WorldWideScience

Sample records for surface swimming behavior

  1. Hydrodynamic attraction of swimming microorganisms by surfaces

    OpenAIRE

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-01-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...

  2. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  3. The diel vertical migration patterns and individual swimming behavior of overwintering sprat Sprattus sprattus

    KAUST Repository

    Solberg, Ingrid

    2016-11-27

    We addressed the behavioral patterns and DVM dynamics of sprat overwintering in a 150 m Norwegian fjord with increasing hypoxia by depth. An upward-facing echosounder deployed at the bottom and cabled to shore provided 4 months of continuous acoustic data. This enabled detailed studies of individual behavior, specifically allowing assessment of individual vertical migrations at dusk and dawn in relation to light, analysis of so-called rise-and-sink swimming, and investigation of the sprat’ swimming activity and behavior in severely hypoxic waters. Field campaigns supplemented the acoustic studies. The acoustic records showed that the main habitat for sprat was the upper ∼ 65 m where oxygen concentrations were ⩾ 0.7 mL O2 L-1. The sprat schooled at ∼ 50 m during daytime and initiated an upward migration about 1 hour prior to sunset. While some sprat migrated to surface waters, other individuals interrupted the ascent when at ∼20-30 m, and returned to deeper waters ∼ 20-50 min after sunset. Sprat at depth was on average larger, yet individuals made excursions to- and from upper layers. Sprat were swimming in a “rise and sink” pattern at depth, likely related to negative buoyancy. Short-term dives into waters with less than 0.45 mL O2 L-1 were interpreted as feeding forays for abundant overwintering Calanus spp. The deep group of sprat initiated a dawn ascent less than 1 hour before sunrise, ending at 20-30 m where they formed schools. They subsequently returned to deeper waters about ∼20 min prior to sunrise. Measurements of surface light intensities indicated that the sprat experienced lower light levels in upper waters at dawn than at dusk. The vertical swimming speed varied significantly between the behavioral tasks. The mixed DVM patterns and dynamic nocturnal behavior of sprat persisted throughout winter, likely shaped by individual strategies involving optimized feeding and predator avoidance, as well as relating to temperature, hypoxia and

  4. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

    Science.gov (United States)

    Newcomb, James M.; Sakurai, Akira; Lillvis, Joshua L.; Gunaratne, Charuni A.; Katz, Paul S.

    2012-01-01

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  5. Simulations of the burst and coast swimming behavior of fish

    Science.gov (United States)

    Zhou, Quan; Moored, Keith; Smits, Alexander

    2013-11-01

    An investigation into the burst and coast swimming behavior of fish is simulated with a 2-D, inviscid Boundary Element Method. The fish is modeled as a thin pitching panel that is allowed to free swim. A simple drag model is used where drag is proportional to the velocity squared in order to calculate the cruising velocity. The burst-coast behavior is modeled by a coasting phase, where the panel is motionless, and a burst phase, where the panel pitches with a single sine wave motion. Varying the frequency of the fin-beat and the duration of the duty cycle (the ratio of the burst-phase to the entire period), it is found that it is possible to alter swimming motion to yield a decrease of 50% in the cost of transport with no sacrifice of time-averaged cruising velocity. The analyses of the wake structure demonstrate how vortices shed by the fish affect and shape swimming dynamics. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-08-1-0642.

  6. Muscle activation behavior in a swimming exergame: Differences by experience and gaming velocity.

    Science.gov (United States)

    Soltani, Pooya; Figueiredo, Pedro; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2017-11-01

    The effects of playing intensity and prior exergame and sport experience on the activation patterns of upper limb muscles during a swimming exergame were investigated. Surface electromyography of Biceps Brachii, Triceps Brachii, Latissimus Dorsi, Upper Trapezius, and Erector Spinae of twenty participants was recorded, and the game play was divided into normal and fast. Mean muscle activation, normalized to maximum voluntary isometric contraction (MVIC), ranged from 4.9 to 95.2%MVIC and differed between normal and fast swimming for all techniques (pswimming. These behaviors are likely to happen when players understand the game mechanics, even after a short exposure. Such evaluation might help in adjusting the physical demands of sport exergames, for safe and meaningful experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units.

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Seifert, Ludovic

    2017-01-01

    Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the

  8. Influence of swimming behavior of copepod nauplii on feeding of larval turbot (Scophthalmus maximus)

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Højgaard, Jacob Kring; Hansen, Benni Winding

    2018-01-01

    Feeding in larval fish is influenced by a range of factors and among these are the morphological and behavioral characteristics of their prey. We investigated the influence of the swimming behavior of two species of calanoid copepods, Acartia tonsa and Temora longicornis, on larval turbot feeding....... The nauplii of these species represent two contrasting swimming behaviors: A. tonsa is a jump-sink type swimmer, while T. longicornis is a cruise swimming type. Three replicates of ten larvae aged 7 and 9 days post hatch (DPH) were observed feeding on one of the two copepod species using a 2-dimensional video...

  9. Swimming in an Unsteady World

    Science.gov (United States)

    Koehl, M. A. R.

    2016-02-01

    When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.

  10. Postnatal cocaine exposure: effects on behavior of rats in forced swim test.

    Science.gov (United States)

    Magalhães, Ana; Tavares, Maria Amélia; de Sousa, Liliana

    2002-06-01

    Exposure to cocaine in early periods of postnatal life has adverse effects on behavior, namely, it induces the display of anxiety and fear-like behaviors that are associated with stress and depression. This study examined the effects of early developmental cocaine exposure in several categories of behavior observed in forced swim test. Male and female Wistar rats were given 15 mg/kg of cocaine hydrochloride/body weight/day, subcutaneously, in two daily doses, from postnatal day (PND) 1 to PND27. Controls were saline injected in the same protocol. In PND26-PND27, rats were placed in a swimming pool during 5 min in two sessions. The categories of behavior studied in this work included horizontal and vertical rotation, vibrissae clean, head clean, fast and slow swim, struggling, floating, sliding, diving, head-diving, and wagging head. Results showed differences in the frequencies of several behavioral categories that allowed the discrimination of the behaviors that may constitute "behavioral despair" indicators, as well as which behaviors are most affected by cocaine exposure. Cocaine groups were less active and more immobile than controls. These results suggest that postnatal exposure to cocaine can produce depression-like effects and affect the ability of these animals to cope with stress situations.

  11. Swimming behavior and prey retention of the polychaete larvae Polydora ciliata (Johnston)

    DEFF Research Database (Denmark)

    Hansen, B.W.; Jakobsen, Hans Henrik; Andersen, Anders Peter

    2010-01-01

    in specific feeding rates and the observed increase in the difference between upward and downward swimming speeds with larval size. We estimated a critical larval length above which the buoyancy-corrected weight of the larva exceeds the propulsion force generated by the ciliary swimming apparatus and thus......The behavior of the ubiquitous estuarine planktotrophic spionid polychaete larvae Polydora ciliata was studied. We describe ontogenetic changes in morphology, swimming speed and feeding rates and have developed a simple swimming model using low Reynolds number hydrodynamics. In the model we assumed...... that the ciliary swimming apparatus is primarily composed of the prototroch and secondarily by the telotroch. The model predicted swimming speeds and feeding rates that corresponded well with the measured speeds and rates. Applying empirical data to the model, we were able to explain the profound decrease...

  12. A turbulence-induced switch in phytoplankton swimming behavior

    Science.gov (United States)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  13. Effect of forced swim stress on wistar albino rats in various behavioral parameters

    Directory of Open Access Journals (Sweden)

    Ambareesha Kondam, Nilesh N Kate, Gaja Lakshmi, Suresh M, Chandrashekar M.

    2012-09-01

    Full Text Available Introduction: Stress is an important factor of depression that causes the changes in various body systems. The forced swim test is a commonly used stressor test where rats are forced to swim in specially constructed tanks for a particular period where there is behavioral activation characterized by vigorous swimming and diving to search for alternate routes of escape. Animal health including human has been shown to be affected by the stressful events of life inducing situation which alters cognition, learning memory and emotional responses, causing mental disorders like depression and anxiety and stress in rats. Methods: The experiment was carried out with 12 healthy albino Wistar female rats weighing about 150-180gms. The animals were randomly divided into two groups of six animals each. Group – I (control, Group – II (Stressed Group. Group –II rats are placed in plastic tanks for 45minutes for15 days. Temperature of water was maintained at 20˚C. During stress phase, the animals will be trained for forced swim test, behavioral changes observed by open field apparatus for emotions, and eight arm maze for memory & leaning, elevated plus maze for anxiety. Results: Forced swim stress causes to a significant change (p<0.05 on cognitive functions: motivation, learning and memory. Forced swim stress is the factor damaging the hippocampus causes repeated immobilization and produce atrophy of dendrites of pyramidal neurons and neuroendocrinological disturbances, controlled by the hypothalamo-pituitary-adrenal axis (HPA. Repeated stress in the form of forced swimming activates the free radical processes leading to an increase in lipid peroxidation in many tissues. Conclusion: This study reveals the effect of repeated forced swim stress causes wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT metabolism and an increased susceptibility to affective disorders. The earlier findings have reported

  14. Copepod swimming behavior, respiration, and expression of stress-related genes in response to high stocking densities

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jakobsen, Hans H.; Stief, Peter

    2017-01-01

    ,000 ind. L−1. Three biological/physiological end-points were studied: swimming behavior, respiration rate and expression level of stress-related genes. None of the elevated densities caused any significant change in swimming behavior, respiration rate or gene expression level. This study suggests...

  15. Toxic cocaine- and convulsant-induced modification of forced swimming behaviors and their interaction with ethanol: comparison with immobilization stress

    Science.gov (United States)

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2002-01-01

    Background Swimming behaviors in the forced swimming test have been reported to be depressed by stressors. Since toxic convulsion-inducing drugs related to dopamine [cocaine (COC)], benzodiazepine [methyl 6,7-dimethoxy-4-ethyl-β-carboline-carboxylate (DMCM)], γ-aminobutyric acid (GABA) [bicuculline (BIC)], and glutamate [N-methyl-D-aspartate (NMDA)] receptors can function as stressors, the present study compared their effects on the forced swimming behaviors with the effects of immobilization stress (IM) in rats. Their interactions with ethanol (EtOH), the most frequently coabused drug with COC which also induces convulsions as withdrawal symptoms but interferes with the convulsions caused by other drugs, were also investigated. Results Similar to the IM (10 min) group, depressed swimming behaviors (attenuated time until immobility and activity counts) were observed in the BIC (5 mg/kg IP) and DMCM (10 mg/kg IP) groups at the 5 h time point, after which no toxic behavioral symptoms were observed. However, they were normalized to the control levels at the 12 h point, with or without EtOH (1.5 g/kg IP). In the COC (60 mg/kg IP) and NMDA (200 mg/kg IP) groups, the depression occurred late (12 h point), and was normalized by the EtOH cotreatment. At the 5 h point, the COC treatment enhanced the swimming behaviors above the control level. Conclusions Although the physiological stress (IM), BIC, and DMCM also depressed the swimming behaviors, a delayed occurrence and EtOH-induced recovery of depressed swimming were observed only in the COC and NMDA groups. This might be correlated with the previously-reported delayed responses of DA and NMDA neurons rather than direct effects of the drugs, which could be suppressed by EtOH. Furthermore, the characteristic psychostimulant effects of COC seemed to be correlated with an early enhancement of swimming behaviors. PMID:12425723

  16. The prediction of swimming performance in competition from behavioral information.

    Science.gov (United States)

    Rushall, B S; Leet, D

    1979-06-01

    The swimming performances of the Canadian Team at the 1976 Olympic Games were categorized as being improved or worse than previous best times in the events contested. The two groups had been previously assessed on the Psychological Inventories for Competitive Swimmers. A stepwise multiple-discriminant analysis of the inventory responses revealed that 13 test questions produced a perfect discrimination of group membership. The resultant discriminant functions for predicting performance classification were applied to the test responses of 157 swimmers at the 1977 Canadian Winter National Swimming Championships. Using the same performance classification criteria the accuracy of prediction was not better than chance in three of four sex by performance classifications. This yielded a failure to locate a set of behavioral factors which determine swimming performance improvements in elite competitive circumstances. The possibility of sets of factors which do not discriminate between performances in similar environments or between similar groups of swimmers was raised.

  17. Molecular adsorption steers bacterial swimming at the air/water interface.

    Science.gov (United States)

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Diarrhea and Swimming

    Science.gov (United States)

    ... 888) 232-6348 Contact CDC–INFO Healthy Swimming Health Benefits of Water-based Exercise Swimmer Protection Steps of ... Disinfection Microbial Testing & Disinfection Swimming Pool Chemicals Injuries & Outdoor Health International Recreational Water RWIs, Swimmer Hygiene, & Behavioral ...

  19. Factors influencing behavior in the forced swim test

    Science.gov (United States)

    Bogdanova, Olena V.; Kanekar, Shami; D’Anci, Kristen E.; Renshaw, Perry F.

    2017-01-01

    The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results. PMID:23685235

  20. [Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].

    Science.gov (United States)

    Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N

    2011-01-01

    A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.

  1. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    Science.gov (United States)

    Qu, Zijie; Temel, Fatma; Henderikx, Rene; Breuer, Kenneth

    2017-11-01

    The motility of bacteria E.coli in viscous fluids has been widely studied, although conflicting results on the effect of viscosity on swimming speed abound. The swimming mode of wild-type E.coli is idealized as a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended time and find that the swimming behavior of a single cell can exhibit a variety of behaviors including run-and-tumble and ``slow-random-walk'' in which the cells move at relatively low speed without the characteristic run. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity, and uniquely determines the ratio of the average speed to the characteristic run speed. Using Resistive Force Theory and the cell-specific measured characteristic run speed, we show that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to lower rotation rate of the flagellar motor. National Science Foundation.

  2. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bianco

    Full Text Available Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.

  3. Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod.

    Science.gov (United States)

    Michalec, François-Gaël; Holzner, Markus; Barras, Alexandre; Lacoste, Anne-Sophie; Brunet, Loïc; Lee, Jae-Seong; Slomianny, Christian; Boukherroub, Rabah; Souissi, Sami

    2017-09-01

    Calanoid copepods play an important role in the functioning of marine and brackish ecosystems. Information is scarce on the behavioral toxicity of engineered nanoparticles to these abundant planktonic organisms. We assessed the effects of short-term exposure to nonfunctionalized gold nanoparticles on the swimming behavior of the widespread estuarine copepod Eurytemora affinis. By means of three-dimensional particle tracking velocimetry, we reconstructed the trajectories of males, ovigerous and non-ovigerous females. We quantified changes in their swimming activity and in the kinematics and geometrical properties of their motion, three important descriptors of the motility patterns of zooplankters. In females, exposure to gold nanoparticles in suspension (11.4 μg L -1 ) for 30 min caused depressed activity and lower velocity and acceleration, whereas the same exposure caused minimal effects in males. This response differs clearly from the hyperactive behavior that is commonly observed in zooplankters exposed to pollutants, and from the generally lower sensitivity of female copepods to toxicants. Accumulation of gold nanoparticles on the external appendages was not observed, precluding mechanical effects. Only very few nanoparticles appeared sporadically in the inner part of the gut in some samples, either as aggregates or as isolated nanoparticles, which does not suggest systemic toxicity resulting from pronounced ingestion. Hence, the precise mechanisms underlying the behavioral toxicity observed here remain to be elucidated. These results demonstrate that gold nanoparticles can induce marked behavioral alterations at very low concentration and short exposure duration. They illustrate the applicability of swimming behavior as a suitable and sensitive endpoint for investigating the toxicity of nanomaterials present in estuarine and marine environments. Changes in swimming behavior may impair the ability of planktonic copepods to interact with their environment

  4. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    Science.gov (United States)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  5. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    Science.gov (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  6. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Differential susceptibility of horizontal and vertical swimming activity to cadmium exposure in a gammaridean amphipod (Gammarus lawrencianus)

    International Nuclear Information System (INIS)

    Wallace, W.G.; Estephan, A.

    2004-01-01

    In this study two indices of swimming behavior (horizontal and vertical swimming activity) in a gammaridean amphipod (Gammarus lawrencianus) were examined for their sensitivity to Cd exposure. G. lawrencianus were exposed for 72 h to a variety of Cd concentrations [background (∼12), 62, 125, 250 and 500 μg l -1 ] at 20 ppt. Subsequent to exposure, video surveillance of survivors held within grooved rings or clear boxes was used to assess horizontal swimming activity (percentage of time mobile) and vertical swimming activity (number of surfacings), respectively. Results show that control amphipods were quite active, being mobile ∼61% of the time, with horizontal swimming activity decreasing (P -1 . Vertical swimming activity in amphipods was also impacted by Cd exposure (P -1 ) and 62 μg l -1 (60 versus ∼26 surfacings, respectively), which is approximately four-fold lower than the estimated 72 h LC 50 (250 μg l -1 ) for G. lawrencianus. Based on fluid dynamic considerations, it is speculated that of the two behaviors, vertical swimming activity is more sensitive to Cd exposure because of the presumed greater energetic costs associated with producing enough thrust to attain the lift required to make a vertical ascent into the water

  8. Swimming Pool Hygiene: Self-Monitoring, Task Clarification, and Performance Feedback Increase Lifeguard Cleaning Behaviors

    Science.gov (United States)

    Rose, Henry M. S.; Ludwig, Timothy D.

    2009-01-01

    The effects of task clarification, self-monitoring, and performance feedback on cleaning behaviors of 9 lifeguards in 3 performance areas (vacuuming, lobby tidying, and pool deck maintenance) were investigated using an ABA reversal design at a county swim complex. A specific task in each performance area was used as a behavioral control. Following…

  9. Surface swimming behavior of the curculionid Ochetina uniformis Pascoe (Erirhininae, Stenopelmini and Ludovix fasciatus (Gyllenhal (Curculioninae, Erodiscini Comportamento de nado superficial exibido pelos Curculionidae Ochetina uniformis Pascoe (Erirhininae, Stenopelmini e Ludovix fasciatus (Gyllenhal (Curculioninae, Erodiscini

    Directory of Open Access Journals (Sweden)

    Wesley Oliveira de Sousa

    2007-03-01

    Full Text Available The swimming behavior exhibited by specimens of L. fasciatus and O. uniformis was analyzed frame-by-frame with video observation recorded with a digital camera, attached to a stereomicroscope. Adults of O. uniformis, an aquatic insect, swim with all three pairs of legs. During the process of swimming the majority of the abdomen and rostrum remain submerged, part of the fore and hind tibiae remain above the surface, while the mid tibiae remain submerged. The mesothoracic legs, during the power-stroke stage, provide the greatest thrust while the metathoracic legs provide the least forward propulsion. The prothoracic legs, extended forward, help to direct the swimming. The semi-aquatic specie L. fasciatus shows the same swimming style as O. uniformis, that is, with movement of all the three pairs of legs; the mesothoracic legs are responsible for the main propulsion. The insect body remains on the water surface during the process of swimming, while the legs remain submerged. Both species complete a swimming cycle in 0.33 and 0.32 seconds, respectively, with an average speed of 1.38 cm/s and a maximum and minimum swimming duration time of 11.15 and 5.05 minutes, respectively, for L. fasciatus. The swimming behavior exhibited by O. uniformis and L. fasciatus corresponds to the style known as a breast strokelike maneuver. This is the first record of this kind of swimming for both species here observed and increases to seven the number of genera of Curculionidae exhibiting this behavior.O comportamento de nado exibido por indivíduos de L. fasciatus e O. uniformis foi analisado quadro a quadro através de imagens obtidas com o auxílio de uma câmera fotográfica digital com opção de vídeo, acoplada a um estereomicroscópio. Foi demonstrado que O. uniformis, espécie aquática, nada com o auxílio dos três pares de pernas. Durante este processo a maior parte do abdome e rostro localizam-se abaixo da superfície da água, parte das t

  10. Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors

    Science.gov (United States)

    Calovi, Daniel S.; Litchinko, Alexandra; Lopez, Ugo; Chaté, Hugues; Sire, Clément

    2018-01-01

    The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups. PMID:29324853

  11. Copepod swimming behavior, respiration, and expression of stress-related genes in response to high stocking densities

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jakobsen, Hans Henrik; Stief, Peter

    2017-01-01

    is problematic for calanoid copepod species like Acartia tonsa. In the present study, we evaluated the response of copepods experiencing stress under high-density conditions by assessing the acute stress level of A. tonsa. Control density was at 100 ind. L−1 while the treatments were increased stepwise up to 10......,000 ind. L−1. Three biological/physiological end-points were studied: swimming behavior, respiration rate and expression level of stress-related genes. None of the elevated densities caused any significant change in swimming behavior, respiration rate or gene expression level. This study suggests...... that adults of A. tonsa do not exhibit any measurable acute stress response when exposed to high culture densities for 12 h....

  12. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  13. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  14. Swimming in an anisotropic fluid: How speed depends on alignment angle

    Science.gov (United States)

    Shi, Juan; Powers, Thomas R.

    2017-12-01

    Orientational order in a fluid affects the swimming behavior of flagellated microorganisms. For example, bacteria tend to swim along the director in lyotropic nematic liquid crystals. To better understand how anisotropy affects propulsion, we study the problem of a sheet supporting small-amplitude traveling waves, also known as the Taylor swimmer, in a nematic liquid crystal. For the case of weak anchoring of the nematic director at the swimmer surface and in the limit of a minimally anisotropic model, we calculate the swimming speed as a function of the angle between the swimmer and the nematic director. The effect of the anisotropy can be to increase or decrease the swimming speed, depending on the angle of alignment. We also show that elastic torque dominates the viscous torque for small-amplitude waves and that the torque tends to align the swimmer along the local director.

  15. Just Keep Swimming: Neuroendocrine, Metabolic, and Behavioral Changes After a Forced Swimming Test in Zebrafish.

    Science.gov (United States)

    da Rosa, João Gabriel Santos; Barcellos, Heloísa Helena de Alcântara; Idalencio, Renan; Marqueze, Alessandra; Fagundes, Michele; Rossini, Mainara; Variani, Cristiane; Balbinoti, Francine; Tietböhl, Tássia Michele Huff; Rosemberg, Denis Broock; Barcellos, Leonardo José Gil

    2017-02-01

    In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.

  16. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  17. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid

    2013-10-04

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  18. [A comparative study on behaviors of two depression models in rats induced by chronic forced swimming stress].

    Science.gov (United States)

    Han, Ming-Fei; Gao, Dong; Sun, Xue-Li

    2010-01-01

    To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.

  19. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  20. Current-oriented swimming by jellyfish and its role in bloom maintenance.

    Science.gov (United States)

    Fossette, Sabrina; Gleiss, Adrian Christopher; Chalumeau, Julien; Bastian, Thomas; Armstrong, Claire Denise; Vandenabeele, Sylvie; Karpytchev, Mikhail; Hays, Graeme Clive

    2015-02-02

    Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment.

    Science.gov (United States)

    Cryan, John F; Page, Michelle E; Lucki, Irwin

    2005-11-01

    The forced swim test (FST) is the most widely used model for assessing potential antidepressant activity in rodents following acute or short-term treatment. However, few studies have compared the effects of short- and long-term antidepressant treatment on behaviors in the test, despite the need to treat patients chronically to produce clinical effects. The current studies examined whether antidepressants from different classes produce different behavioral effects following short-term treatment and whether such effects change following administration for a longer duration. The effects of administering short-term (3 days) and long-term (14 days) treatments of antidepressants from three different chemical classes with distinct mechanisms of action via osmotic minipump were examined: the selective norepinephrine reuptake inhibitor reboxetine (10 and 60 mg kg(-1) day(-1)), the selective serotonin reuptake inhibitor fluoxetine (2.5 and 15 mg kg(-1) day(-1)), and the reversible inhibitor of monoamine oxidase moclobemide (2.5 and 15 mg kg(-1) day(-1)). All testing was carried out in a 15-min test with no preswim session in order to negate any confounding aspect of an induction procedure. The majority of antidepressant-sensitive behavioral changes were observed in the first 5 min of the test. The low dose of reboxetine failed to alter behavior in the test after 3 days but significantly decreased immobility and increased climbing behavior following administration for 14 days, whereas the high dose of reboxetine was equally effective following 3 and 14 days of treatment. In a similar fashion, the low dose of fluoxetine failed to alter behavior in the test following 3 days, but showed an augmented response on immobility and increased swimming following administration for 14 days. The high dose of fluoxetine was slightly more effective at reducing immobility following administration for 14 days than 3 days. The low dose of moclobemide decreased immobility and increased climbing

  2. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  3. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    Science.gov (United States)

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting

  4. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2014-01-01

    Background The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. Methods Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. Results All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and

  5. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Tomé, Hudson Vv; Pascini, Tales V; Dângelo, Rômulo Ac; Guedes, Raul Nc; Martins, Gustavo F

    2014-04-24

    The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and wriggling movements. A

  6. Combined Effect of Ocean Acidification and Seawater Freshening: Response of Pteropod Swimming Behavior

    Science.gov (United States)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-12-01

    Increasing anthropogenic carbon dioxide emissions induce ocean acidification. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living Limacina retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient. Survival, shell degradation and swimming behavior were investigated. Mortality was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim where they decreasing the locomotory speed upwards and increasing the wing beats. Results suggest that, the extra energy cost due to maintaining of body fluids and to avoid sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract the dissolution (in high pCO2 scenario), exceeds the available energy budget of this organism and then pteropods change in swimming behavior and begin to collapse. Since Limacina retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

  7. Paramecia swimming in viscous flow

    Science.gov (United States)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  8. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  9. Effects of Microphallus turgidus (Trematoda: Microphallidae) on the predation, behavior, and swimming stamina of the grass shrimp Palaemonetes pugio.

    Science.gov (United States)

    Kunz, Alyssa K; Pung, Oscar J

    2004-06-01

    The effect of the trematode Microphallus turgidus on its second intermediate host, the grass shrimp, Palaemonetes pugio, was tested. To do so, we measured the susceptibility of infected and uninfected shrimp to predation by the mummichog, Fundulus heteroclitus. Shrimp behavior was compared in the presence and absence of a fish predator, and the swimming stamina and backthrust escape responses of infected and uninfected shrimp were measured. Infected shrimp were more likely to be eaten by a predator than uninfected shrimp, had lower swimming stamina, and spent more time swimming and less time motionless in the presence of a predator. There was no difference between backthrust distances traveled in response to a stimulus by either infected or uninfected shrimp. Thus, M. turgidus may increase the predation of P. pugio in the wild, possibly by affecting the swimming stamina and predator avoidance responses of the shrimp.

  10. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice

    Science.gov (United States)

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-01-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX; 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, 6 daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 μg per 100 mg body-weight per day, required three weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  11. An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner

    International Nuclear Information System (INIS)

    Matsushima, Ayami; Ryan, Kerrianne; Shimohigashi, Yasuyuki; Meinertzhagen, Ian A.

    2013-01-01

    Bisphenol A (BPA) is widely used industrially to produce polycarbonate plastics and epoxy resins. Numerous studies document the harmful effects caused by low-dose BPA exposure especially on nervous systems and behavior in experimental animals such as mice and rats. Here, we exposed embryos of a model chordate, Ciona intestinalis, to seawater containing BPA to evaluate adverse effects on embryonic development and on the swimming behavior of subsequent larvae. Ciona is ideal because its larva develops rapidly and has few cells. The rate of larval hatching decreased in a dose-dependent manner with exposures to BPA above 3 μM; swimming behavior was also affected in larvae emerging from embryos exposed to 1 μM BPA. Adverse effects were most severe on fertilized eggs exposed to BPA within 7 h post-fertilization. Ciona shares twelve nuclear receptors with mammals, and BPA is proposed to disturb the physiological functions of one or more of these. - Highlights: ► Embryos of Ciona intestinalis were exposed to BPA to evaluate its developmental effects. ► The rate of larval hatching decreased in a dose-dependent manner. ► Swimming behavior was affected in larvae that emerge from embryos exposed to 1 μM BPA. ► Our findings will support a new strategy to analyze the developmental effects induced by BPA. - Exposure of fertilized Ciona embryos to BPA decreased their hatch rate in a dose-dependent manner and led to abnormal larval swimming behavior.

