Cold stimulation standardized tests are mandatory to confirm the diagnosis. The aim of this study is to define the utility of determining thresholds (critical time and temperature) in assessment of the clinical course of typical acquired cold contact urticaria. Nineteen adult patients (10 women and 9 men; mean age 45 years) were included in the study and the diagnosis was confirmed with the ice-cube test and TempTest 3.0. Patients were treated continuously for 1 year with 20 mg/day rupatadine (anti-H1). Thresholds measurements were made before and after treatment. Improvements in temperature and critical time thresholds were found in the study sample, demonstrating the efficacy of continuous treatment with rupatadine. In most cases association with a clinical improvement was found. We propose an algorithm for the management of acquired cold contact urticaria based on these results.

  12. Behaviour of cold-formed stainless steel beams at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    A study of the behaviour of constructional cold-formed stainless steel beams at elevated temperatures was conducted in this paper.An accurate finite element model(FEM)for stainless steel beams was developed using the finite element program ABAQUS.Stainless steel beams having different cross-sections were simulated in this study.The nonlinear FEM was verified against the experimental results.Generally,the developed FEM could accurately simulate the stainless steel beams.Based on the high temperature stainless steel material test results,a parametric study was carried out on stainless steel beams at elevated tem-peratures using the verified FEM.Both high strength stainless steel EN 1.4462 and normal strength stainless steel EN 1.4301 were considered.A total of 42 stainless steel beams were simulated in the parametric study.The effect of temperatures on the behaviour of stainless steel beams was investigated.In addition,a limiting temperature for stainless steel beams was also proposed.

  13. Glycol cold thermal energy storage systems : performance and the effect of varying environment temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, K.; Dincer, I.; Rosen, M.A. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    This paper examined the effect of varying ambient temperatures on glycol cold thermal energy storage (CTES) systems. When glycol thermal storage is incorporated into a new or existing building, a low temperature chilled-water supply allows the use of low-temperature air distribution and smaller fans and ducts. A reduction and shift in peak electric power demand can be realized through the use of glycol CTES as it permits the storage of night-time electric power. This study investigated the thermodynamic system parameters of: storage temperature; storage heat load; exergy destructions; and energy and exergy efficiencies. A storage tank with a capacity of 150,000 kg was used in the investigation. The air-conditioning cycle was simulated using the commercial software package Engineering Equation Solver (EES). Exergy analyses considered quantities of exergy, energy and mass. It was concluded that the exergy efficiency of the system was approximately 46 per cent less than energy efficiency due to irreversibilities. Results indicated that maximum energy efficiency was 75 per cent, and the corresponding exergy efficiency was 40 per cent for a 50 degrees C ambient air temperature. 13 refs., 5 figs.

  14. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  15. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  16. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  17. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  18. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  19. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    Science.gov (United States)

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  20. Sr/Ca ratios in cold-water corals - a 'low-resolution' temperature archive?

    Science.gov (United States)

    Rüggeberg, Andres; Riethdorf, Jan-Rainer; Raddatz, Jacek; López Correa, Matthias; Montagna, Paolo; Dullo, Wolf-Christian; Freiwald, André

    2010-05-01

    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008). Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L. pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral's Sr/Ca ratio is related to temperature, while 75% are influenced

  1. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  2. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  3. Selection of Psychrotolerant Microorganisms Producing Cold-Active Pectinases for Biotechnological Processes at Low Temperature

    Directory of Open Access Journals (Sweden)

    María S. Cabeza

    2011-01-01

    Full Text Available In winemaking, low temperatures are favourable for the production and retention of flavour and colour components, requiring the use of cold-active enzymes. For this reason, 'psychrotolerant' microorganisms have been isolated and selected based on their ability to produce pectinolytic enzymes with satisfactory activity at low temperatures. Different mature grape varieties with designation of origin were sampled from the region of San Rafael (Mendoza, Argentina, and pectinolytic bacterial, fungal and yeast strains were isolated. The pectinolytic activity was measured by cup-plate assay, quantification of released reducing sugars and viscosity reduction of pectin solution. Two bacteria (Bacillus sp. SC-G and SC-H and two yeast strains were selected for their good pectinase activity at low temperatures. Among them, the strain with the highest activity, Bacillus sp. SC-H, was selected. According to their 16S rRNA profiles, Bacillus sp. SC-G and SC-H can be classified as members of Bacillus subtilis. Among the assayed techniques, the rotary evaporation was found to be the most appropriate to obtain enzymatic extracts with highest activity. The optimal conditions for the enzymatic activity were 30 °C and pH=5.0 for the concentrated extract, and 45 °C and pH=6.0 for the filtered supernatant. The concentrated extract presented good activity at 3 °C, confirming that it was a cold-active enzyme. Natural extraction and enzymatic preparation were used to extract pigments and polyphenols from Malbec grapes. Better results were obtained for the enzymatic extract with regard to index, shade, CIELab coordinates, CIELab colour differences and polyphenols (measured using Folin-Ciocalteu.

  4. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  5. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  6. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  7. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2014-03-01

    Full Text Available Background: Ambient temperatures can cause an increase in mortality. A better understanding is needed of how health status and other factors modify the risk associated with high and low temperatures, to improve the basis of preventive measures. Differences in susceptibility to temperature and to heat and cold wave duration are relatively unexplored. Objectives: We studied the associations between mortality and temperature and heat and cold wave duration, stratified by age and individual and medical factors. Methods: Deaths among all residents of Stockholm County between 1990 and 2002 were linked to discharge diagnosis data from hospital admissions, and associations were examined using the time stratified case-crossover design. Analyses were stratified by gender, age, pre-existing disease, country of origin, and municipality level wealth, and adjusted for potential confounding factors. Results: The effect on mortality by heat wave duration was higher for lower ages, in areas with lower wealth, for hospitalized patients younger than age 65. Odds were elevated among females younger than age 65, in groups with a previous hospital admission for mental disorders, and in persons with previous cardiovascular disease. Gradual increases in summer temperatures were associated with mortality in people older than 80 years, and with mortality in groups with a previous myocardial infarction and with chronic obstructive pulmonary disease (COPD in the population younger than 65 years. During winter, mortality was associated with a decrease in temperature particularly in men and with the duration of cold spells for the population older than 80. A history of hospitalization for myocardial infarction increased the odds associated with cold temperatures among the population older than 65. Previous mental disease or substance abuse increased the odds of death among the population younger than 65. Conclusion: To increase effectiveness, we suggest preventive efforts

  8. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  9. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Science.gov (United States)

    Williams, David F.; Kellar, Ewen J. C.; Jesson, David A.; Watts, John F.

    2017-05-01

    The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m-1 to >72 mJ m-1 after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  10. Seasonal Spatial Patterns of Surface Water Temperature, Surface Heat Fluxes and Meteorological Forcing Over Lake Geneva

    Science.gov (United States)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2015-12-01

    In many lakes, surface heat flux (SHF) is the most important component controlling the lake's energy content. Accurate methods for the determination of SHF are valuable for water management, and for use in hydrological and meteorological models. Large lakes, not surprisingly, are subject to spatially and temporally varying meteorological conditions, and hence SHF. Here, we report on an investigation for estimating the SHF of a large European lake, Lake Geneva. We evaluated several bulk formulas to estimate Lake Geneva's SHF based on different data sources. A total of 64 different surface heat flux models were realized using existing representations for different heat flux components. Data sources to run the models included meteorological data (from an operational numerical weather prediction model, COSMO-2) and lake surface water temperature (LSWT, from satellite imagery). Models were calibrated at two points in the lake for which regular depth profiles of temperature are available, and which enabled computation of the total heat content variation. The latter, computed for 03.2008-12.2012, was the metric used to rank the different models. The best calibrated model was then selected to calculate the spatial distribution of SHF. Analysis of the model results shows that evaporative and convective heat fluxes are the dominant terms controlling the spatial pattern of SHF. The former is significant in all seasons while the latter plays a role only in fall and winter. Meteorological observations illustrate that wind-sheltering, and to some extent relative humidity variability, are the main reasons for the observed large-scale spatial variability. In addition, both modeling and satellite observations indicate that, on average, the eastern part of the lake is warmer than the western part, with a greater temperature contrast in spring and summer than in fall and winter whereas the SHF spatial splitting is stronger in fall and winter. This is mainly due to negative heat flux

  11. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  12. Characterization and High-Temperature Oxidation Behavior of Cold-Sprayed Ni-20Cr and Ni-50Cr Coatings on Boiler Steels

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya

    2011-11-01

    Microstructure and mechanical properties of cold-spray coatings are usually required in order to explore the potential industrial application of the latter. This article demonstrates the successful formulation of Ni-20Cr and Ni-50Cr coatings on two boiler steels, namely, SAE 213-T22 and SA 516 steel by cold-spray process. The microstructure, coating thickness, phase formation, and microhardness properties of the coatings were evaluated. The coatings were subjected to cyclic heating and cooling cycles at an elevated temperature of 1173.15 K (900 °C) to ascertain their high-temperature oxidation behavior. Moreover, these cyclic exposures can give useful information regarding the adhesion of the coatings with the substrate steels. Of all the coatings, the Ni-50Cr coating on SA 516 steel had a maximum average hardness value of 469 Hv. As observed from the surface field emission-scanning electron microscopy (FE-SEM) analysis, the coatings were found to have nearly dense microstructure with the sprayed particles in interlocked positions. It was concluded that the cold-spray process is suitable for spraying the preceding powders onto the given boiler steels to produce nearly dense and low oxide coatings. The coatings, in general, were found to follow the parabolic rate of oxidation and were successful in maintaining their surface contact with their respective substrate steels.

  13. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  14. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects.

    Science.gov (United States)

    Sinclair, Brent J; Ferguson, Laura V; Salehipour-shirazi, Golnaz; MacMillan, Heath A

    2013-10-01

    Multiple stressors, both abiotic and biotic, often are experienced simultaneously by organisms in nature. Responses to these stressors may share signaling pathways ("cross-talk") or protective mechanisms ("cross-tolerance"). Temperate and polar insects that must survive the winter experience low temperatures accompanied by additional abiotic stressors, such as low availability of water. Cold and desiccation have many similar effects at a cellular level, and we present evidence that the cellular mechanisms that protect against cold stress also protect against desiccation, and that the responses to cold and dehydration likely evolved as cross-tolerance. By contrast, there are several lines of evidence suggesting that low temperature stress elicits an upregulation of immune responses in insects (and vice versa). Because there is little mechanistic overlap between cold stress and immune stress at the cellular level, we suggest that this is cross-talk. Both cross-talk and cross-tolerance may be adaptive and likely evolved in response to synchronous stressors; however, we suggest that cross-talk and cross-tolerance may lead to different responses to changes in the timing and severity of multiple stress interactions in a changing world. We present a framework describing the potentially different responses of cross-tolerance and cross-talk to a changing environment and describe the nature of these impacts using interaction of cold-desiccation and cold-immunity in overwintering insects as an example.

  15. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities

    Science.gov (United States)

    Antunes, Liliana; Silva, Susana Pereira; Marques, Jorge; Nunes, Baltazar; Antunes, Sílvia

    2016-06-01

    It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1-2-day delay, reaching maximum increased risk of death after 6-7 days and lasting up to 20-28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.

  16. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities

    Science.gov (United States)

    Antunes, Liliana; Silva, Susana Pereira; Marques, Jorge; Nunes, Baltazar; Antunes, Sílvia

    2017-01-01

    It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1-2-day delay, reaching maximum increased risk of death after 6-7 days and lasting up to 20-28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.

  17. Temperature and Relative Humidity Inside Trailers During Finishing Pig Loading and Transport in Cold and Mild Weather

    Directory of Open Access Journals (Sweden)

    John McGlone

    2014-09-01

    Full Text Available The effect of bedding levels and trailer compartment on internal trailer temperature and relative humidity (RH during loading and transport of finishing pigs was evaluated in cold and mild weather. Three levels of bedding were used in each experiment: 0.6 m3, 1.2 m3, and 2.4 m3. In mild weather, internal temperatures were lower when 1.2 m3 or 2.4 m3 of bedding were used during loading and transport compared to 0.6 m3 (P < 0.05. Internal trailer temperature increased in a quadratic fashion in the top front compartment when 1.2 m3 was used (P < 0.05, and in a linear fashion in the top rear compartment when 2.4 m3 were used in cold weather (P < 0.05. In mild weather, temperature increased linearly in the top front compartment with heavy bedding levels. Relative humidity increased in a linear fashion in the top front compartment with 0.6 m3, bottom front with 1.2 m3, and top front with 1.2 m3 in cold weather (P < 0.05. In general, temperature and RH increased as bedding levels increased in both cold and mild temperatures. Excess bedding can absorb more moisture, resulting in transport loss and decreased animal welfare.

  18. Validity of Core Temperature Measurements at 3 Rectal Depths During Rest, Exercise, Cold-Water Immersion, and Recovery.

    Science.gov (United States)

    Miller, Kevin C; Hughes, Lexie E; Long, Blaine C; Adams, William M; Casa, Douglas J

    2017-04-01

      No evidence-based recommendation exists regarding how far clinicians should insert a rectal thermistor to obtain the most valid estimate of core temperature. Knowing the validity of temperatures at different rectal depths has implications for exertional heat-stroke (EHS) management.   To determine whether rectal temperature (Trec) taken at 4 cm, 10 cm, or 15 cm from the anal sphincter provides the most valid estimate of core temperature (as determined by esophageal temperature [Teso]) during similar stressors an athlete with EHS may experience.   Cross-sectional study.   Laboratory.   Seventeen individuals (14 men, 3 women: age = 23 ± 2 years, mass = 79.7 ± 12.4 kg, height = 177.8 ± 9.8 cm, body fat = 9.4% ± 4.1%, body surface area = 1.97 ± 0.19 m(2)).   Rectal temperatures taken at 4 cm, 10 cm, and 15 cm from the anal sphincter were compared with Teso during a 10-minute rest period; exercise until the participant's Teso reached 39.5°C; cold-water immersion (∼10°C) until all temperatures were ≤38°C; and a 30-minute postimmersion recovery period. The Teso and Trec were compared every minute during rest and recovery. Because exercise and cooling times varied, we compared temperatures at 10% intervals of total exercise and cooling durations for these periods.   The Teso and Trec were used to calculate bias (ie, the difference in temperatures between sites).   Rectal depth affected bias (F2,24 = 6.8, P = .008). Bias at 4 cm (0.85°C ± 0.78°C) was higher than at 15 cm (0.65°C ± 0.68°C, P .05). Bias varied over time (F2,34 = 79.5, P < .001). Bias during rest (0.42°C ± 0.27°C), exercise (0.23°C ± 0.53°C), and recovery (0.65°C ± 0.35°C) was less than during cooling (1.72°C ± 0.65°C, P < .05). Bias during exercise was less than during postimmersion recovery (0.65°C ± 0.35°C, P < .05).   When EHS is suspected, clinicians should insert the flexible rectal thermistor to 15 cm (6 in) because it is the most valid depth. The low

  19. Colonization of Bacteria on the Surfaces of Cold-Sprayed Copper Coatings Alters Their Electrochemical Behaviors

    Science.gov (United States)

    Suo, Xinkun; Abdoli, Leila; Liu, Yi; Xia, Peng; Yang, Guanjun; Li, Hua

    2017-02-01

    Copper coatings were fabricated on stainless steel plates by cold spraying. Attachment and colonization of Bacillus sp. on their surfaces in artificial seawater were characterized, and their effects on anticorrosion performances of the coatings were examined. Attached bacteria were observed using field emission scanning electron microscopy. Electrochemical behaviors including potentiodynamic polarization and electrochemical impedance spectroscopy with/without bacterial attachment were evaluated using commercial electrochemical analysis station Modulab. Results show that Bacillus sp. opt to settle on low-lying spots of the coating surfaces in early stage, followed by recruitment and attachment of extracellular polymeric substances (EPS) secreted through metabolism of Bacillus sp. The bacteria survive with the protection of EPS. An attachment model is proposed to illustrate the bacterial behaviors on the surfaces of the coatings. Electrochemical data show that current density under Bacillus sp. environment decreases compared to that without the bacteria. Charge-transfer resistance increases markedly in bacteria-containing seawater, suggesting that corrosion resistance increases and corrosion rate decreases. The influencing mechanism of bacteria settlement on corrosion resistance of the cold-sprayed copper coatings was discussed and elucidated.

  20. Bias correction methods for decadal sea-surface temperature forecasts

    Directory of Open Access Journals (Sweden)

    Balachandrudu Narapusetty

    2014-04-01

    Full Text Available Two traditional bias correction techniques: (1 systematic mean correction (SMC and (2 systematic least-squares correction (SLC are extended and applied on sea-surface temperature (SST decadal forecasts in the North Pacific produced by Climate Forecast System version 2 (CFSv2 to reduce large systematic biases. The bias-corrected forecast anomalies exhibit reduced root-mean-square errors and also significantly improve the anomaly correlations with observations. The spatial pattern of the SST anomalies associated with the Pacific area average (PAA index (spatial average of SST anomalies over 20°–60°N and 120°E–100°W is improved after employing the bias correction methods, particularly SMC. Reliability diagrams show that the bias-corrected forecasts better reproduce the cold and warm events well beyond the 5-yr lead-times over the 10 forecasted years. The comparison between both correction methods indicates that: (1 prediction skill of SST anomalies associated with the PAA index is improved by SMC with respect to SLC and (2 SMC-derived forecasts have a slightly higher reliability than those corrected by SLC.

