WorldWideScience

Sample records for surface system habitat

  1. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  2. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  3. Habitats and Surface Construction Technology and Development Roadmap

    Science.gov (United States)

    Cohen, Marc; Kennedy, Kriss J.

    1997-01-01

    The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.

  4. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  5. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  6. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  7. Linking microbial diversity and functionality of arctic glacial surface habitats.

    Science.gov (United States)

    Lutz, Stefanie; Anesio, Alexandre M; Edwards, Arwyn; Benning, Liane G

    2017-02-01

    Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here for the first time we have evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on 12 glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross-correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico-chemical parameters including major and minor nutrients, and trace metals. It has been shown that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  9. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    Science.gov (United States)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the

  10. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Science.gov (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  11. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  12. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  13. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    Science.gov (United States)

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  14. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  15. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  16. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  17. Habitat Options to Protect Against Decompression Sickness on Mars

    Science.gov (United States)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  18. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  19. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  20. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  1. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  2. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  3. Assessment of giant panda habitat based on integration of expert system and neural network

    NARCIS (Netherlands)

    Liu, X.; Skidmore, A.K.; Bronsveld, M.C.

    2006-01-01

    To conserve giant panda effectively, it is important to understand the spatial pattern and temporal change of its habitat. Mapping is an effective approach for wildlife habitat evaluation and monitoring. The application of recently developed artificial intelligence tools, including expert systems

  4. Comparison of two methods for estimating the abundance, diversity and habitat preference of fluvial macroinvertebrates in contrasting habitats

    NARCIS (Netherlands)

    Alonso, A.; Camargo, J.A.

    2010-01-01

    In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River

  5. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  6. Subsurface microbial habitats on Mars

    Science.gov (United States)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  7. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    Science.gov (United States)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-01-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879

  8. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems

    OpenAIRE

    Novais, Samuel M. A.; Macedo-Reis, Luiz E.; DaRocha, Wesley D.; Neves, Frederico S.

    2016-01-01

    AbstractHuman pressure on natural habitats increases the importance of agroforests for biodiversity conservation. The objective of this study was to evaluate the role of cacao traditional cultivation system (CTCS) on the conservation of the herbivorous insect community when compared with a monodominant rubber agroforest, a type of agricultural system for cacao cultivation. The insects were sampled in three habitats in Southeastern Bahia, Brazil: native forests, CTCS and rubber agroforests. In...

  9. Effects of coal mining, forestry, and road construction on southern Appalachian stream invertebrates and habitats.

    Science.gov (United States)

    Gangloff, Michael M; Perkins, Michael; Blum, Peter W; Walker, Craig

    2015-03-01

    Coal has been extracted via surface and sub-surface mining for decades throughout the Appalachian Mountains. New interest in ridge-top mining has raised concerns about possible waterway impacts. We examined effects of forestry, mining, and road construction-based disturbance on physico-chemistry and macroinvertebrate communities in east-central Tennessee headwater streams. Although 11 of 30 sites failed Tennessee's biocriteria scoring system, invertebrate richness was moderately high and we did not find significant differences in any water chemistry or habitat parameters between sites with passing and failing scores. However, conductivity and dissolved solid concentrations appeared elevated in the majority of study streams. Principal components (PCs) analysis indicated that six PCs accounted for ~77 % of among-site habitat variability. One PC associated with dissolved oxygen and specific conductance explained the second highest proportion of among-site variability after catchment area. Specific conductance was not correlated with catchment area but was strongly correlated with mining activity. Composition and success of multivariate models using habitat PCs to predict macroinvertebrate metrics was highly variable. PC scores associated with water chemistry and substrate composition were most frequently included in significant models. These results suggest that impacts of historical and current coal mining remain a source of water quality and macroinvertebrate community impairment in this region, but effects are subtle. Our results suggest that surface mining may have chronic and system-wide effects on habitat conditions and invertebrate communities in Cumberland Plateau streams.

  10. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  11. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  12. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  13. Predicting freshwater habitat integrity using land-use surrogates

    African Journals Online (AJOL)

    2007-04-02

    Apr 2, 2007 ... Quantification of potential surrogates of freshwater habitat integrity. We chose a series of land-use variables that might be suitable predictors for assessing freshwater habitat integrity from the land cover map (CSIR 2005) and added separate GIS surfaces for human population density and the distribution of ...

  14. Plant Growth Optimization by Vegetable Production System in HI-SEAS Analog Habitat

    Science.gov (United States)

    Ehrlich, Joshua W.; Massa, Gioia D.; Wheeler, Raymond M.; Gill, Tracy R.; Quincy, Charles D.; Roberson, Luke B.; Binsted, Kim; Morrow, Robert C.

    2017-01-01

    The Vegetable Production System (Veggie) is a scientific payload designed to support plant growth for food production under microgravity conditions. The configuration of Veggie consists of an LED lighting system with modular rooting pillows designed to contain substrate media and time-release fertilizer. The pillows were designed to be watered passively using capillary principles but have typically been watered manually by the astronauts in low-Earth orbit (LEO). The design of Veggie allows cabin air to be drawn through the plant enclosure for thermal and humidity control and for supplying CO2 to the plants. Since its delivery to the International Space Station (ISS) in 2014, Veggie has undergone several experimental trials by various crews. Ground unit testing of Veggie was conducted during an 8-month Mars analog study in a semi-contained environment of a simulated habitat located at approximately 8,200 feet (2,500 m) elevation on the Mauna Loa volcano on the Island of Hawaii. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) offered conditions (habitat, mission, communications, etc.) intended to simulate a planetary exploration mission. This paper provides data and analyses to show the prospect for optimized use of the current Veggie design for human habitats. Lessons learned during the study may provide opportunities for updating the system design and operational parameters for current Veggie experiments being conducted onboard the ISS and for payloads on future deep space missions.

  15. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  16. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  17. Water cycle and its management for plant habitats at reduced pressures

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  18. A single launch lunar habitat derived from an NSTS external tank

    Science.gov (United States)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  19. Habitat Demonstration Unit Project Leadership and Management Strategies

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and

  20. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems.

    Science.gov (United States)

    Novais, Samuel M A; Macedo-Reis, Luiz E; DaRocha, Wesley D; Neves, Frederico S

    2016-06-01

    Human pressure on natural habitats increases the importance of agroforests for biodiversity conservation. The objective of this study was to evaluate the role of cacao traditional cultivation system (CTCS) on the conservation of the herbivorous insect community when compared with a monodominant rubber agroforest, a type of agricultural system for cacao cultivation. The insects were sampled in three habitats in Southeastern Bahia, Brazil: native forests, CTCS and rubber agroforests. In each habitat, 18 plots of 10 m2 were established, and the structural measures were collected and herbivorous insects were sampled with a Malaise/window trap. The diversity of folivorous decreased with the simplification of vegetation structure, but species composition was similar among habitats. In addition to a decrease in the availability of resources in monodominant rubber agroforests, the latex present in these systems have limited the occurrence of species that cannot circumvent latex toxicity. The diversity of sap-sucking insects was similar among habitats, but species composition was similar only in the CTCS and native forest, and it was different in the rubber agroforest. We observed turnover and a higher frequency of individuals of the family Psyllidae in the rubber agroforest. The biology and behavior of Psyllids and absence of natural enemies enable their diversity to increase when they are adapted to a new host. We observed a shift in the composition of xylophagous insects in the rubber agroforest compared to that in other habitats. Moreover, this agroforest has low species richness, but high individual abundance. Latex extraction is likely an important additional source of volatile compounds discharged into the environment, and it increases the attraction and recruitment of coleoborers to these sites. We concluded that CTCS has an herbivorous insect community with a structure similar to the community found in native forests of the region, and they present a more

  1. Gulf-Wide Information System, Environmental Sensitivity Index Habitats Database, Geographic NAD83, LDWF (2001) [esi_habitats_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for coastal habitats in Louisiana. Vector polygons represent various habitats, including marsh types, other...

  2. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  3. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.

    Science.gov (United States)

    Vigliano, Pablo H; Rechencq, Magalí M; Fernández, María V; Lippolt, Gustavo E; Macchi, Patricio J

    2018-09-15

    Habitat use in relation to the thermal habitat availability and food source as a forcing factor on habitat selection and use of Percichthys trucha (Creole perch), Oncorhynchus mykiss (rainbow trout), Salmo trutta (brown trout) and Salvelinus fontinalis (brook trout) were determined as well as future potential thermal habitat availability for these species under climate change scenarios Representative Concentration Pathways 4.5 and 8.5. This study was conducted in three interconnected lakes of Northern Patagonia (Moreno Lake system). Data on fish abundance was obtained through gill netting and hydroacoustics, and thermal profiles and fish thermal habitat suitability index curves were used to identify current species-specific thermal habitat use. Surface air temperatures from the (NEX GDDP) database for RCP scenarios 4.5 and 8.5 were used to model monthly average temperatures of the water column up to the year 2099 for all three lakes, and to determine potential future habitat availability. In addition, data on fish diet were used to determine whether food could act as a forcing factor in current habitat selection. The four species examined do not use all the thermally suitable habitats currently available to them in the three lakes, and higher fish densities are not necessarily constrained to their "fundamental thermal niches" sensu Magnuson et al. (1979), as extensive use is made of less suitable habitats. This is apparently brought about by food availability acting as a major forcing factor in habitat selection and use. Uncertainties related to the multidimensionality inherent to habitat selection and climate change imply that fish resource management in Patagonia will not be feasible through traditional incremental policies and strategic adjustments based on short-term predictions, but will have to become highly opportunistic and adaptive. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mine-associated wetlands as avian habitat

    International Nuclear Information System (INIS)

    Horstman, A.J.; Nawrot, J.R.; Woolf, A.

    1998-01-01

    Surveys for interior wetland birds at mine-associated emergent wetlands on coal surface mines in southern Illinois detected one state threatened and two state endangered species. Breeding by least bittern (Ixobrychus exilis) and common moorhen (Gallinula chloropus) was confirmed. Regional assessment of potential wetland bird habitat south of Illinois Interstate 64 identified a total of 8,109 ha of emergent stable water wetlands; 10% were associated with mining. Mine-associated wetlands with persistent hydrology and large expanses of emergent vegetation provide habitat that could potentially compensate for loss of natural wetlands in Illinois

  5. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  6. Wetland Classification for Black Duck Habitat Management Using Combined Polarimetric RADARSAT 2 and SPOT Imagery

    Science.gov (United States)

    Zhang, W.; Hu, B.; Brown, G.

    2018-04-01

    The black duck population has decreased significantly due to loss of its breeding habitat. Wetlands are an important feature that relates to habitat management and requires monitoring. Synthetic Aperture Radar (SAR) systems are helpful to map the wetland as the microwave signals are sensitive to water content and can be used to map surface water extent, saturated soils, and flooded vegetation. In this study, RadarSat 2 Polarimetric data is employed to map surface water and track changes in extent over the years through image thresholding and reviewed different approaches of Polarimetric decompositions for detecting flooded vegetation. Also, object-based analysis associated with beaver activity is conducted with combined multispectral SPOT satellite imagery. Results show SAR data has proven ability to improve mapping open water areas and locate flooded vegetation areas.

  7. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  8. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Science.gov (United States)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.

    2013-01-01

    In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.

  9. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  10. Habitat use patterns of the invasive red lionfish Pterois volitans: a comparison between mangrove and reef systems in San Salvador, Bahamas

    Science.gov (United States)

    Pimiento, Catalina; Nifong, James C.; Hunter, Margaret E.; Monaco, Eric; Silliman, Brian R.

    2015-01-01

    The Indo-Pacific red lionfish Pterois volitans is widespread both in its native and its non-native habitats. The rapid invasion of this top predator has had a marked negative effect on fish populations in the Western Atlantic and the Caribbean. It is now well documented that lionfish are invading many tropical and sub-tropical habitats. However, there are fewer data available on the change in lionfish abundance over time and the variation of body size and diet across habitats. A recent study in San Salvador, Bahamas, found body size differences between individuals from mangrove and reef systems. That study further suggested that ontogenetic investigation of habitat use patterns could help clarify whether lionfish are using the mangrove areas of San Salvador as nurseries. The aim of the present study is to determine temporal trends in lionfish relative abundance in mangrove and reef systems in San Salvador, and to further assess whether there is evidence suggesting an ontogenetic shift from mangroves to reef areas. Accordingly, we collected lionfish from mangrove and reef habitats and calculated catch per unit effort (a proxy for relative abundance), compared body size distributions across these two systems, and employed a combination of stable isotope, stomach content, and genetic analyses of prey, to evaluate differences in lionfish trophic interactions and habitat use patterns. Our results show that populations may have increased in San Salvador during the last 4 years, and that there is a strong similarity in body size between habitats, stark differences in prey items, and no apparent overlap in the use of habitat and/or food resources. These results suggest that there is not evidence an for ontogenetic shift from mangroves to reefs, and support other studies that propose lionfish are opportunistic forages with little movement across habitats.

  11. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  12. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    Science.gov (United States)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  13. Remotely sensed indicators of habitat heterogeneity and biological diversity: A preliminary report

    Science.gov (United States)

    Imhoff, Marc; Sisk, Thomas; Milne, Anthony; Morgan, Garth; Orr, Tony

    1995-01-01

    The relationship between habitat area, spatial dynamics of the landscape, and species diversity is an important theme in population and conservation biology. Of particular interest is how populations of various species are affected by increasing habitat edges due to fragmentation. Over the last decade, assumptions regarding the effects of habitat edges on biodiversity have fluctuated wildly, from the belief that they have a positive effect to the belief that they have a clearly negative effect. This change in viewpoint has been brought about by an increasing recognition of the importance of geographic scale and a reinterpretation of natural history observations. In this preliminary report from an ongoing project, we explore the use of remote sensing technology and geographic information systems to further our understanding of how species diversity and population density are affected by habitat heterogeneity and landscape composition. A primary feature of this study is the investigation of SAR for making more rigorous investigations of habitat structure by exploiting the interaction between radar backscatter and vegetation structure and biomass. A major emphasis will be on the use of SAR data to define relative structural types based on measures of structural consolidation using the vegetation surface area to volume ratio (SA/V). Past research has shown that SAR may be sensitive to this form of structural expression which may affect biodiversity.

  14. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  15. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  16. Determining Home Range and Preferred Habitat of Feral Horses on the Nevada National Security Site Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Ashley V. [Univ. of Denver, CO (United States)

    2014-05-30

    Feral horses (Equus caballus) are free-roaming descendants of domesticated horses and legally protected by the Wild and Free-Roaming Horses and Burros Act of 1971, which mandates how feral horses and burros should be managed and protected on federal lands. Using a geographic information system to determine the home range and suitable habitat of feral horses on the federally managed Nevada National Security Site can enable wildlife biologists in making best management practice recommendations. Home range was estimated at 88.1 square kilometers. Site suitability was calculated for elevation, forage, slope, water presence and horse observations. These variables were combined in successive iterations into one polygon. Suitability rankings established that 85 square kilometers are most suitable habitat, with 2,052 square kilometers of good habitat 1,252 square kilometers of fair habitat and 122 square kilometers of least suitable habitat.

  17. A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid Mediterranean agricultural systems.

    Directory of Open Access Journals (Sweden)

    Laura Cardador

    Full Text Available European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species' key resource requirements (diet, foraging habitat and nesting site, and examine whether it can be used to link land-use and local species' distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species' occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models.

  18. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  19. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  20. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  1. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  2. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  3. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    Science.gov (United States)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  4. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.

    Science.gov (United States)

    Barletta, M; Jaureguizar, A J; Baigun, C; Fontoura, N F; Agostinho, A A; Almeida-Val, V M F; Val, A L; Torres, R A; Jimenes-Segura, L F; Giarrizzo, T; Fabré, N N; Batista, V S; Lasso, C; Taphorn, D C; Costa, M F; Chaves, P T; Vieira, J P; Corrêa, M F M

    2010-06-01

    Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.

  5. Seasonal Habitat Patterns of Japanese Common Squid (Todarodes Pacificus Inferred from Satellite-Based Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Irene D. Alabia

    2016-11-01

    Full Text Available The understanding of the spatio-temporal distributions of the species habitat in the marine environment is central to effectual resource management and conservation. Here, we examined the potential habitat distributions of Japanese common squid (Todarodes pacificus in the Sea of Japan during a four-year period. The seasonal patterns of preferential habitat were inferred from species distribution models, built using squid occurrences detected from night-time visible images and remotely-sensed environmental factors. The predicted squid habitat (i.e., areas with high habitat suitability revealed strong seasonal variability, characterized by a reduction of potential habitat, confined off of the southern part of the basin during the winter–spring period (December–May. Apparent expansion of preferential habitat occurred during summer–autumn months (June–November, concurrent with the formation of highly suitable habitat patches in certain regions of the Sea of Japan. These habitat distribution patterns were in response to changes in oceanographic conditions and synchronous with seasonal migration of squid. Moreover, the most important variables regulating the spatio-temporal patterns of suitable habitat were sea surface temperature, depth, sea surface height anomaly, and eddy kinetic energy. These variables could affect the habitat distributions through their impacts on growth and survival of squid, local nutrient transport, and the availability of favorable spawning and feeding grounds.

  6. Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity

    International Nuclear Information System (INIS)

    Ghorai, Santu; Poria, Swarup

    2016-01-01

    In this paper, we have investigated the phenomena of Turing pattern formation in a predator-prey model with habitat complexity in presence of cross diffusion. Using the linear stability analysis, the conditions for the existence of stationary pattern and the existence of Hopf bifurcation are obtained. It is shown analytically that the presence of cross diffusion in the system supports the formation of Turing pattern. Two parameter bifurcation analysis are done analytically and corresponding bifurcation diagrams are presented numerically. A series of simulation results are plotted for different biologically meaningful parameter values. Effects of variation of habitat complexity and the predator mortality rate and birth rate of prey on pattern formation are also reported. It is shown that cross-diffusion can lead to a wide variety of spatial and spatiotemporal pattern formation. It is found that the model exhibits spot and stripe pattern, and coexistence of both spot and strip patterns under the zero flux boundary condition. It is observed that cross-diffusion, habitat complexity, birth rate of prey and predator’s mortality rate play a significant role in the pattern formation of a distributed population system of predator-prey type.

  7. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland

    OpenAIRE

    Choi Jong-Yun; Jeong Kwang-Seuk; La Geung-Hwan; Joo Gea-Jae

    2014-01-01

    Submerged macrophytes improve the structural heterogeneity of microhabitats in aquatic ecosystems, often providing an important habitat for zooplankton. However, excessive development of free-floating macrophytes on the water surface can reduce the biomass of submerged macrophytes and result in a relatively simple habitat structure. We hypothesized that controlling the development of free-floating macrophytes would result in a more complex habitat structure by promoting the development of sub...

  8. Skin and skeletal system lesions of european pond turtles (Emys orbicularis) from natural habitats.

    Science.gov (United States)

    Aleksić-Kovačević, Sanja; Ozvegy, József; Krstić, Nikola; Rusvai, Miklós; Jakab, Csaba; Stanimirović, Zoran; Becskei, Zsolt

    2014-06-01

    Water pollution is known to play an important role in the pathogenesis of plastron, carapace and skin diseases of turtles. In this study, a total of 150 European pond turtles (Emys orbicularis) of different age and both sexes, originating from natural habitats in Serbia, were examined for morphological changes of the skin, plastron, carapace and skeletal system. The turtles were taken out from their natural habitats in Lake Ludas, Lake Palic and Lake Tresetiste. After artificial hibernation, they were subjected to detailed examination, sampled and treated, and finally returned into their natural habitat. Biopsies from the skin and shell were subjected to histopathological examination and microbiological analysis. X-ray scanning was also performed to detect changes in the skeletal system. Macroscopic changes of the skin, most frequently degenerative, inflammatory or neoplastic diseases, were diagnosed in 49.33% of the turtles examined. Dermatitis of different origin and form was the most prominent histopathological finding (28.00%). In the plastron, inflammatory and degenerative processes were frequently found. Osteopathy and mechanical injuries were the dominant findings. Macroscopic changes of the plastron, carapace and skeletal system were diagnosed in 67.33% of the turtles examined. Using X-ray scanning, generalised osteopathy, anomalies and malformations of different aetiology were also diagnosed on the tail and legs. Microbiological examinations showed the presence of a variety of bacterial and fungal agents, either primary pathogens or potential polluters, which invaded the skin and shell, or were present in cloacal swab samples. Bacterial infection was diagnosed in 76.66% of the turtles, first of all in those with skin and shell necrosis. Mycoses were diagnosed in 33.33% of the animals.

  9. Habitat quality assessment of two wetland treatment systems in Mississippi: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, L.S.

    1992-12-01

    The use of wetland treatment systems (WTS), or constructed wetlands, for treating municipal wastewater is increasing in the United States, but little is known about the ability of these systems to duplicate or sustain wetland functions. The pilot study was designed to examine methods and the usefulness of various wetland indicators for assessing the wildlife habitat quality in six WTS sites throughout the United States. The report focusses on two Mississippi sites, one located near Collins, and one near Ocean Springs.

  10. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  11. Correspondence between the habitat of the threatened pudú (Cervidae) and the national protected-area system of Chile.

    Science.gov (United States)

    Pavez-Fox, Melissa; Estay, Sergio A

    2016-01-07

    Currently, many species are facing serious conservation problems due to habitat loss. The impact of the potential loss of biodiversity associated with habitat loss is difficult to measure. This is particularly the case with inconspicuous species such as the threatened pudú (Pudu puda), an endemic Cervidae of temperate forests of Chile and Argentina. To evaluate the effectiveness of the Chilean protected-area system in protecting the habitat of the pudú, we measured the congruence between this specie's potential distribution and the geographical area occupied by the protected areas in central and southern Chile. The measurements of congruency were made using the Maxent modeling method. The potential habitat of the pudú was found to be poorly represented in the system (3-8%) and even the most suitable areas for the species are not currenly protected. According to these results, the protected area network cannot be considered as a key component of the conservation strategy for this species. The results presented here also serve as a guide for the reevaluation of current pudú conservation strategies, for the design of new field studies to detect the presence of this species in human-disturbed areas or remaining patches of native forest, and for the implementation of corridors to maximize the success of conservation efforts.

  12. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  13. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    Science.gov (United States)

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-10-01

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. © 2017 Society for Conservation Biology.