  12. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  13. Antidepressant behavioral effects of duloxetine and fluoxetine in the rat forced swimming test

    OpenAIRE

    Ciulla,Leandro; Menezes,Honório Sampaio; Bueno,Bárbara Beatriz Moreira; Schuh,Alexandre; Alves,Rafael José Vargas; Abegg,Milena Pacheco

    2007-01-01

    PURPOSE: To compare the effects of the antidepressant drugs duloxetine and fluoxetine on depressive behaviors in rodents. METHODS: Eighteen male Wistar rats were given systemic injections of duloxetine, fluoxetine, or saline prior to a Forced Swimming Test (FST). Immobility and number of stops were measured. RESULTS: Rats given injections of fluoxetine displayed significantly less immobility (p = 0.02) and fewer stops than the control group (p = 0.003). Duloxetine significanlty reduced the nu...

  14. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis in coastal waters of northeastern Florida, USA.

    Directory of Open Access Journals (Sweden)

    James H W Hain

    Full Text Available In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007, 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn, with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment. At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to

  16. Antidepressant behavioral effects of duloxetine and fluoxetine in the rat forced swimming test.

    Science.gov (United States)

    Ciulla, Leandro; Menezes, Honório Sampaio; Bueno, Bárbara Beatriz Moreira; Schuh, Alexandre; Alves, Rafael José Vargas; Abegg, Milena Pacheco

    2007-01-01

    To compare the effects of the antidepressant drugs duloxetine and fluoxetine on depressive behaviors in rodents. Eighteen male Wistar rats were given systemic injections of duloxetine, fluoxetine, or saline prior to a Forced Swimming Test (FST). Immobility and number of stops were measured. Rats given injections of fluoxetine displayed significantly less immobility (p = 0.02) and fewer stops than the control group (p = 0.003). Duloxetine significantly reduced the number of stops (p = 0.003), but did not effect immobility (p = 0.48). Duloxetine and fluoxetine reduced depressive behaviors in the Forced FST. However, our findings suggest that fluoxetine is more effective than duloxetine.

  17. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats

    Science.gov (United States)

    Arndt, David L.; Peterson, Christy J.; Cain, Mary E.

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression. PMID:26154768

  18. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Directory of Open Access Journals (Sweden)

    David L Arndt

    Full Text Available Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC, standard (SC, or isolated (IC conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p. was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg rats and EC-fluoxetine (20 mg/kg rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  19. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Science.gov (United States)

    Arndt, David L; Peterson, Christy J; Cain, Mary E

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  20. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    Science.gov (United States)

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    International Nuclear Information System (INIS)

    Zhou, Shuang; Harvard University, Cambridge, MA; Tovkach, Oleh; University of Massachusetts, Amherst, MA; Golovaty, Dmitry

    2017-01-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. Finally, in the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90°; the new direction of swimming does not correlate with the previous swimming direction.

  2. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus.

    Science.gov (United States)

    Breckels, Mark N; Bode, Nikolai W F; Codling, Edward A; Steinke, Michael

    2013-07-15

    Chemical interactions play a fundamental role in the ecology of marine foodwebs. Dimethyl sulfide (DMS) is a ubiquitous marine trace gas that acts as a bioactive compound by eliciting foraging behavior in a range of marine taxa including the copepod Temora longicornis. Production of DMS can rapidly increase following microzooplankton grazing on phytoplankton. Here, we investigated whether grazing-induced DMS elicits an increase in foraging behavior in the copepod Calanus helgolandicus. We developed a semi-automated method to quantify the effect of grazing-mediated DMS on the proportion of the time budget tethered females allocate towards slow swimming, typically associated with feeding. The pooled data showed no differences in the proportion of the 25 min time budget allocated towards slow swimming between high (23.6 ± 9.74%) and low (29.1 ± 18.33%) DMS treatments. However, there was a high degree of variability between behavioral responses of individual copepods. We discuss the need for more detailed species-specific studies of individual level responses of copepods to chemical signals at different spatial scales to improve our understanding of chemical interactions between copepods and their prey.

  3. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  4. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  5. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

    KAUST Repository

    Zakroff, Casey J.

    2017-08-22

    Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 to 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.

  6. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  7. Swimming of a sphere in a viscous incompressible fluid with inertia

    International Nuclear Information System (INIS)

    Felderhof, B U; Jones, R B

    2017-01-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  8. Swimming of a sphere in a viscous incompressible fluid with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Felderhof, B U [Institut für Theorie der Statistischen Physik RWTH Aachen University, Templergraben 55, D-52056 Aachen (Germany); Jones, R B, E-mail: ufelder@physik.rwth-aachen.de, E-mail: r.b.jones@qmul.ac.uk [Queen Mary University of London, The School of Physics and Astronomy, Mile End Road, London E1 4NS (United Kingdom)

    2017-08-15

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  9. Swimming of a sphere in a viscous incompressible fluid with inertia

    Science.gov (United States)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  10. SWIMMING BEHAVIOR OF DEVELOPMENTAL STAGES OF THE CALANOID COPEPOD TEMORA-LONGICORNIS AT DIFFERENT FOOD CONCENTRATIONS

    NARCIS (Netherlands)

    VANDUREN, LA; VIDELER, JJ

    1995-01-01

    The swimming behaviour of developmental stages of the marine calanoid copepod Temora longicornis was studied using 2-dimensional observations under a microscope and a 3-dimensional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food

  11. Desipramine restricts estral cycle oscillations in swimming.

    Science.gov (United States)

    Contreras, C M; Martínez-Mota, L; Saavedra, M

    1998-10-01

    1. Desipramine (DMI) is a tricyclic antidepressant which reduces the immobility in rats forced to swim; however, it is unknown whether estral cycle phases impinge on DMI actions on immobility in daily swimming tests during several weeks. 2. In female wistar rats, vaginal smears taken before testing defined four estral phases. Afterwards, the authors assessed the latency for the first period of immobility in five-min forced swim tests practiced on 21-day DMI (DMI group), 21-day washout saline given after a 21-day DMI treatment (washout-saline group), or non-treated rats (control group). 3. We observed a longer latency for the first period of immobility in proestrus-estrus from the control and washout-saline groups. The 21-day treatment with DMI (2.1 mg/kg i.p., once a day) significantly (p estral cycle phase. 4. It is concluded that proestrus-estrus relates to increased struggling behavior. DMI enhances struggling behavior independently of hormonal state.

  12. Swimming of Paramecium in confined channels

    Science.gov (United States)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  13. Swimming Performance of Toy Robotic Fish

    Science.gov (United States)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  14. Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test.

    Science.gov (United States)

    Page, M E; Detke, M J; Dalvi, A; Kirby, L G; Lucki, I

    1999-11-01

    The forced swimming test (FST) is a behavioral test in rodents that predicts the clinical efficacy of many types of antidepressant treatments. Recently, a behavior sampling technique was developed that scores individual response categories, including swimming, climbing and immobility. Although all antidepressant drugs reduce immobility in the FST, at least two distinct active behavioral patterns are produced by pharmacologically selective antidepressant drugs. Serotonin-selective reuptake inhibitors increase swimming behavior, while drugs acting primarily to increase extracellular levels of norepinephrine or dopamine increase climbing behavior. Distinct patterns of active behaviors in the FST may be mediated by distinct neurotransmitters, but this has not been shown directly. The present study examined the role of serotonin in mediating active behaviors in the forced swimming test after treatment with two antidepressant drugs, the selective serotonin reuptake inhibitor, fluoxetine and the selective norepinephrine reuptake inhibitor, desipramine. Endogenous serotonin was depleted by administering para-cholorophenylalanine (PCPA, 150 mg/kg, IP.) to rats 72 h and 48 h prior to the swim test. Fluoxetine (10 mg/kg, SC) or desipramine (10 mg/kg, SC) was given three times over a 24-h period prior to the FST. Behavioral responses, including immobility, swimming and climbing, were counted during the 5-min test. Pretreatment with PCPA blocked fluoxetine-induced reduction in immobility and increase in swimming behavior during the FST. In contrast, PCPA pretreatment did not interfere with the ability of desipramine to reduce immobility and increase climbing behavior. Depletion of serotonin prevented the behavioral effects of the selective serotonin reuptake inhibitor fluoxetine in the rat FST. Furthermore, depletion of serotonin had no impact on the behavioral effects induced by the selective norepinephrine reuptake inhibitor, desipramine. The effects of antidepressant drugs

  15. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  16. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  17. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  18. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  19. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  20. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  1. Feeding behavior and capture success of turbot Psetta maxima larvae during the transition from upright to tilted swimming position

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Mahjoub, Mohamed Sofiane; Hansen, Benni Winding

    2017-01-01

    larvae. In order to ascertain changes in feeding during metamorphosis of flatfish, we here compared feeding behavior when larvae of turbot Psetta maxima were either swimming upright or tilted. Using video recordings, we compared the attack rate and prey capture success between flexion (12-13 days...

  2. Critical evaluation of oxygen-uptake assessment in swimming.

    Science.gov (United States)

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  3. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  4. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  5. Swimming Behavior of Individual Zooplankters During Night-Time Foraging

    National Research Council Canada - National Science Library

    McGehee, Duncan

    1998-01-01

    Amatzia Genin, Jules Jaffe, Duncan McGehee developed a method for automatically tracking individual plankters swimming through the imaging volume, and applied the method to track approximately 280,000 animals...

  6. Paroxetine blunts the corticosterone response to swim-induced stress and increases depressive-like behavior in a rat model of postpartum depression

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Lieblich, Stephanie E; Richardson, Robin

    2018-01-01

    Perinatal depression (PND) affects 15% of women. During the perinatal period both stress- and gonadal hormones fluctuate widely. Putatively, these fluctuations are involved in PND disease mechanisms. The serotonin system is sensitive to such hormone fluctuations, and serotonin reuptake inhibitors...... depression. In the rat model corticosterone (CORT; 40mg/kgs.c.) was administered in Sprague Dawley rats across postpartum day (PD)2 to PD14. Stress response was measured during the first exposure to the forced swim test (FST1), and depressive-like behavior was measured in both FST1 and FST2. We found...... that paroxetine completely blunted the swim stress-induced CORT response and increased depressive-like behavior in both FST1 and FST2. Our findings suggest that in the postpartum context, SSRIs compromise stress axis dynamics, which are needed for a healthy stress response. This is likely unfavorable...

  7. Effects of dietary 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure on medaka (Oryzias latipes) swimming behavior.

    Science.gov (United States)

    Sastre, Salvador; Fernández Torija, Carlos; Carbonell, Gregoria; Rodríguez Martín, José Antonio; Beltrán, Eulalia María; González-Doncel, Miguel

    2018-02-01

    A diet fortified with 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47: 0, 10, 100, and 1000 ng/g) was dosed to 4-7-day-old post-hatch medaka fish for 40 days to evaluate the effects on the swimming activity of fish using a miniaturized swimming flume. Chlorpyrifos (CF)-exposed fish were selected as the positive control to assess the validity and sensitivity of the behavioral findings. After 20 and 40 days of exposure, the locomotor activity was analyzed for 6 min in a flume section (arena). The CF positive control for each time point were fish exposed to 50 ng CF/ml for 48 h. Swimming patterns, presented as two-dimensional heat maps of fish movement and positioning, were obtained by geostatistical analyses. The heat maps of the control groups at time point 20 revealed visually comparable swimming patterns to those of the BDE-47-treated groups. For the comparative fish positioning analysis, both the arenas were divided into 15 proportional areas. No statistical differences were found between residence times in the areas from the control groups and those from the BDE-47-treated groups. At time point 40, the heat map overall patterns of the control groups differed visually from that of the 100-ng BDE-47/g-treated group, but a comparative analysis of the residence times in the corresponding 15 areas did not reveal consistent differences. The relative distances traveled by the control and treated groups at time points 20 and 40 were also comparable. The heat maps of CF-treated fish at both time points showed contrasting swim patterns with respect to those of the controls. These differential patterns were statistically supported with differences in the residence times for different areas. The relative distances traveled by the CF-treated fish were also significantly shorter. These results confirm the validity of the experimental design and indicate that a dietary BDE-47 exposure does not affect forced swimming in medaka at growing stages. Copyright © 2017 Elsevier Ltd

  8. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  9. Paramecium swimming in a capillary tube

    Science.gov (United States)

    Jana, Saikat; Jung, Sunghwan

    2010-03-01

    Micro-organisms exhibit different strategies for swimming in complex environments. Many micro-swimmers such as paramecium congregate and tend to live near wall. We investigate how paramecium moves in a confined space as compared to its motion in an unbounded fluid. A new theoretical model based on Taylor's sheet is developed, to study such boundary effects. In experiments, paramecia are put inside capillary tubes and their swimming behavior is observed. The data obtained from experiments is used to test the validity of our theoretical model and understand how the cilia influence the locomotion of paramecia in confined geometries.

  10. Effects of Water Exercise Swimming Program on Aquatic Skills and Social Behaviors in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Pan, Chien-Yu

    2010-01-01

    The purpose of this study was to determine the effectiveness of a 10 week water exercise swimming program (WESP) on the aquatic skills and social behaviors of 16 boys with autism spectrum disorders (ASDs). In the first 10 week phase (phase I), eight children (group A) received the WESP while eight children (group B) did not. A second 10 week phase…

  11. Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test.

    Science.gov (United States)

    Possamai, Fernanda; dos Santos, Juliano; Walber, Thais; Marcon, Juliana C; dos Santos, Tiago Souza; Lino de Oliveira, Cilene

    2015-04-03

    Repeated forced swimming test (rFST) may detect gradual effects of antidepressants in adult rats. Antidepressants, as enrichment, affected behavior and neurogenesis in rats. However, the influence of enrichment on behavioral and neurogenic effects of antidepressants is unknown. Here, effects of antidepressants on rFST and hippocampal neurogenesis were investigated in rats under enriched conditions. Behaviors of male Wistar rats, housed from weaning in standard (SE) or enriched environment (EE), were registered during rFST. The rFST consisted of 15min of swimming (pretest) followed by 5min of swimming in the first (test), seventh (retest 1) and fourteenth (retest 2) days after pretest. One hour before the test, rats received an intraperitoneal injection of saline (1ml/kg), fluoxetine (2.5mg/kg) or imipramine (2.5 or 5mg/kg). These treatments were performed daily until the day of the retest 2. After retest 2, rats were euthanized for the identification of markers for neurogenesis in the hippocampus. Fluoxetine or imipramine decreased immobility in retests 1 and 2, as compared to saline. EE abolished these differences. In EE, fluoxetine or imipramine (5mg/kg) reduced immobility time in retest 2, as compared to the test. Independent of the housing conditions, fluoxetine and imipramine (5mg/kg) increased the ratio of immature neurons per progenitor cell in the hippocampus. In summary, antidepressants or enrichment counteracted the high immobility in rFST. Enrichment changed the effects of antidepressants in rFST depending on the type, and the dose of a substance but failed to change neurogenesis in control or antidepressant treated-rats. Effects of antidepressants and enrichment on rFST seemed neurogenesis-independent. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    Directory of Open Access Journals (Sweden)

    Giovanni Polverino

    Full Text Available The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  13. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    Science.gov (United States)

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  14. A Simple Method for Determination of Critical Swimming Velocity in Swimming Flume

    OpenAIRE

    高橋, 繁浩; 若吉, 浩二; Shigehiro, TAKAHASHI; Kohji, WAKAYOSHI; 中京大学; 奈良教育大学教育学部

    2001-01-01

    The purpose of this study was to investigate a simple method for determination of critical swimming velocity (Vcri). Vcri is defined by Wakayoshi et al. (1992) as the swimming speed which could theoretically be maintained forever without exhaustion, and is expressed as the slope of a regression line between swimming distance (D) and swimming time (T) obtained at various swimming speeds. To determine Vcri, 20 well-trained swimmers were measured at several swimming speeds ranging from 1.25 m/se...

  15. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  16. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    International Nuclear Information System (INIS)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-01-01

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change

  17. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    Energy Technology Data Exchange (ETDEWEB)

    Mesarič, Tina, E-mail: tina.mesaric84@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Gambardella, Chiara, E-mail: chiara.gambardella@ge.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Milivojević, Tamara, E-mail: milivojevictamara@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Faimali, Marco, E-mail: marco.faimali@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Drobne, Damjana, E-mail: damjana.drobne@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocentre), Ljubljana (Slovenia); Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Ljubljana (Slovenia); Falugi, Carla, E-mail: carlafalugi@hotmail.it [Department of Earth, Environment and Life Sciences, University of Genova, Genova (Italy); Makovec, Darko, E-mail: darko.makovec@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Sepčić, Kristina, E-mail: kristina.sepcic@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2015-06-15

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.

  18. Ocean acidification impact on copepod swimming and mating behavior: consequences for population dynamics

    Science.gov (United States)

    Seuront, L.

    2010-12-01

    There is now ample evidence that ocean acidification caused by the uptake of additional carbon dioxide from the atmosphere at the ocean surface will severely impact on marine ecosystem structure and function. To date, most research effort has focused on the impact of ocean acidification on calcifying marine organisms. These include the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods and echinoderms and declining growth of reef-building corals. The effects of increasing the partial pressure in carbon dioxide and decreasing carbonate concentrations on various aspects of phytoplankton biology and ecology have received some attention. It has also recently been shown that the ability of fish larvae to discriminate between the olfactory cues of different habitat types at settlement and to detect predator olfactory cues are impaired at the level of ocean acidification predicted to occur around 2100 on a business-as-usual scenario of CO2 emissions. Average ocean pH has decreased by 0.1 units since the pre-industrial times, and it is predicted to decline another 0.3-0.4 units by 2100, which nearly corresponds to a doubling PCO2. In addition, some locations are expected to exhibit an even greater than predicted rate of decline. In this context, understanding the direct and indirect links between ocean acidification and the mortality of marine species is critical, especially for minute planktonic organisms such as copepods at the base of the ocean food chains. In this context, this work tested if ocean acidification could affect copepod swimming behavior, and subsequently affect, and ultimately disrupt, the ability of male copepods to detect and follow the pheromone plume produced by conspecific females. To ensure the generality and the ecological relevance of the present work, the species used for the experimentation are two of the most common zooplankton species found in estuarine and coastal waters of the Northern Hemisphere, the

  19. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1997-10-15

    For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.

  20. Son et lumière: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish.

    Science.gov (United States)

    Shafiei Sabet, Saeed; Van Dooren, Dirk; Slabbekoorn, Hans

    2016-05-01

    Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    Science.gov (United States)

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  2. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    Science.gov (United States)

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  3. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  4. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  5. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  6. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  7. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  8. Environmental constraints on motor abilities used in grooming, swimming, and eating by decorticate rats.

    Science.gov (United States)

    Whishaw, I Q; Nonneman, A J; Kolb, B

    1981-10-01

    In a number of successive tests, grooming, swimming, and eating behaviors of decorticate rats were reexamined by evoking the behaviors in various circumstances (stimulus conditions). The rats showed normal-length grooming sequences during spontaneous home cage grooming; when grooming was elicited by removing the rats from their home cage and soaking their fur by a brief swim, grooming-sequence length was abbreviated. In cold (18 degrees C) water, they swam well and with exaggerated vigor and frequently inhibited forelimb movements; in warm (37 degrees C) water, they swam poorly and paddled with all four limbs. To eat small pieces of food, they sat up and used their forepaws as do normal rats, but they frequently dropped the food; they did not use their forepaws to eat large pieces of food. When given powdered food, they first tried to grasp it in their mouth while they scratched at the floor surface with their front limbs; thereafter, they became increasingly proficient in licking it up. Thus, in a narrow range of stimulus conditions, decorticate rats can make movements resembling those of normal rats. They also improve with practice in some (eating powdered food) but not other (forepaw immobility, eating large food pellets) tasks. The study shows that in order to elucidate the role of the cortex in control of motor behavior, it is necessary to obtain "behavior profiles" of each behavior by testing the animals repeatedly and under widely varying test conditions.

  9. Enhancing swimming pool safety by the use of range-imaging cameras

    Science.gov (United States)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  10. The Shark Random Swim - (Lévy Flight with Memory)

    Science.gov (United States)

    Businger, Silvia

    2018-05-01

    The Elephant Random Walk (ERW), first introduced by Schütz and Trimper (Phys Rev E 70:045101, 2004), is a one-dimensional simple random walk on Z having a memory about the whole past. We study the Shark Random Swim, a random walk with memory about the whole past, whose steps are α -stable distributed with α \\in (0,2] . Our aim in this work is to study the impact of the heavy tailed step distributions on the asymptotic behavior of the random walk. We shall see that, as for the ERW, the asymptotic behavior of the Shark Random Swim depends on its memory parameter p, and that a phase transition can be observed at the critical value p=1/α.

  11. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  12. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring.

    Science.gov (United States)

    Voiculescu, S E; Rosca, A E; Zeca, V; Zagrean, L; Zagrean, A M

    2015-01-01

    Melatonin is an essential hormone, which regulates circadian rhythms and has antioxidative and anticarcinogenic effects. As melatonin secretion is suppressed by light, this effect was examined on the offspring of the Wistar rat females exposed to continuous light (500 lux) during the second half of the pregnancy (day 12 to 21). Control rats were kept under a 12:12 light-dark cycle. The resulted male offspring have been behaviorally assessed for depression after postnatal day 60 by using Forced Swim Test (FST) and Tail Suspension Test (TST). Animals resulted from the melatonin deprived pregnancies have developed an abnormal response in the TST, but a normal FST behavior. Also, TST active movement was different in the melatonin suppression group compared to the control group. These findings suggest that intrauterine melatonin deprivation might be linked to the depressive like behavior in adult male offspring.

  13. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  14. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  16. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    Science.gov (United States)

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  17. Continuous acoustic studies of overwintering sprat Sprattus sprattus reveal flexible behavior

    KAUST Repository

    Solberg, I

    2012-09-19

    The clupeid fish Sprattus sprattus was studied in a 150 m deep Norwegian fjord throughout an entire overwintering period during which the fjord froze over and a major water renewal occurred. A bottom-mounted (upward-facing) echosounder provided continuous high-resolution data and enabled studies of swimming speed and behavior of individual sprat in addition to population behavior. The continuous acoustic studies were supplemented with intermittent field campaigns. The sprat displayed different behavioral modes with changing environmental conditions. During the first part of the winter, the majority of the population occurred in deep waters during both day and night, yet exhibited a shallower night-time distribution. Individual sprat swam alternately up and down, a ‘rise and sink’ behavior likely a compensation for negative buoyancy because of swim bladder compression. Because feeding was negligible in deep waters, the swimming pattern was not inferred as prey search behavior. Another part of the population schooled at shallower depths during the day and carried out vertical migration to upper waters at night. However, individuals were observed as they switched between these behavioral groups. A sudden change in both swimming behavior and vertical distribution occurred as the fjord became ice covered. Near-bottom ‘rise and sink’ swimming was replaced by schooling in mid-water during the day, and the sprat aggregated in dense layers near the surface at night. We suggest that the ice made the sprat shift their antipredator strategy from hiding at depth to hiding in schools in the darker waters below the ice. This long-term acoustic study has shown that sprat have a flexible behavioral repertoire, displaying different overwintering strategies within a population, depending on environmental conditions.

  18. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    OpenAIRE

    Mančić Marko V.; Živković Dragoljub S.; Milosavljević Peđa M.; Todorović Milena N.

    2014-01-01

    Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming po...

  19. Helicobacter pylori displays spiral trajectories while swimming like a cork-screw in solutions

    Science.gov (United States)

    Constantino, Maira A.; Hardcastle, Joseph M.; Bansil, Rama; Jabbarzadeh, Mehdi; Fu, Henry C.

    Helicobacter pylori is a helical shaped bacterium that causes gastritis, ulcers and gastric cancer in humans and other animals. In order to colonize the harsh acidic environment of the stomach H. pylori has evolved a unique biochemical mechanism to go across the viscoelastic gel-like gastric mucus layer. Many studies have been conducted on the swimming of H. pylori in viscous media. However a yet unanswered question is if the helical cell shape influences bacterial swimming dynamics or confers any advantage when swimming in viscous solution. We will present measurements of H. pylori trajectories displaying corkscrew motion while swimming in solution obtained by tracking single cells using 2-dimensional phase contrast imaging at high magnification and fast frame rates and simultaneously imaging their shape. We observe a linear relationship between swimming speed and rotation rate. The experimental trajectories show good agreement with trajectories calculated using a regularized Stokeslet method to model the low Reynolds number swimming behavior. Supported by NSF PHY 1410798 (PI: RB).

  20. Suckling in litters with different sizes, and early and late swimming exercise differentially modulates anxiety-like behavior, memory and electrocorticogram potentiation after spreading depression in rats.

    Science.gov (United States)

    E Silva-Gondim, Mariana Barros; de Souza, Thays Kallyne Marinho; Rodrigues, Marcelo Cairrão Araújo; Guedes, Rubem Carlos Araújo

    2017-11-28

    Analyze the hypothesis that swimming exercise, in rats suckled under distinct litter sizes, alters behavioral parameters suggestive of anxiety and recognition memory, and the electrocorticogram potentiation that occurs after the excitability-related phenomenon that is known as cortical spreading depression (CSD). Male Wistar rats were suckled in litters with six or 12 pups (L 6 and L 12 groups). Animals swam at postnatal days (P) 8-23, or P60-P75 (early-exercised or late-exercised groups, respectively), or remained no-exercised. Behavioral tests (open field - OF and object recognition - OR) were conducted between P77 and P80. Between P90 and P120, ECoG was recorded for 2 hours. After this 'baseline' recording, CSD was elicited every 30 minutes over the course of 2 hours. Early swimming enhanced the number of entries and the percentage of time in the OF-center (P < 0.05). In animals that swam later, this effect occurred in the L6 group only. Compared to the corresponding sedentary groups, OR-test showed a better memory in the L6 early exercised rats, and a worse memory in all other groups (P < 0.05). In comparison to baseline values, ECoG amplitudes after CSD increased 14-43% for all groups (P < 0.05). In the L 6 condition, early swimming and late swimming, respectively, reduced and enhanced the magnitude of the post-CSD ECoG potentiation in comparison with the corresponding L 6 no-exercised groups (P < 0.05). Our data suggest a differential effect of early- and late-exercise on the behavioral and electrophysiological parameters, suggesting an interaction between the age of exercise and the nutritional status during lactation.

  1. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...Assessment Using a Mobile Swim Tunnel by Jan Jeffrey Hoover, Jay A. Collins, Alan W. Katzenmeyer, and K. Jack Killgore PURPOSE: Empirical swim speed...test in traditional laboratory swim tunnels. Biologists from the Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), with

  2. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.

    Science.gov (United States)

    Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N

    2017-11-01

    Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.

  3. Resilience in shock and swim stress models of depression

    Directory of Open Access Journals (Sweden)

    Robert Charles Drugan

    2013-02-01

    Full Text Available Experimental models of depression often entail exposing a rodent to a stressor and subsequently characterizing changes in learning and anhedonia, which may reflect symptoms of human depression. Importantly, not all people and not all laboratory rats exposed to stressors develop depressed behavior; these resilient individuals are the focus of our review. Herein we describe research from the learned helplessness and intermittent swim stress models of depression in which rats that were allowed to cope with the stressor appear to be behaviorally and neurochemically similar to rats that were not allowed to cope yet appeared resilient in behavioral tests. For example, rats exposed to inescapable tailshock, but do not develop learned helplessness, exhibit altered sensitivity to the behavioral effects of GABAA receptor antagonists and reduced in vitro benzodiazepine receptor ligand binding. This pattern suggested that resilience might involve activation of an endogenous benzodiazepine-like compound, possibly an allostatic modulator of the GABAA receptor like allopregnanolone. From the intermittent swim stress model, we have observed in resilient rats protection from stressor-induced glucocorticoid increases and immune activation. In order to identify the neural mediators of these correlates of resilience, non-invasive measures are needed to predict the resilient or vulnerable phenotype prior to analysis of neural endpoints. To this end, we found that ultrasonic vocalizations (USVs appear to predict the resilient phenotype in the intermittent swim stress paradigm. We propose that combining non-invasive predictive measures, such as USVs with biological endpoint measures, will facilitate future research into the neural correlates of resilience.

