WorldWideScience

Sample records for surface subsidence induced

  1. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  2. Protection of pipelines affected by surface subsidence

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Chen, H.J.

    1998-01-01

    Surface subsidence resulting from underground coal mining can cause problems for buried pipelines. A technique for assessing the level of stress on a subsidence-affected pipeline is introduced. The main contributors to the stress are identified, and mitigation techniques for reducing the stress are proposed. The proposed mitigation techniques were then successfully tested. 13 refs., 8 figs., 2 tabs

  3. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  4. Mechanisms of subsidence for induced damage and techniques for analysis

    International Nuclear Information System (INIS)

    Drumm, E.C.; Bennett, R.M.; Kane, W.F.

    1988-01-01

    Structural damage due to mining induced subsidence is a function of the nature of the structure and its position on the subsidence profile. A point on the profile may be in the tensile zone, the compressive zone, or the no-deformation zone at the bottom of the profile. Damage to structures in the tension zone is primarily due to a reduction of support during vertical displacement of the ground surface, and to shear stresses between the soil and structure resulting from horizontal displacements. The damage mechanisms due to tension can be investigated effectively using a two-dimensional plane stress analysis. Structures in the compression zone are subjected to positive moments in the footing and large compressive horizontal stresses in the foundation walls. A plane strain analysis of the foundation wall is utilized to examine compression zone damage mechanisms. The structural aspects affecting each mechanism are identified and potential mitigation techniques are summarized

  5. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  6. Subsidence Induced Faulting Hazard risk maps in Mexico City and Morelia, central Mexico

    Science.gov (United States)

    Cabral-Cano, E.; Solano-Rojas, D.; Hernández-Espriu, J.; Cigna, F.; Wdowinski, S.; Osmanoglu, B.; Falorni, G.; Bohane, A.; Colombo, D.

    2012-12-01

    Subsidence and surface faulting have affected urban areas in Central Mexico for decades and the process has intensified as a consequence of urban sprawl and economic growth. This process causes substantial damages to the urban infrastructure and housing structures and in several cities it is becoming a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. Despite its potential for damaging housing, and other urban infrastructure, the economic impact of this phenomena is poorly known, in part because detailed, city-wide subsidence induced faulting risk maps have not been published before. Nevertheless, modern remote sensing techniques are most suitable for this task. We present the results of a risk analysis for subsidence induced surface faulting in two cities in central Mexico: Morelia and Mexico City. Our analysis in Mexico City and Morelia is based on a risk matrix using the horizontal subsidence gradient from a Persistent Scatterer InSAR (Morelia) and SqueeSAR (Mexico City) analysis and 2010 census population distribution data from Mexico's National Institute of Statistics and Geography. Defining subsidence induced surface faulting vulnerability within these urbanized areas is best determined using both magnitude and horizontal subsidence gradient. Our Morelia analysis (597,000 inhabitants with localized subsidence rates up to 80 mm/yr) shows that 7% of the urbanized area is under a high to very high risk level, and 14% of its population (11.7% and 2.3% respectively) lives within these areas. In the case of the Mexico City (15'490,000 inhabitants for the

  7. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction

    NARCIS (Netherlands)

    Muntendam-Bos, A.G.; Kroon, I.C.; Fokker, P.A.

    2008-01-01

    We introduce a novel, time-dependent inversion scheme for resolving temporal reservoir pressure drop from surface subsidence observations (from leveling or GPS data, InSAR, tiltmeter monitoring) in a single procedure. The theory is able to accommodate both the absence of surface subsidence estimates

  8. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    Science.gov (United States)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern

  9. Estimation of surface subsidence at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Givens, C.A.; Valdivia, M.A.; Saeb, S.; Francke, C.T.; Patchet, S.J.

    1995-01-01

    Subsidence effects at the WIPP site wee estimated using numerical methods as well as the influence function method and NCB method because single universally accepted method is not available for salt. The use of parallel methods and the agreement between their results greatly enhanced the confidence in the analysis because the prediction would not depend on the assumptions inherent in a single method

  10. Discussion: some new findings from surface subsidence monitoring over longwall panels

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Arioglu, E.

    1992-01-01

    The article consists of a discussion of the paper, 'some new findings from surface subsidence monitoring over longwall panels' and a reply by the paper's authors, Luo and Peng. The reviewer, Arioglu, regards the paper favourably but suggests that surface subsidence can be represented by an exponential expression, and that there is a regression equation linking possible subsidence, pillar loading and the height-to-width ratio of the pillars left. Luo and Peng reply with their reasons for preferring their original linear regression model to the non-linear models suggested by Arioglu. 4 figs

  11. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  12. Geospatial subsidence hazard modelling at Sterkfontein Caves ...

    African Journals Online (AJOL)

    The geo-hazard subsidence model includes historic subsidence occurrances, terrain (water flow) and water accumulation. Water accumulating on the surface will percolate and reduce the strength of the soil mass, possibly inducing subsidence. Areas for further geotechnical investigation are identified, demonstrating that a ...

  13. Numerical modelling of surface subsidence arising from longwall mining of steeply inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, M.A.; Reddish, D.J. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    1998-12-31

    The paper presents results from and the methodology of a numerical modelling investigation into the surface ground movements above longwall mining of inclined and steep seams with varying panel configurations. A modelling approach was developed using a finite difference numercial model Fast Lagrangian Analysis of Continua (FLAC). On the basis of this methodology, representative surface subsidence profiles were simulated and the results of simulations were validated against the UK data using the Subsidence Engineer`s Handbook (SEH) and influence function methods. Furthermore, the proposed methodology was applied to two UK case histories for validation purposes. 15 refs., 7 figs., 3 tabs.

  14. Prediction of abrupt reservoir compaction and surface subsidence due to pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; de Waal, A.; van Kooten, J.F.C.

    1986-01-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields showing pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal to vertical stress ratio and loading rate on the pore collapse behaviour were investigated. For each carbonate type a trendline was established describing the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate and stress ratio. Therefore procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  15. Prediction of abrupt reservoir compaction and surface subsidence caused by pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; De Waal, J.A.; Van Kootan, J.F.C.

    1988-06-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields that show pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal/vertical stress ratio, and loading rate on pore-collapse behavior were investigated. For a number of carbonate types, a trendline was established that describes the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate, and stress ratio. Therefore, procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  16. Reduction of surface subsidence risk by fly ash exploitation as filling material in deep mining areas

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina; Šperl, Jan

    2010-01-01

    Roč. 53, č. 2 (2010), s. 251-258 ISSN 0921-030X Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of the surface * impact reduction Subject RIV: DO - Wilderness Conservation Impact factor: 1.398, year: 2010 www.springerlink.com/content/y8257893528lp56w/

  17. Experimental 3-D modelling of surface subsidence affected by underground mining activities

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina

    2009-01-01

    Roč. 109, č. 12 (2009), s. 739-744 ISSN 0038-223X R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of surface * 3-D experimental model Subject RIV: DO - Wilderness Conservation Impact factor: 0.216, year: 2009

  18. InSAR Remote Sensing of Localized Surface Layer Subsidence in New Orleans, LA

    Science.gov (United States)

    An, K.; Jones, C. E.; Blom, R. G.; Kent, J. D.; Ivins, E. R.

    2015-12-01

    More than half of Louisiana's drinking water is dependent on groundwater, and extraction of these resources along with high oil and gas production has contributed to localized subsidence in many parts of New Orleans. This increases the vulnerability of levee failure during intense storms such as Hurricane Katrina in 2005, before which rapid subsidence had already been identified and contributed to the failing levees and catastrophic flooding. An interferogram containing airborne radar data from NASA's UAVSAR was combined with local geographic information systems (GIS) data for 2009-12 to help identify the sources of subsidence and mask out unrelated features such as surface water. We have observed the highest vertical velocity rates at the NASA Michoud Assembly Facility (high water use) and Norco (high oil/gas production). Many other notable features such as the: Bonnet-Carre Spillway, MRGO canal, levee lines along the Lower 9th Ward and power plants, are also showing concerning rates of subsidence. Even new housing loads, soil type differences, and buried beach sands seem to have modest correlations with patterns seen in UAVSAR. Current hurricane protection and coastal restoration efforts still have not incorporated late 20th century water level and geodetic data into their projections. Using SAR interferometry and local GIS datasets, areas of subsidence can be identified in a more efficient and economical manner, especially for emergency response.

  19. Production induced subsidence and seismicity in the Groningen gas field - can it be managed?

    Science.gov (United States)

    de Waal, J. A.; Muntendam-Bos, A. G.; Roest, J. P. A.