  1. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  2. The minimum temperatures in the winter 2006/07 in the slovenian frost hollows and cold basins

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2007-01-01

    Full Text Available The members of Slovenian Meteorological Forum, Department of Geography at Universityof Ljubljana and Slovenian Forestry Institute started to measure temperatures in Slovenianfrost hollows and cold basins in 2004. The measurements, which improved during theperiod 2004−2006, continued also in the winter 2006−2007, all together, in more than 30frost hollows and cold basins Alpine, Dinaridic and even Submediterranean areas. Althoughthe winter 2006/2007 was very mild, minimum temperatures in frost hollow Hribarice fellbelow − 35 ˚C.

  3. Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

    CERN Document Server

    Carter, J D; Martin, J D D

    2012-01-01

    The electric fields near the heterogeneous metal/dielectric surface of an atom chip were measured using cold atoms. The atomic sensitivity to electric fields was enhanced by exciting the atoms to Rydberg states that are 10^8 times more polarizable than the ground state. We attribute the measured fields to charging of the insulators between the atom chip wires. Surprisingly, it is observed that these fields may be dramatically lowered with appropriate voltage biasing, suggesting configurations for the future development of hybrid quantum systems.

  4. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mingolo, N.; Gonzalez, C.R. [Lab. de Haces Dirigidos, Depto. de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Martinez, O.E. [Lab. de Electronica Cuantica, Depto. de Fisica, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Rocca, J.J. [Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1997-10-01

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 {mu}A was found to limit the shot to shot current variation to within 1.5{percent}. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. {copyright} {ital 1997 American Institute of Physics.}

  5. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  6. Effect of temperatures and cold storage on performance of Tetrastichus brontispae (Hymenoptera: Eulophidae), a parasitoid of Brontispa longissima (Coleptera: Chrysomelidae).

    Science.gov (United States)

    Liu, Kui; Fu, Buli; Lin, Jiangrong; Fu, Yueguan; Peng, Zhengqiang; Jin, Qi'an

    2014-01-01

    Laboratory studies were conducted to determine the effect of temperature and cold storage on the performance of Tetrastichus brontispae (Ferriere) (Hymenoptera: Eulophidae), one of the major endoparasitoids against coconut hispine beetle, Brontispa longissima (Gestro) (Coleptera: Chrysomelidae). The results revealed that T. brontispae could successfully parasitize host pupae under all seven tested temperatures, but no adult emergence was observed at 32°C. It was also revealed that temperatures between 24 and 26°C appeared to be the optimum temperatures for parasitism, as these temperatures resulted in the most parasitized pupae and a significantly higher emergence rate and progeny production. These measurements significantly declined at 20, 30, and 32°C. This study confirmed developmental periods of parasitoid progeny decreased as the temperature increased, and sex ratio of this female-biased parasitoid was not affected by rearing temperatures. More importantly, this study indicated that cold storage of parasitized pupae could extend up to 30 d at 10°C, and a longer storage period had a significant adverse effect on mean adult emergence and parasitism performance. Ten days might be the optimum cold-storage period at 10°C, as parasitism performance, emergence rate, and progeny production at this storage period were similar to the control of 26°C. Furthermore, the developmental period, emergence rate, and sex ratio of progeny that emerged from cold-stored parasitized pupae were not influenced by storage periods, whereas parasitism performance of progeny decreased as storage period increased. This study suggests that about 24-26°C would be the optimal temperature for mass production and release of T. brontispae for biological control of B. longissima. These results also provide novel findings that a period of 10 d at 10°C may be more suitable and acceptable for ideal cold storage of parasitized pupae of T. brontispae.

  7. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  8. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  9. Supercooled Water Droplet Impacting Superhydrophobic Surfaces in the Presence of Cold Air Flow

    Directory of Open Access Journals (Sweden)

    Morteza Mohammadi

    2017-01-01

    Full Text Available In the present work, an investigation of stagnation flow imposed on a supercooled water drop in cold environmental conditions was carried out at various air velocities ranging from 0 (i.e., still air to 10 m/s along with temperature spanning from −10 to −30 °C. The net effect of air flow on the impacting water droplet was investigated by controlling the droplet impact velocity to make it similar with and without air flow. In cold atmospheric conditions with temperatures as low as −30 °C, due to the large increase of both internal and contact line viscosity combined with the presence of ice nucleation mechanisms, supercooled water droplet wetting behavior was systematically affected. Instantaneous pinning for hydrophilic and hydrophobic surfaces was observed when the spread drop reached the maximum spreading diameter (i.e., no recoiling phase. Nevertheless, superhydrophobic surfaces showed a great repellency (e.g., contact time reduction up to 30% where air velocity was increased up to 10 m/s at temperatures above the critical temperature of heterogeneous ice nucleation (i.e., −24 °C. However, the freezing line of the impacting water droplet was extended up to 2-fold at air velocity up to 10 m/s where substrate temperature was maintained below the aforementioned critical temperature (e.g., −30 °C.

  10. 低温冷风-微量润滑技术在冷镦模具上的应用%The Application of Low-temperature Cold Air-Minimal Quantity Lubrication Technology to Cold Heading Die

    Institute of Scientific and Technical Information of China (English)

    朱红萍

    2011-01-01

    The main heat source of cold heading machine was analyzed.The low-temperature cold spray jet technology was applied to cold forging machine dies.A set of low-temperature cold spray jet system was designed.The heat sink structure of the die was optimized.%在分析冷镦机主要热源的基础上,将低温冷风喷雾射流技术运用到冷镦机模具上,设计了一套低温冷风喷雾射流系统,并对定模具的散热结构进行优化.

  11. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Institute of Scientific and Technical Information of China (English)

    Laura Charalambous a; Wolfgang Potthast c; Gareth Irwin b

    2016-01-01

    Background: Artificial turf is considered a feasible global alternative to natural turf by many sports governing bodies. Consequently, its ability to provide a safe and consistent playing surface regardless of climate becomes essential. The aims of this study were to determine the effects of artificial surface temperature on:(1) mechanical properties of the turf and (2) the kinematics of a turf-sport related movement. Methods: Two identical artificial turf pitches were tested:one with a cold surface temperature (1.8°C–2.4°C) and one with a warm surface temperature (14.5°C–15.2°C). Mechanical testing was performed to measure the surface properties. Four amateur soccer players performed a hurdle jump to sprint acceleration movement, with data (contact time, step length and hip, knee and ankle kinematics) collected using CODASport (200 Hz). Results: The temperature difference had a significant influence on the mechanical properties of the artificial turf, including force absorption, energy restitution, rotational resistance, and the height where the head injury criterion was met. Both step length (p=0.008) and contact time (p=0.002) of the initial step after the landing were significantly longer on the warm surface. In addition, significant range of motion and joint angular velocity differences were found. Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  12. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China.

    Science.gov (United States)

    Ma, Wenjuan; Chen, Renjie; Kan, Haidong

    2014-10-01

    Few multicity studies have been conducted to investigate the acute health effects of cold and hot temperatures in China. We aimed to examine the relationship between temperature and daily mortality in 17 large Chinese cities. We first calculated city-specific effect of temperature using time-series regression models combined with distributed lag nonlinear models; then we pooled the city-specific estimates with the Bayesian hierarchical models. The cold effects lasted longer than the hot effects. For the cold effects, a 1 °C decrease from the 25th to 1st percentiles of temperature over lags 0-14 days was associated with increases of 1.69% [95% posterior intervals (PI): 1.01%, 2.36%], 2.49% (95% PI: 1.53%, 3.46%) and 1.60% (95% PI: 0.32%, 2.87%) in total, cardiovascular and respiratory mortality, respectively. For the hot effects, a 1 °C increase from the 75th to 99th percentiles of temperature was associated with corresponding increases of 2.83% (95% PI: 1.42%, 4.24%), 3.02% (95% PI: 1.33%, 4.71%) and 4.64% (95% PI: 1.96%, 7.31%). The latitudes, number of air conditioning per household and disposable income per capita were significant modifiers for cold effects; the proportion of the elderly was a significant modifier for hot effects. This largest epidemiological study of temperature to date in China suggested that both cold and hot temperatures were associated with increased mortality. Our findings may have important implications for the public health policies in China.

  13. Long-term surface temperature modeling of Pluto

    Science.gov (United States)

    Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.

    2017-05-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed at high resolution the striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as the sharpness of boundaries for longitudinal variations. These contrasts suggest that Pluto must undergo dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, we explore the surface temperature variations driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (peak-to-peak amplitude of 23° over 3 million years) and regression of the orbital longitude of perihelion (3.7 million years). These orbital variations create epochs of ;Extreme Seasons; where one pole receives a short, relatively warm summer and long winter, while the other receives a much longer, but less intense summer and short winter. We use thermal modeling to build upon the long-term insolation history model described by Earle and Binzel (2015) and investigate how these seasons couple with Pluto's albedo contrasts to create temperature effects. From this study we find that a bright region at the equator, once established, can become a site for net deposition. We see the region informally known as Sputnik Planitia as an example of this, and find it will be able to perpetuate itself as an ;always available; cold trap, thus having the potential to survive on million year or substantially longer timescales. Meanwhile darker, low-albedo, regions near the equator will remain relative warm and generally not attract volatile deposition. We argue that the equatorial region is a ;preservation zone; for whatever albedo is seeded there. This offers insight as to why the equatorial band of Pluto displays the planet's greatest albedo contrasts.

  14. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    Science.gov (United States)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  15. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  16. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  17. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    Science.gov (United States)

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process.

  18. Shell plus pairing effect arguments for cluster preformation at the nuclear surface in cold fission

    CERN Document Server

    Poenaru, D N

    2016-01-01

    In 1928 G. Gamow as well as Condon and Gurney gave the first explanation of alpha decay as a quantum tunnelling of a preformed particle at the nuclear surface. Soon after experimental discovery in 1984 by Rose and Jones of cluster radioactivity, confirming earlier (1980) predictions by Sandulescu, Poenaru and W. Greiner, a microscopic theory also explained the phenomenon in a similar way. Here we show for the first time that in a spontaneous cold fission process the shell plus pairing corrections calculated with Strutinsky's procedure may give a strong argument for preformation of a light fission fragment near the nuclear surface. It is obtained when the radius of the light fragment, $R_2$, is increased linearly with the separation distance, $R$, of the two fragments, while for $R_2=$~constant one gets the well known two hump potential barrier.

  19. Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    CERN Document Server

    Sagu'e, G; Meschede, D; Rauschenbeutel, A; Vetsch, E

    2007-01-01

    The strong evanescent field around ultra-thin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold atom cloud, we investigate the interaction of a small number of cold Caesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

  20. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  1. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  2. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  3. The Role of Cold-Shock Proteins in Low-Temperature Adaptation of Food-Related Bacteria

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Rombouts, Frank M.; Kuipers, Oscar P.; Vos, Willem M. de; Abee, T.

    2000-01-01

    There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane fluid

  4. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  5. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  6. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  7. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  8. Nanoscale guiding for cold atoms based on surface plasmons along the tips of metallic wedges

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Tang Wei-Min; Zhou Ming; Gao Chuan-Yu

    2013-01-01

    We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution.We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method,and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges.It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms.Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field.This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.

  9. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum.

    Science.gov (United States)

    Ma, Yue; Wang, Qiyao; Gao, Xiating; Zhang, Yuanxing

    2017-01-01

    Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.

  10. Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray

    Science.gov (United States)

    Rech, Silvano; Trentin, Andrea; Vezzù, Simone; Legoux, Jean-Gabriel; Irissou, Eric; Guagliano, Mario

    2011-01-01

    In this work, the influence of the substrate temperature on the deposition efficiency, on the coating properties and residual stress was investigated. Pure Al coatings were deposited on Al 6061 alloy substrates using a CGT Kinetics 3000 cold spray system. The substrate temperature was in a range between 20 (room temperature) and 375 °C and was kept nearly constant during a given deposition while all the other deposition parameters were unchanged. The deposited coatings were quenched in water (within 1 min from the deposition) and then characterized. The residual stress was determined by Almen gage method, Modified Layer Removal Method, and XRD in order to identify both the mean coating stress and the stress profile through the coating thickness from the surface to the coating-substrate interface. The residual stress results obtained by these three methods were compared and discussed. The coating morphology and porosity were investigated using optical and scanning electron microscopy.

  11. Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment

    Science.gov (United States)

    Krawczyk, B.; Heine, B.; Engelberg, D. L.

    2016-03-01

    Sand blasting followed by a surface linishing treatment was applied to optimize the near-surface microstructure of cold rolled type 316L stainless steel. The introduction of cold rolling led to the formation of α-martensite. Specimens with large thickness reductions (40, 53%) were more susceptible to localized corrosion. The application of sand blasting produced a near-surface deformation layer containing compressive residual stresses with significantly increased surface roughness, resulting in reduced corrosion resistance. The most resistant microstructure was obtained with the application of a final linishing treatment after sand blasting. This treatment produced microstructures with compressive near-surface residual stresses, reduced surface roughness, and increased resistance to localized corrosion.

  12. Study on preprocessing of surface defect images of cold steel strip

    Directory of Open Access Journals (Sweden)

    Xiaoye GE

    2016-06-01

    Full Text Available The image preprocessing is an important part in the field of digital image processing, and it’s also the premise for the image detection of cold steel strip surface defects. The factors including the complicated on-site environment and the distortion of the optical system will cause image degradation, which will directly affects the feature extraction and classification of the images. Aiming at these problems, a method combining the adaptive median filter and homomorphic filter is proposed to preprocess the image. The adaptive median filter is effective for image denoising, and the Gaussian homomorphic filter can steadily remove the nonuniform illumination of images. Finally, the original and preprocessed images and their features are analyzed and compared. The results show that this method can improve the image quality effectively.

  13. Reducing the loss of vaccines from accidental freezing in the cold chain: the experience of continuous temperature monitoring in Tunisia.

    Science.gov (United States)

    Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel

    2015-02-11

    Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of

  14. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  15. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  16. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Directory of Open Access Journals (Sweden)

    Yuelin Liu

    Full Text Available DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3, which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C, both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  17. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Science.gov (United States)

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  18. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  19. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  20. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  1. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  2. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  3. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  4. ESTABLISHING EMPIRICAL RELATION TO PREDICT TEMPERATURE DIFFERENCE OF VORTEX TUBE USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    PRABAKARAN J.

    2012-12-01

    Full Text Available Vortex tube is a device that produces cold and hot air simultaneously from the source of compressed air. In this work an attempt has been made to investigate the effect of three controllable input variables namely diameter of the orifices, diameter of the nozzles and inlet pressure over the temperature difference in the cold side as output using Response Surface Methodology (RSM. Experiments are conducted using central composite design with three factors at three levels. The influence of vital parameters and interaction among these are investigated using analysis of variance (ANOVA. The proposed mathematical model in this study has proven to fit and in line with experimental values with a 95% confidence interval. It is found that the inlet pressure and diameter of nozzle are significant factors that affect the performance of vortex tube.

  5. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    Science.gov (United States)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.

  6. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  7. An Experimental Study on the Drag Property of High-Temperature Particles Falling into Cold Liquid Pool

    Institute of Scientific and Technical Information of China (English)

    李小燕; 匡波; 杨燕华; 徐济鋆

    2003-01-01

    This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.

  8. Influence of state of Nb on recrystallization temperature during annealing in cold-rolled low-carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshio, E-mail: ogawa.m8b.toshio@jp.nssmc.com [Nagoya Works, Nippon Steel and Sumitomo Metal Corporation, 5-3 Tokai-machi, Tokai-shi, Aichi 476-8686 (Japan); Sugiura, Natsuko [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511 (Japan); Maruyama, Naoki; Yoshinaga, Naoki [Kimitsu R and D Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1 Kimitsu, Kimitsu, Chiba 299-1141 (Japan)

    2013-03-01

    The influence of state of Nb on recrystallization temperature during annealing in cold-rolled low-carbon steels was investigated. Two kinds of specimens showing a remarkable difference in recrystallization temperature were prepared. Differences in the features of Nb-containing precipitates larger than 3 nm were rarely observed, whereas differences in precipitates smaller than 3 nm were confirmed by atom-probe field-ion microscopy in each hot-rolled sheet. The difference in the recrystallization temperatures of both specimens probably originates in the state of Nb at the atomic scale before annealing.

  9. Seasonally and diurnally different response of surface air temperature to historical urbanization in Sapporo, North Japan

    Science.gov (United States)

    Sato, T.; Sugimoto, S.; Sasaki, T.