  14. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  15. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  16. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    Science.gov (United States)

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  17. Get a grip on chaos: Tailored measures for complex systems on surfaces

    Science.gov (United States)

    Firle, Sascha Oliver

    Complex systems are ubiquitous in physics, biology and mathematics. This thesis is concerned with describing and understanding complex systems. Some new concepts about how large systems can be viewed in a lower dimensional framework are proposed. The systems presented are examples from ecology and chemistry. In both cases we have a large amount of interacting units that can be understood by The predator-prey system investigated consists of ground beetles, Pterostichus cuprens L. (Coleoptera: Carabidae), that feeds on bird-cherry oat aphids. The beetles' movement can consistently be described by a combined model of surface diffusion and biased random walk. This allows conclusions about how fast and in which fashion the beetle covers its habitat. Movement is dependent on aphid densities and predation, in turn modifies aphid distributions locally. The presented generalized functional response theory describes predation rates in the presence of spatial heterogeneity. A single measure for fragmentation captures all essential features of the prey aggregation and allows the estimation of outbreak densities and distributions. The chemical example is the catalytic oxidation of CO on a Pt(110) single crystal surface. Unstable periodic orbits reconstructed from experimental data are used to reveal the topology of the attractor, underlying the time series dynamics. The found braid supports an orbit which implies that the time series is chaotic. The system is simulated numerically by a set of partial differential equations for surface coverage in one space dimension. The bifurcation diagram of the corresponding traveling wave ODE reveals the homoclinic and heteroclinic orbits that organize the phase space and mediate the transition to chaos. Studies in the PDE- framework relate this to the stability and to the interaction of pulse-like solutions.

  18. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz; Dufour, Florence; Kell, Laurence T.; Merino, Gorka; Ibaibarriaga, Leire; Chust, Guillem; Irigoien, Xabier; Santiago, Josu; Murua, Hilario; Fraile, Igaratza; Chifflet, Marina; Goikoetxea, Nerea; Sagarminaga, Yolanda; Aumont, Olivier; Bopp, Laurent; Herrera, Miguel Angel; Marc Fromentin, Jean; Bonhomeau, Sylvain

    2015-01-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  19. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz

    2015-03-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  20. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  1. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  2. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  3. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  4. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  5. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats.

    Science.gov (United States)

    Shen, J; Zhang, N; Gexigeduren; He, B; Liu, C-Y; Li, Y; Zhang, H-Y; Chen, X-Y; Lin, H

    2015-06-01

    Grasshopper plagues have seriously disturbed grassland ecosystems in Inner Mongolia, China. The accurate prediction of grasshopper infestations and control of grasshopper plagues have become urgent needs. We sampled 234, 342, 335, and 369 plots in Xianghuangqi County of Xilingol League in 2010, 2011, 2012, and 2013, respectively, and measured the density of the most dominant grasshopper species, Oedaleus decorus asiaticus, and the latitude, longitude, and associated relatively stable habitat factors at each plot. We used Excel-GeogDetector software to explore the effects of individual habitat factors and the two-factor interactions on grasshopper density. We estimated the membership of each grasshopper density rank and determined the weights of each habitat category. These results were used to construct a model system evaluating grasshopper habitat suitability. The results showed that our evaluation system was reliable and the fuzzy evaluation scores of grasshopper habitat suitability were good indicators of potential occurrence of grasshoppers. The effects of the two-factor interactions on grasshopper density were greater than the effects of any individual factors. O. d. asiaticus was most likely to be found at elevations of 1300-1400 m, flat terrain or slopes of 4-6°, typical chestnut soil with 70-80% sand content in the top 5 cm of soil, and medium-coverage grassland. The species preferred temperate bunchgrass steppe dominated by Stipa krylovii and Cleistogenes squarrosa. These findings may be used to improve models to predict grasshopper occurrence and to develop management guidelines to control grasshopper plagues by changing habitats.

  6. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  7. Lighting Automation Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  8. Lighting Automation - Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  9. Wildlife Habitats Suitability Modelling using Fuzzy Inference System: A Case Study of Persian Leopard (Panthera pardus saxicolor in Shimbar Protected Area

    Directory of Open Access Journals (Sweden)

    Z. Obeidavi

    2017-06-01

    Full Text Available Several modelling techniques have been developed for habitat suitability modelling. In the meantime, the Fuzzy Inference System (FIS with ability to model uncertainty of input variables is an effective method to model wildlife species habitat suitability. So, Persian Leopard habitat suitability was predicted in Shimbar Protected Area using FIS. Therefore, the effective environmental variables were determined. We also defined and determined the linguistic variables, linguistic values, and range of them. Then, we designed the membership functions of the fuzzy sets of the input and output variables. Also, the definition of the fuzzy rules in the system was performed. Finally, the defuzzification of output was carried out. The accuracy of the predictive model was tested using AUC. Also, 11 FISs were developed to determine sensitivity of the models and important variables in modelling. The results showed that the predictive model was more efficient than the random model (AUC=0.960. In addition, the ‘distance to capra’ was the most important predictor. According to the success of FIS in Persian Leopard habitat suitability modelling, we suggest this method to improve and complete the existing spatial information of wildlife habitats in Iran, especially about regions and species that have been less studied.

  10. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    Science.gov (United States)

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  11. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  12. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    Science.gov (United States)

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  13. Southern Monterey Bay Littoral Cell CRSMP Sensitive Habitat 2008

    Data.gov (United States)

    California Natural Resource Agency — One of the most important functions of the southern Monterey Bay coastal system is its role as a habitat for a unique flora and fauna. The beaches are habitat for...

  14. Southern Monterey Bay Littoral Cell CRSMP Sensitive Habitat 2008

    Data.gov (United States)

    California Department of Resources — One of the most important functions of the southern Monterey Bay coastal system is its role as a habitat for a unique flora and fauna. The beaches are habitat for...

  15. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    Science.gov (United States)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  16. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  17. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Butenschön, M.; Gürkan, Z.

    2013-01-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented...... in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical– biological interaction. Our major experience by the coupling model subsystems is that well......-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate...

  18. Enhancements of the "eHabitat

    Science.gov (United States)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  19. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  20. Determinants of habitat selection by hatchling Australian freshwater crocodiles.

    Directory of Open Access Journals (Sweden)

    Ruchira Somaweera

    Full Text Available Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle, most hatchling (<12-month-old freshwater crocodiles (Crocodylus johnstoni are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.

  1. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  2. ADVANCING TORPOR INDUCING TRANSFER HABITATS FOR HUMAN STASIS TO MARS

    Data.gov (United States)

    National Aeronautics and Space Administration — SpaceWorks proposes the development of an advanced habitat system for transporting crews between the Earth and Mars. This new and innovative habitat design is...

  3. Assessing habitat connectivity for ground-dwelling animals in an urban environment.

    Science.gov (United States)

    Braaker, S; Moretti, M; Boesch, R; Ghazoul, J; Obrist, M K; Bontadina, F

    To ensure viable species populations in fragmented landscapes, individuals must be able to move between suitable habitat patches. Despite the increased interest in biodiversity assessment in urban environments, the ecological relevance of habitat connectivity in highly fragmented landscapes remains largely unknown. The first step to understanding the role of habitat connectivity in urban ecology is the challenging task of assessing connectivity in the complex patchwork of contrasting habitats that is found in cities. We developed a data-based framework, minimizing the use of subjective assumptions, to assess habitat connectivity that consists of the following sequential steps: (1) identification of habitat preference based on empirical habitat-use data; (2) derivation of habitat resistance surfaces evaluating various transformation functions; (3) modeling of different connectivity maps with electrical circuit theory (Circuitscape), a method considering all possible pathways across the landscape simultaneously; and (4) identification of the best connectivity map with information-theoretic model selection. We applied this analytical framework to assess habitat connectivity for the European hedgehog Erinaceus europaeus, a model species for ground-dwelling animals, in the city of Zurich, Switzerland, using GPS track points from 40 individuals. The best model revealed spatially explicit connectivity “pinch points,” as well as multiple habitat connections. Cross-validation indicated the general validity of the selected connectivity model. The results show that both habitat connectivity and habitat quality affect the movement of urban hedgehogs (relative importance of the two variables was 19.2% and 80.8%, respectively), and are thus both relevant for predicting urban animal movements. Our study demonstrates that even in the complex habitat patchwork of cities, habitat connectivity plays a major role for ground-dwelling animal movement. Data-based habitat connectivity

  4. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  5. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    Science.gov (United States)

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  6. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    Science.gov (United States)

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  7. Appennino: A GIS Tool for Analyzing Wildlife Habitat Use

    Directory of Open Access Journals (Sweden)

    Marco Ferretti

    2012-01-01

    Full Text Available The aim of the study was to test Appennino, a tool used to evaluate the habitats of animals through compositional analysis. This free tool calculates an animal’s habitat use within the GIS platform for ArcGIS and saves and exports the results of the comparative land uses to other statistical software. Visual Basic for Application programming language was employed to prepare the ESRI ArcGIS 9.x utility. The tool was tested on a dataset of 546 pheasant positions obtained from a study carried out in Tuscany (Italy. The tool automatically gave the same results as the results obtained by calculating the surfaces in ESRI ArcGIS, exporting the data from the ArcGIS, then using a commercial spreadsheet and/or statistical software to calculate the animal’s habitat use with a considerable reduction in time.

  8. Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies

    Directory of Open Access Journals (Sweden)

    L. Jonkers

    2017-06-01

    Full Text Available The composition of planktonic foraminiferal (PF calcite is routinely used to reconstruct climate variability. However, PF ecology leaves a large imprint on the proxy signal: seasonal and vertical habitats of PF species vary spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience and it is not unlikely that changes in depth habitat also result from such habitat tracking. While this behaviour could lead to an underestimation of spatial or temporal trends as well as of variability in proxy records, most palaeoceanographic studies are (implicitly based on the assumption of a constant habitat. Up to now, the effect of habitat tracking on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise this effect on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by −0.1 ‰ (equivalent to 0.4 °C per °C, thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that given an observation-based model parametrisation calcification depth increases with temperature in all species and sensitivity analysis suggests that a temperature-related seasonal habitat adjustment is essential to explain the observed isotope signal. Habitat tracking can thus lead to a significant reduction in the amplitude of recorded environmental change

  9. Differences in biological traits composition of benthic assemblages between unimpacted habitats

    DEFF Research Database (Denmark)

    Bolam, S.G.; Garcia, C.; Eggleton, J.

    2017-01-01

    of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume...... greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers......, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient...

  10. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  11. Exploring the Application of Optical Remote Sensing as a Method to Estimate the Depth of Backwater Nursery Habitats of the Colorado Pikeminnow

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); LaGory, Kirk E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is needed to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.

  12. Integration Process for the Habitat Demonstration Unit

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  13. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  14. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  15. Launch and Functional Considerations Guiding the Scaling and Design of Rigid Inflatable Habitat Modules

    Science.gov (United States)

    Bell, L.

    2002-01-01

    for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low

  16. The impacts of intensity of human use on grizzly bear habitat selection

    OpenAIRE

    Ouren, Douglas S.; Garrott, Robert A.; Watts, Raymond D.; Lukins, William J.

    2003-01-01

    Problem Statement One of the major challenges to grizzly bear preservation in the greater Yellowstone area is the impact on grizzly bear habitat selection by various types and intensities of human activities. The most prevalent of these human activities is the presence and intensity of use of motorized transportation systems. These transportation systems provide increased access into grizzly bear habitat and thus increase the risk of mortality and dilute the effectiveness of their habitat (Br...

  17. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    Science.gov (United States)

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  18. Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    OpenAIRE

    Kurt Schnier; Dan Holland

    2005-01-01

    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection ...

  19. Potential for enhancing nongame bird habitat values on abandoned mine lands of western North Dakota

    International Nuclear Information System (INIS)

    Burley, J.B.; Hopkins, R.B.

    1984-01-01

    Throughout western North Dakota the number of unreclaimed surface coal and coal-uranium mines might total over 1100. We examined the potential for enhancing the nongame bird habitat values of unreclaimed mine lands in the arid, western region of North Dakota. Generally, the greatest variety of birds occurred in natural and planted woodlands, while fewer birds occurred in unreclaimed mine lands, grasslands, shrublands and croplands. Deciduous woodland types supported more species of birds than coniferous types. Planted woodlands supported about the same number of bird species as some natural deciduous woodland types and more species than coniferous woods. Unreclaimed mine lands supported more species than grasslands and croplands, and about the same number of species as native shrublands. The highest bird densities were in planted woodlands. Bird diversity varied positively with habitat diversity. The bird fauna of unreclaimed mine lands can be enhanced by creating more diverse habitats. Seventeen guidelines to enhance unreclaimed mine lands for nongame birds are presented. These guidelines can be used in preserving habitats threatened by surface mining and reclaiming previously mined lands

  20. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  1. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  2. The use of IFIM for evaluating effects of a flow alternative on fish habitat in a river system with competing water demands

    International Nuclear Information System (INIS)

    Miller, W.J.; Chadwick, J.W.; Canton, S.P.; Conklin, D.J. Jr.; Chrisp, E.Y.

    1991-01-01

    This paper reports on the Instream Flow Incremental Methodology (IFIM) which was used to evaluate instream fish habitat in the Platte River in central Nebraska. The IFIM analysis presented herein incorporates water temperature modeling and water quality, fish species composition and distribution, physical habitat data and 43 years of flow records. The Platte River system has competing water demands from hydropower, agricultural irrigation, municipal uses, recreation and most recently from recommended instream flows for fish and wildlife resources. IFIM was the tool used to develop the data base required for a comprehensive instream flow analysis of the system. When compared to the baseline flow regime, and alternative flow regime significantly increased modelled fish habitat area during critical periods of the year. The time series results demonstrated that the flow alternative would be beneficial to the existing fish resources, while still providing water for power production and irrigation

  3. Linking habitat management and conservation biocontrol through gut-content analysis

    Science.gov (United States)

    Increasing the habitat diversity of agricultural fields can lead to more effective biocontrol of arthropod pests. Annual cropping systems are exposed to frequent disturbance and lack habitat diversity; therefore it is important to develop strategies that can improve ecosystem services such as bioco...

  4. Assessing the role of conspecific attraction in habitat restoration for Henslow's sparrows in Iowa

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Otis, David L.

    2011-01-01

    The presence of conspecific individuals may provide important cues about habitat quality for territorial songbirds. We tested the ability of a conspecific song playback system to attract Henslow’s sparrows to previously unoccupied restored habitat. We successfully attracted Heslow’s sparrows to 3 of 7 treatment plots using conspecific song playbacks and we found no Henslow’s sparrows in control plots. The addition of social cues using playback systems in restored grassland habitats may aid conservation efforts of Henslow’s sparrows to available habitat.

  5. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  6. Dual-purpose self-deliverable lunar surface PV electrical power system

    Science.gov (United States)

    Arnold, Jack H.; Harris, David W.; Cross, Eldon R.; Flood, Dennis J.

    1991-01-01

    A safe haven and work supported PV power systems on the lunar surface will likely be required by NASA in support of the manned outpost scheduled for the post-2000 lunar/Mars exploration and colonization initiative. Initial system modeling and computer analysis shows that the concept is workable and contains no major high risk technology issues which cannot be resolved in the circa 2000 to 2025 timeframe. A specific selection of the best suited type of electric thruster has not been done; the initial modeling was done using an ion thruster, but Rocketdyne must also evaluate arc and resisto-jets before a final design can be formulated. As a general observation, it appears that such a system can deliver itself to the Moon using many system elements that must be transported as dead payload mass in more conventional delivery modes. It further appears that a larger power system providing a much higher safe haven power level is feasible if this delivery system is implemented, perhaps even sufficient to permit resource prospecting and/or lab experimentation. The concept permits growth and can be expanded to include cargo transport such as habitat and working modules. In short, the combined payload could be manned soon after landing and checkout. NASA has expended substantial resources in the development of electric propulsion concepts and hardware that can be applied to a lunar transport system such as described herein. In short, the paper may represent a viable mission on which previous investments play an invaluable role. A more comprehensive technical paper which embodies second generation analysis and system size will be prepared for near-term presentation.

  7. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  8. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  9. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  10. Using small unmanned aerial vehicle for instream habitat evaluation and modelling

    Science.gov (United States)

    Astegiano, Luca; Vezza, Paolo; Comoglio, Claudio; Lingua, Andrea; Spairani, Michele

    2015-04-01

    Recent advances in digital image collection and processing have led to the increased use of unmanned aerial vehicles (UAV) for river research and management. In this paper, we assess the capabilities of a small UAV to characterize physical habitat for fish in three river stretches of North-Western Italy. The main aim of the study was identifying the advantages and challenges of this technology for environmental river management, in the context of the increasing river exploitation for hydropower production. The UAV used to acquire overlapping images was a small quadcopter with a two different high-resolution (non-metric) cameras (Nikon J1™ and Go-Pro Hero 3 Black Edition™). The quadcopter was preprogrammed to fly set waypoints using a small tablet PC. With the acquired imagery, we constructed a 5-cm resolution orthomosaic image and a digital surface model (DSM). The two products were used to map the distribution of aquatic and riparian habitat features, i.e., wetted area, morphological unit distributions, bathymetry, water surface gradient, substrates and grain sizes, shelters and cover for fish. The study assessed the quality of collected data and used such information to identify key reach-scale metrics and important aspects of fluvial morphology and aquatic habitat. The potential and limitations of using UAV for physical habitat survey were evaluated and the collected data were used to initialize and run common habitat simulation tools (MesoHABSIM). Several advantages of using UAV-based imagery were found, including low cost procedures, high resolution and efficiency in data collection. However, some challenges were identified for bathymetry extraction (vegetation obstructions, white waters, turbidity) and grain size assessment (preprocessing of data and automatic object detection). The application domain and possible limitation for instream habitat mapping were defined and will be used as a reference for future studies. Ongoing activities include the

  11. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  12. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  13. Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus: A Conservation-Perspective Approach

    Directory of Open Access Journals (Sweden)

    Chun-Hsien Lai

    2018-04-01

    Full Text Available The purpose of this study was to establish a habitat-suitability assessment model for Gallinula chloropus, or the Common Moorhen, to be applied to the selection of the most suitable farm pond for habitat conservation in Chiayi County, Taiwan. First, the fuzzy Delphi method was employed to evaluate habitat selection factors and calculate the weights of these factors. The results showed that the eight crucial factors, by importance, in descending order, were (1 area ratio of farmlands within 200 m of the farm pond; (2 pond area; (3 pond perimeter; (4 aquatic plant coverage of the pond surface; (5 drought period; (6 coverage of high and low shrubs around the pond bank; (7 bank type; and (8 water-surface-to-bank distance. Subsequently, field evaluations of 75 farm ponds in Chiayi County were performed. The results indicated that 15 farm ponds had highly-suitable habitats and were inhabited by unusually high numbers of Common Moorhens; these habitats were most in need of conservation. A total of two farm ponds were found to require habitat-environment improvements, and Common Moorhens with typical reproductive capacity could be appropriately introduced into 22 farm ponds to restore the ecosystem of the species. Additionally, the habitat suitability and number of Common Moorhens in 36 farm ponds were lower than average; these ponds could be used for agricultural irrigation, detention basins, or for recreational use by community residents. Finally, the total habitat suitability scores and occurrence of Common Moorhens in each farm pond were used to verify the accuracy of the habitat-suitability assessment model for the Common Moorhen. The overall accuracy was 0.8, and the Kappa value was 0.60, which indicates that the model established in this study exhibited high credibility. To sum up, this is an applicable framework not only to assess the habitat suitability of farm ponds for Common Moorhens, but also to determine whether a particular location may

  14. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  15. Skipjack Tuna Availability for Purse Seine Fisheries Is Driven by Suitable Feeding Habitat Dynamics in the Atlantic and Indian Oceans

    Directory of Open Access Journals (Sweden)

    Jean-Noël Druon

    2017-10-01

    Full Text Available An Ecological Niche model was developed for skipjack tuna (Katsuwonus pelamis, SKJ in the Eastern Central Atlantic Ocean (AO and Western Indian Ocean (IO using an extensive set of presence data collected by the European purse seine fleet (1998–2014. Chlorophyll-a fronts were used as proxy for food availability while mixed layer depth, sea surface temperature, dissolved oxygen, salinity, current intensity, and height anomaly variables were selected to describe SKJ's abiotic environmental preferences. The resultant ecological niche included both mesoscale eddy-type productive features that displayed latitudinal range in the IO to large scale upwelling systems that shrink and swell seasonally in the AO. Overall, 83% of all free swimming school sets (FSC and 75% of drifting fish aggregating device sets (dFAD that contained SKJ occurred within 25 km of favorable feeding habitat. In the AO, 34% of dFAD sets were made more than 100 km away from this habitat, mostly in the surface chlorophyll-a poor environment of the Guinea Current. These distant sets represent 10% of dFAD sets in the IO and 8% of all FSC sets. Our results suggest that the Mozambique Channel in the IO, with its simultaneously favorable feeding and spawning conditions, may seasonally offer a better SKJ nursery habitat than the Guinea Current which shows a substantially poorer feeding capacity. With the exception of this latter area, our results also suggest that fishing accessibility will be higher in months where the size of the favorable feeding habitats are reduced, likely because this reduction drives a geographical contraction in SKJ populations. The observed relationship between the annual size of favorable feeding habitat and both annual catch rates and total catches in the IO is consistent with the near-full exploitation of this stock that has occurred since the 2000s. Moreover, it suggests that annual habitat size could be used as an indicator of growth capacity for this

  16. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system.

    Science.gov (United States)

    Bergström, Lena; Karlsson, Martin; Bergström, Ulf; Pihl, Leif; Kraufvelin, Patrik

    Shallow nearshore habitats are highly valued for supporting marine ecosystems, but are subject to intense human-induced pressures. Mesopredatory fish are key components in coastal food webs, and alterations in their abundance may have evident effects also on other parts of the ecosystem. The aim of this study was to clarify the relationship between the abundance of coastal mesopredatory fish, defined as mid-trophic level demersal and benthic species with a diet consisting predominantly of invertebrates, and ambient environmental variables in a fjord system influenced by both eutrophication and overfishing. A field survey was conducted over a coastal gradient comprising 300 data points sampled consistently for fish community and environmental data. Results from multivariate and univariate analyses supported each other, demonstrating that mesopredatory fish abundance at species and functional group level was positively related to the cover of structurally complex vegetation and negatively related to eutrophication, as measured by water transparency. Contrary to other studies showing an inverse relationship to piscivore abundance over time, the spatial distribution of mesopredatory fish was not locally regulated by the abundance of piscivorous fish, probably attributed to piscivores being at historically low levels due to previous overfishing. Mesopredatory fish abundance was highest in areas with high habitat quality and positively related to the abundance of piscivores, suggesting a predominance of bottom-up processes. We conclude that, in parallel with ongoing regulations of fishing pressure, measures to restore habitat function and food web productivity are important for the recovery of coastal fish communities in the area.