    2015-11-01

    Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl) went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995) and 42 cm (2005) to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas production by as

  20. Production induced subsidence and seismicity in the Groningen gas field – can it be managed?

    Directory of Open Access Journals (Sweden)

    J. A. de Waal

    2015-11-01

    Full Text Available Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995 and 42 cm (2005 to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas

  1. Monitoring of Surface Subsidence of the Mining Area Based on Sbas

    Science.gov (United States)

    Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.

    2018-05-01

    This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.

  2. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  3. Mangrove forest against dyke-break-induced tsunami on rapidly subsiding coasts

    Science.gov (United States)

    Takagi, Hiroshi; Mikami, Takahito; Fujii, Daisuke; Esteban, Miguel; Kurobe, Shota

    2016-07-01

    Thin coastal dykes typically found in developing countries may suddenly collapse due to rapid land subsidence, material ageing, sea-level rise, high wave attack, earthquakes, landslides, or a collision with vessels. Such a failure could trigger dam-break tsunami-type flooding, or "dyke-break-induced tsunami", a possibility which has so far been overlooked in the field of coastal disaster science and management. To analyse the potential consequences of one such flooding event caused by a dyke failure, a hydrodynamic model was constructed based on the authors' field surveys of a vulnerable coastal location in Jakarta, Indonesia. In a 2 m land subsidence scenario - which is expected to take place in the study area after only about 10-20 years - the model results show that the floodwaters rapidly rise to a height of nearly 3 m, resembling the flooding pattern of earthquake-induced tsunamis. The depth-velocity product criterion suggests that many of the narrow pedestrian paths behind the dyke could experience strong flows, which are far greater than the safe limits that would allow pedestrian evacuation. A couple of alternative scenarios were also considered to investigate how such flood impacts could be mitigated by creating a mangrove belt in front of the dyke as an additional safety measure. The dyke-break-induced tsunamis, which in many areas are far more likely than regular earthquake tsunamis, cannot be overlooked and thus should be considered in disaster management and urban planning along the coasts of many developing countries.

  4. Regional subsidence modelling in Murcia city (SE Spain using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Directory of Open Access Journals (Sweden)

    S. Tessitore

    2015-11-01

    Full Text Available Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  5. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China Using Satellite Radar Interferometry

    Directory of Open Access Journals (Sweden)

    Mi Chen

    2016-06-01

    Full Text Available Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X. These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.

  6. Prognosis of surface subsidence affected by underground exploitation of ore vein deposits of Rozna type

    Czech Academy of Sciences Publication Activity Database

    Hortvík, Karel; Staš, Lubomír

    2005-01-01

    Roč. 15, č. 1 (2005), s. 296-301 ISSN 1003-6326 R&D Projects: GA ČR GP105/02/P026 Institutional research plan: CEZ:AV0Z3086906 Keywords : mining * subsidence * prognosis Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.302, year: 2005

  7. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    Science.gov (United States)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  8. Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    J. Pacheco-Martínez

    2015-11-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.

  9. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  10. Monitoring and modeling of sinkhole-related subsidence in west-central Florida mapped from InSAR and surface observations

    Science.gov (United States)

    Kiflu, H.; Oliver-Cabrera, T.; Robinson, T.; Wdowinski, S.; Kruse, S.

    2017-12-01

    Sinkholes in Florida cause millions of dollars in damage to infrastructure each year. Methods of early detection of sinkhole-related subsidence are clearly desirable. We have completed two years of monitoring of selected sinkhole-prone areas in west central Florida with XXX data and analysis with XXX algorithms. Filters for selecting targets with high signal-to-noise ratio and subsidence over this time window (XX-2015-XX-2017) are being used to select sites for ground study. A subset of the buildings with InSAR-detected subsidence indicated show clear structural indications of subsidence in the form of cracks in walls and roofs. Comsol Multiphysics models have been developed to describe subsidence at the rates identified from the InSAR analysis (a few mm/year) and on spatial scales observed from surface observations, including structural deformation of buildings and ground penetrating radar images of subsurface deformation (length scales of meters to tens of meters). These models assume cylindrical symmetry and deformation of elastic and poroelastic layers over a growing sphering void.

  11. Coal mine subsidence

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Longwall coal mining in southern Illinois occurs beneath some of the best agricultural land in the U.S. This region is characterized by highly productive, nearly level, and somewhat poorly drained soils. Subsidence from longwall mining causes changes in surface topography which alters surface and subsurface hydrology. These changes can adversely affect agricultural land by creating wet or ponded areas that can be deleterious to crop production. While most subsided areas show little impact from subsidence, some areas experience total crop failure. Coal companies are required by law to mitigate subsidence damage to cropland. The objective of this paper is to test the effectiveness of mitigation in restoring grain yields to their pre-mined levels. The research was conducted on sites selected to represent conventional mitigation techniques on the predominate soils in the area. Corn (Zea mays L.) and soybean [Glycine max.(L.) Merr] yields in 1988, 1989, 1990, and 1991 from mitigated areas were compared to yields from nearby undisturbed areas

  12. Land subsidence of coastal areas of Jiangsu Province, China: historical review and present situation

    Directory of Open Access Journals (Sweden)

    J. Q. Zhu

    2015-11-01

    Full Text Available Surface faults related to land subsidence have been observed in coastal cities, such as Nantong, Yancheng, and Lian Yungang, in Jiangsu Province (CAJS since the early 1970s. Nowadays, increases flooding and rising sea levels are attributed to subsidence caused by groundwater pumping. In this work we present a brief description of land subsidence in CAJS, we examine the mechanisms of land subsidence induced mainly by groundwater pumping and its evolution and economic implications as well as the implemented measures by the local government to prevent new damage.

  13. Land subsidence of coastal areas of Jiangsu Province, China: historical review and present situation

    Science.gov (United States)

    Zhu, J. Q.; Yang, Y.; Yu, J.; Gong, X. L.

    2015-11-01

    Surface faults related to land subsidence have been observed in coastal cities, such as Nantong, Yancheng, and Lian Yungang, in Jiangsu Province (CAJS) since the early 1970s. Nowadays, increases flooding and rising sea levels are attributed to subsidence caused by groundwater pumping. In this work we present a brief description of land subsidence in CAJS, we examine the mechanisms of land subsidence induced mainly by groundwater pumping and its evolution and economic implications as well as the implemented measures by the local government to prevent new damage.

  14. Three-dimensional distribution of organic matter in coastal-deltaic peat : Implications for subsidence and carbon dioxide emissions by human-induced peat oxidation

    NARCIS (Netherlands)

    Koster, K.; Stafleu, J.; Cohen, K. M.; Stouthamer, E.; Busschers, Freek S.; Middelkoop, H.

    2018-01-01

    Human-induced groundwater level lowering in the Holocene coastal-deltaic plain of the Netherlands causes oxidation of peat organic matter, resulting in land subsidence and carbon dioxide (CO2) emissions. Here, a three-dimensional (3D) analysis of the distribution of the remaining peat organic matter

  15. Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain)

    NARCIS (Netherlands)

    Ruiz-Constán, A.; Ruiz-Armenteros, A.M.; Lamas-Fernández, F.; Martos-Rosillo, S.; Delgado, J.M.; Bekaert, D.P.S.; Sousa, J.J.; Gil, A.J.; Caro Cuenca, M.; Hanssen, R.F.; Galindo-Zaldívar, J.; Sanz de Galdeano, C.