  4. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  5. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter.

    Science.gov (United States)

    Lin, Shih-Hang; Chou, Mei-Ling; Chen, Wei-Cheng; Lai, Yi-Syuan; Lu, Kuan-Hung; Hao, Cherng-Wei; Sheen, Lee-Yan

    2015-12-04

    Depression is a serious psychological disorder that causes extreme economic loss and social problems. However, the conventional medications typically cause side effects that result in patients opting to out of therapy. Lemon balm (Melissa officinalis L., MO) is an old and particularly reliable medicinal herb for relieving feelings of melancholy, depression and anxiety. The present study aims to investigate the antidepressant-like activity of water extract of MO (WMO) by evaluating its influence on the behaviors and the relevant neurotransmitters of rats performed to forced swimming test. Two phases of the experiment were conducted. In the acute model, rats were administered ultrapure water (control), fluoxetine, WMO, or the indicated active compound (rosmarinic acid, RA) three times in one day. In the sub-acute model, rats were respectively administered ultrapure water (control), fluoxetine, or three dosages of WMO once a day for 10 days. Locomotor activity and depression-like behavior were examined using the open field test and the forced swimming test, respectively. The levels of relevant neurotransmitters and their metabolites in the frontal cortex, amygdala, hippocampus, and striatum were analyzed by high performance liquid chromatography. In the acute model, WMO and RA significantly reduced depressive-like behavior but the type of related neurotransmitter could not be determined. The results indicated that the effect of WMO administration on the reduction of immobility time was associated with an increase in swimming time of the rats, indicative of serotonergic neurotransmission modulation. Chromatography data validated that the activity of WMO was associated with a reduction in the serotonin turnover rate. The present study shows the serotonergic antidepressant-like activity of WMO. Hence, WMO may offer a serotonergic antidepressant activity to prevent depression and to assist in conventional therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Omega-3 fatty acids have antidepressant activity in forced swimming test in Wistar rats.

    Science.gov (United States)

    Lakhwani, Lalit; Tongia, Sudheer K; Pal, Veerendra S; Agrawal, Rajendra P; Nyati, Prem; Phadnis, Pradeep

    2007-01-01

    Forced swimming test is used to induce a characteristic behavior of immobility in rats, which resembles depression in humans to some extent. We evaluated the effect of omega-3 fatty acids alone as well as compared it with the standard antidepressant therapy with fluoxetine in both acute and chronic studies. In both the studies, rats were divided into 4 groups and subjected to the following drug interventions - Group 1- control: Group 2- fluoxetine in dose of 10 mg/kg subcutaneously 23.5, 5 and 1 h before the test: Group 3- omega-3 fatty acids in dose of 500 mg/kg orally; Group 4- fluoxetine plus omega-3 fatty acids both. In acute study, omega-3 fatty acids were given in single dose 2 h prior to the test while in chronic study omega-3 fatty acids were given daily for a period of 28 days. All animals were subjected to a 15-min pretest followed 24 h later by a 5-min test. A time sampling method was used to score the behavioral activity in each group. The results revealed that in acute study, omega-3 fatty acids do not have any significant effect in forced swimming test. However, in chronic study, omega-3 fatty acids affect the immobility and swimming behavior significantly when compared with control (p fluoxetine is significantly more than that of fluoxetine alone in changing the behavioral activity of rats in forced swimming test. It leads to the conclusion that omega-3 fatty acids have antidepressant activity per se, and the combination of fluoxetine and omega-3 fatty acids has more antidepressant efficacy than fluoxetine alone in forced swimming test in Wistar rats.

  7. Energetics of swimming by the ferret: consequences of forelimb paddling.

    Science.gov (United States)

    Fish, Frank E; Baudinette, Russell V

    2008-06-01

    The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.

  8. Survey of bacterial contamination of environment of swimming pools in Yazd city, in 2013

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2015-09-01

    Full Text Available Background: Infections are readily transmitted as a result of bacterial contamination of swimming pools. Therefore, hygiene and preventing the contamination of swimming pools is of particular importance. The objective of this study was to determine the amount of bacterial contamination in indoor pools of Yazd in 2013. Methods: In this descriptive and analytical study, all indoor swimming pools of Yazd (12 pools were evaluated during the spring and summer of 2013, in terms of bacterial contamination. In order to determine contamination, a sterile cotton swab was used for sampling. On average, 45 samples were taken from different surfaces in each pool (shower, dressing room, sitting places in sauna, platforms and around the pool. In total, about 540 samples from all pools were tested for bacterial contamination. Results: The results show that from 540 samples, bacterial contamination was observed in about 93 samples (17.22%; and was seen more in showers, edges of the pool and jacuzzis, and the slippers used in swimming pools. The most important isolated bacteria types were E. coli, Actinobacteria, Pseudomonas alcaligenes, Pseudomonas aeruginosa and Klebsiella pneumonia. Conclusion: The results indicate the presence of bacterial contamination on the surface of these places. It is recommended that health authorities should pay more attention to cleaning and disinfecting surfaces around the pool, showers, dressing rooms etc, to prevent infectious disease transfer as a result of contact with contaminated swimming pool surfaces.

  9. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  10. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  11. Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium

    Science.gov (United States)

    Guevorkian, Karine; Valles, James M., Jr.

    2004-03-01

    Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.

  12. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NARCIS (Netherlands)

    Qu, Zijie; Temel, Fatma Zeynep; Henderikx, Rene; Breuer, Kenneth S.

    2018-01-01

    Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are

  13. Individual differences in the elevated plus-maze and the forced swim test.

    Science.gov (United States)

    Estanislau, Celio; Ramos, Anna Carolina; Ferraresi, Paula Daniele; Costa, Naiara Fernanda; de Carvalho, Heloisa Maria Cotta Pires; Batistela, Silmara

    2011-01-01

    The elevated plus-maze is an apparatus composed of enclosed and open (elevated) arms and time spent in the open arms by a rat can be increased/decreased by anxiolytic/anxiogenic agents. In the forced swim test, floating behavior is used as an index of behavioral despair and can be decreased by antidepressant agents. As the comorbidity between anxiety and depression is a remarkable issue in human behavioral disorders, a possible relationship between the behaviors seen in the cited tests is of great relevance. In the present study, fifty-four male rats (Rattus norvegicus) were submitted to a plus-maze session and to a 2-day forced swim protocol. According to their time in the open arms, they were divided into three groups: Low Open, Medium Open and High Open. Some plus-maze measures were found to be coherent with time in the open arms and are suggested to also be reliable anxiety indexes. In the forced swim test, the Low Open group showed decreases in floating duration from forced swim Session 1 to Session 2, an alteration opposite to that observed in the other groups (particularly, the Medium Open group). The Low Open group also showed increases in floating latency, again in sharp contrast with the alteration found in the other groups. Accordingly, positive and negative correlation were found between time in the open arms and floating duration and latency, respectively. Results are compared to previous studies and mediation of the effect by reactivity to aversive stimulation or alterations induced by open arm exposure is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Evaluation on potential for assessing indoor formaldehyde using biosensor system based on swimming behavior of Japanese medaka (oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghun [Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505 (Japan); Kato, Shinsuke; Tatsuma, Tetsu [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505 (Japan); Takeuchi, Kenichiro [Sumitomo Forestry Co., Ltd. (Japan); Kang, Ik Joon [Aquatic Biomonitoring and Environmental Laboratory, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 (Japan)

    2011-04-15

    In order to develop an early-warning biosensor system for predicting the impact on health of long-term and low-level exposure to indoor chemical compounds, e.g. volatile organic compounds (VOCs), we evaluated the potential for assessing indoor air quality using the biosensor system based on the swimming behavior of Japanese medaka (oryzias latipes) as an indicator of indoor air quality in the beginning. As a technology to dissolve chemical compounds into water efficiently, a micro bubble generator was introduced. The test chemical was formaldehyde which is a representative of chemical compounds existing indoors. The result of the measuring solubility of formaldehyde was that formaldehyde concentration in water was raised to 0.12 mg/L when 1.0 mg/m{sup 3} of formaldehyde in air was bubbled for approximately 44 h. The correlation between the 0.1 mg/L of formaldehyde in water, which is roughly equivalent to 0.83 mg/m{sup 3} of formaldehyde in air, and the swimming activities of medaka was investigated. The fish showed abnormal behavior compared to one under a control treatment, e.g. the body movement distance decreased and the duration time near the upper water column increased significantly. It was verified that it is possible to detect concentrations of formaldehyde of 0.83 mg/m{sup 3} in indoor air using this proposed biosensor system. (author)

  15. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  16. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    Science.gov (United States)

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (pfluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (pfluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by fluoxetine. Modulation of NMDA transmission is suggested to be relevant in the mechanism of action of fluoxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights

  17. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  18. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    Science.gov (United States)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  19. Effects of seasonal change on activity rhythms and swimming behavior of age-0 bluefish (Pomatomus saltatrix) and a description of gliding behavior

    OpenAIRE

    Stehlik, Linda L.

    2009-01-01

    Daily and seasonal activity rhythms, swimming speed, and modes of swimming were studied in a school of spring-spawned age-0 bluefish (Pomatomus saltatrix) for nine months in a 121-kL research aquarium. Temperature was lowered from 20° to 15°C, then returned to 20°C to match the seasonal cycle. The fish grew from a mean 198 mm to 320 mm (n= 67). Bluefish swam faster and in a more organized school during day (overall mean 47 cm/s) than at night (31 cm/s). Swimming speed declined in fall as t...

  20. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  1. Swimming level classification of young school age children and their success in a long distance swimming test

    OpenAIRE

    Nováková, Martina

    2010-01-01

    Title: Swimming level classification of young school age children and their success in a long distance swimming test Work objectives: The outcome of our work is comparison and evaluation of the initial and final swimming lenght in a test of long distance swimming. This test is taken during one swimming course. Methodology: Data which were obtained by testing a certain group of people and were statistically processed, showed the swimming level and performance of the young school age children. ...

  2. Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins.

    Science.gov (United States)

    Tian, Jinge; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Lv, Yingying; Zhang, Xin; DU, Dongping

    2018-01-01

    Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT.

  3. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen concentrations were ...

  4. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  5. Maternal swimming exercise during pregnancy attenuates anxiety/depressive-like behaviors and voluntary morphine consumption in the pubertal male and female rat offspring born from morphine dependent mothers.

    Science.gov (United States)

    Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein

    2017-10-17

    This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice

    NARCIS (Netherlands)

    Veenema, AH; Cremers, TIFH; Jongsma, ME; Steenbergen, PJ; de Boer, SF; Koolhaas, JM; Jongsma, Minke E.

    Rationale: Male wild house- mice genetically selected for long attack latency ( LAL) and short attack latency ( SAL) differ in structural and functional properties of postsynaptic serotonergic- 1A ( 5- HT1A) receptors. These mouse lines also show divergent behavioral responses in the forced swimming

  7. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris.

    Science.gov (United States)

    De Lisa, Emilia; Salzano, Anna Maria; Moccia, Francesco; Scaloni, Andrea; Di Cosmo, Anna

    2013-06-15

    Marine invertebrates exhibit both chemokinesis and chemotaxis phenomena, induced in most cases by the release of water-borne peptides or pheromones. In mollusks, several peptides released during egg-laying improve both male attraction and mating. Unlike other cephalopods, Octopus vulgaris adopts an indirect internal fertilization strategy. We here report on the identification and characterization of a chemoattractant peptide isolated from mature eggs of octopus females. Using two-chamber and time-lapse microscopy assays, we demonstrate that this bioactive peptide is able to increase sperm motility and induce chemotaxis by changing the octopus spermatozoa swimming behavior in a dose-dependent manner. We also provide evidence that chemotaxis in the octopus requires the presence of extracellular calcium and membrane protein phophorylation at tyrosine. This study is the first report on a sperm-activating factor in a non-free-spawning marine animal.

  8. Ontogenic events and swimming behavior of larvae of the characid fish Salminus brasiliensis (Cuvier (Characiformes, Characidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    José Enemir dos Santos

    2002-03-01

    Full Text Available The larval ontogeny and swimming behavior of the characid fish Salminus brasiliensis (Cuvier, 1816 were studied under experimental laboratory conditions, from hatching to yolk absorption. At day 1, the larvae were transparent, with sparse dendrite chromatophores and a well-developed adhesive organ on the head. The retinal epithelial cells were initiating pigmentation. The branchial arches were at the initial phase of differentiation. The larvae were able to perform only vertical displacements and, when resting on the tank bottom, remained in lateral decumbency, in groups of 3 to 15 larvae. On day 2, the mouth was open, with conical teeth, and the digestive tube presented lumen and folded mucosa. The gaseous bladder and pectoral fins also were in differentiation. The larvae performed vertical and horizontal movements, adhered to the water surface by means of the adhesive organ or formed groups of three to six on the tank bottom. On day 3, the adhesive organ turned dorsal, the retina was pigmented, the digestive tube mucosa showed goblet cells, and the yolk sac exhausted. The larvae were now scattering in the water column forming no groups on the bottom.

  9. Factors influencing termination of swimming career of children at sport swimming classes

    OpenAIRE

    Pištěková, Petra

    2007-01-01

    Title: The Cause ofan Early End ofPupils' Swimming Career The aim of the thesis: Determination ofthe most frequent reasons for an early end ofpupils' swimming career. Method: The reasons for an early end ofpupils' swimming career were discovered by using questionnaires. Forty-five former pupils from special sports elementary schools were questioned and then the data were compared with available literature. Results: Research investigated changes in the most frequent reasons for an early end of...

  10. Swimming activity in marine fish.

    Science.gov (United States)

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  11. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  12. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  13. Titanium distribution in swimming pool water is dominated by dissolved species

    International Nuclear Information System (INIS)

    David Holbrook, R.; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-01-01

    The increased use of titanium dioxide nanoparticles (nano-TiO 2 ) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. -- Highlights: •Total titanium concentrations in unfiltered swimming pool water ranged between 21 and 60 μg/L. •Evaporation of the swimming pool water is suspected of causing a temporal increase in [Ti]. •The vast majority of Ti is found in the dissolved phase (<1 kD). •Swimming pools are not a significant Ti source for human exposure via ingestion. -- In children's swimming pool water, the majority of titanium is found in the dissolved phase

  14. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence

    Science.gov (United States)

    Wheeler, Jeanette D.; Chan, Kit Yu Karen; Anderson, Erik J.; Mullineaux, Lauren S.

    2016-01-01

    ABSTRACT Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology

  15. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  16. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    Science.gov (United States)

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the District...

  18. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except at...

  19. Critical Beliefs Underlying Young Australian Males’ Intentions to Engage in Drinking and Swimming

    Directory of Open Access Journals (Sweden)

    Kyra Hamilton

    2013-11-01

    Full Text Available This study examined key targets for interventions aimed at reducing drinking and swimming among young males, an at-risk group for drowning. Two-hundred and eleven Australian males aged 18 to 34 years completed a Theory of Planned Behavior belief-based questionnaire either online or paper based. Behavioral beliefs of “be more relaxed” and “having fun,” normative beliefs of “friends/mates” and “parents,” and the control belief of “presence of other people” were revealed as independent predictors of intentions to drink and swim. These identified beliefs can be used to inform interventions to challenge young males’ alcohol use in, on, and around water.

  20. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters...

  1. Antidepressant effect of Melissa officinalis in the forced swimming test

    Directory of Open Access Journals (Sweden)

    M Emamghoreishi

    2009-03-01

    Full Text Available ABSTRACT Background: In Iranian and other traditional medicines, an antidepressant effect has been indicated for Melissa officinalis (Lamiaceae. However, studies showing its antidepressant effect is lacking. Therefore, the present study was undertaken to examine whether the aqueous extract and essential oil from leaves of Melissa officinalis have an antidepressant-like activity in mice.  Materials and Methods: The effect of subchronic administration of different doses of the aqueous extract (25, 75, 150, 300 mg/kg or water; n=9-10 and the essential oil (10, 25, 75, 150, 300 mg/kg or almond oil; n=9-10 on immobility, climbing, and swimming behaviors were evaluated in the forced swimming test. Fluoxetine (20mg/kg and imipramine (15 mg/kg were used as reference drugs. Additionally, the effect of both plant preparations on spontaneous activity was examined. Results: All doses of the aqueous extract, used in this study, produced a significant reduction in immobility along with an increase in climbing behavior which is similar to those which have been observed with imipramine. Essential oil caused a dose-dependent reduction in immobility and an increase in climbing at all studied doses, compared to control group. Only the highest dose (300mg/kg of essential oil showed a significant increase in swimming behavior. The aqueous extract, but not the essential oil, decreased spontaneous activity in a dose dependent manner. Conclusion: The results of this study suggests that the Melissa officinalis possess an antidepressant-like activity similar to imipramine which may have a potential clinical value for treatment of depression.

  2. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals

    NARCIS (Netherlands)

    Weber, A.; Van Noordwijk, A.J.

    2002-01-01

    We studied variation in small-scale swimming behavior (SSB) in four clones of Daphnia galeata (water flea) in response to predator infochemicals. The aim of this study was 3-fold. First, we tested for differences in SSB in Daphnia; second, we examined the potential of differences in SSB to explain

  3. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    Science.gov (United States)

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  4. Hydrodynamic advantages of swimming by salp chains.

    Science.gov (United States)

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  5. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  6. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Medical Professionals En Español Publications, Data, & Statistics Healthy Swimming Resources Health Promotion Materials Find Your State Training & ... Announcements Outbreak Response Toolkits CDC at Work: Healthy Swimming Fast Facts Index of Water-Related Topics Model ...

  8. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  9. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Directory of Open Access Journals (Sweden)

    Ningyu Li

    Full Text Available Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  10. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Science.gov (United States)

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  11. Sex and age differences in the impact of the forced swimming test on the levels of steroid hormones.

    Science.gov (United States)

    Martínez-Mota, Lucía; Ulloa, Rosa-Elena; Herrera-Pérez, Jaime; Chavira, Roberto; Fernández-Guasti, Alonso

    2011-10-24

    Compared with the adult disorder, depression in children exhibits differences in its neurobiology, particularly in the HPA axis regulation. The bases of such differences can be evaluated in animal models of depression. The objective of the present study was to determine age and sex differences of Wistar rats in the forced swimming test (FST). The influence of sex and age on corticosterone, estrogens and testosterone serum levels was also determined. Prepubertal rats showed immobility, swimming and climbing behaviors during the pre-test and test sessions. In addition, in the prepubertal animals, no sex differences were found during the pre-test and test sessions. Age comparisons indicated no differences in the female groups, however adult males exhibited more immobility and less swimming than young males, in both FST sessions. The young and female rats showed less immobility behavior and increased levels of estrogens after the FST. The present results indicate that the FST is an animal model suitable to evaluate depressive-like behaviors in prepubertal subjects and to explore behavioral changes related to neurodevelopment. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    International Nuclear Information System (INIS)

    Qi, Xianghong; Nellas, Ricky B; Byrn, Matthew W; Russell, Matthew H; Bible, Amber N; Alexandre, Gladys; Shen, Tongye

    2013-01-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell–cell or cell–surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell–cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense. (paper)

  13. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    Science.gov (United States)

    Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye

    2013-04-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.

  14. Effect of co-treatment with fluoxetine or mirtazapine and risperidone on the active behaviors and plasma corticosterone concentration in rats subjected to the forced swim test.

    Science.gov (United States)

    Rogóż, Zofia; Kabziński, Marcin; Sadaj, Witold; Rachwalska, Paulina; Gądek-Michalska, Anna

    2012-01-01

    Several clinical reports have postulated a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants in treatment-resistant depression. The present study aimed to examine the effect of treatment with fluoxetine or mirtazapine, given separately or jointly with risperidone, on active behavior and plasma corticosterone level in male Wistar rats subjected to the forced swim test (FST). The obtained results showed that fluoxetine (5 mg/kg), mirtazapine (5 and 10 mg/kg) or risperidone (0.05 and 0.1 mg/kg) did not change the active behavior of rats in the FST. However, co-treatment with fluoxetine (10 mg/kg) and risperidone (0.1 mg/kg) induced an antidepressant-like effect in that test because it significantly increased the swimming time and decreased the immobility time, while combined treatment with mirtazapine at 5 and 10 mg/kg and risperidone at 0.05 and 0.1 mg/kg evoked a significant increase in the swimming time and also climbing, and decreased the immobility time. WAY 100635 (a 5-HT(1A) receptor antagonist) at a dose of 0.1 mg/kg inhibited the antidepressant-like effect induced by co-administration of fluoxetine or mirtazapine and risperidone. Active behavior in that test did not reflect an increase in general activity, since combined treatment with fluoxetine or mirtazapine and risperidone failed to enhance the exploratory activity of rats. Co-treatment with fluoxetine or mirtazapine and risperidone did not reduce the stress-induced increase in plasma corticosterone concentration in animals subjected to the FST. The obtained results indicate that risperidone applied in a low dose enhances the antidepressant-like activity of fluoxetine and mirtazapine in the FST (but does not normalize the stress-induced increase in corticosterone level in these rats), and that 5-HT(1A) receptors may play some role in these effects.

  15. Swimming literacy field hockey woman player ground.

    OpenAIRE

    Baštová, Miroslava

    2012-01-01

    Title: Swimming literacy field hockey woman player ground. Objectives: To obtain and analyze data on the level ground swimming literacy field hockey woman player. Their perception swimming literacy for life, the use of non-specific regeneration and as a training resource. Methods: Analysis of scientific literature, survey, case study, data analysis and graphical presentation of results. Results of the work: field hockey player as swimming literate, benefits swimming but not used as a means of...

  16. Go reconfigure: how fish change shape as they swim and evolve.

    Science.gov (United States)

    Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai

    2010-12-01

    The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine

  17. Swimming education in Australian society.

    OpenAIRE

    Lynch, TJ

    2014-01-01

    Abstract: The purpose of this paper is to explore a community swimming program using autoethnography qualitative research. Autoethnography is an approach to research and writing that seeks to describe and systematically analyze (graphy) personal experience (auto) in order to understand cultural experience (ethno) (Ellis 2004; Holman Jones 2005). Through childhood reflection of lived swimming experiences, and adult life reflection of lived swimming teaching experiences as a primary school teac...

  18. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  19. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  20. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  1. Biomechanical Analysis of the Swim-Start: A Review

    Directory of Open Access Journals (Sweden)

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-06-01

    Full Text Available This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer’s chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert, inter-trial or intra-subject (through repetitions of the same movement, and inter-preference (preferred versus non-preferred technique. Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i the time between reaction to the start signal and impulse on the block, and (ii the time in transition (i

  2. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  3. 1968 Listing of Swimming Pool Equipment.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  4. In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica

    OpenAIRE

    Onsrud, M. S. R.; Kaartvedt, Stein; Breien, M. T.

    2005-01-01

    In situ swimming speed and swimming behaviour of dielly migrating planktivorous fish were studied at a 120-m-deep location. Acoustic target tracking was performed using a hull-mounted transducer and submersible transducers located on the sea bottom and free hanging in the water column. The original data displayed a relationship between distance to transducer and swimming speed. A simplistic smoother applied during post-processing, appeared to break this relationship. Target tracki...

  5. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    Science.gov (United States)

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  6. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  7. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  8. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  9. Swimming trajectories of a three-sphere microswimmer near a wall

    Science.gov (United States)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut

    2018-04-01

    The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

  10. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  11. Experimental hydrodynamics of swimming in fishes

    Science.gov (United States)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous

  12. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  13. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  14. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement.

    Science.gov (United States)

    Tabassum, Heena; Frey, Julietta U

    2013-12-01

    Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively. Copyright © 2013 Wiley Periodicals, Inc.

  15. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  16. Geneva 24 Hours Swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  17. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of lifetime mate encounters. Radically different swimming strategies are predicted for different feeding behaviours, and these predictions are tested experimentally using representative species. In general, male swimming speeds and the difference in swimming speeds between the genders are predicted...... and observed to increase with increasing conflict between mate searching and feeding. It is high in ambush feeders, where searching (swimming) and feeding are mutually exclusive and low in species, where the matured males do not feed at all. Ambush feeding males alternate between stationary ambush feeding...

  18. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  19. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    Science.gov (United States)

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  20. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  1. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.

    Science.gov (United States)

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  2. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  3. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways.

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Li

    Full Text Available Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs, are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys, the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools.

  4. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  5. Anxiolytic effects of buspirone and MTEP in the Porsolt Forced Swim Test.

    Science.gov (United States)

    Lee, Kaziya M; Coelho, Michal A; Sern, Kimberly R; Class, MacKayla A; Bocz, Mark D; Szumlinski, Karen K

    2017-01-01

    Traditionally, a reduction in floating behavior or immobility in the Porsolt forced swim test (FST) is employed as a predictor of antidepressant efficacy. However, over the past several years, our studies of alcohol withdrawal-induced negative affect consistently indicate the coincidence of increased anxiety-related behaviors on various behavioral tests with reduced immobility in the FST. Further, this behavioral profile correlates with increased mGlu5 protein expression within limbic brain regions. As the role for mGlu5 in anxiety is well established, we hypothesized that the reduced immobility exhibited by alcohol-withdrawn mice when tested in the FST might reflect anxiety, possibly a hyper-reactivity to the acute swim stressor. Herein, we evaluated whether or not the decreased FST immobility during alcohol withdrawal responds to systemic treatment with a behaviorally-effective dose of the prototypical anxiolytic, buspirone (5 mg/kg). We also determined the functional relevance of the withdrawal-induced increase in mGlu5 expression for FST behavior by comparing the effects of buspirone to a behaviorally effective dose of the mGlu5 negative allosteric modulator MTEP (3 mg/kg). Adult male C57BL/6J mice were subjected to a 14-day, multi-bottle, binge-drinking protocol that elicits hyper-anxiety and increases glutamate-related protein expression during early withdrawal. Control animals received only water. At 24hr withdrawal, animals from each drinking condition were subdivided into groups and treated with an IP injection of buspirone, MTEP, or vehicle, 30min prior to the FST. Drug effects on general locomotor activity were also assessed. As we reported previously, alcohol-withdrawn animals exhibited significantly reduced immobility in the FST compared to water controls. Both buspirone and MTEP significantly increased immobility in alcohol-withdrawn animals, with a modest increase also seen in water controls. No significant group differences were observed for

  6. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  7. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  8. Physical forces shape group identity of swimming Pseudomonas putida cells

    Directory of Open Access Journals (Sweden)

    David Rodriguez-Espeso

    2016-09-01

    Full Text Available The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving towards each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e. intolerance to mix in time and space with otherwise identical others has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces –not genetic or metabolic

  9. Attempts to retreat from a dead-ended long capillary by backward swimming in Paramecium

    Directory of Open Access Journals (Sweden)

    Itsuki eKunita

    2014-06-01

    Full Text Available We have observed how the ciliate Paramecium attempts to retreat from the dead-end of a long capillary that is too narrow for turning. After many trial-and-error episodes of short-term backward swimming (SBS, which is the conventional avoidance behavior exhibited in free swimming when an obstacle is faced, long-term backward swimming (LBS that lasted five to ten times longer was developed. LBS may have a beneficial effect for complete withdrawal from the capillary space, although in our experiment it was impossible for the organism to do so due to the capillary length. In order to identify a physically possible mechanism for LBS, we propose model equations for the membrane potential of Hodgkin-Huxley type, which describe the control of ciliary movement. The physiological implications and physical mechanism of the development of LBS are discussed.