    2014-12-01

    Anthropogenic landscape changes have dramatically altered near surface climate in many regions of the world. In particular, regional/local-scale land use change is attributed to the long-term change in observed surface air temperature through changes in surface radiation budget and energy partitioning. This study analyses the response of surface air temperature characteristics to the historical urbanization in Sapporo, a snowy city in North Japan. Around Sapporo, natural forest has been cleared and replaced with urban since the late 19th century. Annual mean temperature in Sapporo has increased dramatically, whose rate being approximately twice of that in the station without urbanization. The rate of temperature increase shows asymmetric feature among seasons and dependent on time of the day; a prominent warming in winter daily minimum temperature and no significant trend in summer daily maximum temperature. In order to clarify the seasonal and diurnal dependence of the response to land use change, two 27-year simulations were conducted using WRF-ARW model nudged to reanalysis data during 19872/1983 winter to 2008/2009 winter; a control run uses past land cover and a sensitivity run uses present land cover. The numerical experiments successfully replicate the observed influence of urbanization with higher temperature change in winter nights and smaller temperature change in summer days. An analysis on surface energy balance indicates the changes in Bowen ratio is a primal cause of increasing sensible heat in both summer and winter. However, atmospheric response to the elevated sensible heat flux is very different depending on boundary layer structure between winter and summer or between night and day. This mechanism could clearly explain the asymmetric temperature trend observed worldwide, especially in cold regions where nocturnal inversion develops.

  10. The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Vieira, A; Siqueira, A F; Ferreira-Junior, J B; do Carmo, J; Durigan, J L Q; Blazevich, A; Bottaro, M

    2016-11-01

    This study investigated the effects of 5 and 15°C cold-water immersion on recovery from exercise resulting in exercise-induced muscle damage. 42 college-aged men performed 5×20 drop-jumps and were randomly allocated into one of 3 groups: (1) 5°C; (2) 15°C; or (3) control. After exercise, individuals from the cold-water immersion groups had their lower limbs immerged in iced water for 20 min. Isometric knee extensor torque, countermovement jump, muscle soreness, and creatine kinase were measured before, immediately after, 24, 48, 72, 96 and 168 h post-exercise. There was no between-group difference in isometric strength recovery (p=0.73). However, countermovement jump recovered quicker in cold-water immersion groups compared to control group (pmuscle soreness (p=0.06) in 15°C group compared to control at 24 h post-exercise. The result suggests that cold-water immersion promote recovery of stretch-shortening cycle performance, but not influence the recovery of maximal contractile force. Immersion at warmer temperature may be more effective than colder temperatures promoting recovery from strenuous exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Impacts of extraordinary warm and cold late-winter temperatures on observed and modelled plant phenology in Switzerland

    Science.gov (United States)

    Rutishauser, This; Stöckli, Reto

    2010-05-01

    The impact of gradual change in the climate system during the second half of the 20th century left a strong imprint on the timing of seasonal events in biotic and biotic systems such as e.g. plant development stages and the greenness of the Earth's surface. Temporal trends in seasonal events largely correspond to the effects expected from the increases in temperature. The impact of extraordinary temperature and precipitation events on plant phenology in spring is less understood. For example a strong early-spring frost event in the USA in April 2007 lead to reduced greenness and freeze damage to leaves and fruits of natural and horticultural species whereas a winter warming event in northern Scandinavia in December 2007 caused considerable damage to sub-Arctic dwarf shrub vegetation and reduced vegetation activity (26% reduced maximum Normalized Difference Vegetation Index NDVI relative to the previous year) in the following summer. In Germany and Switzerland, the effects of the extraordinary warm temperature anomalies of autumn 2006, winter 2006/2007 and spring 2007 showed strong impacts on selected plant phenological phases back to 1951 and 1702. Common hazel and snowdrop flowered up to 35 days earlier in Germany and beech and fruits tree were two weeks earlier in Switzerland. This contribution presents empirical evidence of extraordinary warm and cold late-winter temperatures on species-specific plant phenology and modelled landscape-scale phenology in Switzerland in the period 1958-2008. Species-specific observations were extracted from the Swiss Plant Phenological Network of MeteoSwiss for 23 low-altitude stations and 12 stations that report to the Global Climate Observation System (GCOS). Observations cover all climate regions and altitudes. For each GCOS station we also estimated daily Leaf Area Index with a prognostic phenology model. The model's empirical parameter space was constrained by assimilated Fraction of Photosynthetically Active Radiation

  12. Parameterizing Aggregation Rates: Results of cold temperature ice-ash hydrometeor experiments

    Science.gov (United States)

    Courtland, L. M.; Dufek, J.; Mendez, J. S.; McAdams, J.

    2014-12-01

    Recent advances in the study of tephra aggregation have indicated that (i) far-field effects of tephra sedimentation are not adequately resolved without accounting for aggregation processes that preferentially remove the fine ash fraction of volcanic ejecta from the atmosphere as constituent pieces of larger particles, and (ii) the environmental conditions (e.g. humidity, temperature) prevalent in volcanic plumes may significantly alter the types of aggregation processes at work in different regions of the volcanic plume. The current research extends these findings to explore the role of ice-ash hydrometeor aggregation in various plume environments. Laboratory experiments utilizing an ice nucleation chamber allow us to parameterize tephra aggregation rates under the cold (0 to -50 C) conditions prevalent in the upper regions of volcanic plumes. We consider the interaction of ice-coated tephra of variable thickness grown in a controlled environment. The ice-ash hydrometers interact collisionally and the interaction is recorded by a number of instruments, including high speed video to determine if aggregation occurs. The electric charge on individual particles is examined before and after collision to examine the role of electrostatics in the aggregation process and to examine the charge exchange process. We are able to examine how sticking efficiency is related to both the relative abundance of ice on a particle as well as to the magnitude of the charge carried by the hydrometeor. We here present preliminary results of these experiments, the first to constrain aggregation efficiency of ice-ash hydrometeors, a parameter that will allow tephra dispersion models to use near-real-time meteorological data to better forecast particle residence time in the atmosphere.

  13. Determination of the operating point and the enthalpy per unit surface of a cold battery with icy water and a double heat exchanger

    Directory of Open Access Journals (Sweden)

    B. Dieng1 ,

    2015-11-01

    Full Text Available The cold battery is a heat exchanger between two fluids, air (secondary fluid and iced water (primary fluid.The cold battery is composed of two heat exchangers in series, one of which is made up of flat-plate in galvanized steel serving as a reservoir for the iced water and the other one a copper shelland-tube exchanger with aluminum cooling blades. The two heat exchangers are connected to a pipe of the same diameter. These pipes will permit the transit of the icy water coming from the flat-plate heat exchanger by gravitation towards the tubes of the second exchanger [1]. The good operation of this cold battery depends on the knowledge of its operating point. We are proposing a technique of determination of the operating point by using one of the two fluids (water or air and the efficiencies [2, 3].The Knowledge of that operating point will enable us, through experimental means, determine the mean surface temperatureand then determine the mean surface enthalpy from the specific heat capacity at saturation obtained from the linearization of the entrance and exit air temperatures on the saturation curves.

  14. Evolution of magnetic phase at low aging temperature in a heavily cold-drawn stainless steel fiber

    Science.gov (United States)

    Yang, Shun-Tung; Hwang, Weng-Sing; Shyr, Tien-Wei; Cheng, I.-Lin

    2012-08-01

    The evolution of the magnetic phase upon aging at 300-520 °C in a heavily cold-drawn AISI 316L austenitic stainless steel fiber was studied using thermomagnetic analysis (TMA) and magnetic force microscopy with a heating stage. An increasing trend of magnetization from 50 °C to around 470 °C in the heating curves of TMA in austenitic stainless steels after a cold-drawing process was observed. No significant Ms temperature signal in the TMA curve at cooling indicated an increase in magnetization upon cooling period without significant phase transformation. A series of in situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic increase during aging at lower annealing temperature resulted from the growth of martensite.

  15. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    Science.gov (United States)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  16. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  17. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  18. Cold-air atmospheric pressure plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces.

    Science.gov (United States)

    Claro, Tânia; Cahill, Orla J; O'Connor, Niall; Daniels, Stephen; Humphreys, Hilary

    2015-06-01

    Clostridium difficile spores survive for months on environmental surfaces and are highly resistant to decontamination. We evaluated the effect of cold-air plasma against C. difficile spores. The single-jet had no effect while the multi-jet achieved 2-3 log10 reductions in spore counts and may augment traditional decontamination.

  19. Using Paraffin PCM, Cryogel and TEC to Maintain Comet Surface Sample Cold from Earth Approach Through Retrieval

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    An innovative thermal design concept to maintain comet surface samples cold (for example, 263 degrees Kelvin, 243 degrees Kelvin or 223 degrees Kelvin) from Earth approach through retrieval is presented. It uses paraffin phase change material (PCM), Cryogel insulation and thermoelectric cooler (TEC), which are commercially available.

  20. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  1. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  2. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  3. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  4. Composite self-similar solutions for relativistic shocks: The transition to cold fluid temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Margaret [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Sari, Re' em [California Institute of Technology, MS 130-33, Pasadena, California 91125 (United States) and Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2009-11-15

    The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytropelike density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the postbreakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through p/n of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are important only for extremely fast ejecta originating in a region very close to the stellar surface. This region grows if the shock becomes relativistic deeper in the star.

  5. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    Science.gov (United States)

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  6. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    Science.gov (United States)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  7. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  8. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  9. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  10. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  11. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  12. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  13. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    2 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 3University of ... Keywords: Urban growth, urban heat Island, land surface temperatures, satellite remote sensing .... observed target includes green vegetation or not.

  14. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  15. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  16. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  17. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  18. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  19. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  20. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  1. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  2. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  3. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  4. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  5. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    Science.gov (United States)

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-01

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  6. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  7. Investigating temperature breaks in the summer fruit export cold chain - a case study

    CSIR Research Space (South Africa)

    Freiboth, HW

    2013-11-01

    Full Text Available arrives. The fruit is then transported to the port for export to the destination market where it will be offered to the consumer. If the duration of the road transport segment from the pack house to the port of export exceeds two hours, the Perishable... and pears have a longer shelf life than grapes and can be held in cold storage for longer periods, depending on market conditions. Freshly harvested apples and pears are typically transferred to a regional pack house and cold store, they are then force...

  8. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  9. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  10. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  11. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma.

    Science.gov (United States)

    Idlibi, Ahmad Nour; Al-Marrawi, Fuad; Hannig, Matthias; Lehmann, Antje; Rueppell, Andre; Schindler, Axel; Jentsch, Holger; Rupf, Stefan

    2013-01-01

    The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72 h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.

  13. ANALISA MASA SIMPAN RENDANG IKAN TUNA DALAM KEMASAN VAKUM SELAMA PENYIMPANAN PADA SUHU RUANG DAN DINGIN Analysis of The Shelf Life of Tuna Fish as Rendang With Vacuum Packaging at Room Temperature Storage and Cold Temperatures

    OpenAIRE

    RAHMADANA.S

    2013-01-01

    2013 The objective of this research was to determine how many days the self life of rendang tuna which is packed normall and by using vacuum method at room temperature and cold storage and to determine the quality of rendang tuna which was packed normall and by using vacuum method at room temperature and cold storage. The treatment used in this study was A1B1(normall packaging stored at room temperature), A1B2 (normally packaging stored at cold temperature), A2B1 (vacuum packaging stored a...

  14. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  15. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  16. A new interpolation method for Antarctic surface temperature

    Institute of Scientific and Technical Information of China (English)

    Yetang Wang; Shugui Hou

    2009-01-01

    We propose a new methodology for the spatial interpolation of annual mean temperature into a regular grid with a geographic resolution of 0.01° for Antarctica by applying a recent compilation of the Antarctic temperature data.A multiple linear regression model of the dependence of temperature on some geographic parameters (i.e.,latitude,longitude,and elevation) is proposed empirically,and the kriging method is used to determine the spatial distribution of regional and local deviations from the temperature calculated from the multiple linear regression model.The modeled value and residual grids are combined to derive a high-resolution map of surface air temperature.The performance of our new methodology is superior to a variety of benchmark methods (e.g.,inverse distance weighting,kriging,and spline methods) via cross-validation techniques.Our simulation resembles well with those distinct spatial features of surface temperature,such as the decrease in annual mean surface temperature with increasing latitude and the distance away from the coast line;and it also reveals the complex topographic effects on the spatial distribution of surface temperature.

  17. Considerations on Temperature Inversions in the Lower Troposphere in the 2001-2002 Cold Season, South of the Carpathian Mountains

    Directory of Open Access Journals (Sweden)

    Florentina Bărcăcianu

    2014-10-01

    Full Text Available Temperature inversions are characterized by negative vertical thermal gradients (Donciu, 1953, Ţâştea, 1965, Bogdan, 1971, Neacşa, Frimescu, 1981. The most frequent manifestation is in the depression areas because in addition to radiative cooling and better possibility to store cold air invasion, it also takes place the accumulation and of air flow of cold air due to gravity. The area south of the Carpathians, shows depression features, gaining titles like: carpathianbalkanic bucket (Bălescu, 1962, carpathian-balkanic sink (Ion-Bordei, N. 1988. In this space the inversions occupy the entire area, proof being the values from low altitude stations similar to those from mountain peaks, while the middle part of the slope remains wormer.

  18. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    Science.gov (United States)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  19. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  20. Rhodotorula mucilaginosa BPT1 can form arthrospore in response to cold-temperature

    Institute of Scientific and Technical Information of China (English)

    Sahay Sanjay; Abdul Mazid Khan; Majid Butt; Tekram Sahu; Ravinder S Rana; Deepak Chouhan; Kamlesh Ranjan; Burhan Hamid

    2014-01-01

    Objective: To study carbon and nitrogen utilization pattern and arthrospore formation in a psychrotolerant yeast isolate Rhodotorula mucilaginosa (R. mucilaginosa) BPT1. Methods:Growth of the yeast on minimal synthetic medium supplemented with various carbon and nitrogen compounds as sole carbon or nitrogen source has been studied. Various physico-chemical parameters such as pH, restricted oxygen supply, temperatures, media composition and presence of methionine were tested to examine their effect on arthrospore formation by this known opportunistic pathogen. Results: The psychrotolerant isolate BPT1 identified on the basis of D1/D2 domain of large rDNA sequence characteristics as R. mucilaginosa showed some deviation in carbon and nitrogen utilization patterns from those of other strains of R. mucilaginosa in the CBS data base. Intriguingly, the isolate produced sub-surface hyphal rays around its colony at lower temperatures (4 °C and 20 °C) on PDA medium; the ray was found to be linearly arranged arthrospores. The arthrospore was not produced in liquid medium, or in presence of methionine or under micro-aerobic condition or at higher temperature. Conclusions: The investigation showed a novel feature i.e. arthrospore was formed by this yeast isolate under specific set of conditions. The results reiterated that only physiological and morphological characteristics were not sufficient to identify a yeast. The ability of R. mucilaginosa to form arthrospores seems to be an adaptive feature in response to extreme environmental condition, and represents adaptive ability having something to do with its ubiquity.

  1. Viscosity of Dysphagia-Oriented Cold-Thickened Beverages: Effect of Setting Time at Refrigeration Temperature

    Science.gov (United States)

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Background: Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical…

  2. Viscosity of Dysphagia-Oriented Cold-Thickened Beverages: Effect of Setting Time at Refrigeration Temperature

    Science.gov (United States)

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Background: Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical…

  3. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  4. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Understanding the spatial variation of Land Surface Temperature. (LST), will be ... positive correlation between mean of surface emissivity with date and ... deviation of 1.92 of LST and coefficient determinant R2 (0.46) show a ... (LST), as the prime and basic physical parameter of the earth's ..... thorough review of the paper.

  5. ENSO's far reaching connection to Indian cold waves.

    Science.gov (United States)

    Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio

    2016-11-23

    During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.

  6. Mechanical behaviour of membrane electrode assembly (MEA during cold start of PEM fuel cell from subzero environment temperature

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. Cold start capability and survivability of proton exchange membrane fuel cells (PEM in a subzero environment temperature remain a challenge for automotive applications. A key component of increasing the durability of PEM fuel cells is studying the behaviour of the membrane electrode assembly (MEA at the heart of the fuel cell. The present work investigates how the mechanical behaviour of MEA are influenced during cold start of the PEM fuel cell from subzero environment temperatures. Full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data.

  7. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  8. Crystallographic Texture Difference Between Center and Sub-Surface of Thin Cold-Drawn Pearlitic Steel Wires

    Science.gov (United States)

    Zhao, Tian-Zhang; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming; Zhang, Shi-Hong

    2014-09-01

    The texture difference between the center and sub-surface of pearlitic steel wires, which were manufactured by continuous cold drawing, was investigated by orientation distribution function based on electron back-scattered diffraction at different drawing passes. A perfect fiber texture parallel to drawing direction develops gradually with drawing strain increasing at the wire center, while at the sub-surface, a quasi fiber texture with the orientation nearly parallel to the circumferential direction is found. This texture at the sub-surface is softer than the perfect fiber texture in tension. The reasons for this texture difference and influences on the wire's mechanical properties are discussed.

  9. Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage.

    Science.gov (United States)

    Skripchenko, Andrey; Gelderman, Monique P; Awatefe, Helen; Turgeon, Annette; Thompson-Montgomery, Dedeene; Cheng, Chunrong; Vostal, Jaroslav G; Wagner, Stephen J

    2016-01-01

    Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated. A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6 °C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs. © 2015 AABB.