  17. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  18. Impact of experimental habitat manipulation on northern bobwhite survival

    Science.gov (United States)

    Peters, David C.; Brooke, Jarred M.; Tanner, Evan P.; Unger, Ashley M.; Keyser, Patrick D.; Harper, Craig A.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    Habitat management for northern bobwhite (Colinus virginianus) should affect vital rates, but direct linkages with survival are not well documented; therefore, we implemented an experiment to evaluate those responses. We conducted our experiment on a reclaimed surface mine, a novel landscape where conditions were considered sub-optimal because of the dominance of non-native vegetation, such as sericea lespedeza (Lespedeza cuneata), which has been reported to provide marginal habitat for northern bobwhite and may negatively affect survival. Nonetheless, these areas have great potential for contributing to bobwhite conservation because of the amount of early successional cover they provide. Our study site, a 3,330-ha reclaimed surface mine in western Kentucky, consisted of 2 tracts (Sinclair and Ken, 1,471 ha and 1,853 ha, respectively) that served as replicates with each randomly divided into a treatment (i.e., habitat manipulation through a combination of disking, burning, and herbicide application) and an undisturbed control (n = 4 experimental units). Habitat treatments were applied October 2009 to September 2013. We used radio telemetry to monitor northern bobwhite (n = 1,198) during summer (1 Apr–30 Sep) and winter (1 Oct–31 Mar), 2009–2013. We used the known-fate model in Program MARK to evaluate treatment effects on seasonal survival rates. We included biological, home-range, landscape, and microhabitat metrics as covariates to help improve model sensitivity and further elucidate experimental impacts. Survival varied annually, ranging from 0.139 (SE = 0.031) to 0.301 (SE = 0.032), and seasonally (summer, 0.148 [SE = 0.015]; winter, 0.281 [SE = 0.022]). We found a treatment effect (β = 0.256, 95% CI = 0.057–0.456) with a seasonal interaction (β  = −0.598, 95% CI = −0.898 to −0.298) with survival being higher in summer (0.179 [SE = 0.022] vs. 0.109 [SE = 0.019]) and lower in winter (0.233 [SE

  19. Tensegrity Approaches to In-Space Construction of a 1g Growable Habitat

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal seeks to design a rotating habitat with a robotic system that constructs the structure and provides a habitat growth capability. The tensegrity...

  20. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  1. Building habitats on the Moon engineering approaches to lunar settlements

    CERN Document Server

    Benaroya, Haym

    2018-01-01

    Designing a habitat for the lunar surface? You will need to know more than structural engineering. There are the effects of meteoroids, radiation, and low gravity. Then there are the psychological and psychosocial aspects of living in close quarters, in a dangerous environment, far away from home. All these must be considered when the habitat is sized, materials specified, and structure designed. This book provides an overview of various concepts for lunar habitats and structural designs and characterizes the lunar environment - the technical and the nontechnical. The designs take into consideration psychological comfort, structural strength against seismic and thermal activity, as well as internal pressurization and 1/6 g. Also discussed are micrometeoroid modeling, risk and redundancy as well as probability and reliability, with an introduction to analytical tools that can be useful in modeling uncertainties.

  2. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa.

    Directory of Open Access Journals (Sweden)

    Omid Paknia

    Full Text Available The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing "no biogeography."

  3. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment.

    Science.gov (United States)

    Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J

    2014-12-01

    Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Ocular surface system integrity].

    Science.gov (United States)

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  5. Habitat modeling and genetic signatures of postglacial recolonization for tidal estuaries

    Science.gov (United States)

    Dolby, G. A.; Jacobs, D. K.

    2014-12-01

    Pleistocene glacial cycles are a foremost influence on the genetic diversity and species distribution patterns observed today. Though much work has centered on biotic response to such climatic forcing, little of it has regarded estuarine or other aquatic coastal taxa whose habitat formation is a function of sea level, hydrography, and coastal geomorphology. These physical parameters required for habitat formation suggest that glacial cycles impart a significant effect on such taxa through glacially driven eustatic changes. Additionally, the steepened coastline and rainfall-limited Mediterranean climate suggest limited glacial habitat for estuarine species in southern and Baja California. Here we present GIS modeled habitat for tidal estuaries for three co-distributed estuarine fishes (Gillichthys mirabilis, Quietula y-cauda, Fundulus parvipinnis) since the last glacial maximum. Parameterization of sea level and slope enables biologically relevant temporal resolution of near-millennial scale. At lowstand our approach reveals two refuges along the coast at 1000km distance from each other, with habitat rapidly increasing 15 - 12 ka during meltwater pulse 1A. Habitat area peaked in the early Holocene and began decreasing with the current stillstand roughly 7 ka, probably as a result of coastal maturation towards less tidal systems. To target the postglacial recolonization process we applied discriminant function analysis to highly polymorphic microsatellite data to partition out the alleles associated with refuges identified a priori by habitat modeling. The frequencies of these alleles were calculated for all individuals at intervening populations and regressed against geographic distance. This analysis revealed nonlinear mixing curves, suggesting uneven allelic mixing efficiency along the coastline, perhaps as a result of differential habitat origination times as indicated by the habitat models. These results highlight the dynamism of estuarine habitat in recent

  6. Colonization of subterranean habitats by spiders in Central Europe

    Directory of Open Access Journals (Sweden)

    Vlastimil Růžička

    2013-05-01

    Full Text Available Using data from the Czech Republic, we studied the distribution of spiders in soils, crevice systems, scree and caves, i.e. subterranean habitats at depths spanning from 10 cm to 100 m. In total, we found 161 species. The number of species declines with increasing habitat depth, with a major drop in species richness at the depth of 10 meters. Thirteen species exhibit morphological adaptations to life in subterranean habitats. At depths greater than 10 meters, spider assemblages are almost exclusively composed of troglomorphic species. We propose a hypothesis of evolution of troglomorphisms at spiders during Quaternary climatic cycles.

  7. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    terrestrial subsidy. Simulations indicated that increasing terrestrial prey inputs linearized the effect of habitat availability on salmonid biomass, while decreasing terrestrial inputs exaggerated a 'hump-shaped' effect. 5.Our results imply that nonlinear effects of habitat availability on consumer production can arise from trade-offs between habitat suitable for consumer occupancy and habitat that generates prey. However, cross-ecosystem prey subsidies can effectively decouple this trade-off and modify consumer-habitat relationships in recipient systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Seasonal narwhal habitat associations in the high Arctic

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Logdson, M.L.

    2004-01-01

    Movements and behavior of top marine predators are often closely linked with productive oceanic fronts or regional prey aggregations. Consequently, it is of interest to quantify habitat needs and preferences, which can facilitate predictions of conditions favoring persistence and success....... Multivariate habitat models of movements and dive behavior of narwhals (Monodon monoceros, Linnaeus) in the eastern Canadian high Arctic and West Greenland were developed using data collected from satellite telemetry studies on three separate sub-populations. Twenty-six narwhals were captured between 1993...... and 2000 and fitted with satellite-linked time-depth recorders. Geographic positions of whales at 24-h time steps were linked to dive behavior variables compressed on a daily scale, including numbers of dives to different target depths or durations, time near the surface, daily dive rate, and travel speed...

  9. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  10. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  11. Cost-effectiveness analysis of sandhill crane habitat management

    Science.gov (United States)

    Kessler, Andrew C.; Merchant, James W.; Shultz, Steven D.; Allen, Craig R.

    2013-01-01

    Invasive species often threaten native wildlife populations and strain the budgets of agencies charged with wildlife management. We demonstrate the potential of cost-effectiveness analysis to improve the efficiency and value of efforts to enhance sandhill crane (Grus canadensis) roosting habitat. We focus on the central Platte River in Nebraska (USA), a region of international ecological importance for migrating avian species including sandhill cranes. Cost-effectiveness analysis is a valuation process designed to compare alternative actions based on the cost of achieving a pre-determined objective. We estimated costs for removal of invasive vegetation using geographic information system simulations and calculated benefits as the increase in area of sandhill crane roosting habitat. We generated cost effectiveness values for removing invasive vegetation on 7 land parcels and for the entire central Platte River to compare the cost-effectiveness of management at specific sites and for the central Platte River landscape. Median cost effectiveness values for the 7 land parcels evaluated suggest that costs for creating 1 additional hectare of sandhill crane roosting habitat totaled US $1,595. By contrast, we found that creating an additional hectare of sandhill crane roosting habitat could cost as much as US $12,010 for some areas in the central Platte River, indicating substantial cost savings can be achieved by using a cost effectiveness analysis to target specific land parcels for management. Cost-effectiveness analysis, used in conjunction with geographic information systems, can provide decision-makers with a new tool for identifying the most economically efficient allocation of resources to achieve habitat management goals.

  12. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  13. Subterranean systems provide a suitable overwintering habitat for Salamandra salamandra

    Directory of Open Access Journals (Sweden)

    Monika Balogová

    2017-09-01

    Full Text Available The fire salamander (Salamandra salamandra has been repeatedly noted to occur in natural and artificial subterranean systems. Despite the obvious connection of this species with underground shelters, their level of dependence and importance to the species is still not fully understood. In this study, we carried out long-term monitoring based on the capture-mark-recapture method in two wintering populations aggregated in extensive underground habitats. Using the POPAN model we found the population size in a natural shelter to be more than twice that of an artificial underground shelter. Survival and recapture probabilities calculated using the Cormack-Jolly-Seber model were very constant over time, with higher survival values in males than in females and juveniles, though in terms of recapture probability, the opposite situation was recorded. In addition, survival probability obtained from Cormack-Jolly-Seber model was higher than survival from POPAN model. The observed bigger population size and the lower recapture rate in the natural cave was probably a reflection of habitat complexity. Our study showed that regular visits are needed to detect the true significance of underground shelters for fire salamanders. The presence of larvae was recorded in both wintering sites, especially in bodies of water near the entrance. On the basis of previous and our observations we incline to the view, that karst areas can induce not only laying in underground shelters but also group wintering in this species. Our study highlights the strong connection of the life cycle of fire salamanders with underground shelters and their essential importance for the persistence of some populations during unfavourable conditions and breeding activity. In addition, the study introduces the POPAN and Cormac-Jolly-Seber models for estimating of population size, survival and recapture probability in wintering populations of the species, which could provide important information

  14. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Kara L Dodge

    Full Text Available Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C, productive (median chlorophyll a: 0.80 mg m(-3, shallow (median bathymetry: 57 m shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1 at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying

  15. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  16. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    Science.gov (United States)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  17. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  18. Effect of Interannual Variability on the Ocean Acidification-induced Habitat Restriction of the Humboldt Current System.

    Science.gov (United States)

    Franco, A. C.; Gruber, N.; Munnich, M.

    2016-02-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water varies substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, accentuating productivity during La Niña events and dampening it during El Niño, altering the dynamics of the whole ecosystem. On top of this natural variability, the continuing acidification of the upper ocean in response to raising atmospheric CO2 may decrease pH further and increase the volume of water corrosive to aragonite in this region, leading to a progressively smaller suitable habitat for sensitive organisms. Here we use an eddy-resolving basin-scale ocean model that covers the whole Pacific Ocean with higher resolution near the coast off South America ( 6 km) to investigate the role of ENSO events on low aragonite saturation episodes and productivity variations. We compare 2 simulations: a hindcast simulation that spans the last 30 years and a future scenario that represents year 2090 (following IPCC's "business-as-usual" scenario). We found that in the region off Peru, the sole effect of increasing atmospheric CO2 to 840 matm shoals the annual average aragonite saturation depth to 30 m, creating a year round presence of aragonite undersaturated water in the euphotic zone. We then contrast the effect on primary productivity and the aragonite saturation state of at least eight El Niño and eight La Niña episodes that have been reported for the past 30 years, in an attempt to answer the question: does habitat availability under future ocean acidification will resemble a pervasive La Niña-like state?

  19. The Gulf Stream frontal system: A key oceanographic feature in the habitat selection of the leatherback turtle?

    Science.gov (United States)

    Chambault, Philippine; Roquet, Fabien; Benhamou, Simon; Baudena, Alberto; Pauthenet, Etienne; de Thoisy, Benoît; Bonola, Marc; Dos Reis, Virginie; Crasson, Rodrigue; Brucker, Mathieu; Le Maho, Yvon; Chevallier, Damien

    2017-05-01

    Although some associations between the leatherback turtle Dermochelys coriacea and the Gulf Stream current have been previously suggested, no study has to date demonstrated strong affinities between leatherback movements and this particular frontal system using thorough oceanographic data in both the horizontal and vertical dimensions. The importance of the Gulf Stream frontal system in the selection of high residence time (HRT) areas by the North Atlantic leatherback turtle is assessed here for the first time using state-of-the-art ocean reanalysis products. Ten adult females from the Eastern French Guianese rookery were satellite tracked during post-nesting migration to relate (1) their horizontal movements to physical gradients (Sea Surface Temperature (SST), Sea Surface Height (SSH) and filaments) and biological variables (micronekton and chlorophyll a), and (2) their diving behaviour to vertical structures within the water column (mixed layer, thermocline, halocline and nutricline). All the turtles migrated northward towards the Gulf Stream north wall. Although their HRT areas were geographically remote (spread between 80-30 °W and 28-45 °N), all the turtles targeted similar habitats in terms of physical structures, i.e. strong gradients of SST, SSH and a deep mixed layer. This close association with the Gulf Stream frontal system highlights the first substantial synchronization ever observed in this species, as the HRTs were observed in close match with the autumn phytoplankton bloom. Turtles remained within the enriched mixed layer at depths of 38.5±7.9 m when diving in HRT areas, likely to have an easier access to their prey and maximize therefore the energy gain. These depths were shallow in comparison to those attained within the thermocline (82.4±5.6 m) while crossing the nutrient-poor subtropical gyre, probably to reach cooler temperatures and save energy during the transit. In a context of climate change, anticipating the evolution of such frontal

  20. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  1. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  2. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  3. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  4. Sikorsky interactive graphics surface design/manufacturing system

    Science.gov (United States)

    Robbins, R.

    1975-01-01

    An interactive graphics system conceived to be used in the design, analysis, and manufacturing of aircraft components with free form surfaces was described. In addition to the basic surface definition and viewing capabilities inherent in such a system, numerous other features are present: surface editing, automated smoothing of control curves, variable milling patch boundary definitions, surface intersection definition and viewing, automatic creation of true offset surfaces, digitizer and drafting machine interfaces, and cutter path optimization. Documented costs and time savings of better than six to one are being realized with this system. The system was written in FORTRAN and GSP for use on IBM 2250 CRT's in conjunction with an IBM 370/158 computer.

  5. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  6. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Atieli Harrysone

    2009-10-01

    Full Text Available Abstract Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the

  8. The Camera-Based Assessment Survey System (C-BASS): A towed camera platform for reef fish abundance surveys and benthic habitat characterization in the Gulf of Mexico

    Science.gov (United States)

    Lembke, Chad; Grasty, Sarah; Silverman, Alex; Broadbent, Heather; Butcher, Steven; Murawski, Steven

    2017-12-01

    An ongoing challenge for fisheries management is to provide cost-effective and timely estimates of habitat stratified fish densities. Traditional approaches use modified commercial fishing gear (such as trawls and baited hooks) that have biases in species selectivity and may also be inappropriate for deployment in some habitat types. Underwater visual and optical approaches offer the promise of more precise and less biased assessments of relative fish abundance, as well as direct estimates of absolute fish abundance. A number of video-based approaches have been developed and the technology for data acquisition, calibration, and synthesis has been developing rapidly. Beginning in 2012, our group of engineers and researchers at the University of South Florida has been working towards the goal of completing large scale, video-based surveys in the eastern Gulf of Mexico. This paper discusses design considerations and development of a towed camera system for collection of video-based data on commercially and recreationally important reef fishes and benthic habitat on the West Florida Shelf. Factors considered during development included potential habitat types to be assessed, sea-floor bathymetry, vessel support requirements, personnel requirements, and cost-effectiveness of system components. This regional-specific effort has resulted in a towed platform called the Camera-Based Assessment Survey System, or C-BASS, which has proven capable of surveying tens of kilometers of video transects per day and has the ability to cost-effective population estimates of reef fishes and coincident benthic habitat classification.

  9. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella)

    Science.gov (United States)

    Arthur, Benjamin; Hindell, Mark; Bester, Marthan; De Bruyn, P. J. Nico; Trathan, Phil; Goebel, Michael; Lea, Mary-Anne

    2017-06-01

    Quantification of the physical and biological environmental factors that influence the spatial distribution of higher trophic species is central to inform management and develop ecosystem models, particularly in light of ocean changes. We used tracking data from 184 female Antarctic fur seals (Arctocephalus gazella) to develop habitat models for three breeding colonies for the poorly studied Southern Ocean winter period. Models were used to identify and predict the broadly important winter foraging habitat and to elucidate the environmental factors influencing these areas. Model predictions closely matched observations and several core areas of foraging habitat were identified for each colony, with notable areas of inter-colony overlap suggesting shared productive foraging grounds. Seals displayed clear choice of foraging habitat, travelling through areas of presumably poorer quality to access habitats that likely offer an energetic advantage in terms of prey intake. The relationships between environmental predictors and foraging habitat varied between colonies, with the principal predictors being wind speed, sea surface temperature, chlorophyll a concentration, bathymetry and distance to the colony. The availability of core foraging areas was not consistent throughout the winter period. The habitat models developed in this study not only reveal the core foraging habitats of Antarctic fur seals from multiple colonies, but can facilitate the hindcasting of historical foraging habitats as well as novel predictions of important habitat for other major colonies currently lacking information of the at-sea distribution of this major Southern Ocean consumer.

  10. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  11. Use of riverine through reef habitat systems by dog snapper ( Lutjanus jocu ) in eastern Brazil

    Science.gov (United States)

    Moura, Rodrigo L.; Francini-Filho, Ronaldo B.; Chaves, Eduardo M.; Minte-Vera, Carolina V.; Lindeman, Kenyon C.

    2011-11-01

    The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper ( Lutjanus jocu) was examined across the largest South Atlantic reef-estuarine complex (Abrolhos Shelf, Brazil, 16-19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10-30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70-80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.

  12. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  13. Fish Habitat and Fish Populations in a Southern Appalachian Watershed before and after Hurricane Hugo

    Science.gov (United States)

    C. Andrew Dolloff; Patricia A. Flebbe; Michael D. Owen

    1994-01-01

    Habitat features and relative abundance of all fish species were estimated in 8.4 km of a small mountain stream system before and 11 months after Hurricane Hugo crossed the southern Appalachians in September 1989. There was no change in the total amount (area) of each habitat type but the total number of habitat units decreased and average size and depth of habitat...

  14. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  15. Habitat Management to Suppress Pest Populations: Progress and Prospects.

    Science.gov (United States)

    Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng

    2017-01-31

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

  16. Innovative study methods for the Mediterranean coralligenous habitats

    Directory of Open Access Journals (Sweden)

    P.A. Zapata-Ramírez

    2013-11-01

    Full Text Available Coralligenous habitats are of special interest in the Mediterranean Sea because they represent one of the most important biodiversity ‘hot-spots’ and are considered of great relevance for fisheries activities in the region. Despite their importance, however, there are missing consensual methodologies for their monitoring and, despite some attempts, no environmental or ecological quality indices have been established yet. This situation could be related to the difficulties associated with their exploration and their spatial heterogeneity. These habitats are in urgent need of efficient standard monitoring and management protocols programmes to develop an effective network for their conservation. Here we reviewed the available methodologies and robotics tools used to evaluate and monitor benthic habitats, highlighting the importance of defining rapid cost-effective sampling and analyses approaches and architectures for future monitoring of changes in coralligenous habitats based on current technological developments. We identified still images acquisitions as the most effective data gathering system. Stereo photogrammetry, photomosaic elaboration and three-dimensional (3D modelling may largely improve the data analysis and therefore the quality status assessment of the coralligenous habitats. The advantage and efficiency of different approaches and methods, and whether they should be applied and standardised for further monitoring activities, were discussed.

  17. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments.

    Directory of Open Access Journals (Sweden)

    Wei Yu

    Full Text Available We developed a habitat suitability index (HSI model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST, chlorophyll-a (Chl-a concentration, sea surface height anomaly (SSHA and sea surface salinity (SSS. Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch, 2008 (average catch and 2009 (low catch indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially

  18. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

    Directory of Open Access Journals (Sweden)

    Erin E Poor

    Full Text Available Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent and expert-based (Analytic Hierarchy Process. We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

  19. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

    Science.gov (United States)

    Poor, Erin E; Loucks, Colby; Jakes, Andrew; Urban, Dean L

    2012-01-01

    Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

  20. Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast.

    Science.gov (United States)

    Mwangangi, Joseph M; Mbogo, Charles M; Muturi, Ephantus J; Nzovu, Joseph G; Githure, John I; Yan, Guiyun; Minakawa, Noboru; Novak, Robert; Beier, John C

    2007-03-01

    A study was conducted to characterise larval habitats and to determine spatial heterogeneity of the Anopheles mosquito larvae. The study was conducted from May to June 1999 in nine villages along the Kenyan coast. Aquatic habitats were sampled by use of standard dipping technique. The habitats were characterised based on size, pH, distance to the nearest house, coverage of canopy, surface debris, algae and emergent plants, turbidity, substrate, and habitat type. A total of 110 aquatic habitats like stream pools (n=10); puddles (n=65); tire tracks (n=5); ponds (n=5) and swamps (n=25) were sampled in nine villages located in three districts of the Kenyan coast. A total of 7,263 Anopheles mosquito larvae were collected, 63.9% were early instars and 36.1% were late instars. Morphological identification of the III and IV instar larvae by use of microscopy yielded 90.66% (n=2377) Anopheles gambiae Complex, 0.88% (n=23) An. funestus, An. coustani 7.63% (n=200), An. rivulorum 0.42% (n=11), An. pharoensis 0.19% (n=5), An. swahilicus 0.08% (n=2), An. wilsoni 0.04% (n=1) and 0.11% (n=3) were unidentified. A subset of the An. gambiae Complex larvae identified morphologically, was further analysed using rDNA-PCR technique resulting in 68.22% (n=1290) An. gambiae s.s., 7.93% (n=150) An. arabiensis and 23.85% (n=451) An. merus. Multiple logistic regression model showed that emergent plants (p = 0.019), and floating debris (p = 0.038) were the best predictors of An. gambiae larval abundance in these habitats. Habitat type, floating debris and emergent plants were found to be the key factors determining the presence of Anopheles larvae in the habitats. For effective larval control, the type of habitat should be considered and most productive habitat type be given a priority in the mosquito abatement programme.