    2016-01-01

    This study uses the InSAR technique to analyse ground subsidence due to intensive exploitation of an aquifer for agricultural and urban purposes in the Montellano town (SW Spain). The detailed deformation maps clearly show that the spatial and temporal extent of subsidence is controlled by

  16. How to deal with subsidence in the Dutch delta?

    Science.gov (United States)

    Stouthamer, Esther; Erkens, Gilles

    2017-04-01

    In many deltas worldwide subsidence still is an underestimated problem, while the threat posed by land subsidence to low-lying urbanizing and urbanized deltas exceeds the threat of sea-level rise induced by climate change. Human-induced subsidence is driven by the extraction of hydrocarbons and groundwater, drainage of phreatic groundwater, and loading by buildings and infrastructure. The consequences of subsidence are increased flood risk and flood water depth, rising groundwater levels relative to the land surface, land loss, damage to buildings and infrastructure, and salinization of ground and surface water.. The Netherlands has a long history of subsidence. Large-scale drainage of the extensive peatlands in the western and northern parts of the Netherlands started approximately 1000 years ago as a result of rapid population growth. Subsidence is still ongoing due to (1) continuous drainage of the former peatland, which is now mainly in use as agricultural land and built-up area, (2) expansion of the built-up area and the infrastructural network, (3) salt mining and the extraction of gas in the northern Netherlands. Mitigating subsidence and its negative impacts requires understanding of the relative contribution of the drivers contributing to total subsidence, accurate predictions of land subsidence under different management scenarios, and its impacts. Such understanding enables the development of effective and sustainable management strategies. In the Netherlands, a lot of effort is put into water management aiming at amongst others the protection against floods and the ensuring agricultural activities, but a specific policy focusing on subsidence is lacking. The development of strategies to cope with subsidence is very challenging, because (1) the exact contribution of different drivers of subsidence to total subsidence is spatially different within the Netherlands, (2) there is no single problem owner, which makes it difficult to recognize this a common

  17. TerraSAR-X time-series interferometry detects human-induce subsidence in the Historical Centre of Hanoi, Vietnam

    Science.gov (United States)

    Le, Tuan; Chang, Chung-Pai; Nguyen, Xuan

    2016-04-01

    Hanoi was the capital of 12 Vietnamese dynasties, where the most historical relics, archaeological ruins and ancient monuments are located over Vietnam. However, those heritage assets are threatened by the land subsidence process occurred in recent decades, which mainly triggered by massive groundwater exploitation and construction activities. In this work, we use a set of high resolution TerraSAR-X images to map small-scale land subsidence patterns in the Historical Centre of Hanoi from April 2012 to November 2013. Images oversampling is integrated into the Small Baseline InSAR processing chain in order to enlarge the monitoring coverage by increasing the point-wise measurements, maintaining the monitoring scale of single building and monument. We analyzed over 2.4 million radar targets on 13.9 km2 area of interest based on 2 main sites: The Citadel, the Old Quarter and French Quarter. The highest subsidence rate recorded is -14.2 mm/year. Most of the heritage assets are considered as stable except the Roman Catholic Archdiocese and the Ceramic Mosaic Mural with the subsidence rates are -14.2 and -13.7 mm/year, respectively. Eventually, optical image and soil properties map are used to determine the causes of subsidence patterns. The result shows the strong relationships between the existing construction sites, the component of sediments and land subsidence processes that occurred in the study site.

  18. Induced surface stress at crystal surfaces

    International Nuclear Information System (INIS)

    Dahmen, K.

    2002-05-01

    Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order

  19. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering

    2009-09-15

    The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.

  20. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  1. How to deal with subsidence in the Dutch delta?

    NARCIS (Netherlands)

    Stouthamer, E.; Erkens, G.

    2017-01-01

    In many deltas worldwide subsidence still is an underestimated problem, while the threat posed by land subsidence low-lying urbanizing and urbanized deltas exceeds the threat of sea-level rise induced by climate change. Human-induced subsidence is driven by the extraction of hydrocarbons and

  2. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence.

    Science.gov (United States)

    Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott

    2013-08-20

    Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.

  3. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  4. Subsidence caused by an underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, W W [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  5. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    International Nuclear Information System (INIS)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduno-Monroy, Victor H.

    2008-01-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year

  6. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution

    Science.gov (United States)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.

    2018-02-01

    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  7. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    Science.gov (United States)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.

    2008-05-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

  8. Mining-induced surface damage and the study of countermeasures

    International Nuclear Information System (INIS)

    Cui Jixian

    1994-01-01

    Coal constitutes China's major energy resource. The majority of the coal is produced from underground mining operations. Surface subsidence may amount to 80% of the thickness of the seam mined, while the subsided volume is around 60% of the mined volume underground. An area of 20 hectares of land will be affected with each 1 million tons of coal mined, thereby causing severe surface damage. Following a description of the characteristics of surface damages due to underground mining disturbance, this paper elaborates on the damage prediction method, standards applied for evaluating the damages experienced by surface buildings, land reclamation methods in subsided area, measures for reinforcing and protecting buildings in mining-affected areas, and performance of antideformation buildings

  9. Long term subsidence movements and behavior of subsidence-damaged structures

    International Nuclear Information System (INIS)

    Mahar, J.W.; Marino, G.G.

    1999-01-01

    Surface ground movement related to sag mine subsidence has been monitored above Illinois abandoned room and pillar coal workings for periods of more than 15 years. The long term movement related to a specific mine subsidence is typically small relative to the initial displacements but have caused crack and tilt damage in both repaired and unrepaired structures. Seasonal variations in ground surface elevations are superimposed on the downward movement related to mine subsidence. Thus it is necessary to measure long term subsidence movement at about the same time each year in order to minimize environmental factors. This paper presents long term monitoring data from five subsidence sags in central and southern Illinois. The abandoned coal mine workings are located at depths of 160 to 460 ft below the ground surface. measured residual mine subsidence ranges between 1.4 and 3.6 in. 4.4 to 15 years after mine failure. The magnitude of downward displacement is greater than settlement design values (1 in.) and are at rates (0.0004 to 0.0056 ft/month) that cause damage to structures. Most of the damage in unrepaired structures occurs along existing cracks and separations. In all five cases, the ground movements are continuing at residual rates. Sag subsidence movement in Illinois takes place for a minimum of five years after the damage is manifested at the ground surface. A classification of say development is provided based on the displacement-time data

  10. Data Acquisition for Land Subsidence Control

    Science.gov (United States)

    Zhu, Y.; Balke, K.

    2009-12-01

    For controlling land subsidence caused by groundwater over-exploitation, loading of engineered structures, mining and other anthropogenic activities in this fast changing world, a large variety of different data of various scales of concerning areas are needed for scientific study and administrative operational purposes. The economical, social and environmental impacts of anthropogenic land subsidence have long been recognized by many scientific institutions and management authorities based on results of monitoring and analysis at an interdisciplinary level. The land subsidence information systems composed of the surface and subsurface monitoring nets (monitoring and development wells, GPS stations and other facilities) and local data processing centers as a system management tool in Shanghai City was started with the use of GPS technology to monitor land subsidence in 1998. After years of experiences with a set of initiatives by adopting adequate countermeasures, the particular attention given to new improved methodologies to monitor and model the process of land subsidence in a simple and timely way, this is going to be promoted in the whole Yangtze River Delta region in China, where land subsidence expands in the entire region of urban cluster. The Delta land subsidence monitoring network construction aims to establish an efficient and coordinated water resource management system. The land subsidence monitoring network records "living history" of land subsidence, produces detailed scheduled reports and environmental impact statements. For the different areas with local factors and site characteristics, parallel packages need to be designed for predicting changes, land sensitivity and uncertainty analysis, especially for the risk analysis in the rapid growth of megacities and urban areas. In such cases, the new models with new types of local data and the new ways of data acquisition provide the best information for the decision makers for their mitigating

  11. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  12. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  13. Subsidence in the holocene delta of The Netherlands

    NARCIS (Netherlands)

    Vonhögen, L.M.; Doornenbal, P.J.; Lange, G. de; Fokker, P.A.; Gunnink, J.L.

    2010-01-01

    The low-lying part of The Netherlands is very vulnerable in terms of surface subsidence due to peat oxidation and peat/clay compaction. To gain knowledge about this kind of subsidence and the factors driving it, a study was performed in which as many surface elevation data were collected as possible

  14. Subsidence from an artificial permafrost warming experiment.

    Science.gov (United States)

    Gelvin, A.; Wagner, A. M.; Lindsey, N.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.; Saari, S.; Ajo Franklin, J. B.

    2017-12-01

    Using fiber optic sensing technologies (seismic, strain, and temperature) we installed a geophysical detection system to predict thaw subsidence in Fairbanks, Alaska, United States. Approximately 5 km of fiber optic was buried in shallow trenches (20 cm depth), in an area with discontinuous permafrost, where the top of the permafrost is approximately 4 - 4.5m below the surface. The thaw subsidence was enforced by 122 60-Watt vertical heaters installed over a 140 m2 area where seismic, strain, and temperature were continuously monitored throughout the length of the fiber. Several vertical thermistor strings were also recording ground temperatures to a depth of 10 m in parallel to the fiber optic to verify the measurements collected from the fiber optic cable. GPS, Electronic Distance Measurement (EDM) Traditional and LiDAR (Light and Detection and Ranging) scanning were used to investigate the surface subsidence. The heaters were operating for approximately a three month period starting in August, 2016. During the heating process the soil temperatures at the heater element increased from 3.5 to 45 °C at a depth of 3 - 4 m. It took approximately 7 months for the temperature at the heater elements to recover to their initial temperature. The depth to the permafrost table was deepened by about 1 m during the heating process. By the end of the active heating, the surface had subsided approximately 8 cm in the heating section where permafrost was closest to the surface. This was conclusively confirmed with GPS, EDM, and LiDAR. An additional LiDAR survey was performed about seven months after the heaters were turned off (in May 2017). A total subsidence of approximately 20 cm was measured by the end of the passive heating process. This project successfully demonstrates that this is a viable approach for simulating both deep permafrost thaw and the resulting surface subsidence.