  10. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  11. Influence of Annealing Temperature on CZTS Thin Film Surface Properties

    Science.gov (United States)

    Feng, Wenmei; Han, Junfeng; Ge, Jun; Peng, Xianglin; Liu, Yunong; Jian, Yu; Yuan, Lin; Xiong, Xiaolu; Cha, Limei; Liao, Cheng

    2017-01-01

    In this work, copper zinc tin sulfide (CZTS) films were deposited by direct current sputtering and the samples were annealed in different oven-set temperatures and atmosphere (Ar and H2S). The surface evolution was investigated carefully by using scanning electron microscopy (SEM), Raman spectroscopy and x-ray photoelectron spectroscopy. The surface of the as-sputtered precursor contained little Cu and large amounts of Zn and Sn. The metallic precursor was continuous and compact without pinholes or cracks. With the increase of the temperature from room temperature to 250°C, Cu atoms diffused to the film surface to form Cu1- x S and covered other compounds. Some small platelets were smaller than 500 nm spreading randomly in the holes of the film surfaces. When the temperature reached 350°C, Zn and Sn atoms began to diffuse to the surface and react with S or Cu1- x S. At 400°C, SEM showed the melting of large particles and small particles with a size from 100 nm to 200 nm in the background of the film surface. Excess Zn segregated towards the surface regions and formed ZnS phase on the surface. In addition, the signal of sodium in the CZTS surface was observed above 400°C. At 600°C, a large amount of regular structures with clear edges and corners were observed in the film surface in SEM images. A clear recrystallized process on the surface was assumed from those observations.

  12. Climate Change Signal Analysis for Northeast Asian Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Byungsoo KIM; Keon-Tae SOHN; Won-Tae KOWN; Seung-Ki MIN

    2005-01-01

    Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

  13. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  14. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    Science.gov (United States)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  15. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  16. Application of a new feature extraction and optimization method to surface defect recognition of cold rolled strips

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFT) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved.Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally.

  17. Anatomical Structure Comparison Between Leaves of Two Winter Wheat Cultivars with Different Cold/Freezing Tolerance Under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    YU Jing; CANG Jing; ZHOU Zishan; LIU Lijie

    2011-01-01

    Winter wheat (Triticum aestivum) cultivars Dongnongdongmai 1 with strong cold/freezing tolerance and Jimai 22 with weak cold/freezing tolerance were used for investigating the difference of microstructure and ultrastructure between leaves of two cultivars under low temperature stress (5℃ and -15 ℃) using optical and electron microscope. The results showed that there was no obvious difference between leaves of Dongnongdongmai 1 and Jimai 22 in microstructure. However, the difference between those leaves was distinct in ultrastructure. The grana lamella and stroma lamella were stacked regularly and arranged parallelly along the long axis of chloroplasts in cv. Dongnongdongmai 1, while the arrangement directions of thylakoids in Jimai 22's leaves were so irregular as to form various angles with the long axis of chloroplasts. At -15℃, the mitochondrias were swelled to be round and the structure of cristaes became blurry in both cultivars' leaves, while some cristaes of Jimai 22 disappeared. These results would provide theoretical evidence for selecting cold/freezing tolerant winter wheat germplasm resources

  18. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  19. Mathematical modeling of rewarming after cold therapy.

    Science.gov (United States)

    Avet, L M

    1978-07-01

    Statistical methods are presented for fitting mathematical models to skin temperature data. Three types of regression curves, namely, linear regression (Y = A + BX), second-degree regression (Y = A + BX + CX2), and asymptotic regression (Y = alpha + betapx), are discussed as possible models for the rewarming process following cold therapy. The data for fitting the curves consists of back surface temperature (degrees C) corresponding to various times after cold pack treatment (19 degrees C, administered for 20 minutes) was terminated.

  20. Effects of salt and storage temperature on chemical microbiological and sensory changes in cold-smoked salmon

    DEFF Research Database (Denmark)

    Hansen, Lisbeth Truelstrup; Gill, T.; Huss, Hans Henrik

    1995-01-01

    Chemical, microbiological and sensory changes during storage of vacuum-packed cold-smoked salmon were studied using a factorial experimental design with two storage temperatures (5 and 10 degrees C) and two salt levels (2.2 and 4.6%). The spoilage characteristics were typical of microbiological...... activity in all treatments, but there was no relation between sensory changes and any of the microbiological numbers (total viable counts, total psychrotrophes, lactic acid bacteria or Enterobacteriaceae). Total viable counts typically reached 10(8) cfu/g weeks before sensory rejection. Acetic acid...

  1. Determining elastic and shear moduli of cold-formed steel at elevated temperatures using a new sonic resonance method

    Science.gov (United States)

    Ahmadi, Mehdi; Zhang, Haifeng; Yu, Cheng; Wahrmund, Joshua

    2014-01-01

    An understanding of the mechanical properties of cold-formed steel (CFS) at elevated temperatures is critical for the design of CFS structures and analysis of these structures under fire; however, not much literature exists on mechanical properties at elevated temperatures. We report the measurements of elastic and shear moduli for CFS (ASTM-A1003) at elevated temperatures up to 350°C using a novel sonic resonance method. A Bode 100 network analyser was used to excite the CFS samples hanging inside a high-temperature furnace via a simple tweeter-type speaker, and for each the response signal was then detected by a Polytec OFV-5000 Laser Vibrometer Controller (Polytec Inc. Irvine, CA 92618). The resonance frequencies in both flexural and torsional modes are measured by the network analyser as a function of temperature, which allowed us to determine the elastic and the shear moduli. Both the elastic and the shear moduli decrease as the temperature increases. The results reported can be used in the CFS structure design and modelling at elevated temperatures. The new experimental methodology has been validated by a classical coupon test.

  2. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  3. Rhinovirus contamination of surfaces in homes of adults with natural colds: transfer of virus to fingertips during normal daily activities.

    Science.gov (United States)

    Winther, B; McCue, K; Ashe, K; Rubino, J; Hendley, J O

    2011-05-01

    Multiple surfaces contaminated with rhinovirus were detected in hotel rooms by reverse transcriptase-polymerase chain reaction (RT-PCR) following occupancy by a cold sufferer. Whether infectious rhinovirus contaminates surfaces in homes and is transferred from surfaces to fingertips through normal activities is not known. Nasal secretions from 30 subjects with new colds were tested for rhinovirus genome by RT-PCR; infectious rhinovirus was sought with tissue cultures. Each subject identified 10 sites in their home touched during the preceding 24 hr. Samples from sites were tested for rhinovirus by RT-PCR and cell culture. Later, each subject's mucus (stored at -70°C) was deposited on surfaces for testing transfer to fingertips through daily life activities such as flipping a light switch, touching the telephone keypad, and holding the telephone handset. Nasal secretions from 16/30 subjects were positive for rhinovirus by RT-PCR; 66 (41%) of 160 surfaces in homes were positive. Contaminated surfaces included doorknobs (6 positive/18 tested), refrigerator door handles (8/14), TV remote controls (5/10), and bathroom faucets (8/10). Five (19%) of 26 RT-PCR positive sites from culture positive subjects were positive in cell culture. Nasal mucus from six culture positive subjects was deposited on objects. Infectious rhinovirus was detected on 22% of fingertips following contact with objects contaminated for 1 hr; transfer dropped to 3% after 24 hr of contamination, and 0% after 48 hr. Infectious rhinovirus found on surfaces in homes of people with colds can be transferred to fingertips, but infectivity of virus in mucus declines by 24 hr after deposition.

  4. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  5. Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing.

    Science.gov (United States)

    Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar

    2015-01-01

    American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance.

  6. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    Science.gov (United States)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  7. An analysis of the influence of logistics activities on the export cold chain of temperature sensitive fruit through the Port of Cape Town

    Directory of Open Access Journals (Sweden)

    Leila L. Goedhals-Gerber

    2015-02-01

    Full Text Available Background: South Africa exports a large variety of different fruit types and cultivars worldwide. Yet, there is concern in the South African fruit industry that too much fruit and money is lost each year due to breaks along the fresh fruit export cold chain.Objective: The objective of this article was to identify the influence of logistics activities on breaks along the South African fruit export cold chain. The focus is specifically on temperature sensitive fruit, exported in refrigerated containers to Europe and the United Kingdom through the Port of Cape Town. This supply chain was selected as this was the most accessible supply chain in terms of retrieving the necessary temperature data.Method: The cold chain was investigated from the cold store, through all segments, until the Port of Cape Town. Temperature data collected with temperature monitoring devices from different fruit export supply chains of grapes, plums and pome fruit (apples and pears were analysed to identify the percentage of temperature breaks and the length of temperature breaks that occur at each segment of the cold chain.Results: The results show that a large number of breaks are experienced along South Africa’s fruit export cold chain, specifically at the interface between the cold store and the truck. In addition, the findings also show that there has been an improvement in the number of breaks experienced in the Port of Cape Town following the implementation of the NAVIS and Refcon systems.Conclusion: This article concludes by providing the fruit industry with areas that require addressing to improve operational procedures along the fruit export cold chain to help ensure that the fruit arrives at its final destination at optimal quality.

  8. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  9. Investigation of the differences between the "COLD" and "HOT" nature of Coptis chinensis Franch and its processed materials based on animal's temperature tropism

    Institute of Scientific and Technical Information of China (English)

    ZHOU CanPing; WANG JiaBo; ZHANG XueRu; ZHAO YanLing; XIA XinHua; ZHAO HaiPing; REN YongShen; XIAO XiaoHe

    2009-01-01

    The description and differentiation of the so-called "Cold" and "Hot" natures,the primary "Drug Naure" of Chinese medicine,is the focus of theoretical research.In this study,the divergency between the "Cold" and the "Hot" natures was investigated through examining the temperature tropism of mice affected by Coptis chinensis Franch and its processed materials by using a cold/hot plate differentiating technology.After exposure to C.chinensis Franch,the macroscopic behavioral index of the remaining rate (RR)on a warm pad (40℃)significantly increased (P<0.05),suggesting the enhancement of Hot tropism.The internal indexes of adenosine triphosphatase (ATPase)activity and oxygen consuming volume decreased significantly (P<0.05),suggesting the decapability of energy metabolism.This external behavior of Hot tropism might reflect the internal Cold nature of C.chinensis Franch.However,the processed materials of C.chinensis Franch exhibited a different Cold nature in temperature tropism compared with crude C.chinensis Franch (CC):the Cold nature of bile-processed C.chinensis Franch (BC)enhanced while the ginger-processed C.chinensis Franch (GC)changed inversely.The changing sequence was consistent with the theoretical prognostication.It is indicated that the external Cold & Hot natures of Chinese medicine may possibly reflect in an ethological way for the changes of animal's temperature tropism which might be internally regulated by the body's energy metabolism.

  10. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    Science.gov (United States)

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  11. Inhomogeneous response of expiratory muscle activity to cold block of the ventral medullary surface.

    Science.gov (United States)

    Chonan, T; Okabe, S; Hida, W; Izumiyama, T; Kikuchi, Y; Takishima, T

    1991-11-01

    We assessed the effects of cooling the ventral medullary surface (VMS) on the activity of chest wall and abdominal expiratory muscles in eight anesthetized artificially ventilated dogs after vagotomy and denervation of the carotid sinus nerves. Electromyograms (EMGs) of the triangularis sterni, internal intercostal, abdominal external oblique, abdominal internal oblique, and transversus abdominis muscles were measured with EMG of the diaphragm as an index of inspiratory activity. Bilateral localized cooling (2 x 2 mm) in the thermosensitive intermediate part of the VMS produced temperature-dependent reduction in the EMG of diaphragm and abdominal muscles. The rib cage expiratory EMGs were little affected at 25 degrees C; their amplitudes decreased at lower VMS temperatures (less than 20 degrees C) but by significantly fewer degrees than the diaphragmatic and abdominal expiratory EMGs at a constant VMS temperature. With moderate to severe cooling (less than 20 degrees C) diaphragmatic EMG disappeared, but rib cage expiratory EMGs became tonic and resumed a phasic pattern shortly before the recovery of diaphragmatic EMG during rewarming of the VMS. These results indicate that the effects of cooling the VMS differ between the activity of rib cage and abdominal expiratory muscles. This variability may be due to inhomogeneous inputs from the VMS to expiratory motoneurons or to a different responsiveness of various expiratory motoneurons to the same input either from the VMS or the inspiratory neurons.

  12. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperatu......-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants.......Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperature......, viz., 10.0°C) at the Zadoks growth stage 28 (i.e.re-greening stage, starting on 20th of March) for 7d, and after 14d of recovery the plants were subsequently subjected to a 5d low temperature stress (8.4°C lower than the ambient temperature, viz., 14.1°C) at the Zadoks growth stage 31 (i...

  13. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  14. The role of large-scale atmospheric circulation in the formation of temperature anomalies in surface waters as illustrated by the northern part of the Pacific Ocean

    Science.gov (United States)

    Sorkina, A. I.

    1975-01-01

    One important reason for thermal anomalies in the ocean is the dynamic action of anomalous wind systems that set masses of surface water in motion; predominant longitudinal transport of water and air leads to a significant redistribution of cold and warm waters. Heat exchange between the ocean and atmosphere plays an additional role in the formation of water temperature anomalies.

  15. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    Science.gov (United States)

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  16. Investigation of surface properties of high temperature nitrided titanium alloys

    Directory of Open Access Journals (Sweden)

    E. Koyuncu

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, X-Ray diffraction and Vickers hardness.Findings: Two layers were determined by optic inspection on the samples that were called the compound and diffusion layers. Compound layer contain TiN and Ti2N nitrides, XRD results support in this formations. Maximum hardness was obtained at 10h treatment time and 1000°C treatment temperature. Micro hardness tests showed that hardness properties of the nitrided samples depend on treatment time and temperature.Practical implications: Titanium and its alloys have very attractive properties for many industries. But using of titanium and its alloys is of very low in mechanical engineering applications because of poor tribological properties.Originality/value: The nitriding of titanium alloy surfaces using plasma processes has already reached the industrial application stage in the biomedical field.

  17. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ ...... is covered with adsorbed oxygen which vanishes at high temperature (1000øC). On Ni (YSZ) a specific layer of NiO is observed abovethe equilibrium potential while no surface species can identified at SOFC anode conditions....

  18. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  19. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse;

    1998-01-01

    in contact with YSZ is covered with adsorbed oxygen which vanishes at high temperature (1000 degrees C). On Ni (YSZ) a specific layer of NiO is observed above the equilibrium potential while no surface species involving hydrogen can be identified at SOFC anode conditions. (C) 1998 Published by Elsevier......The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  20. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  1. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  2. The Land Surface Temperature Impact to Land Cover Types

    Science.gov (United States)

    Ibrahim, I.; Abu Samah, A.; Fauzi, R.; Noor, N. M.

    2016-06-01

    Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R2 = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.

  3. The impact of cold chain temperature abuses on the quality of frozen strawberries (Fragaria ×ananassa

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2013-04-01

    Full Text Available The quality of frozen foods can be negatively affected if improper storage and distribution temperatures are allowed. The objective of this study was to investigate the effect of freeze-thaw cycles, which may occur in the cold chain, on colour (Lab, Total Colour Differences (TCD, chroma and hue angle and vitamin C (ascorbic and dehydroascorbic acids content of frozen strawberries (Fragaria ×ananassa, Duschesne, cv. Selva. A plan of temperature abuses (TAs was established, based on a real situation, and applied to frozen strawberries during a four month frozen storage period. The results showed that the lightness (L was the only parameter that was not significantly affected by range of TAs studied. The colour showed some variation on the parameters a, b, TCD, chroma and hue angle. During TAs, ascorbic acid decreased about 75% and dehydroascorbic acid increased 73%. The non-abused strawberry samples showed better overall appearance than the abused samples. This work contributes to an understanding of the quality changes of frozen strawberries that might occur during frozen storage and cold chain distribution.

  4. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    Science.gov (United States)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  5. New indexing and surface temperature analysis of exoplanets

    CERN Document Server

    Kashyap, J M; Safonova, M

    2016-01-01

    Study of exoplanets is the holy grail of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth\\-the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity,...

  6. INVESTIGATION OF SURFACE TEMPERATURE IN HIGH-EFFICIENCY DEEP GRINDING

    Institute of Scientific and Technical Information of China (English)

    Zhao Henghua; Cai Guangqi; Jin Tan

    2005-01-01

    A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.

  7. Cold-induced metabolism

    NARCIS (Netherlands)

    van Marken Lichtenbelt, W.D.; Daanen, A.M.