  10. Shaping Physiological Indices, Swimming Technique, and Their Influence on 200m Breaststroke Race in Young Swimmers

    Directory of Open Access Journals (Sweden)

    Marek Strzala

    2015-03-01

    Full Text Available The aim of this study was to investigate somatic properties and physiological capacity, and analyze kinematic parameters in the 200 m breaststroke swimming race. Twenty-seven male swimmers participated in the study. They were 15.7±1.98 years old. Their average height was 1.80 ± 0.02 m and lean body mass (LBM was 62.45 ± 8.29 kg. Physiological exercise capacity was measured in two separate 90 sec. all-out tests, one for the arms and second for legs. During the tests total work of arm cranking (TWAR and cycling (TWLG as well as peak of VO2 for arm (VO2peakAR and leg (VO2peakLG were measured. The underwater swimmers body movements were recorded during the all-out swimming 200m breaststroke speed test using an underwater camera installed on a portable trolley. The swimming kinematic parameters and propulsive or non-propulsive movement phases of the arms and legs as well as average speed (V200, surface speed (V200surface and swimming speed in turn zones (V200turns were extracted. V200surface was significantly related to the percentage of leg propulsion and was shown to have large effect on VO2peakLG in the Cohen analysis. V200turns depended significantly on the indicators of physiological performance and body structure: TWAR, VO2peak LG and LBM, LBM, which in turn strongly determined the measured results of TWAR, TWLG, VO2peakAR and VO2peakLG. The V200turns and V200surface were strongly associated with V200, 0.92, p < 0.001 and 0.91, p < 0.001 respectively. In each lap of the 200m swimming there was an increased percentage of propulsion of limb movement observed simultaneously with a reduction in the gliding phase in the breaststroke cycles.

  11. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  12. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  13. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.; Kaartvedt, Stein

    2011-01-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  14. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    Science.gov (United States)

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  15. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    Science.gov (United States)

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Analysis of Sport Nutrition and Diet for Swimming Athletes

    OpenAIRE

    Jun An

    2014-01-01

    This current study analyzed nutrition and dietary structure of swimming athletes to clarify issues in nutrition and dietary structure of swimming athletes, based on which we designed achievable nutrition and diet strategies to equip the swimming athletes with the tools to achieve an adequate sport nutrition which helps them improve results. Firstly, we collected literatures about nutrition and diet of swimming athletes. Secondly, 40 swimming athletes were assigned to the test group and the co...

  17. The immobility produced by intermittent swim stress is not mediated by serotonin.

    Science.gov (United States)

    Christianson, John P; Rabbett, Sarah; Lyckland, Jennifer; Drugan, Robert C

    2008-05-01

    Exposure to uncontrollable stressors such as intermittent swim stress (ISS) produces a behavioral syndrome that resembles behavioral depression including immobility in a Forced Swim Test (FST) and escape learning deficits. The results of previous studies suggest that stress causes a temporary sensitization of the brain serotonin (5-HT) system that is necessary and sufficient for producing behavioral depression. If this hypothesis is true in the ISS paradigm, then enhancing or inhibiting 5-HT transmission during stress should exacerbate or block the development of behavioral depression, respectively. The selective 5-HT uptake inhibitor fluoxetine (FLX) was administered prior to ISS or confinement; 24 h later the FST was used to detect behavioral immobility. ISS, but not FLX, significantly increased immobility in the FST. The purported 5-HT uptake enhancer tianeptine (TPT) was administered in place of FLX. Again ISS increased immobility in the FST, but TPT had no effect. These results suggested that 5-HT is not a critical mediator of ISS induced behavioral depression. However, some authors have raised concern that TPT does not act directly on 5-HT. Therefore, the 5-HT synthesis inhibitor, para-chlorophenylaline (PCPA) was administered to deplete central 5-HT before stress. PCPA did not alter immobility in the FST. Finally, a sub-chronic regimen of FLX given after ISS, but before the FST, was without effect on reversing the ISS-induced immobility. Taken together, these experiments indicate that ISS produces a significant behavioral depression manifested as increased immobility but offer no support of the hypothesis that 5-HT is a critical mediator of these effects.

  18. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (Pswimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Swimming performance of a biomimetic compliant fish-like robot

    Science.gov (United States)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  20. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  1. THE IMPACT OF TECHNICAL ABILITY TO SWIMMING PERFORMANCE OF THE MIXED SWIMMING AT 100m IN COLLEGE FASTO

    Directory of Open Access Journals (Sweden)

    Elvira Beganović

    2011-08-01

    Full Text Available The aim of this study was to determine the impact of technical ability to swim (the starting point, the techniques and turns, within each of these techniques of swimming (freestyle, backstroke, breaststroke and butterfly marked as input or predictor variables, the performance of mixed swimming in the 100m, marked as output or criterion variable. The study was conducted on a sample of 31 students, females, aged from 20-24 years, with the help of the testing (assessment, technical skills of swimming (start, the techniques and turns: OCJKSTR, OCJKTEH, OCJKOKR, OCJLSTR, OCJLTEH, OCJLOKR, OCJPSTR, OCJPTEH, OCJPOKR, OCJDSTR, OCJDTEH, OCJDOKR and mixed swimming in the 100m (OCJPM100, the following order: butterfly, back, breaststroke, freestyle. Analyzing the presented results of regression analysis can be stated that after testing (assessment of all predictor system statistically the most significant impact on the criterion variable had the following variables: assessment techniques freestyle (OCJKTEH, evaluation of starting breast stroke (OCJPSTR and assessment of breast stroke turns (OCJPOKR.

  2. (Important hygienic aspects for swimming pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Somosi, G

    1981-01-01

    The major epidemics which occurred in Hungary and originated from water in swimming pools are reported. The difficulties encountered in producing epidemiological evidence and in monitoring infections originating from water in swimming pools are mentioned. The possibilities of controlling the water quality in swimming pools and of preventing infections are discussed. Reference is made to the existing bacteriological limit values in Hungary to be observed in the recirculation of water in swimming pools.

  3. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  4. Examination of Factors Explaining Coaching Strategy and Training Methodology as Correlates of Potential Doping Behavior in High-Level Swimming

    Science.gov (United States)

    Liposek, Silvester; Zenic, Natasa; Saavedra, Jose M; Sekulic, Damir; Rodek, Jelena; Marinsek, Miha; Sajber, Dorica

    2018-01-01

    Although coaching is considered an important determinant of athletes’ potential doping behavior (PDB), there is an evident lack of studies that have examined coaching-strategy-and-training-methodology (CS&TM) in relation to PDB. This study was aimed to identify the specific associations that may exist between CS&TM -factors and other factors, and PDB in high-level swimming. The sample comprised 94 swimmers (35 females; 19.7 ± 2.3 years of age) and consisted of swimmers older than 18 years who participated in the 2017 National Championship. Variables were collected by previously validated questionnaires, with the addition of questions where athletes were asked about CS&TM to which they had been exposed. Multinomial logistic regression was applied for the criterion PDB (Negative PDB – Neutral PDB – Positive PDB). The higher risk for positive-PDB was found in males (OR: 6.58; 95%CI: 1.01-9.12); therefore, all regressions were adjusted for gender. Those swimmers who achieved better competitive result were less prone to neutral-PDB (0.41; 0.17-0.98). The positive-PDB was evidenced in those swimmers who perceived that their training was monotonous and lacked diversity (1.82; 1.41-5.11), and who were involved in training which was mostly oriented toward volume (1.76; 1.11-7.12). The lower likelihood of positive-PDB is found in those who replied that technique is practiced frequently (0.12; 0.01-0.81), those who replied that coach regularly provided the attention to explain the training aims (0.21; 0.04-0.81), and that coach frequently reviewed and discussed the quality of execution of specific tasks (0.41; 0.02-0.81). The findings on the relationships between the studied variables and PDB should be incorporated into targeted anti-doping efforts in swimming. Further studies examining sport-specific variables of CS&TM in younger swimmers and other sports are warranted. Key points The opinions about doping presence in swimming were not associated with athletes

  5. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

    Science.gov (United States)

    2014-01-01

    Polar bears (Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004-2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

  6. Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia.

    Science.gov (United States)

    Katz, P S

    1998-11-16

    Extrinsic neuromodulatory inputs to central pattern generators (CPGs) can alter the properties and synaptic interactions of neurons in those circuits and thereby modify the output of the CPG. Recent work in a number of systems has now demonstrated that neurons intrinsic to CPG can also evoke neuromodulatory actions on other members of the CPG. Such "intrinsic neuromodulation" plays a role in controlling the CPG underlying the escape swim response of the nudibrach mollusc, Tritonia diomedea. The dorsal swim interneurons (DSIs) are a bilaterally represented set of three serotonergic neurons that participate in the generation of the rhythmic swim motor program. Serotonin released from these CPG neurons functions both as a fast neurotransmitter and as a slower neuromodulator. In its modulatory role, serotonin enhances the release of neurotransmitter from another CPG neuron, C2, and also increases C2 excitability by decreasing spike frequency adaptation. These neuromodulatory actions intrinsic to the CPG may be important for the initial self-configuration of the system into a function CPG and for experience-dependent changes in the output such as behavioral sensitization and habituation.

  7. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Roebert, G.A.

    1978-01-01

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  8. Comparative jet wake structure and swimming performance of salps.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  9. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  10. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    Directory of Open Access Journals (Sweden)

    Srinivas Sangisapu

    2017-10-01

    Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient

  11. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.

    Science.gov (United States)

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys

    2012-07-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  12. Swimming exercise attenuates psychological dependence and voluntary methamphetamine consumption in methamphet- amine withdrawn rats

    Directory of Open Access Journals (Sweden)

    Fatemeh Damghani

    2016-06-01

    Conclusion: This study showed that regular swimming exercise reduced voluntary METH consumption in animal models of craving by reducing anxiety, OCD, and depression in the METH-withdrawn rats. Thus, physical training may be ameliorating some of the withdrawal behavioral consequences of METH.

  13. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  14. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  15. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  16. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  17. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    Science.gov (United States)

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg -1 ), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where

  18. Differences in the energy cost between children and adults during front crawl swimming.

    Science.gov (United States)

    Kjendlie, Per-Ludvik; Ingjer, Frank; Madsen, Ørjan; Stallman, Robert Keig; Stray-Gundersen, James

    2004-04-01

    There is little information available about the swimming economy of children. The aim of this study was to examine any possible differences in swimming economy in children and adults, swimming front crawl submaximally. Swimming economy was compared in adults [ n=13, aged 21.4 (3.7) years] and children [n=10, aged 11.8 (0.8) years] tested at four submaximal 6-min workloads. Oxygen consumption (VO2) was measured with Douglas bags in a 25-m pool and pacer lights were used to control the velocities. Swimming economy was scaled to body size using mass (BM), body surface area (BSA) and body length (BL). Children had lower VO2 (litres per minute) at a given velocity than the adults, with 1.86 (0.28) and 2.39 (0.20) l min(-1) respectively (at 1.00 m s(-1)). When scaling for size, children had higher VO2 measured in litres per square metre per minute and millilitres per kilogram per minute (divided by BSA and BM) than adults. The VO2 divided by BL was found not to differ between the two groups. The O2 cost of swimming 1 m at a velocity of 1.00 m s(-1) was lower in the children [31.0 (4.6) ml m(-1)] than in the adults [39.9 (3.3) ml m(-1) Pswimming velocity cubed and VO2 exists as shown earlier for adults. It is concluded that, when scaling for BSA and BM, children are less economical than adults, when scaling for BL, children are equally economical, and when considering energy cost per metre and absolute VO2, children are more economical than the adults.

  19. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  20. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  1. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  2. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    Science.gov (United States)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  4. Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Sha, Jingjing; Wang, You; Lv, Jianxia; Wang, Hong; Chen, Hongmei; Qi, Leilei; Tang, Xuexi

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are new kinds of persistent organic pollutants (POPs) and their potential threats to the equilibrium and sustainability of marine ecosystems have raised worldwide concerns. Here, two kinds of PBDEs, tetra-BDE (BDE-47) and deca-BDE (BDE-209) were applied, and their toxic effects on the swimming behavior, population growth and reproduction of Brachionus plicatilis were investigated. The results showed that: (1) The actual concentrations of BDE-47 and -209 in the seawater phase measured by GC-MS (Gas Chromatography-Mass Spectrometer) were much lower than their nominal concentrations. (2) In accordance with the 24-hr acute tests, BDE-209 did not show any obvious swimming inhibition to rotifers, but a good correlation did exist between the swimming inhibition rate and BDE-47 concentration suggesting that BDE-47 is more toxic than BDE-209. (3) Both BDE-47 and -209 had a significant influence on the population growth and reproduction parameters of B. plicatilis including the population growth rate, the ratio of ovigerous females/non-ovigerous females (OF/NOF), the ratio of mictic females/amictic females (MF/AF), resting egg production and the mictic rate, which indicate that these parameters in B. plicatilis population were suitable for monitoring and assessing PBDEs. Our results suggest that BDE-47 and -209 are not acute lethal toxicants and may pose a low risk to marine rotifers at environmental concentrations for short-term exposure. They also accumulate differently into rotifers. Further research data are needed to understand the mechanisms responsible for the effects caused by PBDEs and to assess their risks accurately. Copyright © 2014. Published by Elsevier B.V.

  5. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  6. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  7. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  8. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.

    Science.gov (United States)

    Palagi, Stefano; Jager, Edwin W H; Mazzolai, Barbara; Beccai, Lucia

    2013-12-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion.

  9. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Lauga, Eric; Powers, Thomas R

    2009-01-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  10. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  11. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  12. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  13. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that elim......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...

  14. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Julia Andrea Deditius

    Full Text Available Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

  15. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  16. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  17. The role of students’ self-confidence in relation with swimming routines, frequency, and tutor in swimming class

    Science.gov (United States)

    Hartoto, S.; Khory, F. D.; Prakoso, B. B.

    2018-01-01

    It is compulsory for prospective physical education teachers to have the ability to perform swimming. The average of students’ passing in swimming class has reached 72%. Most students who failed to pass the class are those who have had aquaphobia, the condition in which one failed to perceive a situation in a positive and objective, some of which are hard to detect. This perception may come from past experience and it could diminish students’ confidence. Furthermore, the lack of confidence in students may cause unsatisfactory learning results. Therefore it is critical for the teachers to have a comprehensive knowledge of their students’ past experience in formulating a lesson. This research used descriptive qualitative approach. The aim of this article is to investigate the correlation between students’ confidence level and swimming routines, frequency, and tutors in order to succeed swimming class. This article will attempt to describe the results of a research conducted to 139 students of Department of Sport Education Universitas Negeri Surabaya as prospective physical education teachers in Indonesia who took swimming class. Past experience and confidence level are measured by a questionnaire. The results of the research show that students who have a higher level of confidence are those who follow practice routines with adequate frequency and helped by a compatible tutor.

  18. Comparison of physical fitness tests in swimming

    OpenAIRE

    Dostálová, Sabina

    2015-01-01

    Title: Comparison of physical fitness tests in swimming. Objective: The aim of this thesis is to evaluate specific tests, used while testing selected physical abilities in swimming. By specific tests we mean tests realized in the water. Selected tests are intended for swim coaches, who train junior to senior age groups. Methods: The chosen method was a comparison of studies, that pursue selected specific tests. We created partial conclusions for every test by summing up the results of differe...

  19. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

    KAUST Repository

    Zakroff, Casey J.; Mooney, T. Aran; Wirth, Colin

    2017-01-01

    . pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2

  20. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism.

    Science.gov (United States)

    Nakasato, Akane; Nakatani, Yasushi; Seki, Yoshinari; Tsujino, Naohisa; Umino, Masahiro; Arita, Hideho

    2008-02-08

    Several clinical reports have suggested that there is a hyperactivation of the dopaminergic system in people with autism. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we measured dopamine (DA) levels in samples collected from the frontal cortex (FC) using in vivo microdialysis and HPLC. The basal DA level in FC was significantly higher in VPA-exposed rats relative to controls. Since the mesocortical DA system is known to be sensitive to physical and psychological stressors, we measured DA levels in FC before, during, and after a 60-min forced swim test (FST). There were further gradual increases in FC DA levels during the FST in the VPA-exposed rats, but not in the control rats. Behavioral analysis during the last 10 min of the FST revealed a significant decrease in active, escape-oriented behavior and an increase in immobility, which is thought to reflect the development of depressive behavior that disengages the animal from active forms of coping with stressful stimuli. These results suggest that this rodent model of autism exhibits a hyperactive mesocortical DA system, which is exaggerated by swim stress. This abnormality may be responsible for depressive and withdrawal behavior observed in autism.

  1. Physics of microswimmers—single particle motion and collective behavior: a review

    International Nuclear Information System (INIS)

    Elgeti, J; Winkler, R G; Gompper, G

    2015-01-01

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed. (report on progress)

  2. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  3. ENERGY SAVING AT OPERATION OF OUTDOOR SWIMMING POOLS

    Directory of Open Access Journals (Sweden)

    V. F. Ivin

    2013-09-01

    Full Text Available Purpose. Energy saving is a major problem in modern power engineering and various energy-consuming devices. They include outdoor swimming pools. In order to maintain them in working condition, especially in winter period, it takes significant amount of thermal energy. Task of heat loss substantial decrease in open swimming pools is considered in the article (on DNURT example. Methodology. The method of determining the mass and heat loss on the basis of criteria equations of heat and mass transfer theory is used. Findings. Calculations of the actual DNURT pool heat loss for different seasons, as for natural convection both for air forced motion above the free water surface are performed. It is shown that for the adiabatic evaporation conditions of water from the pool in winter during blow-off with wind the heat loss can be up to 2 kW/m2 on surface. To reduce these losses it is offered to cover water surface in a pool with a special material with low thermal conductivity on the basis of porous polyethylene during the time when the pool is not used for other purposes. It is shown that the implementation of these standards will reduce the actual heat loss, at least 5-6 times. Originality. The solution of important environmental and energy problem thanks to reducing heat losses by the pool in different times of a year and correspondingly lower emissions of power generating enterprises. Practical value. It is shown that the coating surface of the pool with poorly heat-conducting and easy to install coating will let, at a minimum, to reduce the actual heat loss on 5-6 times and reduce the emissions of power plants generating energy for pool heating.

  4. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  5. The Role of AChE in Swimming Behavior of Daphnia magna: Correlation Analysis of Both Parameters Affected by Deltamethrin and Methomyl Exposure

    Directory of Open Access Journals (Sweden)

    Qing Ren

    2017-01-01

    Full Text Available The unpredictable toxicity of insecticides may cause behavior disorder of biological organisms. In order to assess the role of acetylcholinesterase (AChE in swimming behavior of Daphnia magna, a correlation analysis of both parameters in 24 h exposure of deltamethrin (DM and methomyl (MT was investigated. The behavior responses of D. magna in DM (13.36 μg/L and 33.40 μg/L and MT (19.66 μg/L and 49.15 μg/L suggested that recovery behavior in the adjustment phase was crucial, and behavior homeostasis provided them with an optimal way to achieve a wider tolerance against environmental stress. During the experiment, positive effects on AChE activity occurred in the beginning of the exposure. Even though the de novo synthesis of AChE in D. magna might help it recover, the AChE inhibition in different treatments could be observed. Some induction effects on AChE activity at the beginning of exposure occurred, and a 50% decrease may cause toxic effects on behavior. In most treatments, the results showed that both behavior strength and AChE activity stayed in the same field within a correlation circle. These results illustrated that the environmental stress caused by both DM and MT could inhibit AChE activity and subsequently induce a stepwise behavior response, though both pesticides affect it as direct and indirect inhibitors, respectively.

  6. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  7. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  8. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  9. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  10. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress.

    Science.gov (United States)

    Qi, Xiaoli; Lin, Wenjuan; Li, Junfa; Li, Huanhuan; Wang, Weiwen; Wang, Donglin; Sun, Meng

    2008-08-01

    Our previous research indicates that the extracellular signal-regulated kinase (ERK)-cyclic AMP-responsive-element-binding protein (CREB) signal system may be involved in the molecular mechanism of depression. The present study further investigated the effect of antidepressant fluoxetine on the ERK-CREB signal system and the depressive-like behaviors in rats. Fluoxetine was administrated to either naive rats or stressed rats for 21 days. The results showed that chronic forced swim stress induced depressive-like behaviors and decreased the levels of P-ERK2, P-CREB, ERK1/2 and CREB in hippocampus and prefrontal cortex. Fluoxetine alleviated the depressive-like behaviors and reversed the disruptions of the P-ERK2 and P-CREB in stressed rats. Fluoxetine also exerted mood-elevating effect and increased the levels of the P-ERK2 and P-CREB in naive rats. These results suggest that the ERK-CREB signal system may be the targets of the antidepressant action of fluoxetine and participate in the neuronal mechanism of depression.

  11. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  12. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  13. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  14. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...... vortex rings, or by “breast-stroke swimming.” Both produce rapidly attenuating flows. The more “noisy” swimming of those that are constrained by a need to simultaneously feed is due to constantly beating flagella or appendages that are positioned either anteriorly or posteriorly on the (cell) body...

  15. Are parents just treading water? The impact of participation in swim lessons on parents' judgments of children's drowning risk, swimming ability, and supervision needs.

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Schwebel, David C; Hagel, Brent

    2013-01-01

    Drowning is a leading cause of child mortality globally. Strategies that have been suggested to reduce pediatric drowning risk include increased parental awareness of children's swimming ability and drowning risk, improved adult supervision of child swimmers, and providing swim lessons to children. This study explored how parents' beliefs relevant to children's drowning risk, perception of children's swimming ability, and judgments of supervision needs changed as children aged two through 5 years accumulated experience in swim lessons, and compared a parent group who received regular, detailed feedback about their child's swim skills with one that did not. Parents completed questionnaire measures near the beginning and end of a series of 10 weekly swim lessons. Results revealed that parental accuracy in judging children's swimming abilities remained relatively poor even though it improved from the beginning to the end of the swim lessons. Supervision needs were underestimated and did not vary with program or change over the course of swim lessons. Children's ability to keep themselves from drowning was overestimated and did not change over lessons or vary with program; parents believed that children could save themselves from drowning by the age of 6.21 years. Parents who had experienced a close call for drowning showed greater awareness of children's drowning risk and endorsed more watchful and proximal supervision. Results suggest that expanding learn-to-swim programs to include a parent-focused component that provides detailed tracking of swim skills and delivers messaging targeting perceptions of children's drowning risk and supervision needs may serve to maximize the drowning protection afforded by these programs. Delivering messaging in the form of 'close-call' drowning stories may prove especially effective to impact parents' supervision practices in drowning risk situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo

    Science.gov (United States)

    Daily, David

    2017-11-01

    The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.

  17. A possible utilization of the mice forced swim test for modeling manic-like increase in vigor and goal-directed behavior.

    Science.gov (United States)

    Flaisher-Grinberg, Shlomit; Einat, Haim

    2009-01-01

    The lack of appropriate animal models for bipolar disorder (BPD) is a major factor hindering the research of its pathophysiology and the development of new drug treatments. In line with the notion that BPD might represent a heterogeneous group of disorders, it was suggested that models for specific domains of BPD should be developed. The present study tested the possible utilization of the forced swim test (FST) as a model for the heightened vigor and goal-directed behavior domain of mania, using mice with low baseline immobility. Black Swiss mice were previously identified to have low immobility in the FST but similar spontaneous activity levels compared with several other mice strains. Thus, spontaneous activity and behavior in the FST were evaluated following treatment with the mood stabilizer valproate and the antidepressant imipramine. The results indicated that valproate increased immobility in the FST without affecting spontaneous activity whereas imipramine had no effect in the FST but increased spontaneous activity. These findings suggest that in mice with low baseline immobility scores, the FST might be a useful model for the elevated vigor and goal-directed behavior domain of mania. As such, this test might be well integrated into a battery of models for different domains of BPD.

  18. Multidisciplinary teaching in swimming: methodological reflection and proposal of check list

    Directory of Open Access Journals (Sweden)

    Sofia Canossa

    2007-12-01

    Full Text Available The present study proposes a new multidisciplinary approach related to teaching in swimming. Swimming is an interdisciplinary physical activity, which can be truly important at the level of the motor learning and experimentation in aquatic activities. In the present manuscript, it was compared the present reality of teaching in Swimming with a new perspective, this one with a multidisciplinary scope. Following the referred analysis, it was presented a discussion about the orientation and adequacy of the contents of the Swimming curriculum for children and youngsters, which are populations with specific characteristics and development necessities. In this sense, after stating the relevance of a multidisciplinary perspective, it was proposed a new approach for basic aquatic motor skills acquisition based on four disciplines: swimming, water polo, synchronised swimming and platform diving. This was made taking into account the initial stage of swimming teaching, i.e., aquatic readiness. This proposal aims mainly at implementing the teaching of Swimming at a multidisciplinary point of view that, in our opinion, is urgent, namely due to the small expression that the aquatic modalities traditionally considered as swimming satellites (water polo, synchronised swimming and platform diving have in the Portuguese sports context.

  19. Titanium distribution in swimming pool water is dominated by dissolved species.

    Science.gov (United States)

    David Holbrook, R; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-10-01

    The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. Published by Elsevier Ltd.

  20. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  1. Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Jonathan; Harrington, Curtis; Modera, Mark [University of California Davis, Western Cooling Efficiency Center, 1450 Drew Avenue, Suite 100, Davis, CA 95618 (United States)

    2011-01-15

    Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1 C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967. (author)

  2. A Review of Swimming Cues and Tips for Physical Education

    Science.gov (United States)

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  3. Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test.

    Science.gov (United States)

    Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Lezama-Velasco, R; Vazquez-Palacios, G; Bonilla-Jaime, H

    2008-11-20

    Tagetes lucida (Asteraceae), has been referred in Mexican traditional medicine for the treatment of different central nervous system (CNS) diseases, mainly depression. Nevertheless, the available scientific information about this species is scarce and there are no reports related to its possible effect on the CNS. In this work, the antidepressant-like effect of extract of Tagetes lucida was evaluated in rats, as well as its potential adverse effects on male sexual behavior (MSB). Antidepressant activity was studied using forced swimming test (FST), motor activity in the open-field test and on MSB in sexually experienced male. The aqueous extract of Tagetes lucida in doses of 5, 10, 50, 100 and 200mg/(kgday)(-1) were administered orally for 14 consecutive days and evaluated on day 14, 2h after the last dose treatment. Fluoxetine (10mg/(kgday)(-1), p.o.) was used as the control positive. The aqueous extract (10, 50, 100mg/(kgday)(-1)) significantly reduced immobility and increased swimming without affecting climbing behavior in the FST. These same doses were not able to modify neither the motor activity nor the MSB. These data indicate that the extract of Tagetes lucida possesses antidepressant-like properties in rats.

  4. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  5. Motility analysis of circularly swimming bull spermatozoa by quasi-elastic light scattering and cinematography.

    Science.gov (United States)

    Craig, T; Hallett, F R; Nickel, B

    1982-04-01

    The Rayleigh-Gans-Debye approximation is used to predict the electric field autocorrelation functions of light scattered from circularly swimming bull spermatozoa. Using parameters determined from cinematography and modeling the cells as coated ellipsoids of semiaxes a = 0.5 micrometers, b = 2.3 micrometers, and c = 9.0 micrometers, we were able to obtain model spectra that mimic the data exactly. A coat is found to be a necessary attribute of the particle. It is also clear that these model functions at 15 degrees may be represented by the relatively simple function used before by Hallett et al. (1978) to fit data from circularly swimming cells, thus giving some physical meaning to these functional shapes. Because of this agreement the half-widths of experimental functions can now be interpreted in terms of an oscillatory frequency for the movement of the circularly swimming cell. The cinematographic results show a trend to chaotic behavior as the temperature of the sample is increased, with concomitant decrease in overall efficiency. This is manifested by a decrease in oscillatory frequency and translational speed.

  6. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  7. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  8. Paths and patterns: the biology and physics of swimming bacterial populations

    Science.gov (United States)

    Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.

    1995-01-01

    The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.

  9. Searching for Criteria in Evaluating the Monofin Swimming Turn from the Perspective of Coaching and Improving Technique

    Science.gov (United States)

    Rejman, Marek; Borowska, Grażyna

    2008-01-01

    This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI®- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson’s correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact time, push-off time

  10. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  11. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  12. Sodium bicarbonate improves swimming performance.

    Science.gov (United States)

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  13. Calanoid Copepod Behavior in Thin Layer Shear Flows: Freshwater Versus Marine

    Science.gov (United States)

    Skipper, A. N.; Webster, D. R.; Yen, J.