  15. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  16. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie; Á rnadó ttir, Thó ra; Jonsson, Sigurjon; Decriem, Judicaë l; Hooper, Andrew John

    2010-01-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  17. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  18. 3D characterization of Holocene peat in the Netherlands : Implications for coastal-deltaic subsidence

    NARCIS (Netherlands)

    Koster, K.

    2017-01-01

    Human-induced subsidence threatens many coastal-deltaic plains, due to the amplifying effects it has on sea-level rise and flood risk. In the coastal-deltaic plain of the Netherlands, subsidence is primarily caused by the compression and oxidation of Holocene peat. The understanding of subsidence in

  19. Detecting, mapping and monitoring of land subsidence in Jharia ...

    Indian Academy of Sciences (India)

    mitigation management of subsidence induced hazards. 1. Introduction ... rural areas with agricultural practices (Cao et al. 2008) ... wall mining, depillaring and caving), water log- ging of the .... accuracy trajectory determination system and the.

  20. Formation mechanism of land subsidence in the North China Plain

    Science.gov (United States)

    Guo, Haipeng; Cheng, Guoming

    2014-05-01

    Land subsidence is a progressive and gradual geological disaster, whose development is irreversible. Due to rapid development of industrialization and urbanization, land subsidence occurs commonly in the North China Plain, and has become the main environmental factor impacting sustainable economic and social development. This study presents a brief review on the current situation of land subsidence in the North China Plain. Then the hydrologic, hydrogeologic and anthropogenic conditions favorable for the formation of land subsidence are analyzed, indicating that the formation of land subsidence is mainly determined by local geological condition and enabling conditions, e.g. long-term excessive exploitation of groundwater and engineering construction. A correlation analysis was conducted in both the North China Plain and Cangzhou region, a typical area where severe land subsidence occurs, of the quantitative relationship between deep groundwater yield and the land subsidence. The analysis results indicate that the land subsidence volume accounts for 40% to 44% of deep water yield in the North China Plain, indirectly showing the proportion of released water from compressibility of the aquifer and the aquitard in deep groundwater yield. In Cangzhou region, this proportion was calculated as 58%, far greater than that of the North China Plain. This is induced by the local lithologic structure and recharge condition of deep groundwater in Cangzhou region. The analysis of soil samples in Cangzhou region shows that strong relations exist among different physical parameters, and good change laws of compression with depth and pressure are found for soil samples. The hydraulic conductivities of clay are six orders of magnitude greater than those of the aquifer, implying the strong hypothesis of land subsidence. This analysis provides data and scientific basis for further study on formation mechanism of land subsidence in Cangzhou region and objective evaluation of its

  1. Towards a global land subsidence map

    NARCIS (Netherlands)

    Erkens, G.; Sutanudjaja, E. H.

    2015-01-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). With the global land subsidence map

  2. Modeling of earth fissures caused by land subsidence due to groundwater withdrawal

    Directory of Open Access Journals (Sweden)

    B. B. Panda

    2015-11-01

    Full Text Available Land subsidence and earth fissures are phenomena related to groundwater withdrawal in a sedimentary basin. If the rock basement or basin lithology is irregular, both vertical and horizontal displacements can be induced due to differential settlement and tensile stresses appearing in the soil mass. If the differential settlement is of sufficient magnitude, earth fissuring can occur within tensile zones. The magnitudes of compaction and fissure geometry are closely related to the thickness and skeletal compressibility of fine-grained sediments within the aquifer system. Land subsidence and earth fissuring were modeled by employing a two-dimensional (2-D coupled seepage and stress-strain finite element analysis. The basin bedrock geometry, lithological variation, measurements of surface displacements, and changes in hydraulic head were the critical input parameter for the subsidence modeling. Simulation results indicate that strain had exceeded the approximate threshold for fissure formation of 0.02 to 0.06 % in the area of the identified fissures. The numerical model was used to predict future subsidence and potential earth fissures for flood control structures within the metro Phoenix area.

  3. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  4. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  5. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NARCIS (Netherlands)

    Marketos, G.; Spiers, C.J.; Govers, R.

    2016-01-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically

  6. Assessing the long-term impact of subsidence and global climate change on emergency evacuation routes in coastal Louisiana.

    Science.gov (United States)

    2012-12-01

    Subsidence forecast models for coastal Louisiana were developed to estimate the change in surface elevations of evacuation routes for the years 2015, 2025, 2050, and 2100. Geophysical and anthropogenic subsidence estimates were derived from on-going ...

  7. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  8. Natural versus anthropogenic subsidence of Venice.

    Science.gov (United States)

    Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio

    2013-09-26

    We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.

  9. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico

    OpenAIRE

    Pacheco-Martínez, Jesús; Cabral-Cano, Enrique; Wdowinski, Shimon; Hernández-Marín, Martín; Ortiz-Lozano, José; Zermeño-de-León, Mario

    2015-01-01

    In this work we present an application of InSAR and gravimetric surveys for risk management related to land subsidence and surface ground faulting generation. A subsidence velocity map derived from the 2007–2011 ALOS SAR imagery and a sediment thicknesses map obtained from the inversion of gravimetric data were integrated with a surface fault map to produce a subsidence hazard zoning in the city of Aguascalientes, Mexico. The resulting zoning is presented together with specific recommendation...

  10. Mine subsidence event at Washington West Apartments

    International Nuclear Information System (INIS)

    Wilson, D.B.; Weber, M.W.; Purdy, J.; Acker, P.

    1994-01-01

    A major mine subsidence event occurred in Scranton, PA in early 1993. The initial damage included breakage of gas and water lines, cracking of pavements and sidewalks, and architectural damage to the seven-story apartment building that houses about 150 elderly persons. Visible damage include a 3/4-in dilation of the expansion joint separating the building, approximately 200 interior and exterior cracks, and distress to utility lines. The Office of Surface mining Reclamation and Enforcement (OSM) funded an integrated geotechnical and structural engineering investigation to determine the cause of the subsidence, the limits of affected areas, and the nature of damage to the building. Work included interior surveys, exterior surveys, installation of crack gages, eight subsurface borings, review of building design drawings, review of geologic and mining data, and structural analysis of the rigid steel frame building. The surveys showed the building had undergone movements consisting of a lateral translation, a longitudinal differential settlement, and a transverse differential settlement. Preliminary structural analyses showed that the differential settlements had introduced significant additional stresses in some of the building columns. This paper provides a case history of the cause and effects of the subsidence event. The techniques used to collect and analyze the data are presented along with the findings of the geotechnical and structural engineering investigations. The paper also describes emergency actions that were implemented, the remedial alternatives that were considered, and the method selected as the recommended alternative

  11. Feedback of land subsidence on the movement and conjunctive use of water resources

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, Randall T.; Leake, Stanley A.; Hughes, Joseph D.; Niswonger, Richard G.

    2014-01-01

    The dependency of surface- or groundwater flows and aquifer hydraulic properties on dewatering-induced layer deformation is not available in the USGS's groundwater model MODFLOW. A new integrated hydrologic model, MODFLOW-OWHM, formulates this dependency by coupling mesh deformation with aquifer transmissivity and storage and by linking land subsidence/uplift with deformation-dependent flows that also depend on aquifer head and other flow terms. In a test example, flows most affected were stream seepage and evapotranspiration from groundwater (ETgw). Deformation feedback also had an indirect effect on conjunctive surface- and groundwater use components: Changed stream seepage and streamflows influenced surface-water deliveries and returnflows. Changed ETgw affected irrigation demand, which jointly with altered surface-water supplies resulted in changed supplemental groundwater requirements and pumping and changed return runoff. This modeling feature will improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface-infrastructure integrity.

  12. Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia

    Science.gov (United States)

    Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.

    2017-12-01

    Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.

  13. Extreme Ultraviolet (EUV) induced surface chemistry on Ru

    NARCIS (Netherlands)

    Liu, Feng; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry

  14. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  15. Survey of land subsidence – case study: The land subsidence ...

    Indian Academy of Sciences (India)

    This is a new phenomenon and in this research the geometrical properties of the fissures of recharge ... by ground water, the creation of small sinkholes followed ... Figure 1. The location of artificial recharge plan in. Hamadan. The Gharechai River is a source of artificial .... land subsidence and shape the cracks and fissures.