    2003-01-01

    Cold-induced metabolism. van Marken Lichtenbelt WD, Daanen HA. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. PURPOSE OF REVIEW: Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesi

  8. Who is more vulnerable to death from extremely cold temperatures? A case-only approach in Hong Kong with a temperate climate

    Science.gov (United States)

    Qiu, Hong; Tian, Linwei; Ho, Kin-fai; Yu, Ignatius T. S.; Thach, Thuan-Quoc; Wong, Chit-Ming

    2016-05-01

    The short-term effects of ambient cold temperature on mortality have been well documented in the literature worldwide. However, less is known about which subpopulations are more vulnerable to death related to extreme cold. We aimed to examine the personal characteristics and underlying causes of death that modified the association between extreme cold and mortality in a case-only approach. Individual information of 197,680 deaths of natural causes, daily temperature, and air pollution concentrations in cool season (November-April) during 2002-2011 in Hong Kong were collected. Extreme cold was defined as those days with preceding week with a daily maximum temperature at or less than the 1st percentile of its distribution. Logistic regression models were used to estimate the effects of modification, further controlling for age, seasonal pattern, and air pollution. Sensitivity analyses were conducted by using the 5th percentile as cutoff point to define the extreme cold. Subjects with age of 85 and older were more vulnerable to extreme cold, with an odds ratio (OR) of 1.33 (95 % confidence interval (CI), 1.22-1.45). The greater risk of extreme cold-related mortality was observed for total cardiorespiratory diseases and several specific causes including hypertensive diseases, stroke, congestive heart failure, chronic obstructive pulmonary disease (COPD), and pneumonia. Hypertensive diseases exhibited the greatest vulnerability to extreme cold exposure, with an OR of 1.37 (95 % CI, 1.13-1.65). Sensitivity analyses showed the robustness of these effect modifications. This evidence on which subpopulations are vulnerable to the adverse effects of extreme cold is important to inform public health measures to minimize those effects.

  9. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  10. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  11. A Trend Between Cold Debris Disk Temperature and Stellar Type: Implications for the Formation and Evolution of Wide-Orbit Planets

    CERN Document Server

    Ballering, Nicholas P; Su, Kate Y L; Montiel, Edward

    2013-01-01

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both Spitzer IRS and MIPS. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g. non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.

  12. Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot-scale experiments with field-aged contaminated soils from a cold regions site.

    Science.gov (United States)

    Chang, Wonjae; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Temporal atmospheric temperature changes during summers at sub-Arctic sites often cause periodic fluctuations in shallow landfarm and surface soil temperatures. However, little information is available on the effect of site-relevant variations on biodegradation performance in cold climates. This study compares the rate and extents of biodegradation of petroleum hydrocarbons at variable site temperatures (1-10 °C) representative of summers at a sub-Arctic site reported previously with those obtained under a constant average temperature of 6 °C. The biodegradation was evaluated in pilot-scale landfarming experiments with field-aged petroleum-contaminated soils shipped from Resolution Island (61°30'N, 65°00'W), Nunavut, Canada. Under the variable site temperature conditions biodegradation rate constants of semi- (F2) and non-volatile (F3) hydrocarbon fractions were enhanced by over a factor of two during the 60-d experiment, compared to the constant temperature mode. The decrease in total petroleum hydrocarbons (TPH) under the variable site temperature mode was 55% compared to only 19% under the constant average temperature mode. The enhanced biodegradation is attributable to the non-linear acceleration of microbial activity between 4.7 and 10°C and faster growth of indigenous hydrocarbon-degrading microbial populations. The first-order biodegradation rate constants of 0.018, 0.024 and 0.016 d(-1) for TPH, F2 and F3 fractions at the variable site temperature were in agreement with those determined by an on-site experiment at the same site.

  13. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  14. Quantifying and specifying the solar influence on terrestrial surface temperature

    NARCIS (Netherlands)

    de Jager, C.; Duhau, S.; van Geel, B.

    2010-01-01

    This investigation is a follow-up of a paper in which we showed that both major magnetic components of the solar dynamo, viz. the toroidal and the poloidal ones, are correlated with average terrestrial surface temperatures. Here, we quantify, improve and specify that result and search for their caus

  15. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  16. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  17. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  18. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  19. Surface temperature maps for II Peg during 1999-2002

    CERN Document Server

    Lindborg, M; Tuominen, I; Hackman, T; Ilyin, I; Piskunov, N

    2009-01-01

    The active RS CVn star II Peg has been spectroscopically monitored for almost 18 years with the SOFIN spectrograph at NOT, La Palma, Spain. In this paper we present five new surface temperature maps of the object for the years 1999 (two maps), 2001 (one map) and 2002 (two maps).

  20. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  1. Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature

    Directory of Open Access Journals (Sweden)

    Cecilia Martínez-Rosales

    2011-04-01

    Full Text Available We report the isolation and identification of bacteria that produce extracellular cold-active proteases, obtained from water samples collected near the Uruguayan Antarctic Base on King George Island, South Shetlands. The bacteria belonged to the genera Pseudomonas (growth between 4 and 30 °C and Flavobacterium (growth between 4 and 18 °C. In all cases, extracellular protease production was evident when reaching the stationary phase at 18 and 4 °C but was not detected at 30 °C. The zymogram revealed the secretion of one extracellular protease per isolate, each with different relative electrophoretic mobility. The extracellular proteases produced at 4 °C showed thermal activity and stability at 30 °C. Both activity and stability at a temperature higher that 10 °C have no physiological meaning because the isolates do not experience such temperatures in the Antarctic environment; however, the possible ecological value of cold-active and -stable extracellular proteases is discussed.

  2. Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures

    Directory of Open Access Journals (Sweden)

    Cowling Wallace A

    2011-06-01

    Full Text Available Abstract Background Unreduced gametes (gametes with the somatic chromosome number may provide a pathway for evolutionary speciation via allopolyploid formation. We evaluated the effect of genotype and temperature on male unreduced gamete formation in Brassica allotetraploids and their interspecific hybrids. The frequency of unreduced gametes post-meiosis was estimated in sporads from the frequency of dyads or giant tetrads, and in pollen from the frequency of viable giant pollen compared with viable normal pollen. Giant tetrads were twice the volume of normal tetrads, and presumably resulted from pre-meiotic doubling of chromosome number. Giant pollen was defined as pollen with more than 1.5 × normal diameter, under the assumption that the doubling of DNA content in unreduced gametes would approximately double the pollen cell volume. The effect of genotype was assessed in five B. napus, two B. carinata and one B. juncea parents and in 13 interspecific hybrid combinations. The effect of temperature was assessed in a subset of genotypes in hot (day/night 30°C/20°C, warm (25°C/15°C, cool (18°C/13°C and cold (10°C/5°C treatments. Results Based on estimates at the sporad stage, some interspecific hybrid genotypes produced unreduced gametes (range 0.06 to 3.29% at more than an order of magnitude higher frequency than in the parents (range 0.00% to 0.11%. In nine hybrids that produced viable mature pollen, the frequency of viable giant pollen (range 0.2% to 33.5% was much greater than in the parents (range 0.0% to 0.4%. Giant pollen, most likely formed from unreduced gametes, was more viable than normal pollen in hybrids. Two B. napus × B. carinata hybrids produced 9% and 23% unreduced gametes based on post-meiotic sporad observations in the cold temperature treatment, which was more than two orders of magnitude higher than in the parents. Conclusions These results demonstrate that sources of unreduced gametes, required for the triploid

  3. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    Science.gov (United States)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-07-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  4. Body temperatures and behavior of American alligators during cold winter weather

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  5. Modeling the surface temperature of Earth-like planets

    CERN Document Server

    Vladilo, G; Murante, G; Filippi, L; Provenzale, A

    2015-01-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...

  6. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  7. A model of the tropical Pacific sea surface temperature climatology

    Science.gov (United States)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  8. Temperature maps measurements on 3D surfaces with infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Cardone, Gennaro; Ianiro, Andrea [University of Naples Federico II, Department of Aerospace Engineering (DIAS), Naples (Italy); Ioio, Gennaro dello [University of Cambridge, BP Institute for Multiphase Flow, Cambridge, England (United Kingdom); Passaro, Andrea [Alta SpA, Ospedaletto, PI (Italy)

    2012-02-15

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel. (orig.)

  9. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  10. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva;

    2014-01-01

    of four state equations. Taking advantage of the psychrometric relationship between temperature and vapor pressure, the present method also estimates the near surface moisture availability (M) from TS, air temperature (TA) and relative humidity (RH), thereby being capable of decomposing λ...

  11. Investigation of the differences between the "Cold" and "Hot" nature of Coptis chinensis Franch and its processed materials based on animal's temperature tropism.

    Science.gov (United States)

    Zhou, CanPing; Wang, JiaBo; Zhang, XueRu; Zhao, YanLing; Xia, XinHua; Zhao, HaiPing; Ren, YongShen; Xiao, XiaoHe

    2009-11-01

    The description and differentiation of the so-called "Cold" and "Hot" natures, the primary "Drug Naure" of Chinese medicine, is the focus of theoretical research. In this study, the divergency between the "Cold" and the "Hot" natures was investigated through examining the temperature tropism of mice affected by Coptis chinensis Franch and its processed materials by using a cold/hot plate differentiating technology. After exposure to C. chinensis Franch, the macroscopic behavioral index of the remaining rate (RR) on a warm pad (40 degrees C) significantly increased (Pnature of C. chinensis Franch. However, the processed materials of C. chinensis Franch exhibited a different Cold nature in temperature tropism compared with crude C. chinensis Franch (CC): the Cold nature of bile-processed C. chinensis Franch (BC) enhanced while the ginger-processed C. chinensis Franch (GC) changed inversely. The changing sequence was consistent with the theoretical prognostication. It is indicated that the external Cold & Hot natures of Chinese medicine may possibly reflect in an ethological way for the changes of animal's temperature tropism which might be internally regulated by the body's energy metabolism.

  12. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  13. Wire and Cable Cold Bending Test

    Science.gov (United States)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  14. Calculation of Temperature Distribution in Capsule for Neutron Exposure of the Cold Moderator Materials

    CERN Document Server

    Ro Du Min

    2004-01-01

    Methods and results of the numerical calculation of temperature distribution in the spherical segmented small capsule filled with heat-generating substance are presented. Variable finite-difference method allowed one to evaluate a small drop of temperature near the boundary between the filling substance and the thermocouple installed inside the capsule, which originates from the difference in thermal conductivity.

  15. Remote Sensing of the North American Laurentian Great Lakes’ Surface Temperature

    Directory of Open Access Journals (Sweden)

    Sitthisak Moukomla

    2016-03-01

    Full Text Available The Great Lakes Surface Temperature (GLST is the key to understanding the effects of climate change on the Great Lakes (GL. This study provides the first techniques to retrieve pixel-based GLST under all sky conditions by merging skin temperature derived from the MODIS Land Surface Temperature (MOD11L2 and the MODIS Cloud product (MOD06L2 from 6 July 2001 to 31 December 2014, resulting in 18,807 scenes in total 9373 (9434 scenes for MOD11L2 (MOD06L2. The pixel-based GLST under all sky conditions was well-correlated with the in situ observations (R2 = 0.9102 with a cool bias of −1.10 °C and a root mean square error (RMSE of 1.39 °C. The study also presents the long-term trends of GLST. Contrary to expectations, it decreased slightly due to the impact of an anomalously cold winter in 2013–2014.

  16. Low-frequency variability of surface air temperature over the Barents Sea: causes and mechanisms

    Science.gov (United States)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, Rune G.

    2016-08-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations in the sea-ice cover, which then cause massive changes in the ocean-atmosphere heat exchanges. Here we describe the mechanism driving surface temperatures and heat fluxes in the Barents Sea based primarily on analyzes of one global coupled climate model. It is found that the ocean drives the low-frequency changes in surface temperature, whereas the atmosphere compensates the oceanic transport anomalies. The seasonal dependence and the role of individual components of the ocean-atmosphere energy budget are analyzed in detail, showing that seasonally-varying climate mechanisms play an important role. Herein, sea ice is governing the seasonal response, by acting as a lid that opens and closes during warm and cold periods, respectively, thereby modulating the surface heat fluxes.

  17. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems

    Science.gov (United States)

    Martín-Chivelet, Javier; Muñoz-García, M. Belén; Edwards, R. Lawrence; Turrero, María J.; Ortega, Ana I.

    2011-05-01

    The surface temperature changes for the last 4000 years in northern inland Iberia (an area particularly sensitive to climate change) are determined by a high resolution study of carbon stable isotope records of stalagmites from three caves (Kaite, Cueva del Cobre, and Cueva Mayor) separated several tens of kilometers away in N Spain. Despite the local conditions of each cave, the isotopic series show a good overall coherence, and resulted to be strongly sensitive to surface temperature changes. The record reflects alternating warmer and colder intervals, always within a temperature range of 1.6 °C. The timing and duration of the intervals were provided by 43 230Th- 234U (ICP-MS) ages. Main climatic recognized periods are: (1) 3950-3000 yr BP: warm period punctuated by cool events around ~ 3950, 3550 and 3250 yr BP; (2) 2850-2500 yr BP cold interval (Iron Age Cold Period); (3) 2500-1650 yr BP moderate warm period (Roman Warm Period), with maximum temperatures between 2150 and 1750 yr BP; (4) 1650-1350 yr BP cold interval (Dark Ages Cold Period), with a thermal minimum at ~ 1500 yr BP; (5) 1350-750 yr BP warm period (Medieval Warm Period) punctuated by two cooler events at ~ 1250 and ~ 850 yr BP; (6) 750-100 yr BP cold period (Little Ice Age) with extremes occurring at 600-500 yr BP, 350-300 yr BP, and 150-100 yr BP; and (7) the last 150 years, characterized by rapid but no linear warming (Modern Warming). Remarkably, the presented records allow direct comparison of recent warming with former warm intervals such as the Roman or the Medieval periods. That comparison reveals the 20th century as the time with highest surface temperatures of the last 4000 years for the studied area. Spectral analysis of the time series shows consistent climatic cycles of ~ 400, ~ 900 and ~ 1300 yr, comparable with those recognized in the North Atlantic marine record, the Greenland ice cores, and other terrestrial records for the middle-late Holocene, suggesting common climate forcing

  18. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  19. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective.

  20. Electron Density and Temperature Measurement by Stark Broadening in a Cold Argon Arc-Plasma Jet at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiuping; CHENG Cheng; MENG Yuedong

    2009-01-01

    Determination of both the electron density and temperature simultaneously in a cold argon arc-plasma jet by analyzing the Stark broadening of two different emission lines is presented.This method is based on the fact that the Stark broadening of different lines has a different dependence on the electron density and temperature.Therefore,a comparison of two or more line broadenings allows us to diagnose the electron density and temperature simultaneously.In this study we used the first two Balmer series hydrogen lines H_α and H_β for their large broadening width.For this purpose,a small amount of hydrogen was introduced into the discharge gas.The results of the Gigosos-Cardenoso computational model,considering more relevant processes for the hydrogen Balmer lines,is used to process the experimental data.With this method,we obtained reliable electron density and temperature,1.88 ×10 ~(15) cm~(-3 )and 13000 K,respectively.Possible sources of error were also analyzed.

  1. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  2. Sea surface temperatures in the North Atlantic Ocean from 30ka to 10ka

    Science.gov (United States)

    Barrack, Kerr; Greenop, Rosanna; Burke, Andrea; Barker, Stephen; Chalk, Thomas; Crocker, Anya

    2016-04-01

    Some of the most striking features of the Late Pleistocene interval are the rapid changes in climate between warmer interstadial and cold stadial periods which, when coupled, are termed Dansgaard-Oeschger (D-O) events. This shift between warm and cold climates has been interpreted to result from changes in the thermohaline circulation (Broecker et al., 1985) triggered by, for instance, freshwater input from the collapse of the Laurentide ice sheet (Zahn et al., 1997). However, a recent study suggests that major ice rafting events cannot be the 'trigger' for the centennial to millennial scale cooling events identified over the past 500kyr (Barker at al., 2015). Polar planktic foraminiferal and lithogenic/terrigenous grain counts reveal that the southward migration of the polar front occurs before the deposition of ice rafted debris and therefore the rafting of ice during stadial periods. Based upon this evidence, Barker et al. suggest that the transition to a stadial state is a non-linear response to gradual cooling in the region. In order to test this hypothesis, our study reconstructs sea surface temperature across D-O events and the deglaciation in the North Atlantic between 30ka and 10ka using Mg/ Ca paleothermometry in Globigerina bulloides at ODP Sites 980 and 983 (the same sites as used in Barker et al., 2015) with an average sampling resolution of 300 years. With our new record we evaluate the timing of surface ocean temperature change, frontal shift movement, and ice rafting to investigate variations in the temperature gradient across the polar front over D-O events. References: Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature, 520(7547), pp.333-336. Broecker, W.S., Peteer, D.M., Rind, D., 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315 (6014), pp.21-26. Zahn, R., Schönfeld, J., Kudrass, H.-R., Park, M

  3. Surface emissivity and temperature retrieval for a hyperspectral sensor

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  4. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  5. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A. [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  6. The dependence of surface temperature on IGBTs load and ambient temperature

    Science.gov (United States)

    Alexander, Čaja; Marek, Patsch

    2015-05-01

    Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT) elements by loop heat pipe (LHP). IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  7. The dependence of surface temperature on IGBTs load and ambient temperature

    Directory of Open Access Journals (Sweden)

    Alexander Čaja

    2015-01-01

    Full Text Available Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT elements by loop heat pipe (LHP. IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  8. Reconstruction of MODIS daily land surface temperature under clouds

    Science.gov (United States)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  9. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  10. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  11. Piglets’ Surface Temperature Change at Different Weights at Birth

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  12. Piglets' surface temperature change at different weights at birth.