  1. Clonal interference and Muller's ratchet in spatial habitats

    International Nuclear Information System (INIS)

    Otwinowski, Jakub; Krug, Joachim

    2014-01-01

    Competition between independently arising beneficial mutations is enhanced in spatial populations due to the linear rather than exponential growth of clones. Recent theoretical studies have pointed out that the resulting fitness dynamics is analogous to a surface growth process, where new layers nucleate and spread stochastically, leading to the build up of scale-invariant roughness. This scenario differs qualitatively from the standard view of adaptation in that the speed of adaptation becomes independent of population size while the fitness variance does not. Here we exploit recent progress in the understanding of surface growth processes to obtain precise predictions for the universal, non-Gaussian shape of the fitness distribution for one-dimensional habitats, which are verified by simulations. When the mutations are deleterious rather than beneficial the problem becomes a spatial version of Muller's ratchet. In contrast to the case of well-mixed populations, the rate of fitness decline remains finite even in the limit of an infinite habitat, provided the ratio U d /s 2 between the deleterious mutation rate and the square of the (negative) selection coefficient is sufficiently large. Using, again, an analogy to surface growth models we show that the transition between the stationary and the moving state of the ratchet is governed by directed percolation. (paper)

  2. Engineering sustainable ecosystems: using GIS-based habitat modeling for oil sands mine reclamation and closure planning

    International Nuclear Information System (INIS)

    Seel, K.

    1997-01-01

    A GIS model was built to predict the climax vegetation habitat types on reclaimed mine surfaces in the Fort McMurray region of the Mid-Boreal Mixedwood Ecoregion of northwestern Alberta. Regional vegetation habitat types were classified by digital remote sensing using Landsat Thematic Mapper satellite data. Terrain data was derived from a high-resolution digital elevation model. The validated model was applied to the GIS database of Syncrude Canada's Mildred Lake Mine to predict future vegetation patterns based on the final closure mine surface. The results were compared to revegetation and closure plans created by experts to analyze performance and sustainability of reclamation efforts

  3. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    Science.gov (United States)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  4. Patchiness of macrobenthic invertebrates in homogenized intertidal habitats : hidden spatial structure at a landscape scale

    NARCIS (Netherlands)

    Kraan, Casper; van der Meer, Jaap; Dekinga, Anne; Piersma, Theunis; Lipcius, Romuald

    2009-01-01

    Many terrestrial habitats, and certainly man-made systems such as woodland and agricultural habitats, are characterised by a mosaic of different habitat types. In contrast, most seafloors have a rather uniform visual appearance which is enhanced by the cryptic nature of many of their inhabitants.

  5. Resource use of Japanese macaques in heavy snowfall areas: implications for habitat management.

    Science.gov (United States)

    Enari, Hiroto; Sakamaki-Enari, Haruka

    2013-07-01

    Populations of Japanese macaque (Macaca fuscata) that inhabit the northernmost distribution of any nonhuman primates have been listed as endangered in Japan; however, macaques are widely known for being pests that cause agricultural damage. This study identified priority areas for the conservation and management of macaque habitats, by comparing the resource use of troops occupying remote mountains (montane troops) against troops inhabiting disturbed forests adjacent to settlements (rural troops). We collected species presence data across 2 years by radio-tracking two montane troops and two rural troops in the Shirakami Mountains. We developed seasonal utilization distributions by using the kernel method, and identified habitat characteristics by using ecological-niche factor analysis (ENFA). Our results indicate that environmental factors influencing the potential habitat varied widely with season in montane troops as compared with that in rural troops. ENFA results demonstrated that rural troops exhibited more biased resource use and narrower niche breadths than montane troops. Based on our findings, we propose that (1) primary broadleaf forests are the spring habitat conservation priority of montane troops; (2) the habitat unit--the product of habitat suitability index and its surface area--for montane troops is enhanced by removing old conifer plantations from the forest edge at low elevations; (3) such removal around settlements may also contribute toward removing a frontline refuge for rural troops intruding farmlands; and (4) intensive prevention measures against macaque intrusions into settlements during the bottleneck snowy season contribute toward reducing the habitat unit of rural troops.

  6. Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria).

    Science.gov (United States)

    Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin

    2011-12-01

    Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  8. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  9. The use of automation and robotic systems to establish and maintain lunar base operations

    Science.gov (United States)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  10. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  11. GIS-based approach for quantifying landscape connectivity of Javan Hawk-Eagle habitat

    Science.gov (United States)

    Nurfatimah, C.; Syartinilia; Mulyani, Y. A.

    2018-05-01

    Javan Hawk-Eagle (Nisaetus bartelsi; JHE) is a law-protected endemic raptor which currently faced the decreased in number and size of habitat patches that will lead to patch isolation and species extinction. This study assessed the degree of connectivity between remnant habitat patches in central part of Java by utilizing Conefor Sensinode software as an additional tool for ArcGIS. The connectivity index was determined by three fractions which are infra, flux and connector. Using connectivity indices successfully identified 4 patches as core habitat, 9 patches as stepping-stone habitat and 6 patches as isolated habitat were derived from those connectivity indices. Those patches then being validated with land cover map derived from Landsat 8 of August 2014. 36% of core habitat covered by natural forest, meanwhile stepping stone habitat has 55% natural forest and isolated habitat covered by 59% natural forest. Isolated patches were caused by zero connectivity (PCcon = 0) and the patch size which too small to support viable JHE population. Yet, the condition of natural forest and the surrounding matrix landscape in isolated patches actually support the habitat need. Thus, it is very important to conduct the right conservation management system based on the condition of each patches.

  12. Present and future potential habitat distribution of Carcharhinus falciformis and Canthidermis maculata by-catch species in the tropical tuna purse-seine fishery under climate change

    Directory of Open Access Journals (Sweden)

    Nerea eLezama Ochoa

    2016-03-01

    Full Text Available By-catch species from tropical tuna purse seine fishery have been affected by fishery pressures since the last century; however, the habitat distribution and the climate change impacts on these species are poorly known. With the objective of predicting the potential suitable habitat for a shark (Carcharhinus falciformis and a teleost (Canthidermis maculata in the Indian, Atlantic and Eastern Pacific Oceans, a MaxEnt species distribution model (SDM was developed using data collected by observers in tuna purse seiners. The relative percentage of contribution of some environmental variables (depth, sea surface temperature, salinity and primary production and the potential impact of climate change on species habitat by the end of the century under the A2 scenario (scenario with average concentrations of carbon dioxide of 856 ppm by 2100 were also evaluated. Results showed that by-catch species can be correctly modelled using observed occurrence records and few environmental variables with SDM. Results from projected maps showed that the equatorial band and some coastal upwelling regions were the most suitable areas for both by-catch species in the three oceans in concordance with the main fishing grounds. Sea surface temperature was the most important environmental variable which contributed to explain the habitat distribution of the two species in the three oceans in general. Under climate change scenarios, the largest change in present habitat suitability is observed in the Atlantic Ocean (around 16% of the present habitat suitability area of Carcharhinus falciformis and Canthidermis maculata, respectively whereas the change is less in the Pacific (around 10% and 8% and Indian Oceans (around 3% and 2 %. In some regions such as Somalia, the Atlantic equatorial band or Peru’s coastal upwelling areas, these species could lose potential habitat whereas in the south of the equator in the Indian Ocean, the Benguela System and in the Pacific coast of

  13. Pesticide concentrations in frog tissue and wetland habitats in alandscape dominated by agriculture

    Science.gov (United States)

    Smalling, Kelly L.; Reeves, Rebecca; Muths, Erin L.; Vandever, Mark W.; Battaglin, William A.; Hladik, Michelle; Pierce, Clay L.

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and

  14. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    Science.gov (United States)

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  15. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  16. Using smooth sheets to describe groundfish habitat in Alaskan waters, with specific application to two flatfishes

    Science.gov (United States)

    Zimmermann, Mark; Reid, Jane A.; Golden, Nadine

    2016-01-01

    In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species – Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) – at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.

  17. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  18. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  19. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  20. Movement, demographics, and occupancy dynamics of a federally-threatened salamander: evaluating the adequacy of critical habitat

    Directory of Open Access Journals (Sweden)

    Nathan F. Bendik

    2016-03-01

    Full Text Available Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence, although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.

  1. Marine habitat mapping of the Milford Haven Waterway, Wales, UK: Comparison of facies mapping and EUNIS classification for monitoring sediment habitats in an industrialized estuary

    Science.gov (United States)

    Carey, Drew A.; Hayn, Melanie; Germano, Joseph D.; Little, David I.; Bullimore, Blaise

    2015-06-01

    A detailed map and dataset of sedimentary habitats of the Milford Haven Waterway (MHW) was compiled for the Milford Haven Waterway Environmental Surveillance Group (MHWESG) from seafloor images collected in May, 2012 using sediment-profile and plan-view imaging (SPI/PV) survey techniques. This is the most comprehensive synoptic assessment of sediment distribution and benthic habitat composition available for the MHW, with 559 stations covering over 40 km2 of subtidal habitats. In the context of the MHW, an interpretative framework was developed that classified each station within a 'facies' that included information on the location within the waterway and inferred sedimentary and biological processes. The facies approach provides critical information on landscape-scale habitats including relative location and inferred sediment transport processes and can be used to direct future monitoring activities within the MHW and to predict areas of greatest potential risk from contaminant transport. Intertidal sediment 'facies' maps have been compiled in the past for MHW; this approach was expanded to map the subtidal portions of the waterway. Because sediment facies can be projected over larger areas than individual samples (due to assumptions based on physiography, or landforms) they represent an observational model of the distribution of sediments in an estuary. This model can be tested over time and space through comparison with additional past or future sample results. This approach provides a means to evaluate stability or change in the physical and biological conditions of the estuarine system. Initial comparison with past results for intertidal facies mapping and grain size analysis from grab samples showed remarkable stability over time for the MHW. The results of the SPI/PV mapping effort were cross-walked to the European Nature Information System (EUNIS) classification to provide a comparison of locally derived habitat mapping with European-standard habitat

  2. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    Science.gov (United States)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-12-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  3. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  4. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  5. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  6. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  7. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  8. How Well Can We Predict Salmonid Spawning Habitat with LiDAR?

    Science.gov (United States)

    Pfeiffer, A.; Finnegan, N. J.; Hayes, S.

    2013-12-01

    Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low

  9. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  10. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  11. A habitat assessment for Florida panther population expansion into central Florida

    Science.gov (United States)

    Thatcher, C.A.; Van Manen, F.T.; Clark, J.D.

    2009-01-01

    One of the goals of the Florida panther (Puma concolor coryi) recovery plan is to expand panther range north of the Caloosahatchee River in central Florida. Our objective was to evaluate the potential of that region to support panthers. We used a geographic information system and the Mahalanobis distance statistic to develop a habitat model based on landscape characteristics associated with panther home ranges. We used cross-validation and an independent telemetry data set to test the habitat model. We also conducted a least-cost path analysis to identify potential habitat linkages and to provide a relative measure of connectivity among habitat patches. Variables in our model were paved road density, major highways, human population density, percentage of the area permanently or semipermanently flooded, and percentage of the area in natural land cover. Our model clearly identified habitat typical of that found within panther home ranges based on model testing with recent telemetry data. We identified 4 potential translocation sites that may support a total of approximately 36 panthers. Although we identified potential habitat linkages, our least-cost path analyses highlighted the extreme isolation of panther habitat in portions of the study area. Human intervention will likely be required if the goal is to establish female panthers north of the Caloosahatchee in the near term.

  12. Mars polar cap: a habitat for elementary life1

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  13. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  14. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).

    Science.gov (United States)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  15. Using EUNIS habitat classification for benthic mapping in European seas: present concerns and future needs.

    Science.gov (United States)

    Galparsoro, Ibon; Connor, David W; Borja, Angel; Aish, Annabelle; Amorim, Patricia; Bajjouk, Touria; Chambers, Caroline; Coggan, Roger; Dirberg, Guillaume; Ellwood, Helen; Evans, Douglas; Goodin, Kathleen L; Grehan, Anthony; Haldin, Jannica; Howell, Kerry; Jenkins, Chris; Michez, Noëmie; Mo, Giulia; Buhl-Mortensen, Pål; Pearce, Bryony; Populus, Jacques; Salomidi, Maria; Sánchez, Francisco; Serrano, Alberto; Shumchenia, Emily; Tempera, Fernando; Vasquez, Mickaël

    2012-12-01

    The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe's seas are fully mapped and increasing knowledge and application raise further issues to be resolved. This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2

  16. Diversity and Community Composition of Vertebrates in Desert River Habitats

    Science.gov (United States)

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  17. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  18. The population ecology of despotism. Concessions and migration between central and peripheral habitats.

    Science.gov (United States)

    Bell, Adrian Viliami; Winterhalder, Bruce

    2014-03-01

    Since despotism is a common evolutionary development in human history, we seek to understand the conditions under which it can originate, persist, and affect population trajectories. We describe a general system of population ecology equations representing the Ideal Free and Despotic Distributions for one and two habitats, one of which contains a despotic class that controls the distribution of resources. Using analytical and numerical solutions we derive the optimal concession strategy by despots with and without subordinate migration to an alternative habitat. We show that low concessions exponentially increase the time it takes for the despotic habitat to fill, and we discuss the trade-offs despots and subordinates confront at various levels of exploitation. Contrary to previous hypotheses, higher levels of despotism do not necessarily cause faster migration to alternative habitats. We further show how, during colonization, divergent population trajectories may arise if despotic systems experience Allee-type economies of scale.

  19. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    Science.gov (United States)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  20. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  1. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  2. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  3. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    Directory of Open Access Journals (Sweden)

    Norliana Rosli

    2016-07-01

    Full Text Available Studies of deep-sea benthic communities have largely focused on particular (macro habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure. Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty at four water depths (700, 1,000, 1,200 and 1,500 m. We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm to meso- (0.1–10 km, and regional scales (> 100 km. We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

  4. Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture.

    Science.gov (United States)

    Smalling, Kelly L; Reeves, Rebecca; Muths, Erin; Vandever, Mark; Battaglin, William A; Hladik, Michelle L; Pierce, Clay L

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1,500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and implementing

  5. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  6. Human habitation field study of the Habitat Demonstration Unit (HDU)

    Science.gov (United States)

    Litaker, Harry L.; Archer, Ronald D.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    Landing and supporting a permanent outpost on a planetary surface represents humankind's capability to expand its own horizons and challenge current technology. With this in mind, habitability of these structures becomes more essential given the longer durations of the missions. The purpose of this evaluation was to obtain preliminary human-in-the-loop performance data on the Habitat Demonstration Unit (HDU) in a Pressurized Excursion Module (PEM) configuration during a 14-day simulated lunar exploration field trial and to apply this knowledge to further enhance the habitat's capabilities for forward designs. Human factors engineers at the NASA/Johnson Space Center's Habitability and Human Factors Branch recorded approximately 96 h of crew task performance with four work stations. Human factors measures used during this study included the NASA Task Load Index (TLX) and customized post questionnaires. Overall the volume for the PEM was considered acceptable by the crew; however; the habitat's individual work station volume was constrained when setting up the vehicle for operation, medical operations, and suit maintenance while general maintenance, logistical resupply, and geo science was considered acceptable. Crew workload for each station indicated resupply as being the lowest rated, with medical operations, general maintenance, and geo science tasks as being light, while suit maintenance was considered moderate and general vehicle setup being rated the highest. Stowage was an issue around the habitat with the Space Exploration Vehicle (SEV) resupply stowage located in the center of the habitat as interfering with some work station volumes and activities. Ergonomics of the geo science station was considered a major issue, especially with the overhead touch screens.

  7. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  8. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  9. Engineering design constraints of the lunar surface environment

    Science.gov (United States)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  10. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  11. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    Science.gov (United States)

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  12. Shopping Centers as Panther Habitat: Inferring Animal Locations from Models

    Directory of Open Access Journals (Sweden)

    David S. Maehr

    2004-12-01

    Full Text Available A recent model of Florida panther (Puma concolor coryi habitat erred in arbitrarily creating buffers around radio locations collected during daylight hours on the assumption that study animals were only at rest during these times. The buffers generated by this method likely cause an overestimation of the amounts and kinds of habitats that are used by the panther. This, and other errors, could lead to the impression that unfragmented forest cover is unimportant to panther conservation, and could encourage inaccurate characterizations of panther habitat. Previous 24-hour monitoring of activity and activity readings made during routine telemetry flights indicate that high levels of activity occur in the early morning hours. Literature on the behavior of the species does not support the creation of large buffers around telemetry locations to compensate for the lack of nighttime telemetry data. A thorough examination of ongoing studies that use global positioning systems may help calibrate future Florida panther habitat models.

  13. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  14. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  15. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  16. Automotive System for Remote Surface Classification.

    Science.gov (United States)

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-04-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.

  17. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and

  18. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem 2004-2009

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.

    2011-04-01

    The U.S. Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River Main Stem Reservoir System. Management of the Missouri River has generally reduced peak river flows that form and maintain emergent sandbar habitat. Emergent sandbars provide non-vegetated nesting habitat for the endangered interior least tern (Sternula antillarum athalassos) and the threatened Northern Great Plains piping plover (Charadrius melodus). Since 2000, piping plover nesting habitat within the Gavins Point Reach, Garrison Reach, Lake Oahe, and Lake Sakakawea has fledged the majority of piping plovers produced along the Missouri River system. Habitats within Lewis and Clark Lake have also recently become important plover production areas. Mechanical construction of emergent sandbar habitat (ESH) within some of these reaches within the Missouri River began in 2004. Through 2009, 11 sandbar complexes had been constructed (10 in Gavins Point Reach, 1 in Lewis and Clarke Lake) totaling about 543 ac of piping plover and interior least tern nesting habitat. ESH Construction has resulted in a net gain of tern and plover nesting habitat. Both terns and plovers successfully nest and fledge young on constructed sandbars, and constructed habitats were preferred over natural habitats. Natural processes may limit the viability of constructed sandbars as nesting habitat. Continued research is needed to identify if changes in constructed sandbar engineering and management increase the length of time constructed habitats effectively function as nesting habitat. However, the transfer of information from researchers to planners through technical research reports may not be timely enough to effectively foster the feedback mechanisms of an adaptive management strategy.

  19. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat.

    Science.gov (United States)

    Blachowicz, A; Mayer, T; Bashir, M; Pieber, T R; De León, P; Venkateswaran, K

    2017-07-11

    An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after

  20. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin.

  1. Landscape alteration and habitat modification: impacts on plant-pollinator systems

    OpenAIRE

    Vanbergen, Adam J.

    2014-01-01

    Insect pollinators provide an important ecosystem service to many crop species and underpin the reproductive assurance of many wild plant species. Multiple, anthropogenic pressures threaten insect pollinators. Land-use change and intensification alters the habitats and landscapes that provide food and nesting resources for pollinators. These impacts vary according to species traits, producing winners and losers, while the intrinsic robustness of plant-pollinator networks may provide stability...

  2. The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries

    Science.gov (United States)

    Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.

    2009-12-01

    PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During

  3. Habitat Suitability Index Models: Yellow-headed blackbird

    Science.gov (United States)

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  4. Operational Prediction of the Habitat Suitability Index (HSI) Distribution for Neon Flying Squid in Central North Pacific by Using FORA Dataset and a New Data Assimilation System SKUIDS

    Science.gov (United States)

    Igarashi, H.; Ishikawa, Y.; Wakamatsu, T.; Tanaka, Y.; Nishikawa, S.; Nishikawa, H.; Kamachi, M.; Kuragano, T.; Takatsuki, Y.; Fujii, Y.; Usui, N.; Toyoda, T.; Hirose, N.; Sakai, M.; Saitoh, S. I.; Imamura, Y.

    2016-02-01

    The neon flying squid (Ommastrephes bartramii) has a wide-spread distribution in subtropical and temperate waters in the North Pacific, which plays an important role in the pelagic ecosystem and is one of the major targets in Japanese squid fisheries. The main fishing areas for Japanese commercial vessels are located in the central North Pacific (35-45N, around the date line) in summer. In this study, we have developed several kinds of habitat suitability index (HSI) models of the neon flying squid for investigating the relationship between its potential habitat and the ocean state variations in the target area. For developing HSI models, we have used a new ocean reanalysis dataset FORA (4-dimensional variational Ocean Re-Analysis) produced by JAMSTEC/CEIST and MRI-JMA. The horizontal resolution is 0.1*0.1 degree of latitude and longitude with 54 vertical levels, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies. In addition, we have developed a new 4D-VAR (4-dimensional variational) ocean data assimilation system for predicting ocean environmental changes in the main fishing grounds. We call this system "SKUIDS" (Scalable Kit of Under-sea Information Delivery System). By using these prediction fields of temperature, salinity, sea surface height, horizontal current velocity, we produced daily HSI maps of the neon flying squid, and provided them to the Japanese commercial vessels in operation. Squid fishermen can access the web site for delivering the information of ocean environments in the fishing ground by using Inmarsat satellite communication on board, and show the predicted fields of subsurface temperatures and HSI. Here, we present the details of SKUIDS and the web-delivery system for squid fishery, and some preliminary results of the operational prediction.

  5. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  6. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  7. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  8. Models of Coupled Settlement and Habitat Networks for Biodiversity Conservation: Conceptual Framework, Implementation and Potential Applications

    Directory of Open Access Journals (Sweden)

    Maarten J. van Strien

    2018-04-01

    Full Text Available Worldwide, the expansion of settlement and transport infrastructure is one of the most important proximate as well as ultimate causes of biodiversity loss. As much as every modern human society depends on a network of settlements that is well-connected by transport infrastructure (i.e., settlement network, animal and plant species depend on networks of habitats between which they can move (i.e., habitat networks. However, changes to a settlement network in a region often threaten the integrity of the region's habitat networks. Determining plans and policy to prevent these threats is made difficult by the numerous interactions and feedbacks that exist between and within the settlement and habitat networks. Mathematical models of coupled settlement and habitat networks can help us understand the dynamics of this social-ecological system. Yet, few attempts have been made to develop such mathematical models. In this paper, we promote the development of models of coupled settlement and habitat networks for biodiversity conservation. First, we present a conceptual framework of key variables that are ideally considered when operationalizing the coupling of settlement and habitat networks. In this framework, we first describe important network-internal interactions by differentiating between the structural (i.e., relating to purely physical conditions determining the suitability of a location for living or movement and functional (i.e., relating to the actual presence, abundance or movement of people or other organisms properties of either network. We then describe the main one-way influences that a settlement network can exert on the habitat networks and vice versa. Second, we give several recommendations for the mathematical modeling of coupled settlement and habitat networks and present several existing modeling approaches (e.g., habitat network models and land-use transport interaction models that could be used for this purpose. Lastly, we elaborate

  9. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores.