    2015-11-01

    Marine copepods have been shown to behaviorally respond to vertical gradients of horizontal velocity and aggregate around thin layers. The current study addresses whether a freshwater copepod from an alpine lake demonstrates similar behavior response. Hesperodiaptomus shoshone is often the greatest biomass in alpine lakes and is the dominant zooplankton predator within its environment. The hypothesis is that H. shoshone responds to vertical gradients of horizontal velocity, which are associated with river outflows from alpine lakes, with fine-scale changes in swimming kinematics. The two calanoid copepods studied here, H. shoshone (freshwater) and Calanus finmarchicus(marine), are of similar size (2 - 4 mm), have similar morphologies, and utilize cruising as their primary swimming mode. The two animals differ not only in environment, but also in diet; H. shoshone is a carnivore, whereas C. finmarchicusis an herbivore. A laminar, planar jet (Bickley) was used in the laboratory to simulate a free shear flow. Particle image velocimetry (PIV) quantified the flow field. The marine species changed its swimming behavior significantly (increased swimming speed and turning frequency) and spent more time in the layer (40% vs. 70%) from control to treatment. In contrast, the freshwater species exhibited very few changes in either swimming behavior or residence time. Swimming kinematics and residence time results were also similar between males and females. Unlike the marine copepod, the results suggest the environmental flow structure is unimportant to the freshwater species.

  14. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  15. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  16. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  17. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    Science.gov (United States)

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  18. Intra-abdominal pressure during swimming.

    Science.gov (United States)

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P pressure and stroke rate or stroke length (P pressure and stroke indices when controlling for swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Changes over swim lessons in parents' perceptions of children's supervision needs in drowning risk situations: "His swimming has improved so now he can keep himself safe".

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Spence, Jeffrey R

    2014-07-01

    The aim of this longitudinal study was to determine how children's participation in swim lessons impacts parents' appraisals of children's drowning risk and need for supervision. Parents with 2-5-year old children enrolled in community swim lessons completed the same survey measures up to 4 times over an 8-month period. Multilevel regression analyses examining temporal relationships between parents' perceptions of their child's swim ability, supervision needs around water, and children's ability to keep themselves safe in drowning risk situations revealed that as children progressed through swim lessons, parents' perceptions of their child's swim ability and their belief that children are capable of keeping themselves safe around water increased. Further, the relation between parents' perceptions of swim ability and judgments of children's supervision needs was mediated through parents' judgment about their child's ability to secure their own safety near water. As parents perceive their child to be accumulating swim skills, they increasingly believe that children are capable of keeping themselves from drowning, and as a result, that less active parent supervision of their child is necessary. Implications of these findings for intervention efforts to counter this unwelcome way of thinking that may arise through continued participation in swim lessons are discussed. Incorporating a parent-focused component into children's learn-to-swim programs to promote more realistic appraisals of children's supervision needs and drowning risks may further enhance the positive benefits that swim lessons have for children's safety.

  20. Swimming in the USA: Beachgoer Characteristics and Health Outcomes at U.S. Marine and Freshwater Beaches

    Science.gov (United States)

    Swimming in lakes and oceans is popular, but tittle is known about the demographic characteristics, behaviors, and health risks of beachgoers on a national level. Data from a prospective cohort study of beachgoers at multiple marine and freshwater beaches in the USA were used to ...

  1. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  2. TECHNIQUE AND METHODOLOGY OF TRAINING IN SWIMMING CRAWL

    Directory of Open Access Journals (Sweden)

    Selim Alili

    2013-07-01

    Full Text Available The paper shows the technique and methodology training crawl swimming. Developed: the position of the head and body, footwork, hand movements, exercises for training footwork training drills and exercises for improving coordination technique on dry land and in water. Stated that accomplishes this swimmer swimming technique allows fast and is the fastest discipline. Therefore we can say that it is a favorite way of swimming and a pleasure to watch on the big stage.

  3. Evaluation of swimming capability and potential velocity barrier problems for fish. Part B: New telemetric approaches to the assessment of fish swimming performance

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Colavecchia, M.

    1998-08-01

    This report represents the second part of a study undertaken to develop information related to swimming capability of several important fish species. The study will provide biological design criteria to mitigate potential velocity barrier problems associated with hydroelectric power plants. This part of the report focuses on the development and evaluation of approaches to assessing locomotory activity, swimming performance and energy load costs to fish under naturally occurring conditions and in relation to potential barriers. The study involved implantation of a bio-sensitive radio transmitter (electromyogram (EMG)) tag in the swimming muscle of fish, calibration of locomotory ability and energetic scope, and subsequent use of EMG signals to assess swimming performance and metabolic costs in situ. Digital signal processing (DSP) with antennae switching was also used to study high speed swimming performance, behaviour, and migratory strategy in relation to ascent of an experimental flume. The techniques and technologies developed indicate the complexity of factors that regulate fish swimming energy expenditure that need to be considered in the design and operation of fish passage facilities. 84 refs., 6 tabs., figs., 2 appendices

  4. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  5. Pacing in Swimming: A Systematic Review.

    Science.gov (United States)

    McGibbon, Katie E; Pyne, D B; Shephard, M E; Thompson, K G

    2018-03-20

    Pacing strategy, or how energy is distributed during exercise, can substantially impact athletic performance and is considered crucial for optimal performance in many sports. This is particularly true in swimming given the highly resistive properties of water and low mechanical efficiency of the swimming action. The aim of this systematic review was to determine the pacing strategies utilised by competitive swimmers in competition and their reproducibility, and to examine the impact of different pacing strategies on kinematic, metabolic and performance variables. This will provide valuable and practical information to coaches and sports science practitioners. The databases Web of Science, Scopus, SPORTDiscus and PubMed were searched for published articles up to 1 August 2017. A total of 23 studies examining pool-based swimming competitions or experimental trials in English-language and peer-reviewed journals were included in this review. In short- and middle-distance swimming events maintenance of swimming velocity is critical, whereas in long-distance events a low lap-to-lap variability and the ability to produce an end spurt in the final lap(s) are key. The most effective strategy in the individual medley (IM) is to conserve energy during the butterfly leg to optimise performance in subsequent legs. The pacing profiles of senior swimmers remain relatively stable irrespective of opponents, competition stage or type, and performance time. Implementing event-specific pacing strategies should benefit the performance of competitive swimmers. Given differences between swimmers, there is a need for greater individualisation when considering pacing strategy selection across distances and strokes.

  6. Sex-dependent effects of fluoxetine and triiodothyronine in the forced swim test in rats.

    Science.gov (United States)

    Lifschytz, Tzuri; Shalom, Galit; Lerer, Bernard; Newman, Michael E

    2006-02-01

    The effects of triiodothyronine (T3) and fluoxetine, administered separately and combined, on behavior of male and female rats in the forced swim test, a procedure for screening antidepressant-like activity, were determined. There were no consistent effects of low doses of fluoxetine (5 mg/kg) or T3 (20 microg/kg), administered daily for 2 weeks. Fluoxetine administered daily at 10 mg/kg for 7 days reduced immobility and increased active behaviors in male rats, but had no effects in female rats. The effects of fluoxetine in male rats were not potentiated by T3. In female rats, T3 at 100 microg/kg given daily for 7 days decreased immobility and increased swimming when these were measured 72 h after the last injection, but not when measurements were performed at an earlier time point. These results provide some support from an animal model for the efficacy of T3 as antidepressant therapy in female patients, but do not provide support for the augmentation and acceleration effects seen clinically when T3 is used in conjunction with established antidepressants such as fluoxetine.

  7. Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent laboratory environments

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Kiørboe, Thomas

    1995-01-01

    measure of prey encounter rate in unsatiated larvae) were significantly higher in turbulent than in calm water at low food abundances for two size groups of cod. The difference in cod attack position rate between calm and turbulent water was much less when prey was more abundant. Attack position rates...... of herring larvae were higher in turbulent water than in calm water, but the difference was not significant. Interspecific differences in swimming and pausing behavior were related to differences in prey search strategy used by the two species (cod: pause-travel; herring: cruise). We used a newly developed...... search model for pause-travel predators in calm and turbulent environments to compare encounter rates for predators using cruise and pause-travel search strategies. Encounter rates for cod and herring larvae, estimated with respective search models, were similar in calm and low turbulence water; at high...

  8. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  9. The Unique Propulsive Wake Pattern of the Swimming Sea Slug Aplysia

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2017-11-01

    The Aplysia, also sometimes referred to as the `Sea Hare,' is a sea slug that swims elegantly using large-amplitude flapping of its mantle. The Sea Hare has become a very valuable laboratory animal for investigation into nervous systems and brain behavior due to its simple neural system with large neurons and axons. Recently, attempts have also been made to develop biohybrid robots with both organic actuation and organic motor-pattern control inspired by the locomotion of Aplysia. While extensive works have been done to investigate this animal's neurobiology, relatively little is known about its propulsive mechanisms and swimming energetics. In this study, incompressible flow simulations with a simple kinematical model are used to gain insights into vortex dynamics, thrust generation and energetics of locomotion. The effect of mantle kinematics on the propulsive performance is examined, and simulations indicate a unique vortex wake pattern that is responsible for thrust generation. The research is supported by NSF Grant PLR-1246317 and NSF XSEDE Grant TG-CTS100002.

  10. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  11. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  12. Predictors of Swimming Ability among Children and Adolescents in the United States

    Directory of Open Access Journals (Sweden)

    Jennifer Pharr

    2018-02-01

    Full Text Available Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US. This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA, and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05 predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s. Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind.

  13. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  14. Model of skin friction enhancement in undulatory swimming

    Science.gov (United States)

    Ehrenstein, Uwe; Eloy, Christophe

    2012-11-01

    To estimate the energetic cost of undulatory swimming, it is crucial to evaluate the drag forces originating from skin friction. This topic has been controversial for decades, some claiming that animals use ingenious mechanisms to reduce the drag and others hypothesizing that the undulatory motion induces a drag increase because of the compression of the boundary layers. In this paper, we examine this latter hypothesis, known as the ``Bone-Lighthill boundary-layer thinning hypothesis''. Considering a plate of section s moving perpendicular to itself at velocity U⊥ and applying the boundary-layer approximation for the incoming flow, the drag force per unit surface is shown to scale as √{U⊥ / s }. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 to 100%, depending on the geometry and the motion. M.J. Lighthill, Proc. R. Soc. Lond. B 179, 125 (1971).

  15. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  16. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  17. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  18. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Science.gov (United States)

    2011-09-30

    ... Operation Regulations; Navesink (Swimming) River, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... (Swimming) River between Oceanic and Locust Point, New Jersey. The deviation is necessary to facilitate...: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5, between Oceanic and Locust Point...

  19. PREFACE: Swimming at low Reynolds numbers—motility of micro-organisms Swimming at low Reynolds numbers—motility of micro-organisms

    Science.gov (United States)

    Garstecki, Piotr; Cieplak, Marek

    2009-05-01

    net displacement nor a rectified speed. This rule forced various strategies of swimming that all break the reciprocity of motion of the organelles of the swimmers. The most common—and most commonly known—of these are rotating a helical flagella, as utilized by e.g. the bacterium E. coli [3], or performing asymmetric power and recovery strokes, as done by e.g. the green algae Chlamydomonas reinhardtii [4]. There are however other strategies, such as sending periodic waves over the celia that cover the whole surface of the cell. This mechanism is discussed on the grounds of a physical model by Downton and Stark in this issue [5]. Ekiel-Jeżewska and Wajnryb [6] discuss yet another physical model of a swimmer comprised of two arms that can spin along their axes. They show that this spinning can significantly affect sedimentation, a result that could lead to insights into the behavior of gravitactic micro-organisms. Although the scallop theorem holds, it allows for refinement. For example, in this issue, Gonzalez-Rodriguez and Lauga show several models of swimmers that can utilize the inertia of their bodies (as opposed to the inertia of the fluid in which they swim) by performing reciprocal strokes to move [7]. Golestanian and Ajdari discuss another strategy that can avoid a non-reciprocal force resulting in net motion [8]. At small scales, thermal fluctuations become important and Golestanian and Ajdari show a swimming ratchet: they demonstrate that an appropriate design of the geometry of the swimmer can yield a net speed as a result of thermal fluctuations. Wilson et al [9] utilize the concept of the Lyapunov exponent calculated for the trajectories of elements of fluid to show how micro-organisms manage fluctuations in flow, and how the exact mechanics of swimming creates flow barriers between the fluid that is expelled during the power stroke and the fluid that returns during the recovery stroke of an organism. Besides the insignificance of inertia, there is

  20. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  1. [Unpredictable chronic mild stress effects on antidepressants activities in forced swim test].

    Science.gov (United States)

    Kudryashov, N V; Kalinina, T S; Voronina, T A

    2015-02-01

    The experiments has been designed to study unpredictable chronic mild stress effect on anti-depressive activities of amitriptyline (10 mg/kg) and fluoxetine (20 mg/kg) in forced swim test in male outbred mice. It is shown that acute treatment with fluoxetine does not produce any antidepressant effects in mice following stress of 14 days while the sub-chronic injections of fluoxetine result in more deep depressive-like behavior. In 28 daily stressed mice, antidepressant effect of fluoxetine is observed independently of the injection rates. Amitriptyline demonstrates the antidepressant activity regardless of the duration of stress or administration scheduling, but at the same time the severity of anti-immobilization effect of amitriptyline in stressed mice is weaker in compare to non-stressed trails. Thus, the injection rates and duration of unpredictable mild chronic stress are the parameters that determine the efficiency of antidepressants in the mouse forced swimming test.

  2. Analysis of the swimming velocity of cadmium-stressed Daphnia magna

    International Nuclear Information System (INIS)

    Baillieul, M.; Blust, R.

    1999-01-01

    The swimming velocity of the waterflea Daphnia magna is dependent on its body size. Therefore, environmental factors like toxic stress that influence growth also influence swimming velocity. An experiment was set up to test whether exposure to cadmium would reduce only growth, with a concomitant decrease in velocity, or whether it would reduce velocity below the swimming velocity of similarly-sized control animals. Daphnids were exposed for 10 days to free cadmium ion concentrations ranging from 1x10 -8 to 1x10 -7 M Cd 2+ , and body size and swimming velocity were measured every 2 days. The results showed that cadmium decreased both growth and velocity, i.e. exposed daphnids swam slower than similarly-sized control daphnids. Swimming velocity provided no indication of successful acclimation in any cadmium treatment. Food consumption and assimilation were reduced by exposure to cadmium. This reduced food intake may have, at least partially, caused the decreased growth rates. However, since reduced food intake does not affect swimming velocity, the reduced swimming velocity must be attributed to toxic effects of cadmium, other than those on food intake. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Research on Relative Age in Hungarian Swimming

    Directory of Open Access Journals (Sweden)

    Nagy Nikoletta

    2015-12-01

    Full Text Available In 2017, the 19th World Swimming Championship will be organized in Hungary. Up to now, many people have already been working with swimmers to achieve good results. However, in the next period they must work even harder to ensure that the national swimmers of a country as small as Hungary can achieve the outstanding results of their predecessors. Since high-level competitions in swimming have become more intense, innovations including scientific studies are needed during preparation for the event. The purpose of this paper is to present the major results of an independent study carried out by the authors about the relative age of the best Hungarian swimmers with the aim of contributing to their preparation. The research population consisted of selected age groups of swimmers registered by the Hungarian Swimming Association (N=400. The method for data collection was an analysis of documents. To evaluate the data, the Chi-square and Kruskal-Wallis tests were used. The results are presented according to the period of the competitor’s date of birth, gender, and age group. The results confirm only partly the hypothesis that people born in the first quarters of the year play a dominant role in Hungarian national swimming teams. In the conclusion, the authors recommend further research on relative age in swimming and in other sports.

  4. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; De Luca, Giuseppina; Figaj, Rafal Damian; Vanoli, Laura

    2015-01-01

    Highlights: • A PV/T heating system for indoor–outdoor swimming pools is proposed. • A comparison among some thermal pool models available in literature is carried out. • Dynamic simulations of the thermal behavior of the swimming-pools are performed. • PV/T thermal energy is used to heat the swimming pool and for DHW production. • Energy and economic parametric analyses of the proposed system are presented. - Abstract: This paper presents an analysis of an innovative renewable energy plant serving an existing indoor/outdoor swimming pool located in Naples. The proposed solar hybrid system is designed in order to balance the remarkable energy demand of the swimming pool facility and to ensure suitable comfort conditions for swimmers. With the aim to accomplish such goals, the dynamic thermal behavior of the swimming pool was analyzed as a function of the thermo-hygrometric conditions of the indoor space and on the meteorological conditions of the pool site. In order to properly design and size the proposed renewable energy system, different thermal pool loss formulations for the calculation of the swimming pool thermal balance, in indoor and outdoor regimes, are adopted. The solar hybrid system consists of a water cooled photovoltaic/thermal collectors plant (PV/T), designed to meet a part of the facility demands of electricity and heat. Electricity is completely utilized by the facility, while the produced thermal energy is primarily used to meet the pool thermal demand and secondarily for sanitary hot water scopes. In order to carry out dynamic simulations and sensitivity analyses, the system performance is designed and dynamically simulated in TRNSYS environment. The developed simulation model enables the calculation of both the indoor and outdoor swimming pool thermal losses and the overall energy and economic system performance. Such results are obtained as a function of the thermo-hygrometric conditions of the environment, of the occupants and the

  5. Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, D V; Jordan, L K; Gordon, M S [Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606 (United States); Hertel, F S, E-mail: dlauritz@ccsf.ed, E-mail: fritz.hertel@csun.ed, E-mail: msgordon@ucla.ed, E-mail: ljordan@ucla.ed [Department of Biology, California State University-Northridge, Northridge, CA 91330 (United States)

    2010-09-15

    Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This paper reports the results of an experimental study of relevant behavioral and kinematic properties of adult kokanee salmon (Oncorhynchus nerka) jumping up waterfalls as they migrate upstream. We used a portable, adjustable apparatus to study in the field fish responding to artificial waterfalls under a range of flow conditions. We observed fish under conditions of varying water flow rates, pool depths, fall heights and fall angles. We analyzed digital video recordings of their behaviors. Kokanee salmon spontaneously jump up waterfalls within a relatively narrow range of conditions, including low flow speeds, near vertical angles and pool depth to fall height ratios near 1.0. Preferred values for each parameter are, to some extent, dependent on other parameters. In contrast to previous misconceptions, jumping behavior is initiated by running S-start accelerations from beneath the boils formed in the plunge pools below waterfalls, as opposed to C-start standing jumps from the surface. S-starts are immediately followed by burst swimming to the point of takeoff at the surface. These results can contribute to an improved basis for developing designs of fish passageways that may ultimately make them more effective and efficient.

  6. Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design

    International Nuclear Information System (INIS)

    Lauritzen, D V; Jordan, L K; Gordon, M S; Hertel, F S

    2010-01-01

    Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This paper reports the results of an experimental study of relevant behavioral and kinematic properties of adult kokanee salmon (Oncorhynchus nerka) jumping up waterfalls as they migrate upstream. We used a portable, adjustable apparatus to study in the field fish responding to artificial waterfalls under a range of flow conditions. We observed fish under conditions of varying water flow rates, pool depths, fall heights and fall angles. We analyzed digital video recordings of their behaviors. Kokanee salmon spontaneously jump up waterfalls within a relatively narrow range of conditions, including low flow speeds, near vertical angles and pool depth to fall height ratios near 1.0. Preferred values for each parameter are, to some extent, dependent on other parameters. In contrast to previous misconceptions, jumping behavior is initiated by running S-start accelerations from beneath the boils formed in the plunge pools below waterfalls, as opposed to C-start standing jumps from the surface. S-starts are immediately followed by burst swimming to the point of takeoff at the surface. These results can contribute to an improved basis for developing designs of fish passageways that may ultimately make them more effective and efficient.

  7. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...

  8. THE EFFECTS OF DIFFERENT MODELS OF SWIMMING TRAINING (DEFINED IN RELATION TO ANAEROBIC THRESHOLD ON THE INCREASE OF SWIM SPEED

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2007-05-01

    Full Text Available On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defi ned relative to the anaerobic threshold. The examinees were divided into two groups out of 15 i.e. 17 participants who were not (according to statistics signifi cantly different in terms of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic threshold. The fi rst training model consisted of swimming at the intensity level within the zone below anaerobic threshold, while the second model involved occasional swimming at a higher intensity sometimes surpassing the anaerobic threshold. The experimentalprogramme with both sub-groups lasted 8 weeks with 3 training sessions per week, 2 ‘of which we’re identical for both experimental groups, with the third one differing regarding the swimming intensity, this in the fi rst group being still in the zone below, and in the second group occasionally in the zone above the anaerobic threshold. The amount of training and the duration were the same in both programmes. The aim of the research , was to evaluate and to compare the effects of the two training models, using as the basic criteria possible changes of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic thereshold. On the basis of the statistical analysis of the obtained data, it is possible to conclude that in both experimental groups there were statistically signifi cant changes of average values concerning all the physiological variables. Although the difference in effi ciency of applied experimental programmes is not defi ned, we can claim that both of experimental

  9. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  10. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  11. Sun-protective Behaviors of Student Spectators at Inter-school Swimming Carnivals in a Tropical Region of High Ambient Solar Ultraviolet Radiation.

    Directory of Open Access Journals (Sweden)

    Denise Turner

    2016-08-01

    Full Text Available Skin cancer is the most common cancer in humans and Australia (particularly in Queensland has the highest incidence globally. Sunlight is a known skin carcinogen and reflects off water, exacerbating the risk of sunburn. In 1988, the SunSmart Program was developed to promote sun-protection to Australian children. Within a decade, it evolved to include a voluntary national accreditation program for schools, known as the SunSmart Schools (SSS Program. Additionally, in 2008, it became compulsory for primary schoolchildren attending Queensland government-funded schools to wear a shirt during all water-based activities, except when competing. We observed the proportion of student spectators from 41 Townsville (latitude 19.3°S primary schools (65.9% SSS wearing hats at inter-school swimming carnivals in 2009-2011 and 2015 and the proportion wearing a shirt. Overall, a median of 30.7% student spectators from each school wore a hat (max 46.2% [2009]; min 18% [2015] and 77.3% wore a shirt (max 95.8% [2009]; min 74.5% [2015], suggesting that hats are under-utilized. Students from non-government (private schools were twice as likely as students from government schools to wear a hat (41% vs 18.2% p=0.003. Neither the hat nor the shirt-wearing behaviors of student spectators were significantly influenced by their school’s size (number of students, educational advantage, sun-protection policy score or SunSmart status, indicating that other socio-economic factors, not assessed here, may have influenced the results. Our findings suggest that the mandatory swim-shirt policy introduced in 2008 was very effective, especially initially. However, monitoring and feedback of results to schools may be needed to maintain high levels of compliance in the longer-term. Schoolchildren attending swimming carnivals should not rely on sunscreen or shade alone to protect against direct and reflected-sunlight, and need prompting to put a hat and shirt back on immediately after

  12. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  13. Presence and select determinants of organophosphate flame retardants in public swimming pools

    International Nuclear Information System (INIS)

    Teo, Tiffany L.L.; Coleman, Heather M.; Khan, Stuart J.

    2016-01-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  14. Presence and select determinants of organophosphate flame retardants in public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Tiffany L.L., E-mail: tiffany.teo@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@ulster.ac.uk [Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland (United Kingdom); Khan, Stuart J., E-mail: s.khan@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia)

    2016-11-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  15. Simulated front crawl swimming performance related to critical speed and critical power.

    Science.gov (United States)

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  16. Biochemical and hematological changes following the 120-km open-water marathon swim.

    Science.gov (United States)

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  17. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Ostadhadi, Sattar; Kordjazy, Nastaran; Dehpour, Ahmad Reza; Ejtemaei Mehr, Shahram

    2014-07-15

    Opioid and glutamatergic receptors have a key role in depression following stress. In this study, we assessed opioid and glutamatergic receptors interaction with the depressant-like behavior of acute foot-shock stress in the mouse forced swimming test. Stress was induced by intermittent foot shock stimulation during 30min and swim periods were afterwards conducted by placing mice in separated glass cylinders filled with water for 6min. The immobility time during the last 4min of the test was considered. Acute foot-shock stress significantly increased the immobility time of mice compared to non-stressed control group (P≤0.01). Administration of non-selective opioid receptors antagonist, naltrexone (1 and 2mg/kg, i.p.), and the selective non-competitive NMDA receptor antagonist, MK-801 (0.05mg/kg, i.p.), and the selective serotonin reuptake inhibitor, fluoxetine (5mg/kg), significantly reduced the immobility time in stressed animals (P≤0.01). Lower doses of MK-801 (0.01mg/kg), naltrexone (0.3mg/kg), NMDA (75mg/kg) and morphine(5mg/kg) had no effect on foot-shock stressed mice. Combined treatment of sub-effective doses of naltrexone and MK-801 significantly showed an antidepressant-like effect (P≤0.001). On the other hand, co-administration of non-effective doses of NMDA and morphine with effective doses of naltrexone and MK-801 reversed the anti-immobility effect of these drugs. Taken together, we have for the first time demonstrated the possible role of opioid/NMDA receptors signaling in the depressant-like effect of foot-shock stress, and proposed the use of drugs that act like standard anti-depressants in stress-induced depression. Copyright © 2014. Published by Elsevier B.V.

  18. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress.

    Science.gov (United States)

    Diniz, Cassiano R A F; Casarotto, Plínio C; Joca, Sâmia R L

    2016-07-01

    Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  20. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  1. Using a Constant Time Delay Procedure to Teach Foundational Swimming Skills to Children with Autism

    Science.gov (United States)

    Rogers, Laura; Hemmeter, Mary Louise; Wolery, Mark

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of using a constant time delay procedure to teach foundational swimming skills to three children with autism. The skills included flutter kick, front-crawl arm strokes, and head turns to the side. A multiple-probe design across behaviors and replicated across participants was used.…

  2. Hippocampal 3alpha,5alpha-THP may alter depressive behavior of pregnant and lactating rats.

    Science.gov (United States)

    Frye, Cheryl A; Walf, Alicia A

    2004-07-01

    The 5alpha-reduced metabolite of progesterone (P), 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), may mediate progestins' effects to reduce depressive behavior of female rats in part through actions in the hippocampus. To investigate, forced swim test behavior and plasma and hippocampal progestin levels were assessed in groups of rats expected to differ in their 3alpha,5alpha-THP levels due to endogenous differences (pregnant and postpartum), administration of a 5alpha-reductase inhibitor (finasteride; 50 mg/kg sc), and/or gestational stress [prenatal stress (PNS)], an animal model of depression. Pregnant rats had higher plasma and hippocampal 3alpha,5alpha-THP levels and less depressive behavior (decreased immobility, increased struggling and swimming) in the forced swim test than did postpartum rats. Finasteride, compared to vehicle-administration, reduced plasma and hippocampal 3alpha,5alpha-THP levels and increased depressive behavior (increased immobility, decreased struggling and swimming). PNS was associated with lower hippocampal, but not plasma, 3alpha,5alpha-THP levels and increased swimming compared to that observed in control rats. Together, these data suggest that 3alpha,5alpha-THP in the hippocampus may mediate antidepressive behavior of female rats.

  3. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  4. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    Thiffeault, Jean-Luc; Childress, Stephen

    2010-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  5. EFFECT OF FLEXIBILITY ON THE RESULTS OF DOLPHIN SWIMMING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slađana Tošić

    2011-09-01

    Full Text Available In order to determine the impact of flexibility on the results in swimming, we conducted a study on a sample of 50 female patients aged 11-14 years of age who are in the training process in the swimming clubs „Nis 2005“ and „Sveti Nikola“ in Nis. The study is applied to 14 measuring instruments that were divided into three groups: Measuring instruments for the assessment of flexibility (11; Measuring instruments for assessing the results of swimming (1; Measuring instruments for evaluation of morphological characteristics (2. The regression analysis determined the impact of flexibility on the results in swimming. The regression analysis didn't confirmed the assumption that there is a statistically significant effect of flexibility variables on results in swimming for female swimmers

  6. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  7. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  8. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming...