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; Dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva Dos Santos, Rita

    2014-03-01

    The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  13. Piglets’ Surface Temperature Change at Different Weights at Birth

    Directory of Open Access Journals (Sweden)

    Fabiana Ribeiro Caldara

    2014-03-01

    Full Text Available The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW: T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS. Images of piglets’ surface by thermal imaging camera were recorded at birth (STB and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815 with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  14. Effects of taste solutions, carbonation, and cold stimulus on the power frequency content of swallowing submental surface electromyography.

    Science.gov (United States)

    Miura, Yutaka; Morita, Yuji; Koizumi, Hideki; Shingai, Tomio

    2009-05-01

    This study explored the effects of 5 taste solutions (citric acid, sucrose, sodium chloride, caffeine, and sodium glutamate) versus water on the power frequency content of swallowing submental surface electromyography (sEMG). Healthy subjects were presented with 5 ml of each of 5 tastants and water. Data were collected in 3 trials of the 5 tastants and water by using submental sEMG, which was then subjected to spectral analysis. Sour and salt taste solutions increased the spectrum-integrated values of the total power components. The spectrum-integrated values of low-frequency power (below 10 Hz) in the salt taste trial significantly increased, whereas those of high-frequency power (above 10 Hz) in the sour taste trial tended to increase. Neither pleasantness nor intensity of taste was related to these changes. This study also explored the effects of carbonation and cold stimulus on the power frequency content of continuous swallowing sEMG for 60-ml solutions. Carbonation significantly increased the spectrum-integrated value of the total power components by significantly increasing the high-frequency content. Cold stimulus significantly decreased the low-frequency content. In summary, this study reveals that taste, carbonation, and cold stimulus have qualitatively different influences on the power frequency content of swallowing sEMG.

  15. THE COLD SOURCE TEMPERATURE OF AIR CONDITIONING AND THE ENERGY EFFICIENCY OF CHILLERS%空调冷源温度与冷水机组的能效

    Institute of Scientific and Technical Information of China (English)

    闫佳佳; 孔璐玲; 李永安; 刘学来

    2011-01-01

    在阐明影响冷水机组能效的基础上,利用压焓图,对制冷循环进行了热力学分析,进而以表格的形式列出了制冷剂分别为R134a和R407c,冷凝温度为40℃,蒸发温度在5℃~16℃之间变化时,制冷理论循环的单位质量制冷量、耗功量及制冷系数的变化规律.结果表明,制冷剂分别为R134a、R407c时,蒸发温度每升高1℃,制冷系数平均提高4.31%、4.33%,这为毛细管平面辐射空调系统采用高温冷源提供了理论依据.%The article clarifies the influencing factor of chiller energy efficiency, uses the pressing-enthalpy diagram and carries out thermodynamic analysis for the refrigeration cycle. If the refrigerant is R134a or R407c, when the condensing temperature is 40 ℃, the evaporating temperature is changed from 5 ℃ to 16 ℃ ,the variation of cooling capacity .power consumption and cop are listed in tables. The results show that if the refrigerant is R134a, the evaporation temperature increases by 1 ℃, cop in-creased 4. 31% , and if the refrigerant is R407c,the evaporation temperature increases by 1 ℃, cop in-creased 4. 33%. The article provides a theoretical basis for the capillary surface radiation air-conditioning system which using the high temperature cold source.

  16. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    Science.gov (United States)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2017-01-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  17. Effects of processing parameters on the surface quality of directionally solidified titanium alloy slab with cold crucible

    Directory of Open Access Journals (Sweden)

    WANG Yan-li

    2006-02-01

    Full Text Available Experiments of continuous and directional solidification of titanium alloy slabs were performed using authors-designed multi-function directional solidification apparatus with rectangular cold crucible. Influences of processing parameters on the surface qualities of the solidified slabs were studied. It is shown that the slab surface qualities can be effectively improved with increasing of the turns in coil and input power, and with decreasing of withdrawal velocity and relatively low position of pedestal to the induction coil. The influences of the processing parameters in the descending order are as follows: the turns in coil, input power, withdrawal velocity and the relative position of pedestal. With optimized parameters, quality slabs free from cracks and ripples were obtained. The solidified structure with good surface quality shows directionally solidified structure.

  18. Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Directory of Open Access Journals (Sweden)

    C. L. Pérez Díaz

    2015-08-01

    Full Text Available Land Surface Temperature (LST is a key variable (commonly studied to understand the hydrological cycle that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air and snow skin temperature (T-skin helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  19. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Science.gov (United States)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  20. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China.

    Science.gov (United States)

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-12-10

    Background: Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods: We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results: The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions: In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient temperature

  1. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    Science.gov (United States)

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  2. Teleconnected influence of North Atlantic sea surface temperature on the El Nino onset

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Chinese Academy of Sciences, Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Guangzhou (China); City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Hong Kong (China); Wang, Chunzai [NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, FL (United States); Zhou, Wen [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Hong Kong (China); Wang, Dongxiao [Chinese Academy of Sciences, Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Guangzhou (China); Song, Jie [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China)

    2011-08-15

    Influence of North Atlantic sea surface temperature (SST) anomalies on tropical Pacific SST anomalies is examined. Both summer and winter North Atlantic SST anomalies are negatively related to central-eastern tropical Pacific SST anomalies in the subsequent months varying from 5 to 13 months. In particular, when the North Atlantic is colder than normal in the summer, an El Nino event is likely to be initiated in the subsequent spring in the tropical Pacific. Associated with summer cold North Atlantic SST anomalies is an anomalous cyclonic circulation at low-level over the North Atlantic from subsequent October to April. Corresponded to this local response, an SST-induced heating over the North Atlantic produces a teleconnected pattern, similar to the East Atlantic/West Russia teleconnection. The pattern features two anticyclonic circulations near England and Lake Baikal, and two cyclonic circulations over the North Atlantic and near the Caspian Sea. The anticyclonic circulation near Lake Baikal enhances the continent northerlies, and strengthens the East-Asian winter monsoon. These are also associated with an off-equatorial cyclonic circulation in the western Pacific during the subsequent winter and spring, which produces equatorial westerly wind anomalies in the western Pacific. The equatorial westerly wind anomalies in the winter and spring can help initiate a Pacific El Nino event following a cold North Atlantic in the summer. (orig.)

  3. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea

    Science.gov (United States)

    Yeh, Sang-Wook; Park, Young-Gyu; Min, HongSik; Kim, Cheol-Ho; Lee, Jae-Hak

    2010-06-01

    We examine the characteristics of sea surface temperature (SST) variability in the East/Japan Sea (EJS) for the period of 1891-2005 using 1°×1° latitude and longitude resolution datasets from the Japan Meteorological Agency and the Hadley Centre. A significant warming trend that manifests itself more strongly over the southern part of the sea is observed. In addition, it is found in the EJS that warming during the boreal winter is more significant than that during the summer. The EJS SST index, obtained from the time series of monthly SST anomaly averaged over the western half of the EJS, where large SST anomaly standard deviation is observed, has a primary spectral density at a frequency longer than a decade and a secondary peak at the annual frequency band. The variability of the low-frequency EJS SST, which is mostly explained by that during winter, is characterized by significant warming from the early 1940s to the late 1940s and from the mid-1980s to the present. Between the two warming periods, the EJS SST variability is dominated by decadal fluctuations. Finally, we discuss possible mechanisms of the low frequency EJS SST variability in conjunction with atmospheric variability. When the northwesterly winter monsoon becomes weaker (stronger), less (greater) amount of cold air is advected to the EJS. Sensible heat loss from the sea to the air becomes smaller (greater) producing a warm (cold) SST anomaly.

  4. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  5. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    Science.gov (United States)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  6. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  7. The assessment of cold hyperalgesia after an incision.

    Science.gov (United States)

    Scherer, Moritz; Reichl, Sylvia U; Augustin, Miriam; Pogatzki-Zahn, Esther M; Zahn, Peter K

    2010-01-01

    Although cold hypersensitivity is a well-documented phenomenon in animals and humans with inflammatory and neuropathic pain, little is known about the presence of cold hyperalgesia after surgery. Therefore, we studied primary cold hyperalgesia after a surgical incision in mice. Before and after plantar incision, inflammation with complete Freund adjuvant, and spared nerve ligation, unrestrained male animals were placed on a Peltier-cooled cold plate with a surface temperature of 0 degrees C and withdrawal latencies were measured. Additionally, incision-induced cold hyperalgesia was also assessed in female animals. Furthermore, skin temperature before and after plantar incision and inflammation were assessed by using infrared thermography (Varioscan LW 3011; Infratec, Dresden, Germany). Cold hyperalgesia to a noxious cold stimulus was observed after inflammation and nerve injury but not after a surgical incision. Similar results were demonstrated for female animals after incision. Furthermore, a significant increase in skin temperature was recorded after inflammation but not after incision, indicating that a surgery evokes only minor inflammatory effects. The present data give strong evidence that a surgical incision does not cause cold hyperalgesia. Furthermore, a lack of cold hyperalgesia in unrestrained male and female mice after incision was not due to increased skin temperature after incision. Finally, we demonstrated that in contrast to a surgical incision, inflammation and nerve injury generate intense cold hyperalgesia and an increase in skin temperature, suggesting that different mechanisms are involved in surgical and inflammatory or neuropathic pain.

  8. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  9. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  10. A surface acoustic wave ICP sensor with good temperature stability.

    Science.gov (United States)

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  11. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth

    Institute of Scientific and Technical Information of China (English)

    Zeng Yinxin; Yu Yong; Chen Bo; Li Huirong

    2004-01-01

    The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase.

  12. Effects of overaging temperature on the microstructure and properties of 600 MPa cold-rolled dual-phase steel

    Institute of Scientific and Technical Information of China (English)

    Chun-fu Kuang; Zhi-wang Zheng; Gong-ting Zhang; Jun Chang; Shen-gen Zhang; Bo Liu

    2016-01-01

    C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining (2%) and bak-ing treatments (170°C for 20 min) to measure their bake-hardening (BH2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH2 behavior of 600 MPa cold-rolled dual-phase (DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8%to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH2 value initially increases and then decreases. The maximum BH2 value of 83 MPa was observed for the specimen overaged at 350°C.

  13. A New Estimate of the Earth's Land Surface Temperature History

    Science.gov (United States)

    Muller, R. A.; Curry, J. A.; Groom, D.; Jacobsen, B.; Perlmutter, S.; Rohde, R. A.; Rosenfeld, A.; Wickham, C.; Wurtele, J.

    2011-12-01

    The Berkeley Earth Surface Temperature team has re-evaluated the world's atmospheric land surface temperature record using a linear least-squares method that allow the use of all the digitized records back to 1800, including short records that had been excluded by prior groups. We use the Kriging method to estimate an optimal weighting of stations to give a world average based on uniform weighting of the land surface. We have assembled a record of the available data by merging 1.6 billion temperature reports from 16 pre-existing data archives; this data base will be made available for public use. The former Global Historic Climatology Network (GHCN) monthly data base shows a sudden drop in the number of stations reporting monthly records from 1980 to the present; we avoid this drop by calculating monthly averages from the daily records. By using all the data, we reduce the effects of potential data selection bias. We make an independent estimate of the urban heat island effect by calculating the world land temperature trends based on stations chosen to be far from urban sites. We calculate the effect of poor station quality, as documented in the US by the team led by Anthony Watts by estimating the temperature trends based solely on the stations ranked good (1,2 or 1,2,3 in the NOAA ranking scheme). We avoid issues of homogenization bias by using raw data; at times when the records are discontinuous (e.g. due to station moves) we break the record into smaller segments and analyze those, rather than attempt to correct the discontinuity. We estimate the uncertainties in the final results using the jackknife procedure developed by J. Tukey. We calculate spatial uncertainties by measuring the effects of geographical exclusion on recent data that have good world coverage. The results we obtain are compared to those published by the groups at NOAA, NASA-GISS, and Hadley-CRU in the UK.

  14. Effect of floor surface temperature on blood flow and skin temperature in the foot.

    Science.gov (United States)

    Song, G-S

    2008-12-01

    A total of 16 healthy college students participated as subjects to elucidate the hypothesis that blood flow and skin temperature in foot are affected by the floor surface temperature. The floor surface temperature was controlled by varying the temperature of water (tw) flowing underneath the floor, and it ranged from tw 15 to 40 degrees C at 5 degrees C intervals. The blood flow rate was measured in the dorsal right toe, and skin temperatures were measured for 60 min at 8 points: the neck, right scapular, left hand, right shin, left bottom of the toe, right instep, left finger, and rectum. The blood flow rate in the foot tissue was increased until the foot skin temperature warmed up to 34 degrees C (P = 0.000). The final skin temperatures on the bottom of the toe were 19.4 +/- 2.44 degrees C for tw 15 degrees C, 22.4 +/- 2.45 degrees C for tw 20 degrees C, 24.8 +/- 2.80 degrees C for tw 25 degrees C, 27.7 +/- 2.13 degrees C for tw 30 degrees C, 30.6 +/- 2.06 degrees C for tw 35 degrees C, 33.2 +/- 1.45 degrees C for tw 40 degrees C, 34.2 +/- 1.55 degrees C for tw 45 degrees C, and 35.2 +/- 1.65 degrees C for tw 50 degrees C. Considering blood flow and comfort, the partial floor heating system is suggested and the recommended floor surface temperature range is 27-33 degrees C. A warm floor surface can serve to satisfy occupants when the ambient temperature maintained at 20 degrees C which represents an energy conscious temperature. A warm floor can induce high blood perfusion in the feet and consequently improve an occupant's health by treating many vascular-related disorders. Even in a well-insulated residential building, a partially heated floor system could prevent overheating while providing surface warmth.

  15. High-resolution distributed temperature sensing: a new tool to study the space-time dynamics of transient cold-air pools in the weak-wind stable boundary layer

    Science.gov (United States)

    Thomas, C. K.; Selker, J. S.; Zeeman, M. J.

    2011-12-01

    We present a novel approach to observing the two-dimensional thermal structure of atmospheric near-surface turbulent and non-turbulent flows by measuring air temperatures in a vertical plane at a high resolution (0.25 m, every approximately 2 s) using distributed temperature sensing (DTS). Air temperature observations obtained from a fiber optics array of approximate dimensions 8 by 8 m and sonic anemometer data from two levels were collected for a period of 23 days over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. In addition to evaluating the DTS technique to resolve the rapidly changing gradients and small-scale perturbations associated with turbulence in the atmosphere for convective and stable boundary layers, the objective was to analyze the space-time dynamics of transient cold-air pools in the stable boundary layer. The time response and precision of the fiber temperatures were adequate to resolve individual sub-meter sized turbulent and non-turbulent structures of time scales >= 3 s and enabled calculation of meaningful sensible heat fluxes when combined with vertical wind observations. The small turbulence scales associated with strong vertical shear and low measurement heights pose limitations to the technique. The top of the transient cold-air pool was highly non-stationary. The thermal structure of the near-surface air is generally a superposition of various perturbations of different time and length scales, whereas no preferred scales were identified. Vertical length scales for turbulence in the strongly stratified transient cold-air pool directly derived from the DTS data agreed well with buoyancy length scales parameterized using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange with a broad

  16. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  17. Land surface temperature shaped by urban fractions in megacity region

    Science.gov (United States)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2017-02-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation ( R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  18. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage.

    Science.gov (United States)

    Connor, Ann Marie; Luby, James J; Hancock, James F; Berkheimer, Steven; Hanson, Eric J

    2002-02-13

    Antioxidant activity, total phenolic content, anthocyanin content, and six other fruit characters including titratable acid concentration, soluble solids, firmness, and percentage of bruised berries were determined for nine blueberry (Vaccinium L. sp.) cultivars at harvest and at various postharvest intervals after storage at 5 degrees C. Berries from MSU-58, Brigitta, and Legacy stored successfully for 7 weeks, Bluegold stored for 3-5 weeks, Bluecrop, Elliott, and Nelson stored for 3 weeks, and Jersey and Little Giant stored for fewer than 3 weeks. During the time they retained marketable quality, one cultivar (MSU-58) demonstrated a 29% increase in antioxidant activity. None of the cultivars showed a significant decrease from the harvest antioxidant activity value during storage. Antioxidant activity, total phenolic content, and anthocyanin content were strongly correlated with each other (r = 0.87-0.99, P cultivar mean basis. Berries from Elliott were also harvested from plants at two levels of bush ripeness (30-50% and 60-80% ripe berries on plants) and separated into three fruit maturity classes on the basis of percent blue color. The level of bush ripeness had no significant effect on antioxidant activity, total phenolic content, or anthocyanin content; however, fruit maturity had a significant effect on antioxidant activity, total phenolic content, and anthocyanin content, and bush ripeness x fruit maturity interactions were significant for these three traits. Berries with 50-75% blue coloration harvested from bushes with 60-80% mature fruit showed a significant increase in antioxidant activity, total phenolic content, and anthocyanin content during the first 3 weeks in storage. Our results demonstrate that increases in antioxidant activity, total phenolic content, and anthocyanin content may occur in the blueberry during cold storage and are cultivar-dependent. The increases that occur in immature fruit, such as in Elliott, may be advantageous for producers

  19. High temperature surface degradation of III-V nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D.; Lambers, E.S. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01

    The surface stoichiometry, surface morphology and electrical conductivity of AlN, GaN, InN, InGaN and InAlN was examined at rapid thermal annealing temperatures up to 1,150 C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1,000 C. Auger Electronic Spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1,150 C. GaN root mean square (RMS) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1,000 C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 C, and scanning electron microscopy (SEM) showed significant degradation. In contrast to the binary nitrides the sheet resistance of InAlN was found to increase by {approximately} 10{sup 2} from the as grown value after annealing at 800 C and then remain constant up to 1,000 C, while that of InGaN increased rapidly above 700 C. The RMS roughness increased above 800 C and 700 C respectively for InAlN and InGaN samples. In droplets began to form on the surface at 900 C for InAlN and at 800 C for InGaN, and then evaporate at 1,000 C leaving pits. AES analysis showed a decrease in the N concentration in the top 500 {angstrom} of the sample for annealing {ge} 800 C in both materials.