    Directory of Open Access Journals (Sweden)

    Lorea Flores

    Full Text Available Habitat complexity can influence predation rates (e.g. by providing refuge but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants, in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants; and 3. as the spatial configuration of structures (measured as fractal dimension. The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology. We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, 'habitat complexity' by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems.

  10. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  11. Characterisation of Sanguinhal Mire, Terceira Island (Azores: a protected quaking bog habitat Caracterização da Turfeira do Sanguinhal, ilha Terceira (Açores um habitat protegido de turfeira ondulante

    Directory of Open Access Journals (Sweden)

    Cândida Mendes

    2009-09-01

    Full Text Available The Azores archipelago in the North Atlantic is an important area for biodiversity because it is rich in rare species and habitats, and almost undisturbed. Sanguinhal mire was originally a lake that evolved through paludification into a peat habitat. It is located inside Nature 2000 (European Union for Protection of Nature and Biodiversity, Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Habitat Directive Annex I(b habitat 7140 area of Santa Bárbara and Pico Alto Mountains on the island of Terceira, and it is a good example of a basin peatland type that was first discovered in 1998. This paper provides baseline information on its flora, vegetation communities, structure, surface hydrology and chemistry. Forty-one plant species including six Sphagnum species and ten endemic vascular plants have been recorded, and eight plant communities are distinguished. The maximum peat depth is 2.5 m. The mire receives flowing water from its margins, in addition to intercepted precipitation and fog. After precipitation, water drains through several placic rupture points. Both pH and water conductivity were measured, with some ecological tendencies observed. The conservation status of the mire is good, but it is subject to increasing pressure from cattle pasture and a walking trail that constrains natural surface water movement.O Arquipélago dos Açores no Atlântico Norte é uma área importante em biodiversidade, rica em espécies e habitats raros em estado selvagem. A turfeira do Sanguinhal foi originalmente uma lagoa que evoluiu por paludificação para um habitat de turfa. Esta localiza-se na Rede Natura 2000 (União Europeia para a Proteção da Natureza e Biodiversidade, Directive do Conselho 92/43/EEC de 21 de Maio 1992 sobre a concervação de habitats naturais e da fauna e flora, Diretiva de Habitat Anexo I(b habitat 7140 da Serra de Santa Bárbara e Pico Alto e é um bom exemplo de um

  12. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  14. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  15. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  16. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective.

    Science.gov (United States)

    He, Chunyang; Liu, Zhifeng; Tian, Jie; Ma, Qun

    2014-09-01

    China's extensive urbanization has resulted in a massive loss of natural habitat, which is threatening the nation's biodiversity and socioeconomic sustainability. A timely and accurate understanding of natural habitat loss caused by urban expansion will allow more informed and effective measures to be taken for the conservation of biodiversity. However, the impact of urban expansion on natural habitats is not well-understood, primarily due to the lack of accurate spatial information regarding urban expansion across China. In this study, we proposed an approach that can be used to accurately summarize the dynamics of urban expansion in China over two recent decades (1992-2012), by integrating data on nighttime light levels, a vegetation index, and land surface temperature. The natural habitat loss during the time period was evaluated at the national, ecoregional, and local scales. The results revealed that China had experienced extremely rapid urban growth from 1992 to 2012 with an average annual growth rate of 8.74%, in contrast with the global average of 3.20%. The massive urban expansion has resulted in significant natural habitat loss in some areas in China. Special attention needs to be paid to the Pearl River Delta, where 25.79% or 1518 km(2) of the natural habitat and 41.99% or 760 km(2) of the local wetlands were lost during 1992-2012. This raises serious concerns about species viability and biodiversity. Effective policies and regulations must be implemented and enforced to sustain regional and national development in the context of rapid urbanization. © 2014 John Wiley & Sons Ltd.

  17. Rapid deterioration of sediment surface habitats in Bellingham Bay, Washington State, as indicated by benthic foraminifera.

    Science.gov (United States)

    Nesbitt, Elizabeth A; Martin, Ruth A; Martin, David E; Apple, Jude

    2015-08-15

    Foraminiferal assemblages in sediment grab samples were utilized to evaluate the impacts of anthropogenic activities on benthic habitats in Bellingham Bay, Washington State, U.S.A. Seventy-three samples taken in 1987, 1997, 2006 and 2010 yielded 35 species of foraminifera from 28 genera. Assemblage composition and diversity data indicate a marked deterioration between 1987 and 2010, contrary to the published Chemical Index, but analogous to the situation with macrobiota. Correlation of diversity with chemical pollutants and metals did not identify any significant correlations, however, an unrelated but highly relevant study of bottom water dissolved oxygen concentrations and pH in Bellingham Bay suggests eutrophication with accompanying hypoxia and acidification may be part of the cause. Thus, the metrics of contamination alone do not adequately characterize habitat viability, and benthic foraminiferal assemblages provide insight into the health of coastal ecosystems. Published by Elsevier Ltd.

  18. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  19. Combining catchment and instream modelling to assess physical habitat quality

    DEFF Research Database (Denmark)

    Olsen, Martin

    Study objectives After the implementation of EU's Water Framework Directive (WFD) in Denmark ecological impacts from groundwater exploitation on surface waters has to receive additional consideration. Small streams in particular are susceptible to changes in run-off but have only recieved little...... attention in past studies of run-off impact on the quality of stream physical habitats. This study combined catchment and instream models with instream habitat observations to assess the ecological impacts from groundwater exploitation on a small stream. The main objectives of this study was; • to assess...... which factors are controlling the run-off conditions in stream Ledreborg and to what degree • to assess the run-off reference condition of stream Ledreborg where intensive groundwater abstraction has taken place in 67 years using a simple rainfall-run-off-model • to assess how stream run-off affect...

  20. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  1. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  2. 1999 international workshop on sustainable riverine fish habitat: proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The workshop ended April 24, 1999 with attendance by 75 participants from Brazil, Canada, Kenya, Norway, the UK and the US. Sponsors included the World Bank, the US Dept of Energy, the provincial government of British Columbia and the Institute of Hydrology in the UK. The purpose of the workshop was to bring together a multi-disciplinary team of experts concerned with the effect of water management on the sustainability of fish resources in rivers. Those in attendance constituted a mix of scientists, utility engineers, and government regulators. There were presentations on the science and regulatory aspects of riverine fish habitat/instream flow issues from all these countries. Each day was introduced with a key note address: (1) evolution of US instream flow needs; (2) the mission of the World Commission on dams; and (3) fish habitat simulation models, verification studies and applications in multi-objective decision support systems. Three papers of interest are abstracted separately on a unique application of the instream flow incremental methodology to predict impacts on riverine aquatic habitat, total gas pressure and biological responses and fish habitat simulation models and integrated assessment tools

  3. System for removing contaminated surface layers

    International Nuclear Information System (INIS)

    Yoshikawa, Kozo.

    1987-04-01

    The object of the present invention is to offer a new type of useful decontamination system, with which the contaminated surface layers can be removed effectively by injection of such solid microparticles. Liquid carbon dioxide is passed from a liquid carbon dioxide tank via the carbon dioxide supply line into the system for injecting solid carbon dioxide particles. Part of the liquid carbon dioxide introduced into the system is converted to solid carbon dioxide particles by the temperature drop resulting from adiabatic expansion in the carbon dioxide expansion space of the injection system. The solid carbon dioxide particles reach the injection nozzle, which is connected through the expansion space. The carbon dioxide microparticles are further cooled and accelerated by nitrogen gas injected from the nitrogen gas nozzle at the tip of the nitrogen gas supply line, which is connected to a liquid nitrogen tank. The cooled and accelerated solid carbon dioxide microparticles are injected from the injection nozzle for the solid carbon dioxide and directed against the contaminated surface to be cleaned, and, as a result, the surface contamination is removed

  4. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    Science.gov (United States)

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  5. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  6. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  7. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  8. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  9. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    Science.gov (United States)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  10. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  11. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  12. Surface and groundwater drought evaluation with respect to aquatic habitat quality in the upper Nitra River Basin in Slovakia

    Science.gov (United States)

    Fendekova, M.; Fendek, M.; Macura, V.; Kralova, J.

    2012-04-01

    Hydrological drought is being broadly studied within last decades in many countries. It is because of increasing frequency of drought periods occurrence also in mild climate conditions, leading to unexpected and undesired consequences for environment and various spheres of the state economy. Drought affects water availability for plants, animals and human society. Natural conditions of drought occurrence are often combined with human activities strengthening drought consequences. Lack of water in the nature, connected to meteorological and hydrological drought occurrence, increases at the same time needs for surface and groundwater in many types of human activities (agriculture, industrial production, electric power generation…). Drought can be identified within the low flow phase of the flow regime. Flow regime is considered for one of the most important conditions influencing quality of the river ecosystems. Occurrence of meteorological, surface and groundwater droughts was analyzed for the upper part of the Nitra River catchment in Slovakia. Drought occurrence was studied in two gauging profiles on the Nitra River - in Klacno and Nedozery, both representing the headwater profiles. The threshold level method was used for groundwater drought analysis. Base flow values were separated from the discharge hydrograms using the HydroOffice 2010 statistical program package. The influence of surface water drought on groundwater level was analyzed. Habitat suitability curves derived according to IFIM methodology were constructed for different fish species at Nedozery profile. The influence of different low flow values from 600 to 150 L/s on fish amount, size and species variability was studied. In the end, the minimum flow, bellow which unfavourable life conditions occur, was estimated. The results showed the necessity of taking into account the ecological parameters when estimating the ecological status of surface water bodies. Such an approach is fully compatible with

  13. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    induced a cycle of channel incision in upper GVC, deepening and widening channels. The headward extent of incision is identified, and upstream remnant valley surfaces remain undissected. Remnant valleys preserve a substantial alluvial aquifer that may be another source of summer stream flow. Sedimentation has occurred downstream, caused or compounded by the dense growth of riparian vegetation on the lower floodplain which we believe has significantly altered the base level of the valley. The evidence of rapid ongoing environmental change is significant, and could affect coho salmon both positively and negatively. Our research using spatially-distributed, physically-based hydrologic and hydraulic models incorporating the interaction of surface water with ground water (MIKE FLOOD and MIKE SHE) seeks to identify controlling factors and predict the trajectory of environmental change. LiDAR topographic data have enabled modeling floodplain flows in two-dimensions and is used to evaluate over-winter habitat for coho in the floodplain. As we learn more about current and future habitat conditions we will be investigating whether on-going environmental change represents a reversion to prior conditions or a shift to new conditions that may or may not prove favorable to native fish populations in the long term.

  14. Avian response to tidal freshwater habitat creation by controlled reduced tide system

    NARCIS (Netherlands)

    Beauchard, O.; Jacobs, S.; Ysebaert, T.; Meire, P.

    2013-01-01

    Human activities have caused extensive loss of estuarine wetlands, and the restoration of functional habitats remains a challenging task given several physical constraints in strongly embanked estuaries. In the Schelde estuary (Belgium), a new tidal marsh restoration technique, Controlled Reduced

  15. Evolution of a Benthic Imaging System From a Towed Camera to an Automated Habitat Characterization System

    Science.gov (United States)

    2008-09-01

    automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of

  16. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  17. Loss and modification of habitat

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  18. Habitat Management: A Tool to Modify Ecosystem Impacts of Nitrogen Deposition?

    Directory of Open Access Journals (Sweden)

    S.A. Power

    2001-01-01

    Full Text Available Atmospheric nitrogen deposition has been shown to affect both the structure and the function of heathland ecosystems. Heathlands are semi-natural habitats and, as such, undergo regular management by mowing or burning. Different forms of management remove more or less nutrients from the system, so habitat management has the potential to mitigate some of the effects of atmospheric deposition. Data from a dynamic vegetation model and two field experiments are presented. The first involves nitrogen addition following different forms of habitat management. The second tests the use of habitat management to promote heathland recovery after a reduction in nitrogen deposition. Both modelling and experimental approaches suggest that plant and microbial response to nitrogen is affected by management. Shoot growth and rates of decomposition were lowest in plots managed using more intensive techniques, including mowing with litter removal and a high temperature burn. Field data also indicate that ecosystem recovery from prolonged elevated inputs of nitrogen may take many years, or even decades, even after the removal of plant and litter nitrogen stores which accompanies the more intensive forms of habitat management.

  19. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  20. 'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis

    Science.gov (United States)

    Dickson, J.; Drury, H.; Van Essen, D. C.

    2001-01-01

    Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.

  1. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  2. Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

    Directory of Open Access Journals (Sweden)

    Valérie eCoudrain

    2014-06-01

    Full Text Available 1.Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. 2.We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i adjacent to forest (adjacent, (ii distant from forest but connected through woody elements (connected or (iii distant from forest with no connecting woody elements (isolated. Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%. 3.Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. 4.The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.

  3. Watershed evaluation and habitat response to recent storms : annual report for 1998; ANNUAL

    International Nuclear Information System (INIS)

    Huntington, Charles W.; Rhodes, Jonathan J.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin

  4. Impacts of Bush Encroachment on Wildlife Species Diversity, Composition, and Habitat Preference in Ol Pejeta Conservancy, Laikipia, Kenya

    Directory of Open Access Journals (Sweden)

    Cyrus M. Kavwele

    2017-01-01

    Full Text Available Savannah ecosystems are currently facing a biome shift that changes grasslands to woody dominated landscapes, attributable to habitat degradation. In Ol Pejeta Conservancy (OPC, Euclea divinorum, an unpalatable and invasive woody species, is expanding to former savannah ecosystems with potential effects on herbivores key resources, wildlife species diversity, composition, and habitat use. We investigated wildlife species diversity, composition, and habitat preference or avoidance by wildlife in the conservancy. Infrared camera traps were deployed at the centroids of 2 km by 2 km, 50 cm above ground surface for 14 days and nights with 9 camera traps in each habitat type. Shannon wiener index revealed that wildlife species diversity was highest in E. divinorum dominated habitats and lowest in open grassland. Hierarchical Cluster Analysis revealed level of similarity in wildlife species composition between E. divinorum and mixed bushland. Jacobs index revealed that E. divinorum and mixed bushland were avoided by all guilds; however E. divinorum was significantly avoided while A. drepanolobium and open grassland were both preferred by all guilds. However, A. drepanolobium dominated habitats were significantly preferred compared to open grasslands. The findings are useful in management of sustainable ecosystems.

  5. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  6. Wildlife habitat management on college and university campuses

    Science.gov (United States)

    Bosci, Tierney; Warren, Paige S.; Harper, Rick W.; DeStefano, Stephen

    2018-01-01

    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions.

  7. Biological conservation of aquatic inland habitats: these are better days

    OpenAIRE

    Ian J. Winfield

    2013-01-01

    The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack...

  8. Mapping, classification, and spatial variation of hardbottom habitats in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kingon, Kelly

    This dissertation starts by evaluating the applicability of using a commercially available, cost-effective, sidescan sonar system to detect benthic habitats, in particular hardbottom habitats, in the nearshore northeastern Gulf of Mexico. To illustrate the capability of low-cost devices in mapping benthic habitats, I tested the Humminbird 997c SI unit marketed to fishermen at a cost of approximately 2,000. Methodological approaches to effectively capture and process the Humminbird sidescan imagery were developed. Humminbird sidescan data from three sites were compared to overlapping sidescan imagery acquired by the National Marine Fisheries Service using a standard, much more expensive (˜20,000) Marine Sonic system. This analysis verified that the classification results of sand and hardbottom habitats based on data collected using the Humminbird sidescan system were similar to those produced using the traditional and more expensive Marine Sonic sidescan equipment. Thirty-three sites in total were then mapped with the Humminbird system and sampled using dive surveys. Seascape pattern metrics were calculated from the classified Humminbird sidescan maps. The dive survey data included measurements of the geomorphology, physical attributes of the water column (e.g. temperature, depth, and visibility), and coverage and heights of the benthic biota. The coverage and heights of the biota were compared to the geomorphology, seascape, and water column variables to identify patterns in the distribution and community composition of the sessile organisms. Within the study area, visibility was found to vary with longitude. Sites in the east showed higher visibility than sites in the west and this may be driving the community patterns that were identified. Relationships were identified between the four most abundant taxa (sponges, hard corals, brown algae, and red algae) and the geomorphology, physical, and seascape variables. However, the relationships were often complicated

  9. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  10. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  11. The problems in the formation of the habitat of fisheries

    Directory of Open Access Journals (Sweden)

    Agarkov S. A.

    2017-09-01

    Full Text Available Habitat as a combination of political, economic, social and environmental conditions of human activity plays an important role in raising productivity and efficiency of the national economy. On the basis of actual data the essence of problems of formation and management of the fishery complex habitat has been revealed. The authors consider the working conditions of the crews of fishing vessels as an important component of habitat, the influence of climatic conditions and inadequate social infrastructure on turnover of out-migration from the northern regions, the low level of training that generally has a negative impact on results of the fishing industry activity. The state government fishery development programme does not contain measures to shape habitats: improving the quality of life of fishermen and their families, promoting social and environmental infrastructure. On the basis of researches some practical recommendations allowing solve the problems in formation and development of the fishery habitat have been proposed. There are the following recommendations: improving the working conditions of the crews of fishing vessels, economically advantageous working conditions for shipowners, efforts to combat poaching, training of highly qualified personnel, the development of programme of staff motivation and its interest in the work on the internal market, the development of social programmes for the protection of seafarers and their families. For successful implementation of all measures to increase the competitiveness of fisheries of Russia on the international market it is necessary to improve the quality and effectiveness of the system of fisheries complex management, including its socio-ecological-economic habitat

  12. The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk (Tamarix spp.) Habitat in the Western USA

    Science.gov (United States)

    Graham, Jim; Young, Nick; Jarnevich, Catherine S.; Newman, Greg; Evangelista, Paul; Stohlgren, Thomas J.

    2013-01-01

    Habitat suitability maps are commonly created by modeling a species’ environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk (Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.

  13. The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk ( Tamarix spp.) Habitat in the Western USA

    Science.gov (United States)

    Graham, Jim; Young, Nick; Jarnevich, Catherine S.; Newman, Greg; Evangelista, Paul; Stohlgren, Thomas J.

    2013-10-01

    Habitat suitability maps are commonly created by modeling a species' environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk ( Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.

  14. Surface Operations Systems Improve Airport Efficiency

    Science.gov (United States)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  15. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  16. Habitat use by a freshwater dolphin in the low-water season

    Science.gov (United States)

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  17. A model of loggerhead sea turtle (Caretta caretta habitat and movement in the oceanic North Pacific.

    Directory of Open Access Journals (Sweden)

    Melanie Abecassis

    Full Text Available Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s(-1, smaller turtles showed much higher swimming speeds (>1 bl s (-1 than bigger ones (0.5 bl s(-1. Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies.

  18. STUDIES ON THE WHITE-CLAWED CRAYFISH (AUSTROPOTAMOBIUS PALLIPES ASSOCIATED WITH MUDDY HABITATS

    Directory of Open Access Journals (Sweden)

    HOLDICH D. M.

    2006-01-01

    Full Text Available The white-clawed crayfish, Austropotamobius pallipes, is usually found associated with stony habitats containing obvious refuges in the form of gaps between and under rocks, macrophytes and marginal tree roots, particularly in streams and lakes with clear water and little marginal mud. If the banks are composed of suitable material, then they may also construct and live in burrows. However, the white-clawed crayfish is also found to be abundant in streams, rivers, canals and millraces with deep, anoxic mud and with very little aquatic vegetation. Foraging on the surface of mud may be the only way they can obtain sufficient food in the form of macroinvertebrates and decaying plant matter. Where do crayfish live in this restricted habitat? Dewatering such waterways for essential engineering works, such as desilting, bridge and weir repairs, bank reinforcements, and maintenance of outfalls can provide an excellent opportunity to study the available habitat and the crayfish populations, in addition good estimates of population size and age class distribution can be obtained, although, as with other methods, juveniles tend to be underrepresented. A number of case studies will be given to illustrate the fact that white-clawed crayfish are able to colonize muddy habitats in some numbers. The value of retaining trees with their roots hanging into waterways as a refuge for both crayfish and small fish is highlighted.

  19. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  20. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  1. Habitat-specific population growth of a farmland bird.

    Directory of Open Access Journals (Sweden)

    Debora Arlt

    Full Text Available BACKGROUND: To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands displayed negative stochastic population growth rates (log lambda(s: -0.332, -0.429, -0.168, respectively, that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log lambda(s: -0.056, +0.081, -0.059. Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE. CONCLUSIONS/SIGNIFICANCE: Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

  2. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus within a drainage basin.

    Directory of Open Access Journals (Sweden)

    Mike M Webster

    Full Text Available Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L. from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species.

  3. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Science.gov (United States)

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  4. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    Science.gov (United States)

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  5. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  6. Teaching animal habitat selection using wildlife tracking equipment

    Science.gov (United States)

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  7. Creating complex habitats for restoration and reconciliation

    NARCIS (Netherlands)

    Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A.

    2015-01-01

    Simplification of natural habitats has become a major conservation challenge and there is a growing consensus that incorporating and enhancing habitat complexity is likely to be critical for future restoration efforts. Habitat complexity is often ascribed an important role in controlling species

  8. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  9. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  10. Geometric Description of Fibre Bundle Surface for Birkhoff System

    International Nuclear Information System (INIS)

    Li-Mei, Cao; Hua-Fei, Sun; Zhen-Ning, Zhang

    2009-01-01

    A fibre bundle surface for the Birkhoff system is constructed. The metric and the Riemannian connection of the surface are defined and the representation of the Gaussian curvature of this surface is presented. Finally, three examples for the Birkhoff system are given to illustrate our results. (general)

  11. Diversity and habitat preferences of Carabidae and Staphylinidae (Coleoptera in two agroecosystems

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Fernandes Martins

    2012-01-01

    Full Text Available The present study had as objective determine the diversity and abundance of adults Carabidae and Staphylinidae in two areas, constituted by forest fragment and soybean/corn crops under conventional tillage and no-tillage systems and to analyze the distribution and preference of those beetles for the habitat. The beetles were sampled with 48 pitfall traps. In both experimental areas, two parallel transects of pitfall traps were installed. Each transect had 100 m in the crop and 100 m in the forest fragment. Four traps were close to each other (1 m in the edge between the crop and the forest fragment, the other traps were installed each 10 m. The obtained data were submitted to the faunistic analysis and the preference of the species by habitat was obtained by cluster analysis. The results demonstrated that the type of crop system (conventional tillage or no-tillage might have influenced the diversity of species of Carabidae and Staphylinidae. The cluster analysis evidenced that the carabids may prefer a specific habitat. In the present study, the distribution of carabids and staphylinids in the three habitats showed that these beetles have potential to be dispersed at great distances inside the crop.