  16. Study on the Rule of Super Strata Movement and Subsidence

    Science.gov (United States)

    Yao, Shunli; Yuan, Hongyong; Jiang, Fuxing; Chen, Tao; Wu, Peng

    2018-01-01

    The movement of key strata is related to the safety of the whole earth’s surface for coal mining under super strata. Based on the key strata theory, the paper comprehensively analyzes the characteristics of the subsidence before and after the instability of the super strata by studing through FLAC3D and microseismic dynamic monitoring of the surface rock movement observation. The stability of the super strata movement is analyzed according to the characteristic value of the subsidence. The subsidence law and quantitative indexes under the control of the super rock strata that provides basis for the prevention and control of surface risk, optimize mining area and face layout and reasonably set mining boundary around mining area. It provides basis for the even growth of mine safety production and regional public safety.

  17. Flooding hazards from sea extremes and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Vognsen, Karsten; Broge, Niels

    2015-01-01

    of tide gauge records, statistics that allow also for projections of SLR, meteorological variability, and extremes with a very low probability of occurrence are provided. Land movement is researched with a focus on short term surface height variability in the groundwater-ocean interface that, together...... with longer term processes, may cause substantial subsidence and impact future water management and adaptation strategies in flood prone coastal areas. Field studies’ results from repeated precise levelling, GPS setups, and ocean and groundwater level monitoring in Thyborøn and Aarhus are integrated...

  18. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    Jesús Pacheco-Martínez

    2015-12-01

    Full Text Available In this work we present an application of InSAR and gravimetric surveys for risk management related to land subsidence and surface ground faulting generation. A subsidence velocity map derived from the 2007–2011 ALOS SAR imagery and a sediment thicknesses map obtained from the inversion of gravimetric data were integrated with a surface fault map to produce a subsidence hazard zoning in the city of Aguascalientes, Mexico. The resulting zoning is presented together with specific recommendations about geotechnical studies needed for further evaluation of surface faulting in these hazard zones. The derived zoning map consists in four zones including null hazard (stable terrain without subsidence, low hazard (areas prone to subsidence, medium hazard (zones with subsidence and high hazard (zones with surface faulting. InSAR results displayed subsidence LOS velocities up to 10 cm/year and two subsidence areas unknown before this study. Gravimetric results revealed that the thicker sediment sequence is located toward north of Aguascalientes City reaching up to 600 m in thickness, which correspond to a high subsidence LOS velocity zone (up to 6 cm/year.

  19. Subsidizing R&D cooperatives

    NARCIS (Netherlands)

    Hinloopen, J.

    2001-01-01

    A framework is developed with which the implementation of two commonly used R&D-stimulating policies can be evaluated: providing R&D subsidies and sustaining the formation of R&D cooperatives. Subsidized R&D cooperatives can also be analyzed. The analysis shows that providing R&D subsidies is more

  20. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    Science.gov (United States)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  1. Halting Land Subsidence in Tucson, Arizona: Examining the Poroelastic Response to Artificial Recharge

    Science.gov (United States)

    Miller, M. M.; Shirzaei, M.; Argus, D. F.

    2017-12-01

    Overexploitation of groundwater results in stressed aquifer systems and surface deformation in the form of land subsidence. Differential land subsidence can lead to earth fissures, which threaten buildings and infrastructure. Therefore, careful water management is necessary to ensure aquifer resources are withdrawn and replenished at a sustainable yield to preserve supplies and minimize surface deformation. Tucson, Arizona is a semi-arid desert city that is reliant on a semi-confined alluvial aquifer system for much of the water supply. To understand the poroelastic response of the aquifer system over time, we analyze data from wells equipped with extensometers, InSAR time series, and GPS. From 1990-2005, compaction of fine-grained, aquitard material is measured up to 8.5 mm/yr at well sites equipped with extensometers. This induces permanent aquifer storage volume losses up to 4.1%. Yet, interferograms from Envisat and RadarSAT-2 C-band satellites, which yield multitemporal deformation maps at high resolution, reveal that subsidence remarkably slows by the late 2000s and nearly halts by 2015. We infer this deceleration corresponds to heightened artificial recharge efforts to bank Colorado River water delivered via canal. After groundwater levels recover, residual compaction continues for just a 6.6-year interval, which suggests a high value for vertical hydraulic conductivity up to 9.8 x10-4 m/day. Successful water management and conservation plans help the city preserve existing and replenish depleted groundwater reserves, decelerate land subsidence, and likely reduce the risks associated with earth fissuring.

  2. A Picture of Subsidized Households 2009

    Data.gov (United States)

    Department of Housing and Urban Development — Picture of Subsidized Households describes the nearly 5 million households living in HUD-subsidized housing in the United States for the year 2009. Picture 2009...

  3. A Picture of Subsidized Housholds 2008

    Data.gov (United States)

    Department of Housing and Urban Development — Picture of Subsidized Households describes the nearly 5 million households living in HUD-subsidized housing in the United States for the year 2008. Picture 2008...

  4. Research of the refilling use in order to reduce the subsidence effects in the surface; Investigacion del Empleo de Relleno Consolidado para Reducir los Efectos de la Subsidencia en Superficie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The development of the research has been performed with a practical immediate purpose in the works of the Company Coto Minero de Narcea, S. A., a producer of anthracite in Asturias West Bassin. This is due to the fact that the work mining of the 2, 3 and 6 seams, essential to continue the production activities, is at present almost in vertical coincidence with surface installations of the mine making it necessary to use a filling material specially selected and layed in the works to minimize the subsidence effects. The prediction of these effects in order to reduce them to admissible bounds has been made through the application of the computer program SUBSIMCO, developed on the basis of the empirical calculation methods and the experience collected by the VNIMI Institute of Leningrad. The results controlled up to now, through accurate measuring, show a satisfactory coincidence with the predictions of theoretical calculations, proving at the same time the effectiveness of the filling process designed and the correct adaptation of the calculus method.

  5. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    Science.gov (United States)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  6. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  7. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  8. Investigation of subsidence event over multiple seam mining area

    International Nuclear Information System (INIS)

    Kohli, K.K.

    1999-01-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface

  9. Compaction and subsidence of the Groningen gas field in the Netherlands

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Pruiksma, J.P.; Breunese, J.N.

    2015-01-01

    The Groningen gas field in the Netherlands is Europe’s largest gas field. It has been produced since 1963 and production is expected to continue until 2080. The pressure decline in the field causes compaction in the reservoir which is observed as subsidence at the surface. Measured subsidence is

  10. Subsidence monitoring program at Cyprus Coal's Colorado operations

    International Nuclear Information System (INIS)

    Stewart, C.L.; Shoemaker, J.E.

    1992-01-01

    Published subsidence data for the western United States is limited in comparison with data for the east. This paper summarizes the results of a subsidence monitoring program above two longwall panels at the Foidel Creek Mine located in northwest Colorado. The monitoring area is characterized by overburden ranging from 1000 ft to 1100 ft in thickness. the surface slope parallels the dip of the bedding at approximately 5 deg. Average mining height is 9 ft. Smax averaged 3.4 ft. Draw angles averaged 15 deg for up-dip ribsides and 19 deg for down-dip ribsides. A site-specific profile function is developed from the data

  11. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  12. The future of subsidence modelling: compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Fokker, P.A.

    2017-01-01

    The Groningen gas field has shown considerable compaction and subsidence since starting production in the early 1960s. The behaviour is understood from the geomechanical response of the reservoir pressure depletion. By integrating surface movement measurements and modelling, the model parameters can

  13. Investigation of a subsidence event near Flushing, Ohio

    International Nuclear Information System (INIS)

    Ledney, C.M.; Hawk, J.L.

    1994-01-01

    An investigation was undertaken to determine the cause and extent of events which caused problems to a number of residences along State Route 149 near Flushing, Belmont County, Ohio. The events began in 1988 and continued through 1991 and affected nine homes. The type of problems occurring, as well as surface effects, compared to available mine maps of the area, indicated the problems were caused by subsidence from coal mining. The mining occurred in the Pittsburgh seam at a depth of between 180 and 220 feet. The mining beneath the site took place between 1975 and 1977 and was of the room and pillar type. A subsurface investigation was performed, along with ''down the hole'' video camera inspections to provide necessary subsurface information for analysis of the subsidence event. Factors of safety were calculated for pillars throughout the mine. Based on this analysis, it was determined that pillar failure caused the subsidence event. Once a determination was made as to the likely cause of the subsidence, the data was re-examined to determine the possible location of pillar failure, as well as the type and extent of subsidence. This analysis involved the use of RQD versus depth plots and the compilation of isopach maps of the mine overburden and the Sewickley Sandstone. The trend of the two maps suggested that a relationship existed between the sandstone thickness, the overburden and the surface expression of the subsidence. In order to determine this relationship, the two maps were combined into a second order map showing the mine overburden--Sewickley Sandstone thickness ratios. The combination was accomplished by computer matrix operations using the grid values of the two previous maps that were generated by kriging. It was concluded that the ratio of the Sewickley Sandstone thickness to the mine overburden had a tremendous effect on the amount of damage that occurred to specific residences

  14. Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data

    Science.gov (United States)

    Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao

    2012-11-01

    Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.