  20. Body temperature responses in spinal cord injured individuals during exercise in the cold and heat.

    NARCIS (Netherlands)

    Boot, C.R.L.; Binkhorst, R.A.; Hopman, M.T.E.

    2006-01-01

    The aim of this study was to assess the effect of arm exercise on the heat balance in spinal cord-injured (SCI) individuals with complete lesions at ambient temperatures of 10 and 35 degrees C. Four SCI with a high lesion (> or = T6) (SCI-H), seven with a low lesion (< T6) (SCI-L), and ten abl

  1. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  2. Protein cold adaptation : Role of physico-chemical parameters in adaptation of proteins to low temperatures

    NARCIS (Netherlands)

    Shokrollahzade, Soheila; Sharifi, Fatemeh; Vaseghi, Akbar; Faridounnia, Maryam; Jahandideh, Samad

    2015-01-01

    During years 2007 and 2008, we published three papers (Jahandideh, 2007a, JTB, 246, 159-166; Jahandideh, 2007b, JTB, 248, 721-726; Jahandideh, 2008, JTB, 255, 113-118) investigating sequence and structural parameters in adaptation of proteins to low temperatures. Our studies revealed important featu

  3. Behavior of Materials at Cold Regions Temperatures. Part 1. Program Rationale and Test Plan

    Science.gov (United States)

    1988-07-01

    tempera- polycarbonate molding material (Titus 1967). ture of polycarbonate ( Merlon ) (Titus 1967). 001 4 45 a 30 S 25U - 20 -. 4 15, 4 "’"~ . 20 • - 0a...impact strength vs Figure B43. Urethane foam spring rate vs tern- temperature of ( Merlon ) polycarbon- perature (Titus 1967). ate (ASTM) D-256) (Titus

  4. Analysis of the effects of rising temperature for embankments under seismic loads in cold regions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effect of temperature rising for frozen soil because of dynamic load was investigated by indoor tests.Roadway and railway embankments are always loaded by dynamic loads such as earthquakes and vehicles.Because the Qinghai-Tibetan Plateau is a re-gion where earthquakes occur frequently,it is essential to consider the temperature-rising effect of earthquakes or vehicles on railway and road embankment.In this paper and according to the theories of heat transfer and dynamic equilibrium equations,as-suming frozen soil as thermal elastic-viscoplastic material,taking the combination of thermal and mechanical stresses into account,we present the numerical formulae of this dynamic problem,and the computer program of the two-dimensional finite element is written.Using the program,the dynamic response analyses for embankments loaded by earthquake are worked out.Analysis in-dicated that the temperature-rising effect result from earthquakes for embankment in nonuniform distribution in some small areas,the maximum rising temperature is 0.16 ?C for consideration in this paper.

  5. Cold Start Emissions of Spark-Ignition Engines at Low Ambient Temperatures as an Air Quality Risk

    Directory of Open Access Journals (Sweden)

    Bielaczyc Piotr

    2014-12-01

    Full Text Available SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC, emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC. The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

  6. A Note on the Relationship Between Temperature and Water Vapor over Oceans, Including Sea Surface Temperature Effects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, Q (mm), and temperature, T (K), fields for the three tropical oceans (i.e., the Pacific, Atlantic and Indian Oceans) based on eleven GEOS-3 [Goddard Earth Observing System (EOS) Version-3] global re-analysis monthly products. A Q - T distribution analysis is also performed for the tropical and extra-tropical regions based on in-situ sounding data and numerical simulations [GEOS-3 and the Goddard Cumulus Ensemble (GCE) model]. A similar positively correlated Q - T distribution is found over the entire oceanic and tropical regions; however, Q increases faster with T for the former region. It is suspected that the tropical oceans may possess a moister boundary layer than the Tropics. The oceanic regime falls within the lower bound of the tropical regime embedded in a global, curvilinear Q - T relationship. A positive correlation is also found between T and sea surface temperature (SST); however, for one degree of increase in T, SST is found to increase 1.1 degrees for a warmer ocean, which is slightly less than an increase of 1.25 degrees for a colder ocean. This seemingly indicates that more (less) heat is needed for an open ocean to maintain an air mass above it with a same degree of temperature rise during a colder (warmer) season [or in a colder (warmer) region]. Q and SST are also found to be positively correlated. Relative humidity (RH) exhibits similar behaviors for oceanic and tropical regions. RH increases with increasing SST and T over oceans, while it increases with increasing T in the Tropics. RH, however, decreases with increasing temperature in the extratropics. It is suspected that the tropical and oceanic regions may possess a moister local boundary layer than the extratropics so that a faster moisture increase than a saturated moisture increase is favored for the former regions.T, Q, saturated water

  7. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms

    Science.gov (United States)

    Thadathil, Pankajakshan; Suresh, I.; Gautham, S.; Prasanna Kumar, S.; Lengaigne, Matthieu; Rao, R. R.; Neetu, S.; Hegde, Akshay

    2016-08-01

    Surface layer temperature inversion (SLTI), a warm layer sandwiched between surface and subsurface colder waters, has been reported to frequently occur in conjunction with barrier layers in the Bay of Bengal (BoB), with potentially commensurable impacts on climate and postmonsoon tropical cyclones. Lack of systematic measurements from the BoB in the past prevented a thorough investigation of the SLTI spatiotemporal variability, their formation mechanisms, and their contribution to the surface temperature variations. The present study benefits from the recent Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoys located in BoB along 90°E at 4°N, 8°N, 12°N, and 15°N over the 2006-2014 period. Analysis of data from these RAMA buoys indicates that SLTI forms after the summer monsoon and becomes fully developed during winter (December-February). SLTI exhibits a strong geographical dependency, with more frequent (80% times during winter) and intense inversions (amplitude, ΔT ˜ 0.7°C) occurring only in the northern BoB compared to central and southern Bay. SLTI also exhibits large interannual and intraseasonal variations, with intraseasonal amplitude significantly larger (ΔT ˜ 0.44°C) than the interannual amplitude (˜0.26°C). Heat budget analysis of the mixed layer reveals that the net surface heat loss is the most dominant process controlling the formation and maintenance of SLTI. However, there are instances of episodic advection of cold, low-saline waters over warm-saline waters leading to the formation of SLTI as in 2012-2013. Vertical processes contribute significantly to the mixed layer heat budget during winter, by warming the surface layer through entrainment and vertical diffusion.

  8. Long-term Trend of Cold Air Mass Amount below a Designated Potential Temperature in Northern and Southern Hemisphere Winters with 7 Different Reanalysis Datasets

    Science.gov (United States)

    Kanno, Y.; Abdillah, M. R.; Iwasaki, T.

    2015-12-01

    This study addresses that the hemispheric total cold air mass amount defined below a threshold potential temperature of 280 K is a good indicator of the long-term trend of climate change in the polar region. We demonstrate quantitative analyses of warming trend in the Northern Hemisphere (NH) and Southern Hemisphere (SH) winters, using 7 different reanalysis datasets (JRA-55, JRA-55C, JRA-55AMIP, ERA-interim, CFSR, JRA-25, NCEP-NCAR). Hemispheric total cold air mass amount in the NH winter exhibit a statistically significant decreasing trend in all reanalysis datasets at a rate about -1.37 to -0.77% per decade over the period 1959-2012 and at a rate about -1.57 to -0.82% per decade over 1980-2012. There is no statistically significant trend in the equatorward cold air mass flux across latitude of 45N, which is an indicator for hemispheric-scale cold air outbreak, over the period 1980-2012 except for NCEP-NCAR reanalysis dataset which shows substantial decreasing trend of about -3.28% per decade. The spatial distribution of the long-term trend of cold air mass amount in the NH winter is almost consistent among reanalysis datasets except for JRA-55AMIP over the period 1980-2012. Cold air mass amount increases over Central Siberia, Kamchatka peninsula, and Bering Sea, while it decreases over Norwegian Sea, Barents Sea, Kara Sea, Greenland, Canada, Northern part of United States, and East Asia. In the SH winter, on the other hand, there is a large discrepancy in hemispheric total cold air mass amount and equatorward cold air mass flux across latitude of 50S over the period 1980-2010 among reanalysis datasets. This result indicate that there is a large uncertainty in the long-term trend of cold air mass amount in the SH winter.

  9. Surface Tensions and Their Variations with Temperature and Impurities

    Science.gov (United States)

    Hardy, S. C.; Fine, J.

    1985-01-01

    The surface tensions in this work were determined using the sessile drop technique. This method is based on a comparison of the profile of a liquid drop with the profile calculated by solving the Young-Laplace equation. The comparison can be made in several ways; the traditional Bashforth-Adams procedure was used in conjunction with recently calculated drop shape tables which virtually eliminate interpolation errors. Although previous study has found little difference in measurements with pure and oxygen doped silicon, there is other evidence suggesting that oxygen in dilute concentrations severely depresses the surface tension of silicon. The surface tension of liquid silicon in purified argon atmospheres was measured. A temperature coefficient near -0.28 mJ/square meters K was found. The experiments show a high sensitivity of the surface tension to what is believed are low concentrations of oxygen. Thus one cannot rule out some effect of low levels of oxygen in the results. However, the highest surface tension values obtained in conditions which minimized the residual oxygen pressure are in good agreement with a previous measurement in pure hydrogen. Therefore, depression of the surface tension by oxygen is insignificant in these measurements.

  10. Distributed land surface modeling with utilization of multi-sensor satellite data: application for the vast agricultural terrain in cold region

    Science.gov (United States)

    Muzylev, E.; Uspensky, A.; Gelfan, A.; Startseva, Z.; Volkova, E.; Kukharsky, A.; Romanov, P.; Alexandrovich, M.

    2012-04-01

    A technique for satellite-data-based modeling water and heat regimes of a large scale area has been developed and applied for the 227,300 km2 agricultural region in the European Russia. The core component of the technique is the physically based distributed Remote Sensing Based Land Surface Model (RSBLSM) intended for simulating transpiration by vegetation and evaporation from bare soil, vertical transfer of water and heat within soil and vegetation covers during a vegetation season as well as hydrothermal processes in soil and snow covers during a cold season, including snow accumulation and melt, dynamics of soil moisture and temperature during soil freezing and thawing, infiltration into frozen soil. Processes in the "atmosphere-snow-frozen soil" system are critical for cold region agriculture, as they control crop development in early spring before the vegetation season beginning. For assigning the model parameters as well as for preliminary calibrating and validating the model, available multi-year data sets of soil moisture/temperature profiles, evaporation, snow and soil freezing depth measured at the meteorological stations located within the study region have been utilized. To provide an appropriate parametrization of the model for the areas where ground-based measurements are unavailable, estimates have been utilized for vegetation, meteorological and snow characteristics derived from the multispectral measurements of AVHRR/NOAA (1999-2010), MODIS/EOS Terra & Aqua (2002-2010), AMSR-E/Aqua (2003-2004; 2008-2010), and SEVIRI/Meteosat-9 (2009-2010). The technologies of thematic processing the listed satellite data have been developed and applied to estimate the land surface and snow cover characteristics for the study area. The developed technologies of AVHRR data processing have been adapted to retrieve land surface temperature (LST) and emissivity (E), surface-air temperature at a level of vegetation cover (TA), normalized vegetation index (NDVI), leaf

  11. 冷板冷藏汽车箱体内温度场的数值模拟及试验%Numerical simulation and experiment of temperature field distribution in box of cold plate refrigerated truck

    Institute of Scientific and Technical Information of China (English)

    张哲; 郭永刚; 田津津; 李曼

    2013-01-01

    intermediated stacking in this paper. To better display the simulated results, three sections were selected along truck’s length direction and one section alone width direction as the research surface of computational simulation. This study revealed the general rules and influencing factors of temperature field in cold plate refrigerated truck, which can provide a reference for the optimization design and the selection of stack method in cold plate refrigerated truck. Simulation result showed that the temperature of container roof was always at a relatively high level. In this model, the temperature field and fluid field of the refrigerated truck were symmetrical both along the length and the width direction. The highest temperature difference in cargo area reached 18℃, which was disadvantage to storage and transportation quality. It is hard to form a uniform air and temperature field only by the natural convection depended on temperature difference in cold plate refrigerated truck. It's recommended to install cold plates on top of container and to find proper ventilation methods that can strengthen heat convection between cold air and goods, improving the cooling speed of cold plate refrigerated truck. Method of contrast verification was used to verify the correctness of the model in this paper. And the deviation of experimental data and simulated result was not beyond the scope of permission, which showed that the model was appropriate to the simulation of the temperature distribution in cold plate refrigerated truck.%  冷板冷藏汽车内空气的温度分布对其储运能力有很大影响,均匀的温度场使得货物在运输过程中品质得到有效保证。该文采用数值模拟方法,计算空载车箱内部温度场,并分析不同堆码方式对货物区温度场及流场的影响。通过对不同情况下冷板冷藏汽车箱体内的温度场特性进行数值模拟研究,得出了车箱内温度分布规律及其影响因素,可为其

  12. Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophilia melanogaster

    DEFF Research Database (Denmark)

    Jensen, Palle; Overgaard, Johannes; Loeschcke, Volker

    2014-01-01

    in replicated lines of inbred and outbred Drosophila melanogaster at stressful low, benign and stressful high temperatures. The lowest measurements of metabolic rate in our study are always associated with the low activity period of the diurnal cycle and these measurements therefore serve as good estimates...... of standard metabolic rate. Due to the potentially added costs of genetic stress in inbred lines we hypothesized that inbred individuals have increased metabolic rate compared to outbred controls and that this is more pronounced at stressful temperatures due to synergistic inbreeding by environment......Inbreeding increases homozygosity, which is known to affect the mean and variance of fitness components such as growth, fecundity and mortality rate. Across inbred lines inbreeding depression is typically observed and the variance between lines is increased in inbred compared to outbred lines...

  13. Composite self-similar solutions for relativistic shocks: the transition to cold fluid temperatures

    CERN Document Server

    Pan, Margaret

    2008-01-01

    The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytrope-like density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and just after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the post-breakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through $p/n$ of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are importan...

  14. The middle atmospheric circulation of a tidally locked Earth-like planet and the role of the sea surface temperature

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens; Wurz, Peter

    2016-12-01

    We investigate the influence of the sea surface temperature (SST) changes on the middle atmosphere of a tidally locked Earth-like planet orbiting a G star using the coupled 3D chemistry-climate model CESM1(WACCM). We perform three 90 day simulations. The first simulation is a present-day Earth (PDE) simulation, the second is a simulation of a tidally locked Earth-like planet with a tidally locked aquaplanet sea surface temperature (cold TLE (CLTE)) and the third is a hybrid simulation of a tidally locked Earth-like planet with a present-day Earth sea surface temperature (warm TLE (WTLE)). Our results show that changes in the SST have an influence on the lower stratospheric temperature and the secondary ozone layer. Both atmospheres exhibit a dayside upwelling and a nightside downwelling extending from the surface to the mesosphere. They are also characterised by comparable lower and middle stratospheric horizontal winds and relatively different mesospheric horizontal winds. The temperature of the WTLE atmosphere is altered as a result of the SST changes, compared to the CTLE. Specifically, the WTLE lower tropospheric temperature is increased by 3.7 K on average, due to the absorption of the increased upwelling longwave radiation and the increased sensible and latent heat. The WTLE upper troposphere temperature is decreased by 4 K on average, is adiabatic in nature, and is generated by the increased WTLE upwelling. The WLTE lower stratospheric temperature is increased by 3.8 K on average due to the absorption of the increased upwelling longwave radiation. The lower mesospheric temperature is decreased by 1.13 K on average due to increased mesospheric wave breaking. The upper mesospheric temperature is increased by 4.3 K, and its generation mechanism is currently unknown. Furthermore, the secondary ozone volume mixing ratio is increased by 40.5 %. The occurrence of large-scale vortices and variable jet streams depends, to some extent, on the SST distribution.