  9. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    Science.gov (United States)

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  10. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  11. Ovarian and uterine alterations following forced swimming: An immunohistochemical study.

    Science.gov (United States)

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-10-01

    Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (pForced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.

  12. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  13. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    , i.e. nearest neighbour distance, water temperature, gill oxygen extraction, gill ventilation capacity, etc. Fish swimming in a school have been shown to have energetic advantages when trailing behind neighbours, resulting in up to 20% energy saving. The effect of this energy saving is that the fish......Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...

  14. The relationship between anxiety and depression in animal models: a study using the forced swimming test and elevated plus-maze

    Directory of Open Access Journals (Sweden)

    R. Andreatini

    1999-09-01

    Full Text Available The present study evaluated the correlation between the behavior of mice in the forced swimming test (FST and in the elevated plus-maze (PM. The effect of the order of the experiments, i.e., the influence of the first test (FST or PM on mouse behavior in the second test (PM or FST, respectively was compared to handled animals (HAND. The execution of FST one week before the plus-maze (FST-PM, N = 10, in comparison to mice that were only handled (HAND-PM, N = 10 in week 1, decreased % open entries (HAND-PM: 33.6 ± 2.9; FST-PM: 20.0 ± 3.9; mean ± SEM; P0.10. A prior test in the plus-maze (PM-FST did not change % immobility time in the FST when compared to the HAND-FST group (HAND-FST: 57.7 ± 3.9; PM-FST: 65.7 ± 3.2; mean ± SEM; P>0.10. Since these data suggest that there is an order effect, the correlation was evaluated separately with each test sequence: FST-PM (N = 20 and PM-FST (N = 18. There was no significant correlation between % immobility time in the FST and plus-maze indexes (% time and entries in open arms in any test sequence (r: -0.07 to 0.18. These data suggest that mouse behavior in the elevated plus-maze is not related to behavior in the forced swimming test and that a forced swimming test before the plus-maze has an anxiogenic effect even after a one-week interval.

  15. Critical behavior of collapsing surfaces

    DEFF Research Database (Denmark)

    Olsen, Kasper; Sourdis, C.

    2009-01-01

    We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...... data reveals the existence of a critical initial surface that develops a degenerate neckpinch. The limiting flow of the type II singularity is accurately modeled by the rotationally symmetric translating soliton....

  16. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    International Nuclear Information System (INIS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Kim, Min Jun; Lee, Kyoungwoo; Kim, JinSeok

    2013-01-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields. (paper)

  17. Biomechanical aspects of peak performance in human swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Truijens, M.J.

    2005-01-01

    Peak performances in sport require the full deployment of all the powers an athlete possesses. How factors such as mechanical power output, technique and drag, each individually, but also in concert, determine swimming performance is the subject of this enquiry. This overview of swimming

  18. The folic acid combined with 17-β estradiol produces antidepressant-like actions in ovariectomized rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia; Olivera-López, Jorge I; Jaramillo, M Teresa

    2011-01-15

    Folic acid or 17-β estradiol produces antidepressant effects, either alone or combined with several antidepressants. However, the antidepressant-like actions of folic acid combined with 17-β estradiol in the forced swimming test (FST) have not been tested before. Thus, in the present study, ovariectomized female rats received folic acid (5.0 nmol/i.c.v., Pfluoxetine (20.0mg/kg, Pswimming behavior when they were tested in the FST. Combination of subthreshold doses of folic acid (2.5 nmol/i.c.v.; or 25.0mg/kg, p.o.) with subthreshold doses of 17-β estradiol (5.0 μg/rat, Pfluoxetine (15.0mg/kg, Pfluoxetine in the FST reduced immobility in the FST. These antidepressant-like actions probably were due to modifications of the serotonergic system since swimming behavior was increased and these effects were cancelled by ketanserin. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior

    KAUST Repository

    Markowich, Peter; Lorz, Alexander; Francesco, Marco

    2010-01-01

    We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through

  20. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  1. The swimming program effects on the gross motor function, mental adjustment to the aquatic environment, and swimming skills in children with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Jorgić Bojan

    2012-01-01

    Full Text Available The aim of this research was to determine the swimming program effects on the gross motor function, mental adjustment to the aquatic environment and the ability to move in the water and swim in children with cerebral palsy. The sample consisted of seven children (4 boys and 3 girls with spastic cerebral palsy and an average age of 9y 5mo ± 1y 3 mo. The swimming program lasted 6 weeks, with two swimming sessions per week. Each session lasted 45 minutes. The swimming program included the application of the Halliwick Method and swimming exercises which are used in a healthy population. The GMFM test was used for the assessment of gross motor functions. The WOTA2 test was applied to assess mental adjustment and swimming skills. The Wilcoxon matched pairs test was used to determine the statistically significant differences between the initial and final measuring. The results have indicated that there was statistically significant differences in the E dimension (p=0.04 and the total score T (p=0.03 of the GMFM test, then for mental adjustment to the aquatic environment WMA (p=0.02, ability to move in water andswimming skills WSW (p=0.03 and the overall result WTO (p=0.02 of the WOTA2 test. The applied swimming program had a statistically significant effect on the improvement in walking, running and jumping as well as the overall gross motor functions of children with cerebral palsy. The applied program also contributed to a statistically significant influence on the increase in mental adjustment to the aquatic environment and the ability to move in water and swim.

  2. The economics of age-group swimming in Ontario.

    Science.gov (United States)

    Eynon, R B; Kitchen, P D; Semotiuk, D M

    1980-09-01

    This study investigated the socio-economic status of the parents of Ontario swimmers and parental expenditures, in terms of time and money, in support of competitive swimming. Questionnaires were mailed to a sample of 400 families of Ontario competitive swimmers. Spearman rho analyses were used to determine the relationships of membership fee, total cost and total time spent by the parents to the ability and age of the swimmer and the number of hours of practice and swim meets. Parents of Ontario competitive swimmers are upper middle class and devote a great deal of their time (X = 433 hours) and money (X = $744.00) annually to competitive swimming. Total expenditures and time spend by the parents were greater for those children were young and also for those whose children demonstrated greater ability (i.e., closer to Ontario record). Spearman rho analyses suggested that membership fees are not determined on the basis of age, number of practice hours or number of swim meets.

  3. Swimming pool special; Zwembadspecial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This issue includes a few articles and messages on the use of heat pump systems in swimming pools. [Dutch] Dit nummer bevat onder meer een paar artikelen over het gebruik van warmtepompsystemen in zwembaden.

  4. The effect of microinjection of dimethyl sulfoxide into the rostral ventromedial medulla on swim stress-induced analgesia

    Directory of Open Access Journals (Sweden)

    S. Nazemi

    2018-02-01

    Full Text Available Background: Dimethyl sulfoxide (DMSO is an important solvent for compounds that used in pain research. Rostral ventromedial medulla (RVM plays an important role in modulating nociception and stress-induced analgesia (SIA. Objective: The aim of this study was to investigate the effect of DMSO administration into the RVM on SIA by using formalin test. Methods: This experimental study was conducted on 27 Wistar male rats (200±30 gr were randomly assigned to control, stress and stress+DMSO groups. Animals were placed in a water reservoir (20±1°C for 3 minutes to induce forced swimming stress. Stereotaxic surgery was performed to microinjection of DMSO (0.5μl, 100% into RVM. The pain behavior score was evaluated by subcutaneous injection of formalin 2% in the dorsal plantar region of hid paw. Findings: The pain score of phase 1, interphase and phase 2 of formalin test in swim stress group decreased significantly in comparison to control group (P<0.001, P< 0.05, P<0.001 respectively. In addition, the pain score of three phase of formalin test after DMSO injection in swim stress group decreased significantly in comparison to control and stress group (P<0.001, P<0.05 respectively. Conclusion: Also microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of dimethyl sulfoxide, as well as its ability to potentiate stressinduced analgesia, DMSO should be used with caution as a solvent in pain studies. Conclusion: Force swim stress induces analgesia in, and microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of DMSO, as well as its ability to potentiate stress-induced analgesia, it should be used with caution as solvent in pain studies.

  5. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  6. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    ,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise......BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined......, bicyclists were included as an additional comparison group. RESULTS: Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly...

  7. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  8. Biochemical and Hematological Changes Following the 120-Km Open-Water Marathon Swim

    Directory of Open Access Journals (Sweden)

    Wojciech Drygas, Ewa Rębowska, Ewa Stępień, Jacek Golański, Magdalena Kwaśniewska

    2014-09-01

    Full Text Available Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test. The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively. Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required.

  9. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  10. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test.

    Science.gov (United States)

    Nagai, Michelly M; Gomes, Felipe V; Crestani, Carlos C; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-06-01

    The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  11. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  12. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water.

    Science.gov (United States)

    Buczkowska-Radlińska, J; Łagocka, R; Kaczmarek, W; Górski, M; Nowicka, A

    2013-03-01

    The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool water. The population for this survey consisted of a group of junior competitive swimmers who had been training for an average of 7 years, a group of senior competitive swimmers who had been training for an average of 10 years, and a group of recreational swimmers. All subjects underwent a clinical dental examination and responded to a questionnaire regarding aspects of dental erosion. In pool water samples, the concentration of calcium, magnesium, phosphate, sodium, and potassium ions and pH were determined. The degree of hydroxyapatite saturation was also calculated. Dental erosion was found in more than 26 % of the competitive swimmers and 10 % of the recreational swimmers. The lesions in competitive swimmers were on both the labial and palatal surfaces of the anterior teeth, whereas erosions in recreational swimmers developed exclusively on the palatal surfaces. Although the pH of the pool water was neutral, it was undersaturated with respect to hydroxyapatite. The factors that increase the risk of dental erosion include the duration of swimming and the amount of training. An increased risk of erosion may be related to undersaturation of pool water with hydroxyapatite components. To decrease the risk of erosion in competitive swimmers, the degree of dental hydroxyapatite saturation should be a controlled parameter in pool water.

  13. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  14. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  15. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  16. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  17. Solar collectors for swimming pools still going strong

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    According to the opinion of the experts, solar energy heating may be technically 'mature' but the profitability is by no means that far. However, solar systems are a good alternative for heating the water in swimming pools. Four solar collector systems developed by different firms to heat swimming pools, including prices, are presented.

  18. Swimming mechanics and propulsive efficiency in the chambered nautilus

    Science.gov (United States)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  19. Flying fish accelerate at 5 G to leap from the water surface

    Science.gov (United States)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  20. Swimming reduces the severity of physical and psychological dependence and voluntary morphine consumption in morphine dependent rats.

    Science.gov (United States)

    Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand

    2015-01-15

    Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (Pmorphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (Pmorphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (Pmorphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  2. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  3. Numerical and experimental investigations of human swimming motions.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H

    2016-08-01

    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency.

  4. Health risks associated with swimming at an inland river

    Science.gov (United States)

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  5. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  6. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

  7. A novel crustacean swimming stroke: coordinated four-paddled locomotion in the cypridoidean ostracode Cypridopsis vidua (Müller).

    Science.gov (United States)

    Hunt, Gene; Park, Lisa E; Labarbera, Michael

    2007-02-01

    Despite the diversity and ecological importance of cypridoidean ostracodes, there have been no kinematic studies of how they swim. We used regular and high-speed video of tethered ostracodes to document locomotion in the cypridoidean species Cypridopsis vidua. Swimming in this species is drag-based, with thrust provided by both antennulae and antennae. About 15 complete power and recovery strokes occur per second; maximal speeds for the limb tips were about 30 mm/s for the antennulae and 50 mm/s for the antennae. These speeds correspond to Reynolds numbers on the order of 10(-1) to 10(0) for the limb tips and 10(-2) to 10(-1) for the setae that extend outward from the swimming limbs and provide much of the surface area of the limb. The strokes of the four thrust-producing limbs are coordinated in a manner that seems to be unique among aquatic arthropods. When viewed from the anterior, power strokes are synchronized diagonally: left antennula and right antenna power strokes start at the same time and terminate just as the power strokes for the right antennula and left antenna begin. Because power strokes occur throughout the stroke cycle, swimming in this species is smoothly continuous, without the rapid accelerations and decelerations characteristic of most small aquatic arthropods.

  8. Swimming black-crowned night-herons (Nycticorax nycticorax) Kleptoparasitize American coots (Fulica americana)

    DEFF Research Database (Denmark)

    Graves, Gary R.

    2015-01-01

    I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid.......I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid....

  9. SEARCHING FOR CRITERIA IN EVALUATING THE MONOFIN SWIMMING TURN FROM THE PERSPECTIVE OF COACHING AND IMPROVING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Marek Rejman

    2008-03-01

    Full Text Available This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI®- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson's correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact

  10. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice.

    Science.gov (United States)

    Rogóż, Zofia; Kabziński, Marcin

    2011-01-01

    The aim of the present study was to examine the effect of antidepressants (ADs) belonging to different pharmacological groups and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. The antidepressants: citalopram, fluvoxamine, sertraline, reboxetine, milnacipran (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Co-treatment with reboxetine or milnacipran (10 mg/kg) and risperidone in a lower dose of 0.05 mg/kg or with sertraline, reboxetine (5 and 10 mg/kg), citalopram, fluvoxamine, milnacipran (10 mg/kg) and risperidone in a higher dose of 0.1 mg/kg produced antidepressant-like effect in the forced swimming test. WAY100635 (a 5-HT(1A) receptor antagonist) inhibited the effects induced by co-administration of ADs and risperidone. Active behavior in the forced swimming test was not a consequence of an increased general activity, since the combined treatment with ADs and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that a low dose of risperidone enhances the activity of ADs in an animal model of depression, and that, among other mechanisms, 5-HT(1A) receptors may play a role in these effects.

  11. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  12. Quiet swimming at low Reynolds number

    Science.gov (United States)

    Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas

    2015-04-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.

  13. Context-dependent individual behavioral consistency in Daphnia

    DEFF Research Database (Denmark)

    Heuschele, Jan; Ekvall, Mikael T.; Bianco, Giuseppe

    2017-01-01

    The understanding of consistent individual differences in behavior, often termed "personality," for adapting and coping with threats and novel environmental conditions has advanced considerably during the last decade. However, advancements are almost exclusively associated with higher-order animals......, whereas studies focusing on smaller aquatic organisms are still rare. Here, we show individual differences in the swimming behavior of Daphnia magna, a clonal freshwater invertebrate, before, during, and after being exposed to a lethal threat, ultraviolet radiation (UVR). We show consistency in swimming...... that of adults. Overall, we show that aquatic invertebrates are far from being identical robots, but instead they show considerable individual differences in behavior that can be attributed to both ontogenetic development and individual consistency. Our study also demonstrates, for the first time...

  14. The Fastskin Revolution From Human Fish to Swimming Androids

    Directory of Open Access Journals (Sweden)

    Jennifer Craik

    2011-04-01

    Full Text Available The story of fastskin swimsuits reflects some of the challenges facing the impact of technology in postmodern culture. Introduced in 1999 and ratified for the Sydney 2000 Olympic Games, fastskin swimsuits were touted as revolutionising competitive swimming. Ten years later, they were banned by the world’s swimming regulatory body FINA (the Fédération Internationale de Natation, with the ban taking effect from January 2010 (Shipley 2009. The reason was the controversy caused by the large number of world records that were broken by competitors wearing polyurethane swimsuits, the next generation of the original fast skin suits. These suits were deemed to be providing an artificial advantage by increasing buoyancy and reducing drag. This had been an issue ever since they were introduced, yet FINA had approved the suits and, thereby, unleashed an unstoppable technological revolution of the sport of competitive swimming. Underlying this was the issue about its implications of the transformation of a sport based on the movement of the human body through water without the aid of artificial devices or apparatus. This article argues that the advent of the fastskin has not only transformed the art of swimming but has created a new image of the swimmer as a virtual android rather than a human fish. In turn, the image of the sport of swimming has been re-mapped as a technical artefact and sci-fi spectacle based on a radically transformed concept of the swimming body as a material object that has implications for the ideal of the fashionable body.

  15. Evaluating performance from spiral polyethylene tubes as solar collectors for heating swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Anderson Thiago Pontes; Marchi Neto, Ismael de; Scalon, Vicente Luiz; Padilha, Alcides [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP (Brazil). Dept. de Engenharia Mecanica], e-mails: scalon@feb.unesp.br, padilha@feb.unesp.br

    2010-07-01

    The solar energy is very common in the daily of citizens from different regions in world. Environmental questions and the consequent Development of renewable energy techniques were a decisive factor for expanding this market. Currently, the solar energy is present in many different devices: as direct conversion through photovoltaic panels as in solar domestic for hot water systems(SDHWS). Another common use is in the heating system for swimming pools, that could be utilized for therapeutic or comfort reasons. The main aspect that increments this use is the economy for operation of these systems. On the other hand, these systems need a high initial investment. Reducing this cost without reduction in collector efficiency using new materials and / or alternative projects is important target for new researches. Thus, this paper aims to analyze the efficiency of one of these alternative models for heating swimming pools. The conceptual device evaluated is a low cost model. It could be made from polyethylene tubes forming spiral heat exchangers. Analysis of the system is based on a dynamic model using differential equations system including solar collector and swimming pool. Experimental radiation and other environmental conditions in the region of Bauru-SP are used for analyse the dynamic behavior of the system. The simulations are based on analysis of three main parameters: number of collectors, the pump drive time and wall thickness of the collector of polyethylene. Based on these numerical tests one can conclude that this new model of solar collector for swimming pool has a better cost benefit ratio when superficial area is equal to 80% of pool area, pump operation is alternating with four minutes turned on and 28 turned off and the polyethylene wall thickness is 1.5 mm (author)

  16. A fish-like robot: Mechanics of swimming due to constraints

    Science.gov (United States)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  17. Front crawl swimming analysis using accelerometers

    DEFF Research Database (Denmark)

    Espinosa, Hugo G; Nordsborg, Nikolai Baastrup; Thiel, David V

    2015-01-01

    Biomechanical characteristics such as stroke rate and stroke length can be used to determine the velocity of a swimmer and can be analysed in both a swimming pool and a flume. The aim of the present preliminary study was to investigate the differences between the acceleration data collected from...... a swimming pool with that collected from a flume, as a function of the swimmer's stroke rate and stroke count, with the objective of identifying the impact on the swimmer's performance. The differences were determined by the analysis of the stroke's features, comparing several strokes normalized to one...

  18. Conductorlike behavior of a photoemitting dielectric surface

    Science.gov (United States)

    De, B. R.

    1979-01-01

    It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.

  19. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    Science.gov (United States)

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  20. Seasonality in swimming and cycling: Exploring a limitation of accelerometer based studies

    Directory of Open Access Journals (Sweden)

    Flo Harrison

    2017-09-01

    Full Text Available Accelerometer-based studies of children's physical activity have reported seasonal patterns in activity levels. However, the inability of many accelerometers to detect activity while the wearer is swimming or cycling may introduce a bias to the estimation of seasonality if participation in these activities are themselves seasonally patterned. We explore seasonal patterns in children's swimming and cycling among a sample of 7–8 year olds (N = 591 participating in the Millennium Cohort Study, UK. Participating children wore an accelerometer for one week on up to five occasions over the year and their parents completed a diary recording daily minutes spent swimming and cycling. Both swimming and cycling participation showed seasonal patterns, with 2.7 (SE 0.8 more minutes swimming and 5.7 (0.7 more minutes cycling performed in summer compared to winter. Adding swimming and cycling time to accelerometer-determined MVPA increased the summer-winter difference in MVPA from 16.6 (1.6 to 24.9 min. The seasonal trend in swimming and cycling appears to follow the same pattern as accelerometer-measured MVPA. Studies relying solely on accelerometers may therefore underestimate seasonal differences in children's activity.

  1. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...... a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance....

  2. Critical force during tethered swimming for the evaluation of aerobic capacity and prediction of performances in freestyle swimming

    OpenAIRE

    Marcelo Papoti; Ricardo Vitório; Gustavo Gomes Araújo; Luiz Eduardo Barreto Martins; Sérgio Augusto Cunha; Claudio Alexandre Gobatto

    2010-01-01

    The present study investigated the relationship of critical force (Fcrit) with lactate threshold (LLNA) and the intensity corresponding to VO2max (iVO2max) in tethered swimming (TS), and their correlation with maximal performance in 400-m (V400) and 30-min (VT30) freestyle swimming (FS). Seven swimmers were submitted to a TS incremental test for the determination of LLNA and iVO2max. For the determination of Fcrit, the swimmers performed four exercises to exhaustion at intensities (F) corresp...

  3. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    Science.gov (United States)

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subcutaneous fluoxetine treatments increase escape motivation during the swim test while simultaneously lowering extracellular ACh in the NAc shell. Experiment 1: Fluoxetine (1.0 mM) infused unilaterally in the NAc shell for 40 min reduced extracellular ACh while simultaneously increasing swimming time. Experiment 2: Fluoxetine (0.2, 0.5, and 0.75 mM) infused bilaterally in the NAc shell on day 3 dose-dependently decreased immobility and increased the total escape attempts (swimming and climbing) compared with Ringer given on day 2. Experiment 3: Fluoxetine (0.5 mM) infused bilaterally in the NAc for 40 min did not affect activities in an open field. Experiment 4: Chronic systemic fluoxetine treatment decreased immobility scores and increased total escape attempt scores compared with control saline treatment. In all, 14 days after the initial swim test, basal extracellular ACh in the shell was still elevated in the saline-treated group, but not in the fluoxetine-treated group. In summary, these data suggest that one of the potential mechanisms by which fluoxetine alleviates behavioral depression in the forced swim test may be to suppress cholinergic activities in the NAc shell. PMID:21525864

  4. Swimming attendance during childhood and development of asthma: Meta-analysis.

    Science.gov (United States)

    Valeriani, Federica; Protano, Carmela; Vitali, Matteo; Romano Spica, Vincenzo

    2017-05-01

    The association between asthma and swimming pool attendance has not been demonstrated and currently there are conflicting results. In order to clarify the association between asthma diagnosis in children and swimming pool attendance, and to assess the consistency of the available epidemiological studies, we completed a literature analysis on the relationship between the exposure to disinfection by-products in indoor swimming pools during childhood and asthma diagnosis. Following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, a systematic review and meta-analysis was performed by searching MEDLINE via PubMed, TOXNET, and Scopus databases (from inception to 20 April 2015) using the key word "Asthma" together with "swimming pool", "disinfection by-products", "indoor air pollution" and "children". Inclusion criteria were: English language, a complete analytic study design involving a cohort of children (0-16 years), a well-defined definition of exposure, and the presence of data on effect and variance. Studies on in vivo, in vitro or professional and accidental exposure were excluded. After a screening process, seven reports (n = 5851 subjects) were included out of a total of 2928 references. The reported OR of the association between swimming pool attendance and asthma prevalence ranged from 0.58 to 2.30. The present meta-analysis failed to identify a significant difference in asthma development between children attending swimming pools and controls (OR, 1.084; 95% CI: 0.89-1.31). Swimming in childhood does not increase the likelihood of doctor-diagnosed asthma. Based on this meta-analysis review, the association of the disease with indoor pool attendance is still unclear. © 2016 Japan Pediatric Society.

  5. Feeding Partitioning among Tuna Taken in Surface and Mid-water ...

    African Journals Online (AJOL)

    Crustaceans were the almost exclusive food source of surface-swimming bigeye tuna, with the stomatopod (Natosquilla investigatoris) being the sole prey item recorded in this category. The diet of deep-swimming yellowfin tuna was balanced between epipelagic fish, crustaceans and cephalopods. Bigeye tuna fed ...

  6. Hydroacoustic measurement of swimming speed of North Sea saithe in the field

    DEFF Research Database (Denmark)

    Pedersen, Jan

    2001-01-01

    Saithe Pollachius virens, tracked diurnally with a split-beam echosounder. showed no relationship between size and swimming speed. The average and the median swimming speeds were 1.05 m s(-1) (+/- 0.09 m s (-1)) and 0.93 m a (-1). respectively. However. ping-to-ping speeds up to 3.34 m s (-1) were...... measured for 25-29 cm fish, whose swimming speeds were significantly higher at night (1.08 m s(-1)) than during the day (0.72 m s(- 1)). The high average swimming speed could be related to the: foraging or streaming part of the population and not to potential weakness of the methodology. However....... the uncertainty or target location increased with depth and resulted in calculated average swimming speeds of 0.15 m s(-1) even for a stationary target. With increasing swimming speed the average error decreased to Om s ' for speeds >0.34 m s(-1). Species identity was verified by trawling in a pelagic layer...

  7. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects

    Directory of Open Access Journals (Sweden)

    GILDA NEVES

    2017-08-01

    Full Text Available ABSTRACT Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.

  8. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects.

    Science.gov (United States)

    Neves, Gilda; Borsoi, Milene; Antonio, Camila B; Pranke, Mariana A; Betti, Andresa H; Rates, Stela M K

    2017-01-01

    Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.

  9. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  10. Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Mori, S.

    2009-01-01

    Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each with a s......Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each...... with a similar set of six eyes of four morphologically different types. We have examined how each of the four eye types influences the swim pacemaker. Multiple photoreceptor systems, three of the four eye types, plus the rhopalial neuropil, affect the swim pacemaker. The lower lens eye inhibits the pacemaker...... when stimulated and provokes a strong increase in the pacemaker frequency upon light-off. The upper lens eye, the pit eyes and the rhopalial neuropil all have close to the opposite effect. When these responses are compared with all-eye stimulations it is seen that some advanced integration must take...

  11. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii

    DEFF Research Database (Denmark)

    Casuso, Rafael A; Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J

    2017-01-01

    We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures...... on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate...

  12. Lip and tooth injuries at public swimming pools in Austria.

    Science.gov (United States)

    Lechner, Katharina; Connert, Thomas; Kühl, Sebastian; Filippi, Andreas

    2017-06-01

    There is an increased risk of orofacial injuries in swimming pool facilities. Nevertheless, only a few studies have addressed this issue. The aim of this study was to identify the frequency of lip and tooth injuries at public swimming pools in Austria. A further aim was to examine which gender and age groups were affected, where and why these injuries occurred, and whether pool attendants had sufficient knowledge of dental first-aid measures. A total of 764 pool attendants in Austria were contacted by telephone and 689 participated in the study (90.2%). The attendants were interviewed retrospectively about accident occurrences in 2014 by a standardized questionnaire. Responses to the provision of first aid and choice of storage medium for avulsed teeth were subsequently evaluated. The frequency of lip injuries was 19.0%, and tooth injuries were 11.3%. Male bathers (P < .05) and children under 12 years (P < .001) most frequently suffered injuries. The waterslide was the most common accident site. The most common cause of lip injuries was slipping on wet surfaces (39.0%), and for tooth injuries it was collisions with other persons or objects (each 28.1%). The pool attendants' responses were predominantly good or sufficient on first aid, with the exception of what storage medium to choose. Tooth rescue boxes were available in only 8.6% of all pool facilities. Orofacial injuries are a frequently occurring problem in swimming pool facilities. The pool attendants' knowledge on first-aid care of tooth injuries could still be improved. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Is Swimming Safe in Heart Failure? A Systematic Review.

    Science.gov (United States)

    Shah, Parin; Pellicori, Pierpaolo; Macnamara, Alexandra; Urbinati, Alessia; Clark, Andrew L

    It is not clear whether swimming is safe in patients with chronic heart failure. Ten studies examining the hemodynamic effects of acute water immersion (WI) (155 patients; average age 60 years; 86% male; mean left ventricular ejection fraction (LVEF) 29%) and 6 randomized controlled trials of rehabilitation comparing swimming with either medical treatment only (n = 3) or cycling (n = 1) or aerobic exercise (n = 2), (136 patients, average age 59 years; 84% male, mean LVEF 31%) were considered. In 7 studies of warm WI (30-35°C): heart rate (HR) fell (2% to -15%), and both cardiac output (CO) (7-37%) and stroke volume (SV) increased (13-41%). In 1 study of hot WI (41°C), systemic vascular resistance (SVR) fell (41%) and HR increased (33%). In 2 studies of cold WI (12-22°C), there were no consistent effects on HR and CO. Compared with medical management, swimming led to a greater increase in peak VO2 (7-14%) and 6 minute walk test (6MWT) (7-13%). Compared with cycle training, combined swimming and cycle training led to a greater reduction in resting HR (16%), a greater increase in resting SV (23%) and SVR (15%), but no changes in resting CO and a lesser increase in peak VO2 (6%). Compared with aerobic training, combined swimming and aerobic training lead to a reduction in resting HR (19%) and SVR (54%) and a greater increase in SV (34%), resting CO (28%), LVEF (9%), and 6MWT (70%). Although swimming appears to be safe, the studies conducted have been small, very heterogeneous, and inconclusive.