  15. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  16. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  17. September 2016 Bayou Choctaw Subsidence Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Dylan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Subsidence monitoring is a crucial component to understanding cavern integrity of salt storage caverns. This report looks at historical and current data at the Bayou Choctaw Strategic Petroleum Reserve Site. Data from the most recent land-based annual surveys, GPS, and tiltmeter indicate the subsidence rates across the site are approximately 0.0 ft./yr. Because of this, there is no evidence from the subsidence survey to suggest any of the DOE caverns have been structurally compromised.

  18. Assessment of South Pars Gas Field Subsidence Due To Gas Withdrawal

    Directory of Open Access Journals (Sweden)

    Akbar Ghazifard

    2014-12-01

    Full Text Available Withdrawal of oil and gas from reservoirs causes a decrease in pore pressure and an increase in effective stress which results to a reservoir compaction. Reservoir compaction will result in surface subsidence through the elastic response of the subsurface. Usually in order to determine the subsidence above a hydrocarbon field, the reservoir compaction must be first calculated and then the effect of this compaction on the surface should be modeled. The use of the uniaxial compaction theory is more prevalent and an accepted method for determining the amount of reservoir compaction. But despite of the reservoir compaction calculation method, there are many methods with different advantages and shortcomings for modeling of surface subsidence. In this study, a simple analytical method and semi‌-analytical methods (AEsubs software were used for modeling of the surface subsidence of the South Pars gas field at the end of the production period.

  19. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker

    2015-11-01

    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  20. 30 CFR 817.121 - Subsidence control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Subsidence control. 817.121 Section 817.121... ACTIVITIES § 817.121 Subsidence control. (a) Measures to prevent or minimize damage. (1) The permittee must... control plan prepared pursuant to § 784.20 of this chapter. (c) Repair of damage—(1) Repair of damage to...

  1. Subsidence above in situ vitrification: Evaluation for Hanford applications

    International Nuclear Information System (INIS)

    Dershowitz, W.S.; Plum, R.L.; Luey, J.

    1995-08-01

    Pacific Northwest Laboratory (PNL)is evaluating methods to extend the applicability of the in situ vitrification (ISV) process. One method being evaluated is the initiation of the ISV process in the soil subsurface rather than the traditional start from the surface. The subsurface initiation approach will permit extension of the ISV treatment depth beyond that currently demonstrated and allow selective treatment of contamination in a geologic formation. A potential issue associated with the initiation of the ISV process in the soil subsurface is the degree of subsidence and its effect on the ISV process. The reduction in soil porosity caused by the vitrification process will result in a volume decrease for the vitrified soils. Typical volume reduction observed for ISV melts initiated at the surface are on the order of 20% to 30% of the melt thickness. Movement of in-situ materials into the void space created during an ISV application in the soil subsurface could result in surface settlements that affect the ISV process and the processing equipment. Golder Associates, Inc., of Redmond, Washington investigated the potential for subsidence events during application of ISV in the soil subsurface. Prediction of soil subsidence above an ISV melt required the following analyses: the effect of porosity reduction during ISV, failure of fused materials surrounding the ISV melt, bulking of disturbed materials above the melt, and propagation of strains to the surface

  2. Catastrophic subsidence: An environmental hazard, shelby county, Alabama

    Science.gov (United States)

    Lamoreaux, Philip E.; Newton, J. G.

    1986-03-01

    Induced sinkholes (catastrophic subsidence) are those caused or accelerated by human activities These sinkholes commonly result from a water level decline due to pumpage Construction activities in a cone of depression greatly increases the likelihood of sinkhole occurrence Almost all occur where cavities develop in unconsolidated deposits overlying solution openings in carbonate rocks. Triggering mechanisms resulting from water level declines are (1) loss of buoyant support of the water, (2) increased gradient and water velocity, (3) water-level fluctuations, and (4) induced recharge Construction activities triggering sinkhole development include ditching, removing overburden, drilling, movement of heavy equipment, blasting and the diversion and impoundment of drainage Triggering mechanisms include piping, saturation, and loading Induced sinkholes resulting from human water development/management activities are most predictable in a youthful karst area impacted by groundwater withdrawals Shape, depth, and timing of catastrophic subsidence can be predicted in general terms Remote sensing techniques are used in prediction of locations of catastrophic subsidence. This provides a basis for design and relocation of structures such as a gas pipeline, dam, or building Utilization of techniques and a case history of the relocation of a pipeline are described

  3. Land Subsidence International Symposium held in Venice

    Science.gov (United States)

    The Third International Symposium on Land Subsidence was held March 18-25, 1984, in Venice, Italy. Sponsors were the Ground-Water Commission of the International Association of Hydrological Sciences (IAHS), the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the Italian National Research Council (CNR), the Italian Regions of Veneto and Emilia-Romagna, the Italian Municipalities of Venice, Ravenna, and Modena, the Venice Province, and the European Research Office. Cosponsors included the International Association of Hydrogeologists (IAH), the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), and the Association of Geoscientists for International Development (AGID).Organized within the framework of UNESCO's International Hydrological Program, the symposium brought together over 200 international interdisciplinary specialists in the problems of land subsidence due to fluid and mineral withdrawal. Because man's continuing heavy development of groundwater, gas, oil, and minerals is changing the natural regime and thus causing more and more subsiding areas in the world, there had been sufficient new land subsidence occurrence, problems, research, and remedial measures since the 1976 Second International Symposium held in Anaheim, California, to develop a most interesting program of nearly 100 papers from about 30 countries. The program consisted of papers covering case histories of fluid and mineral withdrawal, engineering theory and analysis, karst “sink-hole”-type subsidence, subsidence due to dewatering of organic deposits or due to application of water (hydrocompaction), instrumentation, legal, socioeconomic, and environmental effects of land subsidence, and remedial works.

  4. Subsidence due to gas production in the Wadden Sea: How to ensure no harm will be done to nature

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Breunese, J.N.; Muntendam-Bos, A.G.

    2015-01-01

    The Wadden Sea is a shallow tidal sea in the north of the Netherlands where gas production is ongoing since 1986. Due to the sensitive nature of this area, gas extraction induced subsidence must remain within the "effective subsidence capacity" for the two tidal basins (Pinkegat and Zoutkamperlaag)

  5. Model test on partial expansion in stratified subsidence during foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Deng, Yansheng; Ma, Ruiqiang; Liu, Xiaotian; Guo, Qingfeng; Liu, Shaoli; Shao, Yule; Wu, Linbo; Zhou, Jie; Yang, Tianliang; Wang, Hanmei; Huang, Xinlei

    2018-02-01

    Partial expansion was observed in stratified subsidence during foundation pit dewatering. However, the phenomenon was suspected to be an error because the compression of layers is known to occur when subsidence occurs. A slice of the subsidence cone induced by drawdown was selected as the prototype. Model tests were performed to investigate the phenomenon. The underlying confined aquifer was generated as a movable rigid plate with a hinge at one end. The overlying layers were simulated with remolded materials collected from a construction site. Model tests performed under the conceptual model indicated that partial expansion occurred in stratified settlements under coordination deformation and consolidation conditions. During foundation pit dewatering, rapid drawdown resulted in rapid subsidence in the dewatered confined aquifer. The rapidly subsiding confined aquifer top was the bottom deformation boundary of the overlying layers. Non-coordination deformation was observed at the top and bottom of the subsiding overlying layers. The subsidence of overlying layers was larger at the bottom than at the top. The layers expanded and became thicker. The phenomenon was verified using numerical simulation method based on finite difference method. Compared with numerical simulation results, the boundary effect of the physical tests was obvious in the observation point close to the movable endpoint. The tensile stress of the overlying soil layers induced by the underlying settlement of dewatered confined aquifer contributed to the expansion phenomenon. The partial expansion of overlying soil layers was defined as inversed rebound. The inversed rebound was induced by inversed coordination deformation. Compression was induced by the consolidation in the overlying soil layers because of drainage. Partial expansion occurred when the expansion exceeded the compression. Considering the inversed rebound, traditional layer-wise summation method for calculating subsidence should be