  15. Sea surface temperature variability in southern Okinawa Trough during last 2700 years

    Science.gov (United States)

    Wu, Weichao; Tan, Wenbing; Zhou, Liping; Yang, Huan; Xu, Yunping

    2012-07-01

    Most of the temperature reconstructions for the past two millennia are based on proxy data from various sites on land. Here we present a bidecadal resolution record of sea surface temperature (SST) in Southern Okinawa Trough for the past ca. 2700 years by analyzing tetraether lipids of planktonic archaea in the ODP Hole 1202B, a site under the strong influence of Kuroshio Current and East Asian monsoon. The reconstructed SST anomalies generally coincided with previously reported late Holocene climate events, including the Roman Warm Period, Sui-Tang dynasty Warm Period, Medieval Warm Period, Current Warm Period, Dark Age Cold Period and Little Ice Age. However, the Medieval Warm Period usually thought to be a historical analogue for the Current Warm Period has a mean SST of 0.6-0.8°C lower than that of the Roman Warm Period and Sui-Tang dynasty Warm Period. Despite an increase since 1850 AD, the mean SST in the 20th century is still within the range of natural variability during the past 2700 years. A close correlation of SST in Southern Okinawa Trough with air temperature in East China, intensity of East Asian monsoon and the El-Niño Southern Oscillation index has been attributed to the fluctuations in solar output and oceanic-atmospheric circulation.

  16. AMO-like variations of holocene sea surface temperatures in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Feng

    2009-12-01

    Full Text Available Instrumental records of the North Atlantic sea surface temperatures (SST show a significant 60–80 year cycle, referred to as the Atlantic Multidecadal Oscillation (AMO. During AMO warm (cold phases, SST over the entire North Atlantic Ocean is dominated by basin-wide positive (negative anomalies. We analyzed SST variations in the North Atlantic Ocean for the last 10 ka. The long-term and centennial variations of Holocene SST in the North Atlantic demonstrate a basin-wide mode that clearly resembles the AMO signal recorded during the recent instrumental period. The long-term changes of Holocene SST were controlled by the solar insolation related to the orbital variations, and the centennial variations were closely coupled with the intensity of the thermohaline circulation. The spatial extent in the Atlantic realm of temperature anomalies around two specific time intervals, 8.2 ka and during the medieval warm period, also resemble the observed temperature anomalies associated with the AMO. These results demonstrate that the modern AMO, and centennial and longer time scale SST variations during the Holocene share a similar spatial extent in the North Atlantic, and presumably as well physical processes associated with their existence and their far-field teleconnection effects.

  17. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  18. Electrostatic surface guiding of cold polar molecules with a single charged wire

    Institute of Scientific and Technical Information of China (English)

    Deng Lian-Zhong; Xia Yong; Yin Jian-Ping

    2007-01-01

    This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field,which is generated by a plate capacitor composed of two infinite parallel metal plates.The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials(including dipole forces) for metastable CO molecules are calculated,the relationships between the electric field and the parameters of our charged-wire layout are analysed.It also studies the influences of the insulator on the electric field distribution and the discharge effect.This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field-seeking states,and to form various molecule-optical elements,such as molecular funnel,molecular beam-splitters and molecule interferometer,even to construct a variety of integrated molecule-optical elements and their molecule chips.

  19. Labrador Sea surface temperature control on the summer weather in the Eastern Europe

    Science.gov (United States)

    Gnatiuk, Natalia; Vihma, Timo; Bobylev, Leonid

    2016-04-01

    trajectories. The results show that the remote effects are strongest with a time lag from spring to summer. The Labrador Sea Ts variations in spring have a detectable impact on the thermodynamics of the local atmosphere in spring; particularly positive surface heat flux anomalies are larger in years with a high spring Ts. Also, there is a detectable effect on anomalies in the atmospheric pressure field and wind components. These springtime anomalies over the Labrador Sea region favour certain planetary wave patterns during summer. Thus, spring cold (warm) conditions over Labrador Sea are a precursor for summer low pressure and temperatures (high pressure and temperatures) over Eastern Europe. This work was supported by the EU FP7 Project, Grant agreement No: 295068. "European-Russian Centre for cooperation in the Arctic and Sub-Arctic environmental and climate research (EuRuCAS)".

  20. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    Science.gov (United States)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  1. Temperatura e umidade relativa na qualidade da tangerina "Montenegrina" armazenada Temperature and relative humidity during cold storage of 'Montenegrina' tangerine

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2008-04-01

    Full Text Available O presente trabalho foi conduzido com o objetivo de avaliar o efeito da temperatura e da umidade relativa do ar (UR sobre a manutenção da qualidade de tangerinas durante o período de armazenamento refrigerado (AR. O delineamento experimental utilizado foi inteiramente casualizado, em esquema bifatorial, com oito repetições, contendo 15 frutos cada. Os tratamentos avaliados constituíram-se da combinação das temperaturas 2, 3 e 4°C, com UR do ar de 90 e 96%. Após oito e 12 semanas de armazenamento, mais três dias de exposição a 20°C, foram realizadas as seguintes análises: acidez total titulável (ATT, sólidos solúveis totais (SST, consistência dos frutos, incidência de podridões e suculência. De acordo com os resultados obtidos, os frutos armazenados a 3°C + UR do ar de 90% apresentaram ATT, SST e consistência mais elevada, após oito e 12 semanas de AR. A incidência de podridão foi significativamente superior nos tratamentos com alta UR do ar (96%. Injúrias provocadas pela baixa temperatura ocorreram em alguns frutos no tratamento a 2°C. Não se constatou diferença significativa na suculência entre os tratamentos em ambas as datas de avaliação. A temperatura de 3°C combinada com UR de 90% apresentou os melhores resultados na conservação de tangerinas "Montenegrina", que podem ser armazenadas por um período de até oito semanas.This research was conducted in order to evaluate the effect of temperature and relative humidity (RH on the quality of tangerines during cold storage. The experimental design was entirely randomized, in a bifatorial design with eight replications of 15 fruits. The treatments were the combination of three temperatures (2, 3 and 4oC and two RH levels (90 and 96%. Evaluations of quality were performed after 8 and 12 weeks of cold storage plus 3 days of shelf life at 20°C. The analyzed parameters were: total titratable acidity (TTA, total soluble solids (TSS, fruits consistency, rot

  2. The Footprint of the Inter-decadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures.

    Science.gov (United States)

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong

    2016-02-17

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871-2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcings account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO's cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. The decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.

  3. [Sports and extreme conditions. Cardiovascular incidence in long term exertion and extreme temperatures (heat, cold)].

    Science.gov (United States)

    Melin, B; Savourey, G

    2001-06-30

    During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium extreme condition.

  4. Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5(T).

    Science.gov (United States)

    Petrovskaya, L E; Novototskaya-Vlasova, K A; Kryukova, E A; Rivkina, E M; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    We have cloned the gene coding for AT877-a new predicted member of the autotransporter protein family with an esterase passenger domain from permafrost bacterium Psychrobacter cryohalolentis K5(T). Expression of AT877 gene in Escherichia coli resulted in accumulation of the recombinant autotransporter in the outer membrane fraction and at the surface of the induced cells. AT877 displayed maximum hydrolytic activity toward medium-chain p-nitrophenyl esters (C8-C10) at 50 °C and was resistant to the presence of several metal ions, organic solvents and detergents. Previously, we have described a cold-active esterase EstPc from the same bacterium which possesses high activity at low temperatures and relatively high thermal stability. To construct a cell surface display system for EstPc, the hybrid autotransporter gene coding for EstPc with the α-helical linker and the translocator domain from AT877 was constructed and expressed in E. coli. According to the results of the cell fractionation studies and esterase activity measurements, the EstPc passenger was successfully displayed at the surface of the induced cells. It demonstrated a temperature optimum at 15-25 °C and a substrate preference toward p-nitrophenyl butyrate (C4). Obtained results provide a new example of the biotechnologically relevant enzyme from the permafrost microbial community with potential applications for the conversion of short- and medium-chain ester substrates and a basis for the construction of a new cell surface display platform.

  5. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  6. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10); thigh skin (average, maximum and minimum) and rectal temperature (n=10) were recorded before and 60 min after treatment. The greatest reduction (Pmuscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C) and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C), minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C) and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C) skin temperature occurred immediately after both CWI and WBC (Pmuscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  7. Muscle, Skin and Core Temperature after −110°C Cold Air and 8°C Water Treatment

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (Pmuscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (Pmuscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting. PMID:23139763

  8. Effect of prenatal temperature conditioning of laying hen embryos: Hatching, live performance and response to heat and cold stress during laying period.

    Science.gov (United States)

    Kamanli, S; Durmuş, I; Yalçın, S; Yıldırım, U; Meral, Ö

    2015-07-01

    This study was designed to determine the effect of prenatal temperature conditioning on hatching and live performance of laying chickens, and response to heat and cold stress during laying period. A total of 3600 eggs obtained from ATAK-S brown parent stock were incubated at control (37.5°C, CONT-Inc), cyclic low (36.5°C/6h/d from 10 to 18d of incubation, LOW-Inc) or high (38.5°C/6h/d from 10-18d of incubation, HIGH-Inc) incubation temperatures. Hatched chicks per incubation temperature were reared under standard rearing conditions up to 26wk. From 27 to 30wk, hens from each incubation temperature were divided into 3 environmentally controlled rooms and reared at control (20±2°C, CONT-Room), low (12±2°C, COLDS) or high (32±2°C, HEATS) temperatures. Hatching performance, body weight, egg production, and plasma triiodothyronine (T3) and thyroxine (T4) levels and oxidant and antioxidant activities were evaluated. The highest hatchability was for LOW-Inc chicks while HIGH-Inc chick had similar hatchability to CONT-Inc. There was no effect of incubation temperatures on plasma MDA, GSH-Px, activities and T4 concentrations on day of hatch. LOW- Inc chicks had higher SOD activities and T3 concentrations compared to the other groups. Although chick weight was similar among incubation temperature groups, CONT-Inc chicks were heavier than those cyclic incubation temperature groups until 12wk of age. Incubation temperature had no effect on sexual maturity age and weight and egg production of laying hens. From 27 to 30wk, regardless of incubation temperature, HEATS hens lost weight from day 0 to 10, had the highest cloacal temperatures and lowest feed consumption and egg production while COLDS hens had the lowest cloacal temperatures. At day 5, T4 level was higher in LOW-Inc hens at COLDS but it was higher in HIGH-Inc hens at HEATS compared to CONT-Inc. These data may suggest a modification in thyroid activity of hens that were conditioned during the incubation period

  9. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  10. Winter wheat morphology response to cold temperature stress during autumn acclimation

    Directory of Open Access Journals (Sweden)

    Ligita Baležentienė

    2012-03-01

    Full Text Available Winter wheat (Triticum aestivum L. abilities depend on development during autumn acclimation. The plant ability of acclimation to low temperatures is closely associated with the photosynthesis level, leaf area index (LAI, root system development. This study investigated the effect of liquid humic fertilizers (LHF on biometric characteristics, namely LAI, root and shoot development. The fertilizers were applied in conventional and organic growth technologies of w. wheat to adapt to the low temperatures during autumn acclimation. Winter wheat «Širvinta 1 » was grown in different rotation fields of conventional (CF; Albi-EpihypogleyicLuvisol, LVg-p-w-ab and organic (OF; Hapli-EpihypogleyicLuvisol, LVg-p-w-ha farming of Training Farm at Aleksandras Stulginskis University (ASU during 2010–2011. The obtained results confirmed the significant LHF influence on enhancing winter wheat biometrical indices and seedling growth. Nonetheless, seed felting exhibited stronger effect on LAI (increased by 0.7-1.1 g m -1 day -1 in OF and 0.25-0.7 g m -1 day -1 in CF, root length (increased by 1166 mm in OF and 1182.55 mm in CF and area (increased by 72.45 mm 2 in OF and 588.7 mm 2 in CF during autumn acclimation rather than seedling spraying.

  11. Temperature Variation and Heat Wave and Cold Spell Impacts on Years of Life Lost Among the Urban Poor Population of Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Thaddaeus Egondi

    2015-03-01

    Full Text Available Weather extremes are associated with adverse health outcomes, including mortality. Studies have investigated the mortality risk of temperature in terms of excess mortality, however, this risk estimate may not be appealing to policy makers assessing the benefits expected for any interventions to be adopted. To provide further evidence of the burden of extreme temperatures, we analyzed the effect of temperature on years of life lost (YLL due to all-cause mortality among the population in two urban informal settlements. YLL was generated based on the life expectancy of the population during the study period by applying a survival analysis approach. Association between daily maximum temperature and YLL was assessed using a distributed lag nonlinear model. In addition, cold spell and heat wave effects, as defined according to different percentiles, were investigated. The exposure-response curve between temperature and YLL was J-shaped, with the minimum mortality temperature (MMT of 26 °C. An average temperature of 21 °C compared to the MMT was associated with an increase of 27.4 YLL per day (95% CI, 2.7–52.0 years. However, there was no additional effect for extended periods of cold spells, nor did we find significant associations between YLL to heat or heat waves. Overall, increased YLL from all-causes were associated with cold spells indicating the need for initiating measure for reducing health burdens.

  12. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions

    Science.gov (United States)

    Moyes, Andrew B.; Germino, Matthew J.; Kueppers, Lara M.

    2015-01-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict.

  13. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  14. Photoperiod and cold night temperature in control of flowering in Kalanchoë

    DEFF Research Database (Denmark)

    Lopes Coelho, Lívia; Kuligowska, Katarzyna; Lütken, Henrik Vlk

    2015-01-01

    Kalanchoë species and cultivars are produced as ornamental plants in many places in the world. The genus contains around 140 species comprising significant morphological variation, however, the number of species used for breeding is limited due to lack of knowledge of e.g., flower inducing factors....... Having both parental plants flowering at the same time is vital for croßpollination; therefore, it is of significant importance to be able to control flowering time of the species of interest. The objective of this study was to control flower induction in K. marmorata and K. longiflora. K. prittwitzii...... was used as control species to validate treatments that consisted of combining short day photoperiod (8 h) and different night temperature (18, 12 and 6C). While K. prittwitzii had 100% flowering for all treatments, K. marmorata only flowered at 12C (33% plants flowering) and 6C (25% plants flowering...

  15. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants.

    Science.gov (United States)

    Gao, Qiong; Li, Xiaoxia; Jia, Junting; Zhao, Pincang; Liu, Panpan; Liu, Zhujiang; Ge, Liangfa; Chen, Shuangyan; Qi, Dongmei; Deng, Bo; Lee, Byung-Hyun; Liu, Gongshe; Cheng, Liqin

    2016-03-01

    As a perennial forage crop broadly distributed in eastern Eurasia, sheepgrass (Leymus chinensis (Trin.) Tzvel) is highly tolerant to low-temperature stress. Previous report indicates that sheepgrass is able to endure as low as -47.5 °C,allowing it to survive through the cold winter season. However, due to the lack of sufficient studies, the underlying mechanism towards the extraordinary low-temperature tolerance is unclear. Although the transcription profiling has provided insight into the transcriptome response to cold stress, more detailed studies are required to dissect the molecular mechanism regarding the excellent abiotic stress tolerance. In this work, we report a novel transcript factor LcFIN1 (L. chinensis freezing-induced 1) from sheepgrass. LcFIN1 showed no homology with other known genes and was rapidly and highly induced by cold stress, suggesting that LcFIN1 participates in the early response to cold stress. Consistently, ectopic expression of LcFIN1 significantly increased cold stress tolerance in the transgenic plants, as indicated by the higher survival rate, fresh weight and other stress-related indexes after a freezing treatment. Transcriptome analysis showed that numerous stress-related genes were differentially expressed in LcFIN1-overexpressing plants, suggesting that LcFIN1 may enhance plant abiotic stress tolerance by transcriptional regulation. Electrophoretic mobility shift assays and CHIP-qPCR showed that LcCBF1 can bind to the CRT/DRE cis-element located in the promoter region of LcFIN1, suggesting that LcFIN1 is directly regulated by LcCBF1. Taken together, our results suggest that LcFIN1 positively regulates plant adaptation response to cold stress and is a promising candidate gene to improve crop cold tolerance. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  17. Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    CERN Document Server

    Heiter, U; Gustafsson, B; Korn, A J; Soubiran, C; Thévenin, F

    2015-01-01

    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bol...

  18. Global Surface Temperature Response Explained by Multibox Energy Balance Models

    Science.gov (United States)

    Fredriksen, H. B.; Rypdal, M.

    2016-12-01

    We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.

  19. Holocene sea subsurface and surface water masses in the Fram Strait - Comparisons of temperature and sea-ice reconstructions

    Science.gov (United States)

    Werner, Kirstin; Müller, Juliane; Husum, Katrine; Spielhagen, Robert F.; Kandiano, Evgenia S.; Polyak, Leonid

    2016-09-01

    Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high δ18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong

  20. Geostatistical Solutions for Downscaling Remotely Sensed Land Surface Temperature

    Science.gov (United States)

    Wang, Q.; Rodriguez-Galiano, V.; Atkinson, P. M.

    2017-09-01

    Remotely sensed land surface temperature (LST) downscaling is an important issue in remote sensing. Geostatistical methods have shown their applicability in downscaling multi/hyperspectral images. In this paper, four geostatistical solutions, including regression kriging (RK), downscaling cokriging (DSCK), kriging with external drift (KED) and area-to-point regression kriging (ATPRK), are applied for downscaling remotely sensed LST. Their differences are analyzed theoretically and the performances are compared experimentally using a Landsat 7 ETM+ dataset. They are also compared to the classical TsHARP method.