  14. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  15. Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors

    International Nuclear Information System (INIS)

    Tian, Ruixue; Hu, Shengliang; Wu, Lingling; Chang, Qing; Yang, Jinlong; Liu, Jun

    2014-01-01

    Highlights: • We develop a facile and green method to tailor surface groups. • Photoluminescence behaviors of carbon quantum dots are improved by tailoring their surface groups. • Highly luminescent efficiency is produced by amino-hydrothermal treatment of reduced carbon quantum dots. - Abstract: A facile and green method to tailor surface groups of carbon quantum dots (CQDs) is developed by hydrothermal treatment in an autoclave. The photoluminescence (PL) behaviors of CQDs depend on the types of surface groups. Highly efficient photoluminescence is obtained through amino-hydrothermal treatment of the CQDs reduced by NaBH 4 . The effects of surface groups on PL behavior are attributed to the degrees of energy band bending induced by surface groups

  16. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    Science.gov (United States)

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (pswimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  17. Benefits and Enjoyment of a Swimming Intervention for Youth With Cerebral Palsy: An RCT Study.

    Science.gov (United States)

    Declerck, Marlies; Verheul, Martine; Daly, Daniel; Sanders, Ross

    2016-01-01

    To investigate enjoyment and specific benefits of a swimming intervention for youth with cerebral palsy (CP). Fourteen youth with CP (aged 7 to 17 years, Gross Motor Function Classification System levels I to III) were randomly assigned to control and swimming groups. Walking ability, swimming skills, fatigue, and pain were assessed at baseline, after a 10-week swimming intervention (2/week, 40-50 minutes) or control period, after a 5-week follow-up and, for the intervention group, after a 20-week follow-up period. The level of enjoyment of each swim-session was assessed. Levels of enjoyment were high. Walking and swimming skills improved significantly more in the swimming than in the control group (P = .043; P = .002, respectively), whereas fatigue and pain did not increase. After 20 weeks, gains in walking and swimming skills were retained (P = .017; P = .016, respectively). We recommend a swimming program for youth with CP to complement a physical therapy program.

  18. Behavioral changes in fish exposed to phytoestrogens

    International Nuclear Information System (INIS)

    Clotfelter, Ethan D.; Rodriguez, Alison C.

    2006-01-01

    We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, β-sitosterol, and the positive control 17β-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17β-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes. - Environmentally relevant concentrations of phytoestrogens reduce aggressive behavior in fish

  19. Mosquitofish (Gambusia affinis preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth.

    Directory of Open Access Journals (Sweden)

    Giovanni Polverino

    Full Text Available Mosquitofish (Gambusia affinis is an example of a freshwater fish species whose remarkable diffusion outside its native range has led to it being placed on the list of the world's hundred worst invasive alien species (International Union for Conservation of Nature. Here, we investigate mosquitofish shoaling tendency using a dichotomous choice test in which computer-animated images of their conspecifics are altered in color, aspect ratio, and swimming level in the water column. Pairs of virtual stimuli are systematically presented to focal subjects to evaluate their attractiveness and the effect on fish behavior. Mosquitofish respond differentially to some of these stimuli showing preference for conspecifics with enhanced yellow pigmentation while exhibiting highly varying locomotory patterns. Our results suggest that computer-animated images can be used to understand the factors that regulate the social dynamics of shoals of Gambusia affinis. Such knowledge may inform the design of control plans and open new avenues in conservation and protection of endangered animal species.

  20. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs

    Czech Academy of Sciences Publication Activity Database

    Robovská-Havelková, P.; Aerts, P.; Roček, Zbyněk; Přikryl, Tomáš; Fabre, A.-C.; Herrel, A.

    2014-01-01

    Roč. 217, č. 20 (2014), s. 3637-3644 ISSN 0022-0949 Institutional support: RVO:67985831 Keywords : Anura * kinematics * locomotion * swimming Subject RIV: EG - Zoology Impact factor: 2.897, year: 2014

  1. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  2. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida in Marine Turtles.

    Directory of Open Access Journals (Sweden)

    Francesc Domènech

    Full Text Available Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80% on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km-2 in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  3. Behavioral, neuroendocrine and neurochemical effects of the imidazoline I2 receptor selective ligand BU224 in naive rats and rats exposed to the stress of the forced swim test.

    Science.gov (United States)

    Finn, David P; Martí, Octavi; Harbuz, Michael S; Vallès, Astrid; Belda, Xavier; Márquez, Cristina; Jessop, David S; Lalies, Margaret D; Armario, Antonio; Nutt, David J; Hudson, Alan L

    2003-05-01

    There is evidence for alterations in imidazoline(2) (I(2)) receptor density in depressed patients. Selective I(2) receptor ligands modulate central monoamine levels and activate the hypothalamo-pituitary-adrenal (HPA) axis and may have potential as antidepressants. To study the behavioral effects of the selective I(2) receptor ligand BU224 in the rat forced swim test (FST) and its effects on the HPA axis and central monoaminergic responses. Rats received saline or BU224 (10 mg/kg IP) 24, 18 and 1 h prior to 15 min exposure to the FST. Saline- and BU224-treated non-stressed groups were included. Time spent immobile, struggling and swimming calmly was measured. Plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels 90 min post-BU224 were measured in addition to tissue levels of monoamines and metabolites in the frontal cortex, hippocampus and hypothalamus. Administration of BU224 significantly reduced immobility and increased mild swimming without affecting struggling. Exposure to the FST significantly increased plasma ACTH and corticosterone levels. BU224 administration also increased ACTH and potentiated the ACTH response to FST with no effect on corticosterone. BU224 administration significantly increased frontal cortex 5-hydroxytryptamine (5-HT) levels and decreased 5-HT turnover in the frontal cortex and hypothalamus of rats exposed to FST. In non-stressed rats, BU224 decreased 5-HT turnover in the hippocampus and hypothalamus and decreased norepinephrine turnover in the frontal cortex. The selective I(2) receptor ligand BU224 reduces immobility of rats in the FST, indicative of antidepressant-like activity. This effect is accompanied by alterations in HPA axis and central monoaminergic activity.

  4. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    OpenAIRE

    Srinivas Sangisapu; Sandeep Karunakaran; Ashok Kumar Pillai

    2017-01-01

    BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF). This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU) and Double Density Gradient Swim-up (DDGSU) are two most accepted methods. Cochrane systematic review (2007) finds no clear benefit of one method over the other in Intrauterine Insemination (IUI). Systematic review on effective...

  5. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  6. Octopus-inspired multi-arm robotic swimming.

    Science.gov (United States)

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-05-13

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.

  7. Changes with age in swimming performance of X-irradiated mice

    International Nuclear Information System (INIS)

    Norimura, T.; Yoshikawa, I.; Okajima, S.

    1980-01-01

    The time required to swim 250 cm was determined once weekly for the entire life of fifteen pairs of male dd/K mice. The irradiated group was exposed to a single 224 rad of X-rays at 20 weeks of age. Median survival time (ST 50 ) for the control was 88.9 weeks and that for the irradiated group was 77.4 weeks, and both regression lines relating to death rate and age were parallel. The swimming ability of control mice began to decrease when the mice were 40 weeks of age, after which there was a gradual reduction with age at 0.00646/day. In the irradiated group, the swimming ability decreased from seven weeks after irradiation. The time of 50% reduction of swimming speed (TRS 50 ) for the control was 78.9 weeks and that for the irradiated group was 66.3 weeks, and the slopes of the regression lines relating reduction rate and age were similar. Differences between ST 50 and TRS 50 were 10 weeks in the control and 11 weeks in the irradiated group, respectively. These results indicate that there is no basic difference in the reduction in swimming ability between control and irradiated mice. The X-irradiation may simply mean that the reduction in the swimming ability is displaced to an earlier time with no alteration in the rate of reduction, and that the earlier appearance in the irradiated group is related to premature aging as induced by irradiation. (author)

  8. Surface Behavior of Rhodamin and Tartrazine on Silica-Cellulose Sol-Gel Surfaces by Thin Layer Elution

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2016-05-01

    Full Text Available Physical and chemical interactions are the principles for different types of separation systems as the equillibrium dynamics on surface plays a key-role. Surface modification is a way for selective separation at interfaces. Moreover, synthesis of gel silica by a sol-gel method is preferred due to the homogeneity and surface feature easily controlled. Cellulose can be added in situ to modified the silica features during the process. Further application for to study interaction of rhodamin and tartrazine in its surface and their solubilities in mobile phase explains the possibility for their separation. This paper devoted to evaluate the surface behavior in term of adsorption and desorption of tartrazine and rhodamin on silica-cellulose thin layer in different mobile phase. Some carrier liquids applied such as methanol, acetone, n-hexane and chloroform. The result proves tartrazine and rhodamin is separated and have different behavior in different mobile phase. The retardation factors (Rf of the mixtures suggest complexity behavior on silica-cellulose surface.

  9. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  10. Optimization of heat pump system in indoor swimming pool using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Shing; Kung, Chung-Kuan [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei (China)

    2008-09-15

    When it comes to indoor swimming pool facilities, a large amount of energy is required to heat up low-temperature outdoor air before it is being introduced indoors to maintain indoor humidity. Since water is evaporated from the pool surface, the exhausted air contains more water and specific enthalpy. In response to this indoor air, heat pump is generally used in heat recovery for indoor swimming pools. To reduce the cost in energy consumption, this paper utilizes particle swarm algorithm to optimize the design of heat pump system. The optimized parameters include continuous parameters and discrete parameters. The former consists of outdoor air mass flow and heat conductance of heat exchangers; the latter comprises compressor type and boiler type. In a case study, life cycle energy cost is considered as an objective function. In this regard, the optimized outdoor air flow and the optimized design for heating system can be deduced by using particle swarm algorithm. (author)

  11. Cryptosporidium and Giardia in Swimming Pools, Atlanta, Georgia

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dan Rutz speaks with Dr. Joan Shields, a guest researcher with the Healthy Swimming Program at CDC, about an article in June 2008 issue of Emerging Infectious Diseases reporting on the results of a test of swimming pools in the greater Atlanta, Georgia area. Dr. Shields tested 160 pools in metro Atlanta last year for Cryptosporidium and Giardia. These germs cause most recreational water associated outbreaks.

  12. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    Science.gov (United States)

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  14. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    OpenAIRE

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subc...

  15. Intracyclic Velocity Variation of the Center of Mass and Hip in Breaststroke Swimming With Maximal Intensity.

    Science.gov (United States)

    Gourgoulis, Vassilios; Koulexidis, Stylianos; Gketzenis, Panagiotis; Tzouras, Grigoris

    2018-03-01

    Gourgoulis, V, Koulexidis, S, Gketzenis, P, and Tzouras, G. Intra-cyclic velocity variation of the center of mass and hip in breaststroke swimming with maximal intensity. J Strength Cond Res 32(3): 830-840, 2018-The aim of the study was to compare the center of mass (CM) and hip (HIP) intracyclic velocity variation in breaststroke swimming using 3-dimensional kinematic analysis. Nine male breaststrokes, of moderate performance level, swam 25-m breaststroke with maximal intensity, and their movements were recorded, both under and above the water surface, using 8 digital cameras. Their CM and HIP velocities and their intracyclic variations were estimated after manual digitization of 28 selected points on the body in a complete arm and leg breaststroke cycle. Paired sample t-tests or Wilcoxon tests, when the assumption of normality was broken, were used for statistical analyses. In both, CM and HIP velocity-time curves, the results revealed a similar pattern of 2 clear peaks associated with the leg and arm propulsive phases and 2 minimal velocities that corresponded to the arm and leg recovery phase and the lag time between the leg and arm propulsive phases, respectively. However, despite this similar general pattern, the HIP minimum resultant velocity was significantly lower, whereas its maximal value was significantly greater, than the corresponding CM values. Consequently, the HIP intracyclic swimming velocity fluctuation significantly overestimates the actual variation of the swimmer's velocity in breaststroke swimming.

  16. Do swimming goggles limit microbial contamination of contact lenses?

    Science.gov (United States)

    Wu, Yvonne T; Tran, Jess; Truong, Michelle; Harmis, Najat; Zhu, Hua; Stapleton, Fiona

    2011-04-01

    Wearing goggles over contact lenses while swimming is often recommended by eye care professionals. Limited data are available to assess this recommendation. The purpose of this study was to examine whether wearing goggles while swimming limits bacterial colonization on contact lenses and whether the type of lens worn affects contamination rates. Twenty-three subjects underwent two swimming sessions at an ocean (salt water) pool (Maroubra beach Rock Pool, Sydney, Australia). Silicone hydrogel (Ciba Focus Night and Day) or hydrogel lenses (Ciba Focus Daily) were inserted into subjects' eyes before 30 min of swimming sessions, and subjects used modified goggles to mimic goggled and non-goggled conditions. At the end of each session, lenses were collected for microbial investigation. Viable bacterial colonies were classified as gram positive and gram negative and enumerated. The level of bacterial colonization on contact lenses between goggled and non-goggled conditions and between the two lens materials were compared. The range of colony forming units recovered from goggled lenses were 0 to 930 compared with 0 to 1210 on non-goggled lenses. The majority of subjects (16/23) had more microorganisms in the non-goggled condition than when wearing goggles (p = 0.03). Gram negative organisms were found in three non-goggled lenses. No significant difference was shown in the number of bacteria isolated from silicone hydrogel and hydrogel lenses (p > 0.6) irrespective of wearing goggles. Water samples had consistently higher numbers of bacterial counts than those adhered to the lenses; however, no association was found between the number of bacteria in the water sample and those found on the contact lenses. Consistently, fewer bacterial colonies were found on the goggled contact lens, thus suggesting goggles offer some protection against bacterial colonization of contact lenses while swimming. These data would support the recommendation encouraging lens wearers to use goggles

  17. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    Science.gov (United States)

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  18. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  19. Dioxin inhibition of swim bladder development in zebrafish: is it secondary to heart failure?

    Science.gov (United States)

    Yue, Monica S; Peterson, Richard E; Heideman, Warren

    2015-05-01

    The swim bladder is a gas-filled organ that is used for regulating buoyancy and is essential for survival in most teleost species. In zebrafish, swim bladder development begins during embryogenesis and inflation occurs within 5 days post fertilization (dpf). Embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) before 96 h post fertilization (hpf) developed swim bladders normally until the growth/elongation phase, at which point growth was arrested. It is known that TCDD exposure causes heart malformations that lead to heart failure in zebrafish larvae, and that blood circulation is a key factor in normal development of the swim bladder. The adverse effects of TCDD exposure on the heart occur during the same period of time that swim bladder development and growth occurs. Based on this coincident timing, and the dependence of swim bladder development on proper circulatory development, we hypothesized that the adverse effects of TCDD on swim bladder development were secondary to heart failure. We compared swim bladder development in TCDD-exposed embryos to: (1) silent heart morphants, which lack cardiac contractility, and (2) transiently transgenic cmlc2:caAHR-2AtRFP embryos, which mimic TCDD-induced heart failure via heart-specific, constitutive activation of AHR signaling. Both of these treatment groups, which were not exposed to TCDD, developed hypoplastic swim bladders of comparable size and morphology to those found in TCDD-exposed embryos. Furthermore, in all treatment groups swim bladder development was arrested during the growth/elongation phase. Together, these findings support a potential role for heart failure in the inhibition of swim bladder development caused by TCDD. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)

    DEFF Research Database (Denmark)

    Steinhausen, Maria Faldborg; Steffensen, John Fleng; Andersen, Niels Gerner

    2010-01-01

    Oxygen consumption ( ) was measured for gilthead seabream (Sparus aurata) during spontaneous and forced activities. During spontaneous activity, the swimming pattern was analysed for the effect on   on the average speed (U), turning rate (¿) and change in speed (¿U). All swimming characteristics...... and   during forced activity was also established. During spontaneous activity, 2.5 times more energy was used than in forced swimming at a speed of 0.5 BL s-1. This indicates that spontaneous swimming costs may be considerably higher compared with those of a fixed swimming speed. However, comparing...... contributed significantly to the source of spontaneous swimming costs, and the models explained up to 58% of the variation in   Prediction of   of fish in field studies can thereby be improved if changes in speed and direction are determined in addition to swimming speed. A relationship between swimming speed...

  1. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation

    Directory of Open Access Journals (Sweden)

    Mark eMeekan

    2015-09-01

    Full Text Available The largest animals in the oceans eat prey that are orders of magnitude smaller than themselves, implying strong selection for cost-effective foraging to meet their energy demands. Whale sharks (Rhincodon typus may be especially challenged by warm seas that elevate their metabolism and contain sparse prey resources. Using a combination of biologging and satellite tagging, we show that whale sharks use four strategies to save energy and improve foraging efficiency: 1 fixed, low power swimming, 2 constant low speed swimming, 3 gliding and 4 asymmetrical diving. These strategies increase foraging efficiency by 22 – 32% relative to swimming horizontally and resolve the energy-budget paradox of whale sharks. However, sharks in the open ocean must access food resources that reside in relatively cold waters (up to 20oC cooler than the surface at depths of 250-500 m during the daytime, where long, slow gliding descents, continuous ram ventilation of the gills and filter-feeding could rapidly cool the circulating blood and body tissues. We suggest that whale sharks may overcome this problem through their large size and a specialized body plan that isolates highly vascularized red muscle on the dorsal surface, allowing heat to be retained near the centre of the body within a massive core of white muscle. This could allow a warm-adapted species to maintain enhanced function of organs and sensory systems while exploiting food resources in deep, cool water.

  2. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    Science.gov (United States)

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins were significantly increased in the model group (P Fluoxetine and Fluoxetine + SP 600125 groups, the expression levels of hippocampal MKK 4 and MKK 7 proteins in the Fluoxetine + SP 600125 group, and those of p-JNK protein in the acupuncture, acupuncture + SP 600125, model + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups were considerably decreased (P Fluoxetine and Fluoxetine + SP 600125 groups in the

  3. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  4. Life cycle environmental implications of residential swimming pools.

    Science.gov (United States)

    Forrest, Nigel; Williams, Eric

    2010-07-15

    Ownership of private swimming pools in the U.S. grew 2 to 4% per annum from 1997 to 2007. The environmental implications of pool ownership are analyzed by hybrid life cycle assessment (LCA) for nine U.S. cities. An operational model is constructed estimating consumption of chemicals, water, and energy for a typical residential pool. The model incorporates geographical climatic variations and upstream water and energy use from electricity and water supply networks. Results vary considerably by city: a factor of 5-6 for both water and energy use. Water use is driven by aridness and length of the swimming season, while energy use is mainly driven by length of the swimming season. Water and energy impacts of pools are significant, particularly in arid climates. In Phoenix for example pools account for 22% and 13% of a household's electricity and water use, respectively. Measures to reduce water and energy use in pools such as optimizing the pump schedule and covering the pool in winter can realize greater savings than many common household efficiency improvements. Private versus community pools are also compared. Community pools in Phoenix use 60% less swimming pool water and energy per household than subdivisions without community pools.

  5. Behavioral laterality in Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis).

    Science.gov (United States)

    Platto, Sara; Zhang, C; Pine, Matthew K; Feng, W K; Yang, L G; Irwin, A; Wang, D

    2017-07-01

    The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is a critically endangered species with less than 1000 individuals expected to be left in the wild. While many studies have been conducted on laterality among several cetacean species, no studies investigating the Yangtze finless porpoise have been conducted. Using event sampling methods, several behaviors such as flipper-body touching, object touching, barrel-rolls, side swimming, and swimming direction were recorded from six captive porpoises (three males and three females). Analyses of 360 observations recorded over two months revealed that, at group level, porpoises showed laterality in swimming behaviors. Porpoises swam preferentially with their right pectoral fin upward and their left pectoral fin downward with a clockwise swimming direction and also displayed a consistent bias for a counterclockwise barrel-roll direction. No significant differences were reported for flipper use either during the interaction with conspecifics or with objects. The results from the current study provide novel insight into the cerebral asymmetry in a species previously ignored within the literature, thus improving our understanding on the extent of laterality in cetaceans and on the evolutionary history of hemispheric laterality for vertebrates in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  7. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  8. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  9. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers.

    Science.gov (United States)

    Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Lätt, Evelin; Purge, Priit; Leppik, Aire; Jürimäe, Toivo

    2007-02-01

    The purpose of this study was to examine the influence of the energy cost of swimming, body composition, and technical parameters on swimming performance in young swimmers. Twenty-nine swimmers, 15 prepubertal (11.9 +/- 0.3 years; Tanner Stages 1-2) and 14 pubertal (14.3 +/- 1.4 years; Tanner Stages 3-4) boys participated in the study. The energy cost of swimming (Cs) and stroking parameters were assessed over maximal 400-m front-crawl swimming in a 25-m swimming pool. The backward extrapolation technique was used to evaluate peak oxygen consumption (VO2peak). A stroke index (SI; m2 . s(-1) . cycles(-1)) was calculated by multiplying the swimming speed by the stroke length. VO2peak results were compared with VO2peak test in the laboratory (bicycle, 2.86 +/- 0.74 L/min, vs. in water, 2.53 +/- 0.50 L/min; R2 = .713; p = .0001). Stepwise-regression analyses revealed that SI (R2 = .898), in-water VO2peak (R2 = .358), and arm span (R2 = .454) were the best predictors of swimming performance. The backward-extrapolation method could be used to assess VO2peak in young swimmers. SI, arm span, and VO2peak appear to be the major determinants of front-crawl swimming performance in young swimmers.

  10. EFFICIENCY OF DIFFERENT METHODOLOGICAL MODELS OF SWIMMING PRACTICE WITH PRE-SCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2006-06-01

    Full Text Available On the sample of 68 preschool boys and girls aged five to six years two models of swimming teaching realised with purpose to research their efficacity. lt was finded before that they were nonswimers. Testers deviated in two similar groups by basic motor and cognitive abilities. First model of swim teaching, signed as time deviated learning, was realised at the cloused swimming pool with 36 testers which exercised twice of week during three months. Second model of swim teaching, signed as time concentrated learning, was realised as a two-week course with 32 testers which exercised at the sea side. Two control assessment of swimming level knowledge were made during experimental process, and a final assesment was made at the and of the experiment Scaling tehnicque was used for assesing. An analysis of the obtained data resulted in the following conclusions: the both models of swim teaching were efficacity and majority of children accepted swim knovvledge. Results of time concentrated model learning were statistical significance beter then time deviated learning only in the control assesments, but the svviming level knowledge was not different in the final assment. That conclusion shows that model of time concentrated learning has more efficacity in the begining, and model of time deviated learning in the later period of teaching

  11. Critical stroke rate as a parameter for evaluation in swimming

    Directory of Open Access Journals (Sweden)

    Marcos Franken

    2013-12-01

    Full Text Available The purpose of this study was to investigate the critical stroke rate (CSR compared to the average stroke rate (SR when swimming at the critical speed (CS. Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105% in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.

  12. Geometric Aspects of Force Controllability for a Swimming Model

    International Nuclear Information System (INIS)

    Khapalov, A. Y.

    2008-01-01

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids

  13. Butterfly Sprint Swimming Technique, Analysis of Somatic and Spatial-Temporal Coordination Variables

    Directory of Open Access Journals (Sweden)

    Strzała Marek

    2017-12-01

    Full Text Available The aim of this study was to investigate somatic properties and force production of leg extensor muscles measured in the countermovement jump test (CMJ, as well as to analyse kinematic variables of sprint surface butterfly swimming. Thirty-four male competitive swimmers were recruited with an average age of 19.3 ± 1.83 years. Their average body height (BH was 183.7 ± 5.93 cm, body fat content 10.8 ± 2.64% and body mass (BM 78.3 ± 5.0 kg. Length measurements of particular body segments were taken and a counter movement jump (CMJ as well as an all-out 50 m butterfly speed test were completed. The underwater movements of the swimmers’ bodies were recorded with a digital camera providing side-shots. We registered a significant relationship between body mass (r = 0.46, lean body mass (r = 0.48 and sprint surface butterfly swimming (VSBF. The anaerobic power measured in the CMJ test, total body length (TBL as well as upper and lower extremity length indices did not influence swimming speed significantly. The temporal entry-kick index (the time ratio between the first kick and arm entry significantly influenced VSBF (r = -0.45. Similarly, medium power of the coefficient was indicated between a stroke rate kinematics (SR, b duration of the first leg kick (LP1, c air phase duration of arm recovery (Fly-arm, and VSBF (r = 0.40; r = 0.40 and r = 0.41, respectively. The entry-kick temporal index showed that, in the butterfly cycle, an appropriately early executed initial kick when compared to arm entry was associated with a longer arm propulsion phase, which in turn was associated with minimizing resistive gliding phases and enabled relatively longer and less resistive air arm recovery (higher value of the fly-arm index. The higher value of SR kinematic was another important element of the best butterfly results in this study.

  14. Sex differences in elite swimming with advanced age are less than marathon running.

    Science.gov (United States)

    Senefeld, J; Joyner, M J; Stevens, A; Hunter, S K

    2016-01-01

    The sex difference in marathon performance increases with finishing place and age of the runner but whether this occurs among swimmers is unknown. The purpose was to compare sex differences in swimming velocity across world record place (1st-10th), age group (25-89 years), and event distance. We also compared sex differences between freestyle swimming and marathon running. The world's top 10 swimming times of both sexes for World Championship freestyle stroke, backstroke, breaststroke, and butterfly events and the world's top 10 marathon times in 5-year age groups were obtained. Men were faster than women for freestyle (12.4 ± 4.2%), backstroke (12.8 ± 3.0%), and breaststroke (14.5 ± 3.2%), with the greatest sex differences for butterfly (16.7 ± 5.5%). The sex difference in swimming velocity increased across world record place for freestyle (P swimming (P swimming increased with world record place and age, but was less than for marathon running. Collectively, these results suggest more depth in women's swimming than marathon running. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    Science.gov (United States)

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  16. Spiral swimming behavior due to cranial and vertebral lesions associated with Cytophaga psychrophila infections in salmonid fishes

    Science.gov (United States)

    Kent, M.L.; Groff, J.M.; Morrison, J.K.; Yasutake, W.T.; Holt, R.A.

    1989-01-01

    C. psychrophila infections of the cranium and anterior vertebrae in salmonid fishes were associated with ataxia, spiral swimming along the axis of the fish, and death. The syndrome was observed in 2-10% of underyearling coho salmon Oncorhynchus kisutch, rainbow troutSalmo gairdneri, and steelhead trout S. gairdneri at several private, state, and federal hatcheries in Washington and Oregon, USA, between 1963 and 1987. Affected fish did not recover and ultimately died. Histological examination consistently revealed subacute to chronic periostitis, osteitis, meningitis, and ganglioneuritis. Inflammation and periosteal proliferation of the anterior vertebrae at the junction of the vertebral column with the cranium with extension into the cranial case was a consistent feature. The adjacent nervous tissue, particularly the medulla, was often compressed by the proliferative lesion, and this may have caused the ataxia. Though bacteria were seldom observed in these lesions. C. psychrophilawas isolated in culture from the cranial cavity of all affected fish that were tested. Epidemiological observations suggested that this bacterium is the causative agent because the spiral swimming behaviour and lesions were observed only in populations that had recovered from acute C. psychrophila infections.