  6. Offshore gravimetric and subsidence monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stenvold, Torkjell

    2008-06-15

    The introduction (Chapter 1) is complemented by the introductions given in Chapters 2 to 8. I am the first author of the articles in chapter 2 and 8. For the 5 articles in between I am a coauthor, and the sum of my contributions to those articles (as quantified by the respective first authors) represents about one article. Chapter 2 contains the article 'High-precision relative depth and subsidence mapping from seafloor water-pressure measurements' by Stenvold et al. (2006), published in the SPE Journal. It was submitted in March 2005, and a revised version that also contained results from the Troll 2005 survey (August) was submitted in February 2006. The method of obtaining high-precision relative depth measurements by the use of mobile pressure gauges is presented. Intra-survey and inter-survey depth repeatabilities from six surveys are presented, and the individual contributing errors are discussed and estimated. Average reservoir compressibility for the Troll field between 2002 and 2005 is obtained by matching measured subsidence with modeled subsidence. Chapter 3 contains the article 'A new seafloor gravimeter' by Sasagawa et al. (2003), published in Geophysics. It was submitted in September 2001, and a revised version was submitted in August 2002. This article describes the ROVDOG (Remotely operated Vehicledeployed Deep-Ocean Gravimeter) in detail. Gravity and pressure repeatability results from the two first Troll surveys in 1998 and 2000 are presented. Data reduction, instrumental and environmental corrections are also presented. Chapter 4 contains the article 'Precision of seafloor gravity and pressure measurements for reservoir monitoring' by Zumberge et al., and was submitted 29 February 2008 to Geophysics. This builds on the article by Sasagawa et al. (Chapter 3). Improvements and upto date intra- and inter survey repeatability results are presented. The emphasis is on gravity results since the relative depth measurements

  7. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    Science.gov (United States)

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki, Maximillian; Jonsson, Sigurjon

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana'a and Mabar basins. In the Sana'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge of some

  8. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana\\'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana\\'a and Mabar basins. In the Sana\\'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana\\'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge

  9. Sources of subsidence at the Salton Sea Geothermal Field

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  10. Improving the influence function method to take topography into the calculation of mining subsidence

    OpenAIRE

    Cai , Yinfei; Verdel , Thierry; Deck , Olivier; LI , Xiao-Jong

    2016-01-01

    International audience; The classic influence function method is often used in the calculation of mining subsidence caused by stratiform underground excavations. Theoretically,its use is limited to the subsidence predictions under the condition of horizontal ground surface. In order to improve the original influence function method to take topographic variations into account. Due to real-world mining conditions that are usually complicated, it is difficult to separate topography influences fr...

  11. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  12. Study on Land Subsidence Incangzhou Area Basedon SENTINEL-1A/B Data

    Science.gov (United States)

    Zhou, H.; Wang, Y.; Yan, S.

    2017-09-01

    This paper, obtaining 39scenesof images of the Sentinel-1 A/B, monitored the Cangzhou area subsidence from Mar. 2015 to Dec. 2016 basing on using PS-InSAR technique. The annual average subsidence rate and accumulative subsidence were obtained. The results showed that the ground surface of Xian County,Cang County, Cangzhou urban area had a rebound trend; Qing County, the east of Cang County ,the west of Nanpi County and Dongguang County appeared obvious subsidence, and the accumulated subsidence in Hezhuang village of Dongguang County reached 47 mm. And from that the main reason leading to these obvious subsidence was over-exploitation of ground-water. At last, it analyzed the settlement of the High-Speed Railway (HR) which was north from the Machang town of QingCounty and south to the Lian town of Dongguang County in Cangzhou.The relative deformation of the HR between the two sections which was Lierzhuang village of Cang County and Chenxin village of Nanpi County arrived at 30 mm. Moreover, this paper discussed the application of Sentinel-1 A/B SAR images in monitoring urban land subsidence and the results provided important basic data for the relevant departments.

  13. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  14. Review: Regional land subsidence accompanying groundwater extraction

    Science.gov (United States)

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  15. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    Science.gov (United States)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence

  16. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  17. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  18. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  19. Characterization of the multi-component driving land subsidence using Persistent Scatterer Interferometry technique: the Ravenna case of study (Italy)

    Science.gov (United States)

    Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario

    2015-04-01

    Land subsidence represents a kind of hazard, which affects an increasing number of worldwide regions, densely populated, causing damage to the environment and infrastructures. Settlements can be related to multiple processes both natural and anthropic (i.e. vadose zone processes, soil consolidation, aquifer compaction, solid and fluid extraction and load-induced compaction) which take place at different spatio-temporal scale. Over the last decades, advanced subsidence studies exploited Synthetic-Aperture Radar (SAR) data, a recent remote sensing tool, to investigate land subsidence phenomena around the world. In particular, Persistent Scatterer Interferometry (PSI) technique, allowing a quantitative estimation at high resolution of the surface deformations, has already been successfully applied to monitor the phenomenon evolution; PSI measurements represent the cumulative displacement, deriving from the contribution of natural and anthropic components, both superficial and deep. The overlapping of several causative factors makes more difficult to accurately interpret the resulting deformations; therefore, it is essential to implement a suitable methodology to distinguish the shallow and deep components of motion. The aim of our research is to introduce a PSI-based approach not only to monitoring but also to understand the land subsidence mechanism, in order to disentangle the natural and anthropic components of motion. The methodology consists of three main phases: 1) Post-processing elaborations (i.e. interpolation of the cumulated displacements and isokinetics map implementation); 2) Characterization of the subsidence areas (i.e. subsidence pattern recognition by means of automatic time series classification); 3) Mechanisms recognition (i.e. identification of the predisposing and triggering factors and comparison with lito-technical model of subsoil, and with earth measurements). In this work, the methodology has been applied to the Ravenna area, Italy, using

  20. Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods

    Directory of Open Access Journals (Sweden)

    Hongdong Fan

    2015-07-01

    Full Text Available An approach to study the mechanism of mining-induced subsidence, using a combination of phase-stacking and sub-pixel offset-tracking methods, is reported. In this method, land subsidence with a small deformation gradient was calculated using time-series differential interferometric synthetic aperture radar (D-InSAR data, whereas areas with greater subsidence were calculated by a sub-pixel offset-tracking method. With this approach, time-series data for mining subsidence were derived in Yulin area using 11 TerraSAR-X (TSX scenes from 13 December 2012 to 2 April 2013. The maximum mining subsidence and velocity values were 4.478 m and 40 mm/day, respectively, which were beyond the monitoring capabilities of D-InSAR and advanced InSAR. The results were compared with the GPS field survey data, and the root mean square errors (RMSE of the results in the strike and dip directions were 0.16 m and 0.11 m, respectively. Four important results were obtained from the time-series subsidence in this mining area: (1 the mining-induced subsidence entered the residual deformation stage within about 44 days; (2 the advance angle of influence changed from 75.6° to 80.7°; (3 the prediction parameters of mining subsidence; (4 three-dimensional deformation. This method could be used to predict the occurrence of mining accidents and to help in the restoration of the ecological environment after mining activities have ended.

  1. Regional subsidence history and 3D visualization with MATLAB of the Vienna Basin, central Europe

    Science.gov (United States)

    Lee, E.; Novotny, J.; Wagreich, M.

    2013-12-01

    This study reconstructed the subsidence history by the backstripping and 3D visualization techniques, to understand tectonic evolution of the Neogene Vienna Basin. The backstripping removes the compaction effect of sediment loading and quantifies the tectonic subsidence. The amount of decompaction was calculated by porosity-depth relationships evaluated from seismic velocity data acquired from two boreholes. About 100 wells have been investigated to quantify the subsidence history of the Vienna Basin. The wells have been sorted into 10 groups; N1-4 in the northern part, C1-4 in the central part and L1-2 in the northernmost and easternmost parts, based on their position within the same block bordered by major faults. To visualize 3D subsidence maps, the wells were arranged to a set of 3D points based on their map location (x, y) and depths (z1, z2, z3 ...). The division of the stratigraphic column and age range was arranged based on the Central Paratethys regional Stages. In this study, MATLAB, a numerical computing environment, was used to calculate the TPS interpolation function. The Thin-Plate Spline (TPS) can be employed to reconstruct a smooth surface from a set of 3D points. The basic physical model of the TPS is based on the bending behavior of a thin metal sheet that is constrained only by a sparse set of fixed points. In the Lower Miocene, 3D subsidence maps show strong evidence that the pre-Neogene basement of the Vienna Basin was subsiding along borders of the Alpine-Carpathian nappes. This subsidence event is represented by a piggy-back basin developed on top of the NW-ward moving thrust sheets. In the late Lower Miocene, Group C and N display a typical subsidence pattern for the pull-apart basin with a very high subsidence event (0.2 - 1.0 km/Ma). After the event, Group N shows remarkably decreasing subsidence, following the thin-skinned extension which was regarded as the extension model of the Vienna Basin in the literature. But the subsidence in

  2. Application of Spaceborne Differential Radar Interferometry to Rockbursts, Mining Subsidence and Shallow Moderate Earthquakes

    Science.gov (United States)

    Eneva, M.; Baker, E.