  12. Coastal habitats as surrogates for taxonomic, functional and trophic structures of benthic faunal communities.

    Science.gov (United States)

    Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

  13. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  14. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  15. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  16. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    Science.gov (United States)

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  17. Analysis of habitat characteristics of small pelagic fish based on generalized additive models in Kepulauan Seribu Waters

    Science.gov (United States)

    Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.

    2018-03-01

    One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.

  18. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  19. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  20. Plane development of lateral surfaces for inspection systems

    Science.gov (United States)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    The problem of developing the lateral surfaces of a 3D object can arise in item inspection using automated imaging systems. In an industrial environment, these control systems typically work at high rate and they have to assure a reliable inspection of the single item. For compactness requirements it is not convenient to utilise three or four CCD cameras to control all the lateral surfaces of an object. Moreover it is impossible to mount optical components near the object if it is placed on a conveyor belt. The paper presents a system that integrates on a single CCD picture the images of both the frontal surface and the lateral surface of an object. It consists of a freeform lens mounted in front of a CCD camera with a commercial lens. The aim is to have a good magnification of the lateral surface, maintaining a low aberration level for exploiting the pictures in an image processing software. The freeform lens, made in plastics, redirects the light coming from the object to the camera lens. The final result is to obtain on the CCD: - the frontal and lateral surface images, with a selected magnification (even with two different values for the two images); - a gap between these two images, so an automatic method to analyse the images can be easily applied. A simple method to design the freeform lens is illustrated. The procedure also allows to obtain the imaging system modifying a current inspection system reducing the cost.

  1. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  2. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    Science.gov (United States)

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  3. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  4. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  5. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  6. 75 FR 60802 - Availability of a Draft Environmental Assessment and Habitat Conservation Plan, and Receipt of...

    Science.gov (United States)

    2010-10-01

    ..., road maintenance, utilities construction, water system management, and prairie habitat management... ``take'' is defined under the ESA to mean to harass, harm, pursue, hunt, shoot, wound, kill, trap... significant habitat modification or degradation where it actually kills or injures wildlife by significantly...

  7. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  8. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  9. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Science.gov (United States)

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  10. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Jonnell C Sanciangco

    Full Text Available Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs, 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  11. A dynamic isotope power system for Space Exploration Initiative surface transport systems

    International Nuclear Information System (INIS)

    Hunt, M.E.; Harty, R.B.; Cataldo, R.

    1992-03-01

    The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs

  12. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  13. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  14. Constructed Wetlands for Wastewater Treatment and Wildlife Habitat: 17 Case Studies

    Science.gov (United States)

    This document provides brief descriptions of 17 wetland treatment systems from across the country that are providing significant water quality benefits while demonstrating additional benefits such as wildlife habitat.

  15. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers

    Directory of Open Access Journals (Sweden)

    Dolly Priatna

    2012-12-01

    Full Text Available Although translocation has been used in mitigating human-carnivore conflict for decades, few studies have been conducted on the behavioral ecology of released animals. Such information is necessary in the context of sustainable forest management. In this study we determine the type of land cover used as main habitat and examine the activity pattern of translocated tigers. Between 2008 and 2010 we captured six conflict tigers and translocated them 74-1,350 km from their capture sites in Sumatera. All tigers were fitted with global positioning system (GPS collars. The collars were set to fix 24-48 location coordinates per day.  All translocated tigers showed a preference for a certain habitat type within their new home range, and tended to select the majority of natural land cover type within the landscape as their main habitat, but the availability of natural forest habitat within the landscape remains essensial for their survival. The activity of male translocated tigers differed significantly between the six time intervals of 24 hours, and their most active periods were in the afternoon (14:00-18:00 hours and in the evening (18:00-22:00 hours. Despite being preliminary, the findings of this study-which was the first such study conducted in Sumatera-highlight the conservation value of tiger translocation and provide valuable information for improving future management of conflict tigers.Keywords: activity pattern, GPS collars, habitat selection, sumateran tiger, translocation

  16. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  17. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  18. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  19. Coastal habitat and biological community response to dam removal on the Elwha River

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  20. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  1. Radiation protection for human exploration of the moon and mars: Application of the mash code system

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Drischler, J.D.; Barnes, J.M.

    1992-01-01

    The Monte Carlo Adjoint Shielding code system -- MASH, developed for the Department of Defense for calculating radiation protection factors for armored vehicles against neutron and gamma radiation, has been used to assess the dose from reactor radiation to an occupant in a habitat on Mars. The capability of MASH to reproduce measured data is summarized to demonstrate the accuracy of the code. The estimation of the radiation environment in an idealized reactor-habitat model is reported to illustrate the merits of the adjoint Monte Carlo procedure for space related studies. The reactor radiation dose for different reactor-habitat surface configurations to a habitat occupant is compared with the natural radiation dose acquired during a 500-day Mars mission

  2. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  3. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  4. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  5. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  6. Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling

    Directory of Open Access Journals (Sweden)

    Renata Ferrari

    2016-02-01

    Full Text Available Coral reef habitat structural complexity influences key ecological processes, ecosystem biodiversity, and resilience. Measuring structural complexity underwater is not trivial and researchers have been searching for accurate and cost-effective methods that can be applied across spatial extents for over 50 years. This study integrated a set of existing multi-view, image-processing algorithms, to accurately compute metrics of structural complexity (e.g., ratio of surface to planar area underwater solely from images. This framework resulted in accurate, high-speed 3D habitat reconstructions at scales ranging from small corals to reef-scapes (10s km2. Structural complexity was accurately quantified from both contemporary and historical image datasets across three spatial scales: (i branching coral colony (Acropora spp.; (ii reef area (400 m2; and (iii reef transect (2 km. At small scales, our method delivered models with <1 mm error over 90% of the surface area, while the accuracy at transect scale was 85.3% ± 6% (CI. Advantages are: no need for an a priori requirement for image size or resolution, no invasive techniques, cost-effectiveness, and utilization of existing imagery taken from off-the-shelf cameras (both monocular or stereo. This remote sensing method can be integrated to reef monitoring and improve our knowledge of key aspects of coral reef dynamics, from reef accretion to habitat provisioning and productivity, by measuring and up-scaling estimates of structural complexity.

  7. Snowshoe hare multi-level habitat use in a fire-adapted ecosystem

    Science.gov (United States)

    Gigliotti, Laura C.; Jones, Benjamin C.; Lovallo, Matthew J.; Diefenbach, Duane R.

    2018-01-01

    Prescribed burning has the potential to improve habitat for species that depend on pyric ecosystems or other early successional vegetation types. For species that occupy diverse plant communities over the extent of their range, response to disturbances such as fire might vary based on post-disturbance vegetation dynamics among plant communities. Although responses of snowshoe hares (Lepus americanus) to fire have been studied in conifer-dominated forests in northern parts of the species’ range, there is a lack of information on snowshoe hare habitat use in fire-dependent communities in southern parts of their range. We used global positioning system (GPS) and very high frequency (VHF) radio-collars to monitor the habitat use of 32 snowshoe hares in a scrub-oak (Quercus ilicifolia)-pitch pine (Pinus rigida) barrens complex in northeastern Pennsylvania where prescribed fire has been used for habitat restoration. The area contained stands that underwent prescribed burning 1–6 years prior to our study. Also, we investigated fine-scale determinants of habitat use within stands. We found that regardless of season, hares did not select for areas that had been burned within 6 years prior. Hares primarily used stands of older scrub oak, conifer, or hardwoods, which contained dense understory vegetation and canopy cover. Hare habitat use also was positively associated with stand edges. Our results suggest that hares do not respond to prescribed burning of scrub oak in the short-term. In addition, by focusing on structural determinants of habitat use, rather than broad-scale characteristics such as stand type, management strategies for snowshoe hares can be adapted over the extent of their range despite the multitude of different land cover types across which the species occurs. 

  8. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. © 2014 The Fisheries Society of the British Isles.

  9. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  10. Beaked Whale Habitat Characterization and Prediction

    National Research Council Canada - National Science Library

    Ward, Jessica A; Mitchell, Glenn H; Farak, Amy M; Keane, Ellen P

    2005-01-01

    The objective of this study was to characterize known beaked whale habitat and create a predictive beaked whale habitat model of the Gulf of Mexico and east coast of the United States using available...

  11. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  12. A smartphone app and analysis framework for rapidly characterizing and predicting shorebird habitat

    Science.gov (United States)

    Thieler, E. R.; Zeigler, S. L.; Plant, N. G.; Gutierrez, B.; Winslow, L. A.; Hines, M. K.; Read, J. S.; Walker, J. I.

    2016-12-01

    We developed a smartphone application called iPlover as a distributed data collection system to gather synoptic observations of shorebird habitat selection preferences, and a Bayesian network that exploits the data to predict habitat suitability. We tested this approach to modeling habitat suitability for the federally listed piping plover (Charadrius melodus) on coastal beaches and barrier islands along 1500 km of coast from North Carolina to Maine, USA. Using agile software development approaches, the iPlover application was conceived, developed and deployed in just a few months following Hurricane Sandy in 2012. This application supported collaborative efforts of nearly 100 stakeholders, resulting in over 2000 data points describing piping plover habitat selection patterns. The data were analyzed in a Bayesian network to evaluate the probability that a specific combination of habitat variables is associated with a nesting site. Subsequent testing shows that iPlover data are robust to variability in user classification and that the Bayesian network has a high level of predictive accuracy. Our work addresses a variety of scientific problems in understanding and managing dynamic coastal landscapes for beach-dependent species that require biological and geological data that (1) span the range of relevant environments and habitats, (2) can be updated seasonally to interannually, and (3) capture spatial detail. It is difficult to acquire such data; the data often have limited focus due to resource constraints, can be challenging to coordinate between different regions, are collected by non-specialists, or lack observational uniformity. Furthermore, associated data analysis techniques are often limited in their ability to consider new information as data are collected from additional study sites and updated. We present examples of how this approach can be used to map past, present, and future habitat suitability for sites of interest. We also describe lessons learned

  13. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    Science.gov (United States)

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  14. Quantitative validation of a habitat suitability index for oyster restoration

    Directory of Open Access Journals (Sweden)

    Seth eTheuerkauf

    2016-05-01

    Full Text Available Habitat suitability index (HSI models provide spatially explicit information on the capacity of a given habitat to support a species of interest, and their prevalence has increased dramatically in recent years. Despite caution that the reliability of HSIs must be validated using independent, quantitative data, most HSIs intended to inform terrestrial and marine species management remain unvalidated. Furthermore, of the eight HSI models developed for eastern oyster (Crassostrea virginica restoration and fishery production, none has been validated. Consequently, we developed, calibrated, and validated an HSI for the eastern oyster to identify optimal habitat for restoration in a tributary of Chesapeake Bay, the Great Wicomico River (GWR. The GWR harbors a high density, restored oyster population, and therefore serves as an excellent model system for assessing the validity of the HSI. The HSI was derived from GIS layers of bottom type, salinity, and water depth (surrogate for dissolved oxygen, and was tested using live adult oyster density data from a survey of high vertical relief reefs (HRR and low vertical relief reefs (LRR in the sanctuary network. Live adult oyster density was a statistically-significant sigmoid function of the HSI, which validates the HSI as a robust predictor of suitable oyster reef habitat for rehabilitation or restoration. In addition, HRR had on average 103-116 more adults m^−2 than LRR at a given level of the HSI. For HRR, HSI values ≥0.3 exceeded the accepted restoration target of 50 live adult oysters m^−2. For LRR, the HSI was generally able to predict live adult oyster densities that meet or exceed the target at HSI values ≥0.3. The HSI indicated that there remain large areas of suitable habitat for restoration in the GWR. This study provides a robust framework for HSI model development and validation, which can be refined and applied to other systems and previously developed HSIs to improve the efficacy of

  15. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  16. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  17. On the form of species–area relationships in habitat islands and true islands

    DEFF Research Database (Denmark)

    Matthews, Thomas J.; Guilhaumon, François; Triantis, Kostas A.

    2016-01-01

    and c vary between different island types. Location: Global. Methods: We used an information theoretic approach to compare the fit of 20 ISAR models to 207 habitat island datasets. Model performance was ranked according to pre-set criteria, including metrics of generality and efficiency. We also fitted......, and was the highest ranked model overall. In general, the more complex models performed badly. Average z-values were significantly lower for habitat island datasets than for true islands, and were higher for mountaintop and urban habitat islands than for other habitat island types. Average c-values were significantly...... multimodel comparisons demonstrated the nonlinear implementation of the power model to be the best overall model and thus to be a sensible choice for general use. As the z-value of the log–log power model varied in relation to ecological and geographical properties of the study systems, caution should...

  18. Interaction between birds and macrofauna within food webs of six intertidal habitats of the Wadden Sea.

    Science.gov (United States)

    Horn, Sabine; de la Vega, Camille; Asmus, Ragnhild; Schwemmer, Philipp; Enners, Leonie; Garthe, Stefan; Binder, Kirsten; Asmus, Harald

    2017-01-01

    The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem.

  19. ASPHERICAL SURFACES APPROXIMATION IN AUTOMATED DESIGN OF OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    T. V. Ivanova

    2015-07-01

    Full Text Available Subject of Research. The paper deals with the problems of higher order aspherical surfaces approximation using different equation types. The objects of research are two types of equations for higher order aspherical surfaces description used in different software for optical systems design (SАRО, OPAL, ZEMAX, CODE-V, etc. and dependent on z-coordinate or on a radial coordinate on the surface. Conversion from one type of equations to another is considered in view of application in different software for optical systems design. Methods. The subject matter of the method lies in usage of mean square method approximation for recalculation of high-order aspherical surface. Iterative algorithm for recalculation is presented giving the possibility to recalculate coefficients for different types of equations with required accuracy. Recommendations are given for choosing recalculation parameters such as the number of result equation coefficients, the number of points for recalculation and point allocation on a surface. Main Results. Example of recalculation for aspherical surface and accuracy estimation, including result aberration comparison between initial surface and recalculated surface are presented. The example has shown that required accuracy of surface representation was obtained. Practical Relevance. This technique is usable for recalculation of higher order aspherical surfaces in various types of software for optical systems design and also for research of optimal higher order aspherical surfaces description.

  20. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  1. Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity.

    Science.gov (United States)

    Bryson, Mitch; Ferrari, Renata; Figueira, Will; Pizarro, Oscar; Madin, Josh; Williams, Stefan; Byrne, Maria

    2017-08-01

    Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure-from-motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure-from-motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat-forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure-from-motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain-and-tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure-from-motion and photogrammetry.

  2. Migratory bird habitat in relation to tile drainage and poorly drained hydrologic soil groups

    Science.gov (United States)

    Kastner, Brandi; Christensen, Victoria G.; Williamson, Tanja N.; Sanocki, Chris A.

    2016-01-01

    The Prairie Pothole Region (PPR) is home to more than 50% of the migratory waterfowl in North America. Although the PPR provides an abundance of temporary and permanent wetlands for nesting and feeding, increases in commodity prices and agricultural drainage practices have led to a trend of wetland drainage. The Northern Shoveler is a migratory dabbling duck species that uses wetland habitats and cultivated croplands in the PPR. Richland County in North Dakota and Roberts County in South Dakota have an abundance of wetlands and croplands and were chosen as the study areas for this research to assess the wetland size and cultivated cropland in relation to hydrologic soil groups for the Northern Shoveler habitat. This study used geographic information system data to analyze Northern Shoveler habitats in association with Natural Resource Conservation Service soil data. Habitats, which are spatially associated with certain hydrologic soil groups, may be at risk of artificial drainage installations because of their proximity to cultivated croplands and soil lacking in natural drainage that may become wet or inundated. Findings indicate that most wetlands that are part of Northern Shoveler habitats were within or adjacent to cultivated croplands. The results also revealed soil hydrologic groups with high runoff potential and low water transmission rates account for most of the soil within the Northern Shoveler‘s wetland and cropland habitats. Habitats near agriculture with high runoff potential are likely to be drained and this has the potential of reducing Northern Shoveler habitat.

  3. Creating a Ruggedness Layer for Use in Habitat Suitability Modeling for Ikh Nart Nature Reserve, Mongolia

    Directory of Open Access Journals (Sweden)

    Nanette Bragin

    2013-12-01

    Full Text Available Spatially-explicit wildlife habitat models are increasingly used to study optimal habitat for species of conservation focus. A ruggedness layer, that summarizes aspect and slope, provides a useful tool for analyses conducted in a Geographic Information System (GIS, such as developing a habitat suitability index model to measure species habitat use. Ruggedness layers prove especially useful in areas where topography represents a key habitat component. We created a ruggedness layer for the Ikh Nart Nature Reserve and surrounding areas in northern Dornogobi Aimag (province, Mongolia. Using a 90 m Shuttle Radar Topography Mission (SRTM digital elevation model (DEM and ArcGIS 10 spatial analyst, we created 9 categories for ruggedness. When combined with other thematic layers such as vegetation, the ruggedness layer becomes a powerful tool for analyzing habitat use by individual animals. The results of such analyses may inform decision makers in protected area planning and conservation of endangered species.

  4. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea.

    Science.gov (United States)

    Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A

    2017-02-01

    Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.

  5. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    Science.gov (United States)

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors

  6. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia.

    Science.gov (United States)

    Zainuddin, Mukti; Farhum, Aisjah; Safruddin, Safruddin; Selamat, Muhammad Banda; Sudirman, Sudirman; Nurdin, Nurjannah; Syamsuddin, Mega; Ridwan, Muhammad; Saitoh, Sei-Ichi

    2017-01-01

    Using remote sensing of sea surface temperature (SST), sea surface height anomaly (SSHA) and chlorophyll-a (Chl-a) together with catch data, we investigated the detection and persistence of important pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, Indonesia. We analyzed the data for the period between the northwest and southeast monsoon 2007-2011. A pelagic hotspot index was constructed from a model of multi-spectrum satellite-based oceanographic data in relation to skipjack fishing performance. Results showed that skipjack catch per unit efforts (CPUEs) increased significantly in areas of highest pelagic hotspot indices. The distribution and dynamics of habitat hotspots were detected by the synoptic measurements of SST, SSHA and Chl-a ranging from 29.5° to 31.5°C, from 2.5 to 12.5 cm and from 0.15 to 0.35 mg m-3, respectively. Total area of hotspots consistently peaked in May. Validation of skipjack CPUE predicted by our model against observed data from 2012 was highly significant. The key pelagic habitat corresponded with the Chl-a front, which could be related to the areas of relatively high prey abundance (enhanced feeding opportunity) for skipjack. We found that the area and persistence of the potential skipjack habitat hotspots for the 5 years were clearly identified by the 0.2 mg m-3 Chl-a isopleth, suggesting that the Chl-a front provides a key oceanographic indicator for global understanding on skipjack tuna habitat hotspots in the western tropical Pacific Ocean, especially within Coral Triangle tuna.

  7. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  8. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    Science.gov (United States)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  9. Development of a Regional Habitat Classification Scheme for the ...

    African Journals Online (AJOL)

    development, image processing techniques and field survey methods are outlined. Habitat classification, and regional-scale comparisons of relative habitat composition are described. The study demonstrates the use of remote sensing data to construct digital habitat maps for the comparison of regional habitat coverage, ...

  10. Habitat selection and management of the Hawaiian crow

    Science.gov (United States)

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  11. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  12. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  13. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  14. Habitat models to assist plant protection efforts in Shenandoah National Park, Virginia, USA

    Science.gov (United States)

    Van Manen, F.T.; Young, J.A.; Thatcher, C.A.; Cass, W.B.; Ulrey, C.

    2005-01-01

    During 2002, the National Park Service initiated a demonstration project to develop science-based law enforcement strategies for the protection of at-risk natural resources, including American ginseng (Panax quinquefolius L.), bloodroot (Sanguinaria canadensis L.), and black cohosh (Cimicifuga racemosa (L.) Nutt. [syn. Actaea racemosa L.]). Harvest pressure on these species is increasing because of the growing herbal remedy market. We developed habitat models for Shenandoah National Park and the northern portion of the Blue Ridge Parkway to determine the distribution of favorable habitats of these three plant species and to demonstrate the use of that information to support plant protection activities. We compiled locations for the three plant species to delineate favorable habitats with a geographic information system (GIS). We mapped potential habitat quality for each species by calculating a multivariate statistic, Mahalanobis distance, based on GIS layers that characterized the topography, land cover, and geology of the plant locations (10-m resolution). We tested model performance with an independent dataset of plant locations, which indicated a significant relationship between Mahalanobis distance values and species occurrence. We also generated null models by examining the distribution of the Mahalanobis distance values had plants been distributed randomly. For all species, the habitat models performed markedly better than their respective null models. We used our models to direct field searches to the most favorable habitats, resulting in a sizeable number of new plant locations (82 ginseng, 73 bloodroot, and 139 black cohosh locations). The odds of finding new plant locations based on the habitat models were 4.5 (black cohosh) to 12.3 (American ginseng) times greater than random searches; thus, the habitat models can be used to improve the efficiency of plant protection efforts, (e.g., marking of plants, law enforcement activities). The field searches also

  15. Diversity and habitat preferences of Carabidae and Staphylinidae (Coleoptera in two agroecosystems Diversidade e preferência de habitat de Carabidae e Staphylinidae (Coleoptera em dois agroecossistemas

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Fernandes Martins

    2012-01-01

    Full Text Available The present study had as objective determine the diversity and abundance of adults Carabidae and Staphylinidae in two areas, constituted by forest fragment and soybean/corn crops under conventional tillage and no-tillage systems and to analyze the distribution and preference of those beetles for the habitat. The beetles were sampled with 48 pitfall traps. In both experimental areas, two parallel transects of pitfall traps were installed. Each transect had 100 m in the crop and 100 m in the forest fragment. Four traps were close to each other (1 m in the edge between the crop and the forest fragment, the other traps were installed each 10 m. The obtained data were submitted to the faunistic analysis and the preference of the species by habitat was obtained by cluster analysis. The results demonstrated that the type of crop system (conventional tillage or no-tillage might have influenced the diversity of species of Carabidae and Staphylinidae. The cluster analysis evidenced that the carabids may prefer a specific habitat. In the present study, the distribution of carabids and staphylinids in the three habitats showed that these beetles have potential to be dispersed at great distances inside the crop.Este estudo teve como objetivo determinar a diversidade e abundância de adultos de Carabidae e Staphylinidae em duas áreas, constituídas por fragmentos florestais e culturas de soja/milho sob sistemas de plantio convencional e direto, e analisar a distribuição e a preferência desses insetos para o habitat. Os besouros foram amostrados com o uso de 48 armadilhas de solo do tipo Pitfall. Em ambas as áreas experimentais, foram instalados dois transectos paralelos de armadilhas; cada transecto teve 100 m na culturas e 100 m no fragmento florestal. Na borda entre a cultura e o fragmento de floresta foram instaladas quatro armadilhas, que ficaram distantes entre si por 1 m e as outras armadilhas, a cada 10 m. Os dados obtidos foram submetidos à an

  16. Feedbacks between community assembly and habitat selection shape variation in local colonization

    Science.gov (United States)

    Kraus, J.M.; Vonesh, J.R.