  17. Aquatic Instructors' Beliefs Toward Inclusion: The Theory of Planned Behavior.

    Science.gov (United States)

    Conatser, Phillip; Block, Martin; Gansneder, Bruce

    2002-04-01

    The purpose was to (a) examine aquatic instructors' beliefs (female, n = 82; male, n = 29) about teaching swimming to individuals with disabilities in inclusive settings and (b) test the theory of planned behavior model (Ajzen, 1985, 1988, 2001). Aquatic instructors from 25 states representing 122 cities across the U.S. participated in this study. The instrument, named Aquatic Instructors' Beliefs Toward Inclusion (AIBTI), was an extended version of the Physical Educators' Attitudes Toward Teaching Individuals with Disabilities- Swim (Conatser, Block, & Lepore, 2000). A correlated t test showed aquatic instructors' beliefs (attitudes toward the behavior, normative beliefs, perceived behavioral control, intention, behavior) were significantly more favorable toward teaching aquatics to individuals with mild disabilities than individuals with severe disabilities. Stepwise multiple regression showed perceived behavioral control and attitude significantly predicted intention, and intention predicted instructors' inclusive behavior for both disability groups. Further, results indicated the theory of planned behavior predicts aquatic instructors' behavior better than the theory of reasoned action.

  18. Impaired swim bladder inflation in early-life stage fathead ...

    Science.gov (United States)

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  19. Effect of wearing clothes on oxygen uptake and ratings of perceived exertion while swimming.

    Science.gov (United States)

    Choi, S W; Kurokawa, T; Ebisu, Y; Kikkawa, K; Shiokawa, M; Yamasaki, M

    2000-07-01

    For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.

  20. Disinfection by-product formation of UV treated swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    Water samples from 3 indoor swimming pool facilities were tested to evaluate UV-induced effects on swimming pool water chemistry. Concentration change of several DBPs was investigated in experiments including medium pressure UV treatment with and without chlorine and post-UV chlorination. Post-UV...

  1. Applying physiological principles and assessment techniques to swimming the English Channel. A case study.

    Science.gov (United States)

    Acevedo, E O; Meyers, M C; Hayman, M; Haskin, J

    1997-03-01

    This study presents the use of physiological principles and assessment techniques in addressing four objectives that can enhance a swimmer's likelihood of successfully swimming the English Channel. The four objective were: (1) to prescribe training intensities and determine ideal swimming pace; (2) to determine the amount of insulation needed, relative to heat produced, to diminish the likelihood of the swimmer suffering from hypothermia; (3) to calculate the caloric expenditure for the swim and the necessary glucose replacement required to prevent glycogen depletion; and (4) to determine the rate of acclimatization to cold water (15.56 C/60 F). The subject participated in several pool swimming data collection sessions including a tethered swim incremental protocol to determine peak oxygen consumption and onset of lactate accumulation and several steady state swims to determine ideal swimming pace at 4.0 mM/L of lactate. Additionally, these swims provided information on oxygen consumption, which in combination with ultrasound assessment of subcutaneous fat was used to assess heat production and insulation capabilities. Finally, the subject participated in 18 cold water immersions to document acclimatization rate. The data demonstrated the high fitness level of this subject and indicated that at a stroke rate of 63 stokes/min, HR was 130 heats/min and lactate was 4 mM/L. At this swimming pace the swimmer would need to consume 470 kcal of glucose/hr. In addition, the energy produced at this swim pace was 13.25 kcal/min while the energy lost at the present subcutaneous fat quantity was 13.40 kcal/min, requiring a fat weight gain of 6,363.03 g (13.88 lbs) to resist heat loss. Finally, the data from the cold water immersions suggested that acclimatization occurred following two weeks of immersions. There results were provided to the swimmer and utilized in making decisions in preparation for the swim.

  2. Swimming versus swinging effects in spacetime

    International Nuclear Information System (INIS)

    Gueron, Eduardo; Maia, Clovis A. S.; Matsas, George E. A.

    2006-01-01

    Wisdom has recently unveiled a new relativistic effect, called 'spacetime swimming', where quasirigid free bodies in curved spacetimes can 'speed up', 'slow down' or 'deviate' their falls by performing local cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a nonrelativistic related one, named here 'space swinging', where the fall is altered through nonlocal cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large redshift regions

  3. Impaired swimming performance of acid-exposed Arctic charr, Salvelinus alpinus L

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, L.A. (North/South Consultants Inc., Winnipeg, MB (Canada)); Scherer, E. (Dept. of Fisheries and Oceans, Freshwater Inst. Science Lab., Winnipeg, MB (Canada))

    1988-01-01

    Effects of increased ambient acidity are of particular interest, as the formation of metabolic and respiratory acids and acceleration of branchial ion loss during vigorous swimming duplicates or compounds effects of exposure to environmental acidity. Three year old Arctic charr (Salvelinus alpinus L.) were exposed to five levels of acidity between pH 6 and pH 3.8. Swimming performance as determined by critical swimming speeds was 67.5 cm {center dot} s{sup -1} or 4.4 body lengths per second for untreated fish (pH 7.8). Performance declined sharply below pH 4.5; at pH 3.8 it was reduced by 35% after 7 days of exposure. Tailbeat frequencies and ventilation rates showed no dose-response effects. This would support the assumption that afferent and efferent neuromuscular functions may have remained unimpaired under increased ambient acidity so that the stimulus of directed water current continued to elicit forced swimming, causing (forcing) the fish to use the entire scope for activity available at the various pH levels. At swimming speeds between 20 and 50 cm {center dot} s{sup -1}, ventilation rates at all levels of acidity were higher than at the control level. Based on this, spontaneous, i.e., non-forced swimming activity may show a lower response threshold. 19 refs., 3 figs., 1 tab.

  4. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  5. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic

  6. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  7. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    Science.gov (United States)

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  9. Management of developing swimming performance in National Paralympic Committee of Indonesia

    Directory of Open Access Journals (Sweden)

    Nonik Rahmawati

    2018-05-01

    Full Text Available The main objective of this study is to understand and analyze structural organization of NPC (National Paralympic Committee of Indonesia on managing swimming performance,recruitment system, infrastructure management, funding management and implementation of the exercise management on managing swimming performance. This study was conducted at Head Office of NPC Indonesia and Kartasura Swimming Pool, Central Java Province. This studyis made in qualitative manner and presented in descriptive approach. The data collection is conducted by doing observation, document analysis, and interviews. The results of the management of developing swimming performance in NPC (National Paralympic Committee of Indonesia are summarized as follows: 1 there are general chairman, the head of the achievement division, the head of the sports department, coach manager and then directed to the coach coordinator and coach’s assistant in the organizational structure 2 recruitment of the organization is held by choosing people who concerned about NPC of Indonesia, recruitment of coach is held without any special tests, which is selected by: giving priority to athletes who have ever won medals and have experienced in coaching, while recruitment of athletes is held by using special test by NPC of Indonesia, 3 facilities, in the form of swimming’s support tools, are given gradually by Ministry of Youth and Sports Affairsby submitting proposals. Meanwhile, facility such as swimming pool still depends on renting Kartasura Swimming Pool, 4 the funding is obtained from Ministry of Youth and Sports Affairs without any sponsorship, 5 training program is held by giving suitable program in general preparation, special preparation, pre match, and also considering athletes’ physical condition, technique, and mental status. Training program can be developed according to the condition of each athlete. Based on the analysis, it can be concluded that management of developing swimming

  10. IMMEDIATE EFFECTS OF DEEP TRUNK MUSCLE TRAINING ON SWIMMING START PERFORMANCE.

    Science.gov (United States)

    Iizuka, Satoshi; Imai, Atsushi; Koizumi, Keisuke; Okuno, Keisuke; Kaneoka, Koji

    2016-12-01

    In recent years, deep trunk muscle training has been adopted in various sports, including swimming. This is performed both in everyday training and as part of the warm-up routine before competitive races. It is suggested that trunk stabilization exercises are effective in preventing injury, and aid in improving performance. However, conclusive evidence of the same is yet to be obtained. The time of start phase of swimming is a factor that can significantly influence competition performance in a swimming race. If trunk stabilization exercises can provide instantaneous trunk stability, it is expected that they will lead to performance improvements in the start phase of swimming. The purpose of this study was to investigate the immediate effect of trunk stabilization exercises on the start phase in swimming. Intervention study. Nine elite male swimmers (mean age 20.2 ± 1.0 years; height 174.4 ± 3.5 cm; weight 68.9 ± 4.1 kg) performed the swimming start movement. The measurement variables studied included flying distance, and the time and velocity of subjects at hands' entry and on reaching five meters. Measurements were taken in trials immediately before and after the trunk stabilization exercises. A comparison between pre- and post-exercise measurements was assessed. The time to reach five meters (T 5m ) decreased significantly after trunk stabilization exercises, by 0.019 s (p = 0.02). Velocity at entry (V entry ) did not demonstrate significant change, while velocity at five meters (V 5m ) increased significantly after the exercises (p = 0.023). In addition, the speed reduction rate calculated from V entry and V 5m significantly decreased by 5.17% after the intervention (p = 0.036). Trunk stabilization exercises may help reduce the time from start to five meters in the start phase in swimming. The results support the hypothesis that these exercises may improve swimming performance. Level 3b.

  11. Swimming direction reversal of flagella through ciliary motion of mastigonemes

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; den Toonder, J.M.J.; Onck, P. R.; Colin, S.; Morini, G.L.

    Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which

  12. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  13. Comparison of behaviors for detection of heritable mutations.

    Science.gov (United States)

    Ficsor, G; Goldner, L; Panda, B B

    1988-01-01

    Groups of five male HA (ICR) mice were injected intraperitoneally with 60, 150, 300, or 600 mg/kg body weight of ethyl methanesulfonate (EMS) or with saline vehicle. Each male was mated to two untreated females at 2 and 5 weeks after treatment. The two successive matings utilized sperm derived from post- and pre-meiotic germ cells, respectively. Progeny were evaluated for litter size, body weight, negative geotactic response, swimming patterns, limb use while swimming, water escape time, and open-field motor coordination activity. Body weight, geotactic response, limb use, and open-field behavior test results demonstrated that EMS causes heritable behavior mutations in both post- and pre-meiotic germ cells. Among the tests that showed inherited differences between control and treated groups, the computer-monitored open-field behavior test was the most definitive.

  14. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or

  15. Three-dimensional simulation of pseudopod-driven swimming of amoeboid cells

    Science.gov (United States)

    Campbell, Eric; Bagchi, Prosenjit

    2016-11-01

    Pseudopod-driven locomotion is common in eukaryotic cells, such as amoeba, neutrophils, and cancer cells. Pseudopods are protrusions of the cell body that grow, bifurcate, and retract. Due to the dynamic nature of pseudopods, the shape of a motile cell constantly changes. The actin-myosin protein dynamics is a likely mechanism for pseudopod growth. Existing theoretical models often focus on the acto-myosin dynamics, and not the whole cell shape dynamics. Here we present a full 3D simulation of pseudopod-driven motility by coupling a surface-bound reaction-diffusion (RD) model for the acto-myosin dynamics, a continuum model for the cell membrane deformation, and flow of the cytoplasmic and extracellular fluids. The whole cell is represented as a viscous fluid surrounded by a membrane. A finite-element method is used to solve the membrane deformation, and the RD model on the deforming membrane, while a finite-difference/spectral method is used to solve the flow fields inside and outside the cell. The fluid flow and cell deformation are coupled by the immersed-boundary method. The model predicts pseudopod growth, bifurcation, and retraction as observed for a swimming amoeba. The work provides insights on the role of membrane stiffness and cytoplasmic viscosity on amoeboid swimming. Funded by NSF CBET 1438255.

  16. EFFECTS OF DISTANCE SPECIALIZATION ON THE BACKSTROKE SWIMMING KINEMATICS

    Directory of Open Access Journals (Sweden)

    Cortesi Matteo

    2012-09-01

    Full Text Available The purpose of the present study was to investigate different biomechanical variables of backstroke technique in swimmers specialized in different distance events, in order to investigate the capacity to modify the timing of the arm stroke when changing the swimming velocity from sub-maximal to maximal. Two 25-m backstroke trials respectively at 70% of maximum velocity (V70 and at 100% of maximum velocity (Vmax were performed by 9 200-m distance swimmers and 9 50-m distance swimmers. Swimming velocity, stroke length, stroke rate, duration of different phases of the arm stroke and selected kinematic variables were assessed in both cases. In the 50-m distance swimmers, the duration of the propulsive phase at Vmax, expressed as a percentage of the duration of the total underwater arm stroke, increased significantly (p = 0.001 with increasing swimming velocity. Specifically, both the pull and push phases were fundamental in the increase of duration of the propulsive phase. When compared to 200-m specialists, 50-m distance swimmers seem to be more able to modify their arm stroke phases duration when increasing the swimming velocity in backstroke

  17. Unsteady computational fluid dynamics in front crawl swimming.

    Science.gov (United States)

    Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent

    2017-05-01

    The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.

  18. Water Browning Influences the Behavioral Effects of Ultraviolet Radiation on Zooplankton

    Directory of Open Access Journals (Sweden)

    Raoul Wolf

    2018-03-01

    Full Text Available In the last decades, limnic water bodies in the Northern hemisphere have experienced a noticeable browning, i.e., increasing levels of dissolved organic matter (DOM. While the effects on primary producers is usually considered negative (light attenuation, zooplankton is thought to benefit from increased DOM, which absorbs harmful ultraviolet radiation (UVR. However, behavioral alterations due to browning in zooplankton have not yet been studied. We investigated the effects of a DOM gradient, alone and in combination with UVR, on the swimming behavior of Daphnia magna. Making use of a computer-controlled imaging system, we repeatedly filmed individuals over 6 h and analyzed the video material to unravel effects on exploration behavior and other motility patterns. The results show that increasing DOM buffers the detrimental effects of UVR on swimming behavior. This is likely due to attenuation of UVR by DOM. Interestingly, DOM also raised the overall swimming activity independent of UVR exposure. Our findings highlight the importance of DOM in freshwater systems, not only because of its physico-chemical properties, but also due to its higher-level effects on zooplankton communities.

  19. Toward robust phase-locking in Melibe swim central pattern generator models

    Science.gov (United States)

    Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey

    2013-12-01

    Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.

  20. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  1. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Body dynamics and hydrodynamics of swimming larvae: a computational study

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, H.

    2012-01-01

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming

  3. Trends in swimming training for individual medley events

    OpenAIRE

    Brtník, Tomáš

    2013-01-01

    Title: Trends in swimming training for individual medley events Objectives: The aim of our study was to analyze performance and training for 200 and 400 m individual medley events and describe new trends in training for these swimming events Methods: Our research design was a case study. We were interested in training of three swimmers of elite performance in the 200 and 400 m individual medley events. To identify cases, we used the analysis of documents and literature, to a limited extent, t...

  4. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    Directory of Open Access Journals (Sweden)

    M. V. Shaptala

    2014-12-01

    Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.

  5. Repeated rat-forced swim test: reducing the number of animals to evaluate gradual effects of antidepressants.

    Science.gov (United States)

    Mezadri, T J; Batista, G M; Portes, A C; Marino-Neto, J; Lino-de-Oliveira, C

    2011-02-15

    The forced swim test (FST) is a pre-clinical test to short and long term treatment with antidepressant drugs (ADT), which requires between-subject designs. Herein a modified protocol of the FST using within-subject design (repeated rat-FST) was evaluated. Male Wistar rats were submitted to 15 min of swimming (Day 1: pretest) followed by three subsequent 5 min-swimming tests one week apart (Day 2: test, Day 7: retest 1, Day 14: retest 2). To determine the temporal and factorial characteristics of the variables scored in the repeated rat-FST, the protocol was carried out in untreated animals (E1). To validate the method, daily injections of Fluoxetine (FLX, 2.5mg/kg, i.p.) or saline were given over a 2-week period (E2). Tests and retests have been videotaped for further register of the latency, frequency and duration of behaviors. Over retesting the latency to immobility decreased whereas duration of immobility tended to increase. Factorial analysis revealed that the test, the retest 1 as well as the retest 2 have variables suitable to detection of antidepressant-like effects of ADT. Compared to saline, FLX chronically administrated reduced duration of immobility whereas increased duration of swimming in retest 2. The data suggest that repeated rat-FST detected the gradual increase in the efficacy of low doses of FLX over time. Therefore, repeated rat-FST seemed suitable to detect short and long term effects of selective serotonin reuptake inhibitors, or other ADT, thus reducing the number of animals used in the screenings of this type of compounds. © 2010 Elsevier B.V. All rights reserved.

  6. Feasibility of Serial Saliva Collection for Surveillance of Swimming-Associated Illness

    Science.gov (United States)

    BACKGROUND. The symptoms of many swimming-associated illnesses overlap, and clinical diagnoses often require serum or stool samples. Therefore, it has been difficult to determine the contributions of different etiologic agents to swimming-associated illness. OBJECTIVES. We collec...

  7. The influence of winter swimming on the rheological properties of blood.

    Science.gov (United States)

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  8. Sports Nutrition and Doping Factors in Synchronized Swimming: Parallel Analysis among Athletes and Coaches

    Science.gov (United States)

    Furjan Mandic, Gordana; Peric, Mia; Krzelj, Lucijana; Stankovic, Sladana; Zenic, Natasa

    2013-01-01

    Although nutrition and doping are important factors in sports, neither is often investigated in synchronized swimming (Synchro).This study aimed to define and compare Synchro athletes and their coaches on their knowledge of sports nutrition (KSN)and knowledge of doping (KD); and to study factors related to KSN and KD in each of these groups. Additionally, the KSNand KD questionnaires were evaluated for their reliability and validity. Altogether, 82 athletes (17.2 ± 1.92 years of age) and 28 coaches (30.8 ± 5.26 years of age) from Croatia and Serbia were included in the study, with a 99% response rate. The testand retest correlations were 0.94 and 0.90 for the KD and KSN,respectively. Subjects responded equally to 91% queries of the KD and 89% queries of the KSN. Although most of the coache sare highly educated, they declared self-education as the primary source of information about doping and sport-nutrition. Coaches scored higher than their athletes on both questionnaires which defined appropriate discriminative validity of the questionnaires. Variables such as age, sports experience and formal education are positively correlated to KSN and KD scores among athletes. The athletes who scored better on the KD are less prone to doping behavior in the future. These data reinforce the need for systematic educational programs on doping and sports nutrition in synchronized swimming. Special attention should be placed on younger athletes. Key Points Although most of the synchro coaches are highly educated, self-education is declared as the primary source of information about doping and sportnutrition. The knowledge of doping and doping-health hazards are negatively related to potential doping behavior in the future among synchronized swimmers The data reinforce the need for systematic educational programs on doping and sports nutrition in synchronized swimming. We advocate improving the knowledge of sports nutrition among older coaches and the knowledge of doping among

  9. Sports Nutrition and Doping Factors in Synchronized Swimming: Parallel Analysis among Athletes and Coaches.

    Science.gov (United States)

    Furjan Mandic, Gordana; Peric, Mia; Krzelj, Lucijana; Stankovic, Sladana; Zenic, Natasa

    2013-01-01

    Although nutrition and doping are important factors in sports, neither is often investigated in synchronized swimming (Synchro).This study aimed to define and compare Synchro athletes and their coaches on their knowledge of sports nutrition (KSN)and knowledge of doping (KD); and to study factors related to KSN and KD in each of these groups. Additionally, the KSNand KD questionnaires were evaluated for their reliability and validity. Altogether, 82 athletes (17.2 ± 1.92 years of age) and 28 coaches (30.8 ± 5.26 years of age) from Croatia and Serbia were included in the study, with a 99% response rate. The testand retest correlations were 0.94 and 0.90 for the KD and KSN,respectively. Subjects responded equally to 91% queries of the KD and 89% queries of the KSN. Although most of the coache sare highly educated, they declared self-education as the primary source of information about doping and sport-nutrition. Coaches scored higher than their athletes on both questionnaires which defined appropriate discriminative validity of the questionnaires. Variables such as age, sports experience and formal education are positively correlated to KSN and KD scores among athletes. The athletes who scored better on the KD are less prone to doping behavior in the future. These data reinforce the need for systematic educational programs on doping and sports nutrition in synchronized swimming. Special attention should be placed on younger athletes. Key PointsAlthough most of the synchro coaches are highly educated, self-education is declared as the primary source of information about doping and sportnutrition.The knowledge of doping and doping-health hazards are negatively related to potential doping behavior in the future among synchronized swimmersThe data reinforce the need for systematic educational programs on doping and sports nutrition in synchronized swimming.We advocate improving the knowledge of sports nutrition among older coaches and the knowledge of doping among

  10. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Science.gov (United States)

    2012-07-13

    ... 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River, NY in the vicinity of Newburgh, NY for the annual Newburgh Beacon Swim... Beacon Swim is an annual recurring event that has a permanent safety zone found at 33 CFR 165.160. The...

  11. Disposable swim diaper retention of Cryptosporidium-sized particles on human subjects in a recreational water setting.

    Science.gov (United States)

    Amburgey, James E; Anderson, J Brian

    2011-12-01

    Cryptosporidium is a chlorine-resistant protozoan parasite responsible for the majority of waterborne disease outbreaks in recreational water venues in the USA. Swim diapers are commonly used by diaper-aged children participating in aquatic activities. This research was intended to evaluate disposable swim diapers for retaining 5-μm diameter polystyrene microspheres, which were used as non-infectious surrogates for Cryptosporidium oocysts. A hot tub recirculating water without a filter was used for this research. The microsphere concentration in the water was monitored at regular intervals following introduction of microspheres inside of a swim diaper while a human subject undertook normal swim/play activities. Microsphere concentrations in the bulk water showed that the majority (50-97%) of Cryptosporidium-sized particles were released from the swim diaper within 1 to 5 min regardless of the swim diaper type or configuration. After only 10 min of play, 77-100% of the microspheres had been released from all swim diapers tested. This research suggests that the swim diapers commonly used by diaper-aged children in swimming pools and other aquatic activities are of limited value in retaining Cryptosporidium-sized particles. Improved swim diaper solutions are necessary to efficiently retain pathogens and effectively safeguard public health in recreational water venues.

  12. The differentiated approach in forming swimming abilities and skills of students

    Directory of Open Access Journals (Sweden)

    Nikolskiy A.U.

    2010-09-01

    Full Text Available It is considered the directions of organization and methods of conducting of lessons with students. In experiment took part students of the 17-20 years old. The criteria of forming of typological educational groups are presented on the initial stage of teaching swimming of students. The degree of connection of the hereditarily conditioned swimming coordinating inclination is certain with the indexes of formed swimming abilities and skills of students. It is well-proven that a process of capture motive habits is under unreserved influence of conservative heredity of individual.

  13. A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin

    International Nuclear Information System (INIS)

    Avron, J E; Raz, O

    2008-01-01

    We develop a qualitative geometric approach to swimming at low Reynolds numbers which avoids solving differential equations and uses instead landscape figures describing the swimming and dissipation. This approach gives complete information about swimmers that swim on a line without rotations and gives the main qualitative features of general swimmers that can also rotate. We illustrate this approach for a symmetric version of Purcell's swimmer, which we solve by elementary analytical means within slender body theory. We then apply the theory to derive the basic qualitative properties of Purcell's swimmer

  14. Swimming pool attendance and respiratory symptoms and allergies among Dutch children

    NARCIS (Netherlands)

    Jacobs, J.H.; Fuertes, E.; Krop, E.J.M.; Spithoven, J.; Tromp, P.; Heederik, D.J.J.

    2012-01-01

    OBJECTIVES To describe associations among swimming, respiratory health, allergen sensitisation and Clara cell protein 16 (CC16) levels in Dutch schoolchildren. Trichloramine levels in swimming pool air were determined to assess potential exposure levels. METHODS Respiratory health and pool

  15. When the swimming gets tough, the tough form a biofilm.

    Science.gov (United States)

    Belas, Robert

    2013-10-01

    Bacteria live either as independent planktonic cells or as members of surface-attached communities called biofilms. Motility and biofilm development are mutually exclusive events, and control of the phase of this 'swim-or-stick' switch involves the ability of the bacterium to sense and respond appropriately to a surface. Cairns et al. (2013) report that the Bacillus subtilis flagellum functions in surface-sensing. Using mutants of B. subtilis that prevent flagellum rotation, they measured the expression and activity of DegU, the response regulator of the two-component DegS-DegU circuit. DegU activity and degU transcription increased when flagellum rotation was prevented, and were dependent on the DegS kinase. Inhibiting flagellar rotation by overexpressing the EpsE flagellar 'clutch' or addition of anti-flagellin antiserum also increased degU transcription and activity. These results suggest B. subtilis senses restriction of flagellum rotation as the cell nears a surface. Inhibition of the flagellum activates the DegS-DegU circuit to turn on biofilm formation, i.e. the flagellum is acting as a mechanosensor of surfaces. B. subtilis joins an ever-expanding group of bacteria, including species of Vibrio, Proteus and Caulobacter that use the flagellum as a surface sensor. © 2013 John Wiley & Sons Ltd.

  16. Evaluation of swimming capability and potential velocity barrier problems for fish. Part A: Swimming performance of selected warm and cold water fish species relative to fish passage and fishway design

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Peake, S.

    1998-08-01

    The objective of this study was to provide information about the swimming capability of several widely distributed, economically or recreationally important fish species, for use in mitigating potential velocity barrier problems associated with hydroelectric power facilities. Swimming capability of anadromous and landlocked Atlantic salmon, brook trout, brown trout, lake sturgeon, and walleye, collected from various locations throughout Canada, were investigated to develop criteria for sustained, prolonged, burst swimming performance characteristics of the study species, fish physiology, life history and migration distance on swimming performance. Swimming performance characteristics in the wild, especially the use of physiological telemetry, as well as development of new methodology for the measurement of burst speed was also central to the study. Models were derived to describe swimming capabilities for each study species/life stage in relation to fish length, water velocity, water temperature, and other significant environmental factors. The data will form the basis of guideline development and decision making to improve design and evaluation of fish passage facilities. A series of annotated bibliographies resulting from the study are described in Appendix B. 74 refs., 8 tabs., figs., 2 appendices

  17. A coupled oscillator model describes normal and strange zooplankton swimming behaviour

    NARCIS (Netherlands)

    Ringelberg, J.; Lingeman, R.

    2003-01-01

    "Normal" swimming in marine and freshwater zooplankton is often intermittent with active upward and more passive downward displacements. In the freshwater cladoceran Daphnia, the pattern is sometimes regular enough to demonstrate the presence of a rhythm. Abnormal swimming patterns were also

  18. Foraging and ingestive behaviors of whale sharks, Rhincodon typus, in response to chemical stimulus cues.

    Science.gov (United States)

    Dove, Alistair D M

    2015-02-01

    Whale sharks, Rhincodon typus, display a number of behaviors that suggest these animals can locate food from afar, as well as identify and discriminate between food items. However, their intractably large size and relative rarity in the field has so far prevented direct studies of their behavior and sensory capability. A small population of aquarium-held whale sharks facilitated direct studies of behavior in response to chemical stimulus plumes. Whale sharks were exposed to plumes composed of either homogenized krill or simple aqueous solutions of dimethyl sulfide (DMS), which is associated with krill aggregations and is used by several pelagic species as a food-finding stimulus. Whale sharks exhibited pronounced ingestive and search behaviors when exposed to both types of stimuli, compared to control trials. Ingestive behaviors included open mouth swimming and active surface feeding (gulping). These behaviors were stronger and more prevalent in response to krill homogenate plumes than to DMS plumes. Both chemical stimuli also increased visitation rate, and krill homogenate plumes additionally affected swimming speed. Whale sharks use chemosensory cues of multiple types to locate and identify palatable food, suggesting that chemical stimuli can help direct long-range movements and allow discrimination of different food items. There appears to be a hierarchy of responses: krill metabolites directly associated with food produced more frequent and intense feeding responses relative to DMS, which is indirectly associated with krill. DMS is used to find food by a number of pelagic species and may be an important signaling molecule in pelagic food webs. © 2015 Marine Biological Laboratory.

  19. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.

    Science.gov (United States)

    Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi

    2010-06-01

    Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.

  20. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. Copyright © 2013 Elsevier Ltd. All rights reserved.