    2010-01-01

    1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.

  17. Hard-bottom bathyal habitats and keystone epibenthic species on Le Danois Bank (Cantabrian Sea)

    Science.gov (United States)

    Sánchez, F.; Rodríguez Basalo, A.; García-Alegre, A.; Gómez-Ballesteros, M.

    2017-12-01

    "El Cachucho" Marine Protected Area (MPA), which comprises Le Danois Bank and its intraslope basin, was included during 2008 in the Nature 2000 network mainly because of the presence of the habitat "1170 Reefs" according to the EU Habitat Directive. To review the effectiveness of existing management measures, several activities aimed at characterizing the most structurally complex hard-bottom habitats were planned and carried out during the ESMAREC 0514 survey. For identification of these habitats, several transects using the photogrammetric towed sled Politolana were carried out on Le Danois Bank, in the depth range between 427 and 1379 m, searching for the sea beds with higher values of slope and backscatter. Photogrammetric techniques were used for image scaling, so we could determine the surface areas of different substrata types (facies) and their species densities. A total area of 28,762 m2 was analyzed in the still images of 23 transects, verifying that 85% of the substrata of our study area are occupied by 4 different facies: Bedrock, bedrock with mixed sediments, mixed sediments with pebbles and boulders, and mixed sediments. Acoustic data and ground-truth visual data were combined to evaluate distinctive benthic scenarios. The relative abundances of the 123 epibenthic species identified by image analyses show that the most abundant are sponges (29%), cnidarians (26%), crustaceans (26%) and echinoderms (14%), i.e. mostly sessile species or those with low mobility. The keystone species of the "1170 Reefs" habitat are 3 cnidarians: Callogorgia verticillata, Paramuricea cf. placomus and Dendrophyllia cornigera, and 3 sponges, Asconema setubalense, Geodia msp.1 and Phakellia robusta. Eight new habitats (biotopes) have been identified on Le Danois Bank, six of which occur on the hard bottoms, with depth, substratum, BPI (Bathymetric Position Index) and slope as determining environmental variables that explain their spatial distributions.

  18. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  19. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  20. Isotopic Differences between Forage Consumed by a Large Herbivore in Open, Closed, and Coastal Habitats: New Evidence from a Boreal Study System.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C or nitrogen (δ15N isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.

  1. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.

  2. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  3. Storied experiences of school-based habitat restoration

    Science.gov (United States)

    Bell, Anne C.

    The purpose of this study has been to consider the eco-pedagogical promise of school-based habitat restoration. How does the practice of restoration foster a lived sense of being in a more-than-human world1 while inviting alternative approaches to teaching and learning? What opportunities does it offer to resist the societal forces and patterns, reinforced through the school system, which are eroding and effacing human relationships with other life? A literature review sets the broader context for an in-depth exploration of the experiences and understandings of participants (students, teachers, parents) involved in a case study. I proceeded with my research on the assumption that both the discursive and non-discursive dimensions of habitat restoration were key to appreciating its eco-pedagogical potential. Through participant observation over a ten month period, interviewing and a survey, I listened to some of the ways that habitat restoration challenged the typically disembodied, decontextualized organization of schooling by privileging hands-on involvement and encouraging attentive, caring relationships within the human and natural communities of which students were a part. I investigated particular storylines and metaphors which encoded and supported participants' endeavours, especially with regard to their potential to disrupt human-centered values and beliefs. This study suggests that the promise of habitat restoration lies in the openings created to attune to and interact with human and nonhuman others in fully embodied, locally situated and personally meaningful ways. Participants overwhelmingly attested to the importance of the experience of restoration which many deemed to be memorable and motivating and to provide fertile ground for future engagements in/for nature and society. As participants attended to the nuances and complexities of their interactions with a specific place and its inhabitants, their intimate involvement added a depth of feeling and

  4. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    Science.gov (United States)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the

  5. An anchoring system for fish habitat structures: field technique, evaluation, and application.

    Science.gov (United States)

    Barbara L. Fontaine; Thomas D. Merritt

    1988-01-01

    Steel cable can be used to bind rocks and logs together to construct fish habitat structures in streams. Cables must be securely anchored if structures are to withstand floods. This paper describes a way to anchor cables into bedrock or ballast boulders. Anchor tensile strength ranged from 7,500 to 36,500 pounds and was related to type of resin and embedment depth....

  6. Benthos of Adjacent Mangrove, Seagrass and Non-vegetated Habitats in Rookery Bay, Florida, U.S.A.

    Science.gov (United States)

    Sheridan, P.

    1997-04-01

    Benthic faunal abundances and biomasses in adjacent mangrove, seagrass and non-vegetated mud habitats were compared in Rookery Bay, Florida, U.S.A. Although all habitats were intertidal, mangroves received the shortest duration of flooding, and non-vegetated mud received the longest. Replicate cores were taken at high tide in each habitat in July, September and December 1988, and in April 1989. Seagrass substrates were low organic content sands, whereas mangrove and non-vegetated substrates were high organic content sandy clays. Over 300 taxa were recorded, most of them relatively rare, and only 32 taxa were considered dominant (averaging ≥636 individuals m -2or five core -1in any habitat at a given time). Seagrass and non-vegetated mud faunas were more diverse than those of mangrove substrates. Total densities were always higher in red mangrove ( Rhizophora mangle) peat than elsewhere, averaging 22 591 to 52 914 individuals m -2. Densities in mixed seagrasses ranged between 6347 and 23 545 individuals m -2, while those in non-vegetated mud ranged between 3611 and 22 465 individuals m -2. Biomasses, however, were always higher in either seagrasses (15·7-87·4 g wet weight m -2) or non-vegetated mud (11·9-26·2 g m -2) than in mangroves (3·6-8·2 g m -2). Tanaids and annelids were the numerical dominants, reaching maximum densities of 35 127 and 31 388 m -2, respectively, in mangroves. Annelids were also the dominant biomass in most habitats each month. Variation in densities of most of the 32 dominant taxa were related to habitat not time. Each habitat harboured four to eight taxa that were significantly more abundant there than in alternate habitats. Feeding guild analysis indicated few differences among habitats, as surface deposit feeders and carnivores were predominant. Red mangrove appear capable of functioning in a manner similar to intertidal marsh habitats by providing high densities of small prey items for mobile consumers able to exploit the

  7. Invasion of a mined landscape: what habitat characteristics are influencing the occurrence of invasive plants?

    Science.gov (United States)

    D. Lemke; I.A. Tazisong; Y. Wang; J.A. Brown

    2012-01-01

    Throughout the world, the invasion of alien plants is an increasing threat to native biodiversity. Invasion is especially prevalent in areas affected by land transformation and anthropogenic disturbance. Surface mines are a major disturbance, and thus may promote the establishment and expansion of invasive plant communities. Environmental and habitat factors that may...

  8. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting

  9. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  10. Tropical coral reef habitat in a geoengineered, high-CO2 world

    Science.gov (United States)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  11. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    Science.gov (United States)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  12. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  13. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.

    Science.gov (United States)

    Rooker, Jay R; Simms, Jeff R; Wells, R J David; Holt, Scott A; Holt, G Joan; Graves, John E; Furey, Nathan B

    2012-01-01

    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.

  14. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Jay R Rooker

    Full Text Available Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM over a three-year period (2006-2008 to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus, blue marlin (Makaira nigricans, white marlin (Kajikia albida, and swordfish (Xiphias gladius. Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2 were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2, white marlin (5.44 larvae 1000 m(-2, and swordfish (4.67 larvae 1000 m(-2. The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass were deemed to be influential variables in generalized additive models (GAMs. Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill on the Atlantic billfish and swordfish populations.

  15. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity.

    Science.gov (United States)

    Lamy, T; Jarne, P; Laroche, F; Pointier, J-P; Huth, G; Segard, A; David, P

    2013-09-01

    An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for 'species- genetic diversity correlations' (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance-covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics. © 2013 John Wiley & Sons Ltd.

  16. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    Science.gov (United States)

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  17. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  18. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  19. Theory of aberration fields for general optical systems with freeform surfaces.

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  20. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Kamdem, Colince; Tene Fossog, Billy; Simard, Frédéric; Etouna, Joachim; Ndo, Cyrille; Kengne, Pierre; Boussès, Philippe; Etoa, François-Xavier; Awono-Ambene, Parfait; Fontenille, Didier; Antonio-Nkondjio, Christophe; Besansky, Nora J; Costantini, Carlo

    2012-01-01

    Anthropogenic habitat disturbance is a prime cause in the current trend of the Earth's reduction in biodiversity. Here we show that the human footprint on the Central African rainforest, which is resulting in deforestation and growth of densely populated urban agglomerates, is associated to ecological divergence and cryptic speciation leading to adaptive radiation within the major malaria mosquito Anopheles gambiae. In southern Cameroon, the frequency of two molecular forms--M and S--among which reproductive isolation is strong but still incomplete, was correlated to an index of urbanisation extracted from remotely sensed data, expressed as the proportion of built-up surface in each sampling unit. The two forms markedly segregated along an urbanisation gradient forming a bimodal cline of ∼6-km width: the S form was exclusive to the rural habitat, whereas only the M form was present in the core of densely urbanised settings, co-occurring at times in the same polluted larval habitats of the southern house mosquito Culex quinquefasciatus--a species association that was not historically recorded before. Our results indicate that when humans create novel habitats and ecological heterogeneities, they can provide evolutionary opportunities for rapid adaptive niche shifts associated with lineage divergence, whose consequences upon malaria transmission might be significant.

  1. Closed Environment Module - Modularization and extension of the Virtual Habitat

    Science.gov (United States)

    Plötner, Peter; Czupalla, Markus; Zhukov, Anton

    2013-12-01

    The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.

  2. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    Science.gov (United States)

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.

    2016-01-01

    Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This

  3. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  4. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  5. A Review of Bioeconomic Modelling of Habitat-Fisheries Interactions

    Directory of Open Access Journals (Sweden)

    Naomi S. Foley

    2012-01-01

    Full Text Available This paper reviews the bioeconomic literature on habitat-fisheries connections. Many such connections have been explored in the bioeconomic literature; however, missing from the literature is an analysis merging the potential influences of habitat on both fish stocks and fisheries into one general, overarching theoretical model. We attempt to clarify the nature of linkages between the function of habitats and the economic activities they support. More specifically, we identify theoretically the ways that habitat may enter the standard Gordon-Schaefer model, and nest these interactions in the general model. Habitat influences are defined as either biophysical or bioeconomic. Biophysical effects relate to the functional role of habitat in the growth of the fish stock and may be either essential or facultative to the species. Bioeconomic interactions relate to the effect of habitat on fisheries and can be shown through either the harvest function or the profit function. We review how habitat loss can affect stock, effort, and harvest under open access and maximum economic yield managed fisheries.

  6. High-resolution behavioral mapping of electric fishes in Amazonian habitats.

    Science.gov (United States)

    Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2018-04-11

    The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.

  7. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    Science.gov (United States)

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  8. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  9. Integrating and interpreting the Habitats- and Birds Directives

    NARCIS (Netherlands)

    Kistenkas, F.H.

    2005-01-01

    The Birds Directive of 1979 and the Habitats Directive of 1992 might be seen as the two major EU nature conservation directives, both protecting a habitats network throughout Europe and species. The transposition of both the Habitats and Birds Directive (HBD) into domestic national or subnational

  10. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  11. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  12. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  13. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  14. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  15. DLR-EnviHab - A closed environmental Habitat

    Science.gov (United States)

    Rabbow, E.; Koch, B.; Rettberg, P.; Horneck, G.; Graef, P.; Gerzer, R.

    Closed habitats intended for different purposes like confinement studies, life in extreme environments (Antarctica) and as simulation testbeds for complex closed life support systems have been built and achieved different degrees of closure. Those that were built in preparation of space missions oriented themselves on the need of a crew of astronauts during a long term mission in Space, on Mars or Moon. At DLR in Cologne, a modular approach is followed to build a closed environmental habitat for scientific and medical studies, the DLR-EnviHab. This modular structure of the EnviHab is designed to include humans as integral part in a bioregenerative life support system, and allows a step-wise realization of the project, ensuring useful results for a wide field of scientific research during each phase. The DLR-EnviHab provides a platform for international and interdisciplinary research and the development of innovative solutions for cultivation and habitation on Earth as well as for long term space or planetary missions. By the inclusion of humans as integral component of the system, medical research areas including physiological and psychological health and rehabilitation as well as environmental research and monitoring and modelling of coupled and controlled systems are addressed in EnviHab. Results of the research conducted in the individual and combined EnviHab modules will also contribute to most urgent issues like water(recycling) management, food management, pollution/waste management and atmosphere(air) management. In addition, EnviHab contributes to public education and outreach with the open visible and partly accessible structure, an exhibition and an explanatory module.

  16. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  17. Geomorphology and Sustainable Subsistence Habitats

    Science.gov (United States)

    Johnson, A. C.; Kruger, L. E.

    2016-02-01

    Climatic, tectonic, and human-related impacts are changing the distribution of shoreline habitats and associated species used as food resources. There is a need to summarize current and future shoreline geomorphic - biotic relationships and better understand potential impacts to native customary and traditional gathering patterns. By strategically integrating Native knowledge and observations, we create an inclusive vulnerability assessment strategy resulting in a win-win opportunity for resource users and research scientists alike. We merged the NOAA ShoreZone database with results from over sixty student intern discussions in six southeast Alaska Native communities. Changes in shore width and unit length were derived using near shore bathymetry depths and available isostatic rebound, tectonic movement, and rates of sea level rise. Physical attributes including slope, substrate, and exposure were associated with presence and abundance of specific species. Student interns, selected by Tribes and Tribal associations, conducted resource-based discussions with community members to summarize species use, characteristics of species habitat, transportation used to access collection areas, and potential threats to habitats. Geomorphic trends and community observations were summarized to assess potential threats within a spatial context. Given current measured rates of uplift and sea level rise, 2.4 to 0 m of uplift along with 0.20 m of sea level rise is expected in the next 100 years. Coastlines of southeast Alaska will be subject to both drowning (primarily to the south) and emergence (primarily to the north). We predict decreases in estuary and sediment-dominated shoreline length and an increase in rocky habitats. These geomorphic changes, combined with resident's concerns, highlight six major interrelated coastal vulnerabilities including: (1) reduction of clam and clam habitat quantity and quality, (2) reduction in chiton quality and quantity, (3) harmful expansion of

  18. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  19. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  20. Habitat factors influencing the distribution of Cymbopogon validus in ...

    African Journals Online (AJOL)

    Habitat factors influencing the distribution of Cymbopogon validus in Mkambati Game Reserve, Transkei. ... disturbance; game reserve; grassland; grasslands; habitat conditions; habitat factors; mkambati game ... AJOL African Journals Online.

  1. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    Science.gov (United States)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of

  2. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  3. Habitat split and the global decline of amphibians.

    Science.gov (United States)

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  4. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    Science.gov (United States)

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  5. Steelhead Critical Habitat, Coast - NOAA [ds122

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the Coastal California Steelhead ESUs (evolutionarily...

  6. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    Science.gov (United States)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  7. Small Habitat Commonality Reduces Cost for Human Mars Missions

    Science.gov (United States)

    Griffin, Brand N.; Lepsch, Roger; Martin, John; Howard, Robert; Rucker, Michelle; Zapata, Edgar; McCleskey, Carey; Howe, Scott; Mary, Natalie; Nerren, Philip (Inventor)

    2015-01-01

    Most view the Apollo Program as expensive. It was. But, a human mission to Mars will be orders of magnitude more difficult and costly. Recently, NASA's Evolvable Mars Campaign (EMC) mapped out a step-wise approach for exploring Mars and the Mars-moon system. It is early in the planning process but because approximately 80% of the total life cycle cost is committed during preliminary design, there is an effort to emphasize cost reduction methods up front. Amongst the options, commonality across small habitat elements shows promise for consolidating the high bow-wave costs of Design, Development, Test and Evaluation (DDT&E) while still accommodating each end-item's functionality. In addition to DDT&E, there are other cost and operations benefits to commonality such as reduced logistics, simplified infrastructure integration and with inter-operability, improved safety and simplified training. These benefits are not without a cost. Some habitats are sub-optimized giving up unique attributes for the benefit of the overall architecture and because the first item sets the course for those to follow, rapidly developing technology may be excluded. The small habitats within the EMC include the pressurized crew cabins for the ascent vehicle,

  8. Designated Critical Habitat

    Data.gov (United States)

    Kansas Data Access and Support Center — Critical habitats include those areas documented as currently supporting self-sustaining populations of any threatened or endangered species of wildlife as well as...

  9. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    Directory of Open Access Journals (Sweden)

    Erin Coulter Riordan

    Full Text Available Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st century land use and climate change on California sage scrub (CSS, a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century in two ecoregions in California (Central Coast and South Coast. Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change

  10. Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters.

    Directory of Open Access Journals (Sweden)

    Timothy B Grabowski

    Full Text Available The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15-16 April 2009. We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON, as well as a remotely operated underwater vehicle (ROV. A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1-5 m into the water column from the bottom at an average vertical swimming speed of 0.20-0.25 m s(-1 and maintained an average spacing of 1.0-1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor.

  11. Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters

    Science.gov (United States)

    Grabowski, Timothy B.; Boswell, Kevin M.; McAdam, Bruce J.; Wells, R. J. David; Marteinsdóttir, Gudrún

    2012-01-01

    The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor.

  12. Chinook Critical Habitat, Coast - NOAA [ds124

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the California Coastal Evolutionary Significant Unit (ESU -...

  13. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  14. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  15. Habitat preferences among three top predators inhabiting a degraded ecosystem, the Black Sea

    Directory of Open Access Journals (Sweden)

    Alicia Sánchez-Cabanes

    2017-06-01

    Full Text Available This study investigated whether there is evidence of widespread niche partitioning based on environmental factors in the Black Sea and tested the hypothesis that physiographic factors may be employed as predictors. It addresses poorly researched areas with good habitat potential for the only three cetacean subspecies living in this area: the Black Sea short-beaked common dolphin (Delphinus delphis spp. ponticus, the Black Sea bottlenose dolphin (Tursiops truncatus spp. ponticus and the Black Sea harbour porpoise (Phocoena phocoena spp. relicta. Generalized additive models (GAMs were used to analyse data collected from multiple sources. In total, 745 sightings of the three species between 1998 and 2010 throughout the Black Sea were included. The analysis found depth and sea surface temperature to be the most important variables for separating the occurrence of the three species. Common dolphins occurred mainly in deep waters and in areas where the sea surface temperature was low, bottlenose dolphins were distributed primarily in shallower and warmer waters than common dolphins, and harbour porpoises were distributed in shallower waters with lower sea surface temperature than bottlenose dolphins. This study suggests strong niche segregation among the three cetacean species. The study is also the first contribution to the basic information of cetacean species distribution and habitat preferences in the Black Sea as a whole. Knowledge of the distribution of the three dolphin species in the study area is essential to establish conservation measures for these populations.

  16. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  17. Juvenile-adult habitat shift in permian fossil reptiles and amphibians.

    Science.gov (United States)

    Bakker, R T

    1982-07-02

    Among extant large reptiles, juveniles often occupy different habitats from those of adults or subadults and thus avoid competition with and predation from the older animals; small juveniles often choose cryptic habitats because they are vulnerable to a wide variety of predators. Evidence from fossil humeri and femora of Early Permian reptiles collected from sediments of several distinct habitats indicate that similar shifts in habitat occurred. Juvenile Dimetrodon seem to have favored cryptic habitats around swamp and swampy lake margins; adults favored open habitats on the floodplains. Similar patterns of habitat shift seem to be present in the reptile Ophiacodon and the amphibian Eryops and may have been common in fossil tetrapods of the Permian-Triassic.

  18. Characteristics of malaria vector breeding habitats in Sri Lanka: relevance for environmental management

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Amerasinghe, F P; Konradsen, F

    1998-01-01

    , potential secondary vectors, were characterized by site, exposure to sunlight, substratum, turbidity of the water, presence of vegetation, and presence of fauna. Availability of pools of stagnant water in the stream near the village and along the edge of the village tank was highly predictive for presence......In and around a village in the Anuradhapura District of Sri Lanka anopheline larvae were sampled from July 1994 to April 1996 in all surface water bodies. Samples positive for Anopheles culicifacies, the established vector of malaria in Sri Lanka, and for An. barbirostris, An. vagus, and An. varuna...... clear water pools, was able to exploit habitats that were shaded and contained turbid water. Environmental management interventions to control An. culicifacies breeding have to take into account that the secondary vectors of malaria exploit other habitats and would not be affected by the interventions....

  19. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  20. Current practices in the identification of critical habitat for threatened species.

    Science.gov (United States)

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  1. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  2. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    Science.gov (United States)

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  4. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    OpenAIRE

    Couce, Elena M; Ridgwell, Andy J; Hendy, Erica

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world’s tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches...

  5. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  6. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    Science.gov (United States)

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

  7. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  8. A Conceptual Approach to Recreation Habitat Analysis

    National Research Council Canada - National Science Library

    Hamilton, H. R

    1996-01-01

    .... The Habitat Evaluation Procedures (HEP) is a commonly used technique for assessing human impacts on the vigor of wildlife species, and serves as the model for the Recreation Habitat Analysis Method (RHAM...

  9. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  10. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Science.gov (United States)

    Ackers, Steven H.; Davis, Raymond J.; Olsen, K.; Dugger, Catherine

    2015-01-01

    Wildlife habitat mapping has evolved at a rapid pace over the last few decades. Beginning with simple, often subjective, hand-drawn maps, habitat mapping now involves complex species distribution models (SDMs) using mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas, remote sensing technology is often essential for producing range wide maps. Habitat monitoring for northern spotted owls (Strix occidentalis caurina), whose geographic covers about 23 million ha, is based on SDMs that use Landsat Thematic Mapper imagery to create forest vegetation data layers using gradient nearest neighbor (GNN) methods. Vegetation data layers derived from GNN are modeled relationships between forest inventory plot data, climate and topographic data, and the spectral signatures acquired by the satellite. When used as predictor variables for SDMs, there is some transference of the GNN modeling error to the final habitat map.Recent increases in the use of light detection and ranging (lidar) data, coupled with the need to produce spatially accurate and detailed forest vegetation maps have spurred interest in its use for SDMs and habitat mapping. Instead of modeling predictor variables from remotely sensed spectral data, lidar provides direct measurements of vegetation height for use in SDMs. We expect a SDM habitat map produced from directly measured predictor variables to be more accurate than one produced from modeled predictors.We used maximum entropy (Maxent) SDM modeling software to compare predictive performance and estimates of habitat area between Landsat-based and lidar-based northern spotted owl SDMs and habitat maps. We explored the differences and similarities between these maps, and to a pre-existing aerial photo-interpreted habitat map produced by local wildlife biologists. The lidar-based map had the highest predictive performance based on 10 bootstrapped replicate models (AUC = 0.809 ± 0.011), but the

  11. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  12. Correlated factors in amphibian decline: Exotic species and habitat change in western Washington

    Science.gov (United States)

    Adams, Michael J.

    1999-01-01

    Amphibian declines may frequently be associated with multiple, correlated factors. In western North America, exotic species and hydrological changes are often correlated and are considered 2 of the greatest threats to freshwater systems. Bullfrog (Rana catesbeiana) introductions are frequently cited as a threat to lentic-breeding anurans native to western North America and are a suspected factor in the decline of red-legged frogs (Rana aurora) in California. Introduced fish and habitat change are cited less frequently but are equally viable hypotheses. I examined the relation among introduced species, habitat, and the distribution and abundance of red-legged frogs in western Washington. Red-legged frog occurrence in the Puget Lowlands was more closely associated with habitat structure and the presence of exotic fish than with the presence of bull-frogs. The spread of exotics is correlated with a shift toward greater permanence in wetland habitats regionally. Conservation of more ephemeral wetland habitats may have direct benefits for some native amphibians and may also reduce the threat of exotic fish and bullfrogs, both of which were associated with permanent wetlands. Research and conservation efforts for lowland anurans in the West should emphasize the complexities of multiple contributing factors to amphibian losses.

  13. Evaluating the habitat capability model for Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  14. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  15. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  16. CRED Integrated Benthic Habitat Map for Tutuila Island, American Samoa Year 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an integrated benthic habitat map system which consists of a number of separate map layers including multibeam bathymetry, digital NOAA nautical charts,...

  17. The reHABITAT Guide: For Energy- and Resource-Efficient Retrofit Strategies; February 2003--February 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    The reHABITAT Guide for Energy- and Resource-Efficient Retrofit Strategies seeks to advance the goal of the U.S. Department of Energy's Existing Residential Buildings Program (ERBP): to develop approaches that will enable the housing retrofit industry to deliver energy-efficient housing improvements and to ensure that energy-efficient retrofit technologies incorporated into projects are viable over conventional approaches. This guide was developed for Habitat for Humanity International and is the result of lessons learned from demonstration retrofit projects undertaken by Habitat for Humanity affiliates in Newburgh, New York; Baltimore, Maryland; and Philadelphia, Pennsylvania; with building systems consulting and technical assistance provided by Steven Winter Associates, Inc. (SWA).

  18. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  19. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  20. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  1. Habitat, emosie en ’n eko-teologiese verstaan van menswees: In gesprek met Johan Buitendag

    Directory of Open Access Journals (Sweden)

    Daniël P. Veldsman

    2014-09-01

    Full Text Available Habitat, emotion and an eco-theological understanding of humanity: In conversation with Johan Buitendag. The question on what his viewpoint of an eco-theological understanding of life entails is firstly posed in conversation with the South African systematic theologian Johan Buitendag. His standpoint, in which he argues for the constitutive significance of habitat against the background of the philosophical, biological and theological contours of descriptions of what life is, is set forth. He suggests that human life should be described with regard to habitat in its constitutive significance and subsequently in regard to a value system, and concludes that human life as homo religiosus must be understood from an eco-theological viewpoint as ontologically extended (‘ontologies uitgebreid’. His eco-theological viewpoint is secondly taken up in an explication of the sense making of human life by humans, determined and shaped by their biological roots in their habitat. Lastly the affective-cognitive dimension of being human with specific emphasis on affectivity is expounded as representing the embodiment of the logic of survival of personhood in their habitat.

  2. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  3. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  4. Active surface system for the new Sardinia Radiotelescope

    Science.gov (United States)

    Orfei, Alessandro; Morsiani, Marco; Zacchiroli, Giampaolo; Maccaferri, Giuseppe; Roda, Juri; Fiocchi, Franco

    2004-09-01

    In this paper we'll describe the active surface system that will be provided on the new Italian radiotelescope being in the phase of erection in the Sardinia Island. SRT (Sardinia Radiotelescope) will be a 64m shaped dish working up to 100GHz by exploiting the active surface facility designed by the authors. This facility will overcome the effects of gravity deformations on the antenna gain and will also be used to re-shape in a parabolic form the primary mirror, in order to avoid large phase error contribution on the antenna gain for the highest frequencies placed on the primary focus. Together with the description of the SRT system, a wide overview will be given regarding our previous installation of an active surface system, that can be seen like a prototype for SRT, mounted on the 32m dish of the Noto antenna.

  5. Loss and modification of habitat: Chapter 1

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  6. Development of tiger habitat suitability model using geospatial tools-a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India.

    Science.gov (United States)

    Singh, R; Joshi, P K; Kumar, M; Dash, P P; Joshi, B D

    2009-08-01

    Geospatial tools supported by ancillary geo-database and extensive fieldwork regarding the distribution of tiger and its prey in Anchankmar Wildlife Sanctuary (AMWLS) were used to build a tiger habitat suitability model. This consists of a quantitative geographical information system (GIS) based approach using field parameters and spatial thematic information. The estimates of tiger sightings, its prey sighting and predicted distribution with the assistance of contextual environmental data including terrain, road network, settlement and drainage surfaces were used to develop the model. Eight variables in the dataset viz., forest cover type, forest cover density, slope, aspect, altitude, and distance from road, settlement and drainage were seen as suitable proxies and were used as independent variables in the analysis. Principal component analysis and binomial multiple logistic regression were used for statistical treatments of collected habitat parameters from field and independent variables respectively. The assessment showed a strong expert agreement between the predicted and observed suitable areas. A combination of the generated information and published literature was also used while building a habitat suitability map for the tiger. The modeling approach has taken the habitat preference parameters of the tiger and potential distribution of prey species into account. For assessing the potential distribution of prey species, independent suitability models were developed and validated with the ground truth. It is envisaged that inclusion of the prey distribution probability strengthens the model when a key species is under question. The results of the analysis indicate that tiger occur throughout the sanctuary. The results have been found to be an important input as baseline information for population modeling and natural resource management in the wildlife sanctuary. The development and application of similar models can help in better management of the protected

  7. Complementary habitat use by wild bees in agro-natural landscapes.

    Science.gov (United States)

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  8. Use of microcomputers for planning and managing silviculture habitat relationships.

    Science.gov (United States)

    B.G. Marcot; R.S. McNay; R.E. Page

    1988-01-01

    Microcomputers aid in monitoring, modeling, and decision support for integrating objectives of silviculture and wildlife habitat management. Spreadsheets, data bases, statistics, and graphics programs are described for use in monitoring. Stand growth models, modeling languages, area and geobased information systems, and optimization models are discussed for use in...

  9. Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004

    Science.gov (United States)

    Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.

    2004-01-01

    This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.

  10. Habitat use and food habits of snowshoe hares associated with a reclaimed strip mine in interior Alaska

    International Nuclear Information System (INIS)

    Elliott, C.L.

    1998-01-01

    The value of reclaimed coal stripmine spoils as snowshoe hare (Lepus americanus) habitat in interior Alaska was examined. Hare density in 3 cover types (tall shrub, conifer forest, revegetated lands) was determined using the pellet plot method. Hare food habits were determined via microhistological examination of fecal material. Snowshoe hares used the tall shrub cover type more than any other habitat examined. Hare density in the shrub zone was 10/ha in winter and 18/ha in summer. Shrubs (mainly willow species) comprised the major portion of the summer diet (69%), while spruce made up 51% of the winter diet. Based on dietary data and habitat use, the long-term loss of coniferous forests and tall shrubs due to mining, and the lack of emphasis on the re-establishment of woody vegetation in present reclamation procedures; will greatly reduce and possibly eliminate snowshoe hare populations on large-scale surface coal mines in the northern boreal regions

  11. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  12. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use

    Science.gov (United States)

    Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  13. Integrated system of production information processing for surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Wang, S.; Zeng, Z.; Wei, J.; Ren, Z. [China University of Mining and Technology, Xuzhou (China). Dept of Mining Engineering

    2000-09-01

    Based on the concept of geological statistic, mathematical program, condition simulation, system engineering, and the features and duties of each main department in surface mine production, an integrated system for surface mine production information was studied systematically and developed by using the technology of data warehousing, CAD, object-oriented and system integration, which leads to the systematizing and automating of the information management, data processing, optimization computing and plotting. In this paper, its overall object, system design, structure and functions and some key techniques were described. 2 refs., 3 figs.

  14. Diving Behaviors and Habitat Use of Adult Female Steller Sea Lion (Eumetopias jubatus), A Top Predator of the Bering Sea and North Pacific Ocean Ecosystems

    Science.gov (United States)

    Lander, M. E.; Fadely, B.; Gelatt, T.; Sterling, J.; Johnson, D.; Haulena, M.; McDermott, S.

    2016-02-01

    Decreased natality resulting from nutritional stress is one hypothesized mechanism for declines of Steller sea lions (SSLs; Eumetopias jubatus) in western Alaska, but little is known of the winter foraging habitats or behavior of adult females. To address this critical data need, adult female Steller sea lions were chemically immobilized and tagged with Fastloc® GPS satellite transmitters during the fall at Southeast Alaska (SEAK) during 2010 (n=3), and the central and western Aleutian Islands (AI) from 2011-2014 (n=9). To identify habitat features of biological importance to these animals, location data were processed with a continuous-time correlated random walk model and kernel density estimates of predicted locations were used to compute individual-based utilization distributions. Kernel density estimates and diving behaviors (i.e. mean, maximum, and frequency of dive depths) were examined with respect to a series of static and dynamic environmental variables using linear mixed-effects models. Habitat use varied within and among individuals, but overall, all response variables were significantly related to a combination of the predictor variables season, distance to nearest SSL site, bathymetric slope, on/off shelf, sea surface temperature, sea surface height, proportion of daylight, and some interaction effects (P≤0.05). The habitat use of SSL from SEAK was consistent with previous reports and reflected the seasonal distribution of predictable forage fish, whereas SSL from the AI used a variety of marine ecosystems and habitat use was more variable, likely reflecting specific prey behaviors encountered in different areas. These results have improved our understanding of the habitat features necessary for the conservation of adult female SSL and have been useful for reviewing designated critical habitat for Steller sea lions throughout the U.S. range.

  15. A test of the habitat suitability model for Merriam's wild turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1996-01-01

    An important research area regarding the wild turkey (Meleagris gallopavo) is development of sound habitat models. Habitat models provide standardized methods to quantify wild turkey habitat and stimulate new research hypotheses. Habitat suitability index (HSI) models show species-habitat relationships on a scale of O-l, with 1 being optimum. A...

  16. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  17. PEMODELAN DISTRIBUSI KESESUAIAN HABITAT SINGGAH SIKEP MADU ASIA (Pernis ptilorhynchus DI PULAU RUPAT BERDASARKAN DATA SATELLITE- TRACKING

    Directory of Open Access Journals (Sweden)

    Hendry Pramono

    2016-01-01

    Full Text Available Birds of prey are one of environmental changes indicators because of their position as top predator. Many of them are migratory species that migrate from northern hemisphere to southern hemisphere, and use Rupat Island (in Riau Province as stopover habitat. One of them is Oriental Honey Buzzard (Pernis ptilorhynchus whose satellite tracking information (from 2006-2009 are available. This study aimed at identifying distribution characteristics of stopover habitats of Oriental Honey-buzzard in Rupat Island based on satellite tracking data using geographic information system (GIS. Several environmental variables (i.e. slope, elevation, land cover were processed into distance to the nearest map and analyzed using logistic regression analysis. The result showed that distribution of stopover habitats covered 1 276.67 km2 (87% of totally Rupat Island (1 461.95 km2. This distribution was mostly influenced by food availability and thermal wind. Identification of these habitat characteristics provides a baseline data for managing their stopover habitats and ecologically-based development of Rupat Island. Keywords: Logistic Regretion, Pernis ptilorhynchus, Rupat Island, Sattelite-tracking, Stopover habitat characteristic

  18. Habitat mapping using hyperspectral images in the vicinity of Hekla volcano in Iceland

    Science.gov (United States)

    Vilmundardóttir, Olga K.; Sigurmundsson, Friðþór S.; Pedersen, Gro B. M.; Falco, Nicola; Rustowicz, Rose; Gísladóttir, Guðrún; Benediktsson, Jón A.

    2016-04-01

    Hekla, one of the most active volcanoes in Iceland, has created a diverse volcanic landscape with lava flows, hyaloclastite and tephra fields. The variety of geological formations and different times of formation create diverse vegetation within Hekla's vicinity. The region is subjected to extensive loss of vegetation cover and soil erosion due to human utilization of woodlands and ongoing sheep grazing. The eolian activity and frequent tephra deposition has created vast areas of sparse vegetation cover. Over the 20th century, many activities have centered on preventing further loss of vegetated land and restoring ecosystems. The benefit of these activities is now noticeable in the increased vegetation and woodland cover although erosion is still active within the area. For mapping and monitoring this highly dynamic environment remote sensing techniques are extremely useful. One of the principal goals of the project 'Environmental Mapping and Monitoring of Iceland with Remote Sensing' (EMMIRS) is to use hyperspectral images and LiDAR data to classify and map the vegetation within the Hekla area. The data was collected in an aerial survey in summer 2015 by the Natural Environment Research Council (NERC), UK. The habitat type classification, currently being developed at the Icelandic Institute of Natural History and follows the structure of the EUNIS classification system, will be used for classifying the vegetation. The habitat map created by this new technique's outcome will be compared to the existent vegetation maps made by the conventional vegetation mapping method and the multispectral image classification techniques. In the field, vegetation cover, soil properties and spectral reflectance were measured within different habitat types. Special emphasis was on collecting data on vegetation and soil in the historical lavas from Hekla for assessing habitats forming over the millennia. A lava-chronosequence was established by measuring vegetation and soil in lavas

  19. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  20. Response of Elk to Habitat Modification Near Natural Gas Development

    Science.gov (United States)

    Van Dyke, Fred; Fox, Autumn; Harju, Seth M.; Dzialak, Matthew R.; Hayden-Wing, Larry D.; Winstead, Jeffrey B.

    2012-11-01

    Elk (Cervus elaphus) are known to shift habitat use in response to environmental modifications, including those associated with various forms of energy development. The specific behavioral responses underlying these trends, however, have not been effectively studied. To investigate such effects, we examined elk response to habitat alteration near natural gas wells in Las Animas County, Colorado, USA in 2008-2010. We created 10 1-ha openings in forests adjacent to 10 operating natural gas wells by removing standing timber in 2008, with concomitant establishment of 10 1-ha control sites adjacent to the same wells. On each site, we estimated elk use, indexed by pellet density, before and after timber removal. Concurrently, we measured plant production and cover, nutritional quality, species composition and biomass removed by elk and other large herbivores. Species richness and diversity, graminoid and forb cover, and graminoid and forb biomass increased on cut sites following tree removal. Differences were greater in 2010 than in 2009, and elk and deer removed more plant biomass in 2010 than 2009. Elk use of cut sites was 37 % lower than control sites in 2009, but 46 % higher in 2010. The initially lower use of cut sites may be attributable to lack of winter forage on these sites caused by timber removal and associated surface modification. The increased use of cut sites in 2010 suggested that elk possessed the behavioral capacity, over time, to exploit enhanced forage resources in the proximity of habitat modifications and human activity associated with maintenance of operating natural gas wells.

  1. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  2. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing.

    Science.gov (United States)

    Schwendner, Petra; Mahnert, Alexander; Koskinen, Kaisa; Moissl-Eichinger, Christine; Barczyk, Simon; Wirth, Reinhard; Berg, Gabriele; Rettberg, Petra

    2017-10-04

    The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a

  3. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  4. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    Science.gov (United States)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  5. Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice.

    Science.gov (United States)

    Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian

    2017-11-01

    There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    Science.gov (United States)

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  7. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    Science.gov (United States)

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  8. NREL/Habitat for Humanity Zero Energy Home: A Cold-Climate Case Study for Affordable Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Norton, P.; Christensen, C.; Hancock, E.; Barker, G.; Reeves, P.

    2008-06-01

    The design of this 1,280-square-foot, three-bedroom Habitat for Humanity of Metro Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed with an early version (July 22, 2004) of the BEOpt building optimization software; DOE2 and TRNSYS were used to perform additional analysis. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design toward simple, easily maintained mechanical systems and volunteer-friendly construction techniques. A data acquisition system was installed in the completed home to monitor its performance.

  9. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  10. PROFILE: Integrated Management to Create New Breeding Habitat for Dalmatian Pelicans (Pelecanus crispus) in Greece

    Science.gov (United States)

    Pyrovetsi

    1997-09-01

    / An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir

  11. Role of the surface in the critical behavior of finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Duflot, V.; Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Gulminelli, F. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France)

    2000-07-01

    The role of surfaces in a finite system undergoing a critical phenomenon is discussed in a canonical lattice-gas model. Surfaces are constrained by a mean volume defined via a La grange multiplier. We show that critical fragment size distributions are conserved even in very small systems with surfaces. This implies that critical signals are still relevant in the study of phase transitions in finite systems. (authors)

  12. Habitat selection of endemic birds in temperate forests in a biodiversity "Hotspot"

    Directory of Open Access Journals (Sweden)

    Roberto A. Moreno-García

    2014-08-01

    Full Text Available Aim of study: Our objective was to find habitat associations at a microhabitat level for two endemic birds in a Chilean temperate forest (biodiversity “hotspots”, in order to integrate biodiversity into forest planning.Area of study: Nahuelbuta Range, Chile.Material and methods: The two birds studied were Scelorchilus rubecula (Chucao Tapaculo and Scytalopus magellanicus (Magellanic Tapaculo, both belonging to the Rhinocryptidae family. Presence or absence of the two species was sampled in 57 census spots. Habitat was categorized according to presence/absence results. We assessed the influence of abiotic variables (altitude, exposure, slope and vegetation structure (percentage of understory cover, number of strata using a statistical cluster analysis.Main results: The two bird species selected the habitat. Most frequent presence was detected at a range of 600-1100 masl, but Magellanic Tapaculo was associated to more protected sites in terms of vegetation structure (50-75% for understory cover and 2-3 strata. Slope was the most relevant abiotic variable in habitat selection due to its linkage to vegetation traits in this area.Research highlights: Our results can help managers to integrate biodiversity (endemic fauna species into forest planning by preserving certain traits of the vegetation as part of a habitat (at a microhabitat level selected by the fauna species. That planning should be implemented with both an adequate wood harvesting cuts system and specific silvicultural treatments.Key words: Chile; Nahuelbuta; rhinocryptidae; cluster analysis; rorest planning; vegetation structure.

  13. Using a remote sensing/GIS model to predict southwestern Willow Flycatcher breeding habitat along the Rio Grande, New Mexico

    Science.gov (United States)

    Hatten, James R.; Sogge, Mark K.

    2007-01-01

    Introduction The Southwestern Willow Flycatcher (Empidonax traillii extimus; hereafter SWFL) is a federally endangered bird (USFWS 1995) that breeds in riparian areas in portions of New Mexico, Arizona, southwestern Colorado, extreme southern Utah and Nevada, and southern California (USFWS 2002). Across this range, it uses a variety of plant species as nesting/breeding habitat, but in all cases prefers sites with dense vegetation, high canopy, and proximity to surface water or saturated soils (Sogge and Marshall 2000). As of 2005, the known rangewide breeding population of SWFLs was roughly 1,214 territories, with approximately 393 territories distributed among 36 sites in New Mexico (Durst et al. 2006), primarily along the Rio Grande. One of the key challenges facing the management and conservation of the Southwestern Willow Flycatcher is that riparian areas are dynamic, with individual habitat patches subject to cycles of creation, growth, and loss due to drought, flooding, fire, and other disturbances. Former breeding patches can lose suitability, and new habitat can develop within a matter of only a few years, especially in reservoir drawdown zones. Therefore, measuring and predicting flycatcher habitat - either to discover areas that might support SWFLs, or to identify areas that may develop into appropriate habitat - requires knowledge of recent/current habitat conditions and an understanding of the factors that determine flycatcher use of riparian breeding sites. In the past, much of the determination of whether a riparian site is likely to support breeding flycatchers has been based on qualitative criteria (for example, 'dense vegetation' or 'large patches'). These determinations often require on-the-ground field evaluations by local or regional SWFL experts. While this has proven valuable in locating many of the currently known breeding sites, it is difficult or impossible to apply this approach effectively over large geographic areas (for example, the

  14. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    Science.gov (United States)

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  16. Lowland tapir distribution and habitat loss in South America

    Directory of Open Access Journals (Sweden)

    Jose Luis Passos Cordeiro

    2016-09-01

    Full Text Available The development of species distribution models (SDMs can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19% of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  17. Lowland tapir distribution and habitat loss in South America.

    Science.gov (United States)

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  18. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    Directory of Open Access Journals (Sweden)

    Annika Busse

    Full Text Available The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover than under high habitat quality (high canopy cover, which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  20. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    Science.gov (United States)

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522