    2002-12-01

    We have processed ERS SAR scenes for several sites of rockbursts and mining subsidence, including South Africa (gold), Colorado (coal), the state of New York (salt), Germany (potash), and Poland (copper). We are also looking at JERS-1 scenes from a potash mine in the Ural mountains (Russia) for which no suitable ERS data exist. Sizeable mining-induced events have occurred at most of these sites: mb5.1 in April 1999, S. Africa; ML3.6 in March 1994, New York; ML4.8 in September 1996, Germany; mb4.9 in April 2000, Poland; and mb4.7 in January 1995, Urals. It is reasonable to expect detectable surface displacements from rockbursts, as they are rather shallow compared with tectonic earthquakes of similar size. Indeed, in the case of the 1999 S. African event differential InSAR detects up to 9-cm displacement away from the satellite, while the 1995 collapse in the Urals has resulted in up to 4.5-m surface subsidence. Some of the study rockbursts have occurred on the background of ongoing mining subsidence (e. g., Poland, Urals, New York), adding a detectable boost to the existing subsidence rate. In other cases, mining subsidence is planned and intermittent, without unexpected collapse (e.g., long-wall coal mining in Colorado). We have applied deformation modeling using a 3D finite-difference code, focusing on the April 1999 event that was associated with a normal slip along the Dagbreek fault. Seismic events in this area (Welkom, S. Africa) are commonly associated with collapse of mined out volumes around west-dipping normal faults, but it is not clear how these faults contribute to the seismic and static displacements. The 1999 event provides an opportunity to address this ambiguity, as our InSAR measurements of surface displacements are complemented by local, regional, and teleseismic waveform records, as well as by measurements of displacements in the mine tunnels intersecting the Dagbreek fault. We are using these data to constrain the source and are investigating

  3. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    Science.gov (United States)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  4. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  5. Towards friction control using laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Schmidt, M.; Zaeh, M.

    2011-01-01

    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two

  6. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    International Nuclear Information System (INIS)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-01-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  7. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haisu [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion 71110 (Greece); Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion 71110 (Greece); Materials Science and Technology Department, University of Crete, 71003 Heraklion (Greece); Science Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar)

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  8. Electron emission from tungsten surface induced by neon ions

    International Nuclear Information System (INIS)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Liu, Xueliang; Xiao, Guoqing; Li, Fuli; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang

    2014-01-01

    The electron emission from W surface induced by Ne q+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for ''trampoline effect''

  9. Electron emission from tungsten surface induced by neon ions

    Science.gov (United States)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli

    2014-04-01

    The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".

  10. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  11. Differential subsidence in Mexico City and implications to its Collective Transport System (Metro).

    Science.gov (United States)

    Solano Rojas, D. E.; Wdowinski, S.; Cabral-Cano, E.; Osmanoglu, B.

    2017-12-01

    Mexico City is one of the fastest subsiding metropolis in the world. At displacement rates ranging from 0 to -380 [mm/yr], the complex geological setting is subjected to differential subsidence, which has led to damage, operation interruptions, and accidents to the Collective Transport System, or Metro. The Metro plays a critical role in Mexico City, carrying more than four million passengers per day. However, no previous study has focused on the deformation monitoring along the 93 km of the Metro surface railways, mainly because of the limitations of the traditional geodetic techniques. In this study, we use high-resolution Interferometric Synthetic Aperture Radar (InSAR) observations to monitor land subsidence throughout the city and quantify differential subsidence along surface Metro lines. Our analysis is based on 34 TerraSAR-X StripMap scenes acquired from May 2011 to June 2013 and 36 COSMO-SkyMed Stripmap scenes acquired from June 2011 to June 2012. The data were processed using the StaMPS InSAR time series technique, obtaining point densities of up to 4827 points/km2. Our post-processing methodologies include the following two components: (1) Detection of differential subsidence along the metro lines by calculating subsidence gradients, and (2) Detection of apparent uplift—areas subsiding slower than their surroundings—by using spatial frequency filtering. The two analyses allow us to recognize four main consequences of differential subsidence in the Metro system: 1. Deflection in elevated railways, 2. Deflection in street-level railways, 3. Columns with decreased loading capacity, and 4. Apparent uplift affecting surrounding infrastructure. Our results aim at shortening the large gap between scientific geodetic studies and applicable engineering parameters that can be used by local authorities in the city for maintenance and new lines development.

  12. Stress-induced roughening instabilities along surfaces of piezoelectric materials

    International Nuclear Information System (INIS)

    Chien, N.Y.; Gao, H.

    1993-01-01

    The possibility of using electric field to stabilize surfaces of piezoelectric solids against stress-induced morphological roughening is explored in this paper. Two types of idealized boundary conditions are considered: (1) a traction free and electrically insulating surface and (2) a traction free and electrically conducting surface. A perturbation solution for the energy variation associated with surface roughening suggests that the electric field can be used to suppress the roughening instability to various degrees. A completely stable state is possible in the insulating case, and kinetically more stable states can be attained in the conducting case. The stabilization has importance in reducing concentration of stress and electric fields due to microscopic surface roughness which might trigger failure processes involving dislocation, cracks and dielectric breakdown

  13. Impact of coal mining subsidence on farmland in eastern China

    International Nuclear Information System (INIS)

    Hu, Z.; Hu, F.; Li, J.; Li, H.

    1997-01-01

    This paper discusses damage characteristics of farmland due to coal mining subsidence in eastern China. The landscape of the mining subsidence trough has been divided into three zones; central zone, trough margin zone an dinner-edge zone. Each zone had a specific characteristic of deformation. The water accumulation, prone (downward sloping) land and fissures are typical damage characteristics of the subsidence landscape in eastern China. Based on soils analysis at different positions of the subsidence trough, the impact of mining subsidence on soil properties was identified. The physical properties of soil sensitive to mining subsidence were bulk density, water content and hydraulic conductivity, and they showed worsening form the top to the centre of the subsidence trough. Except for soil electrical conductivity, the tested soil chemical properties were not so sensitive to mining subsidence. They may however change after subsidence. An accumulation of salt was found in both new and old subsidence areas and the old subsidence area had a higher salt content. The soil biomass C in newly subsided land showed a decreasing trend from the top to the centre of the subsidence trough, but no obvious trend was observed in the old subsidence areas. Based on the soil analysis of subsided land, soil erosion was identified as a serious problem, most severe in the middle of the prone land. 4 refs., 5 figs., 1 tab

  14. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  15. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  16. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  17. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  18. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mingzhong, Wang; Guogang, Huang [Pingdingshan Mining Bureau (China); Yunjia, Wang; Guogangli, [China Univ. of Mining and Technology, Xuzhou (China)

    1997-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  19. November 2016 West Hackberry Subsidence Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Dylan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Subsidence monitoring is a critical component to understanding the cavern integrity of salt storage caverns. This report looks at historical and recent data from two of the three West Hackberry dome cavern operators. DOE SPR and LA Storage are coordinating subsidence surveys to create a comprehensive understanding of ground movement above the dome. Data from annual level and rod surveys, GPS, and tiltmeter data show the sites are experiencing typical ground movement. The highest subsidence rate is seen in the middle of the DOE SPR site at just under one inch per year with less ground movement around the edge of the site. A GPS and tiltmeter instrument in the northeast areas of the DOE SPR site has not seen any trend change since the devices were installed in 2013. Comparison between recent ground movement data and historical trends suggest that there is no reason to believe that any DOE SPR or LA Storage caverns have been structurally compromised.

  20. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mingzhong; Huang Guogang [Pingdingshan Mining Bureau (China); Wang Yunjia; Guogangli [China Univ. of Mining and Technology, Xuzhou (China)

    1996-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  1. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: sedao.xxx@gmail.com [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)

    2014-05-01

    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  2. Stress triggering of earthquakes and subsidence in the Louisiana coastal zone due to hydrocarbon production

    Science.gov (United States)

    Mallman, Ellen P.

    This thesis presents contributions towards better understanding of the interaction between earthquakes through elastic stress triggering and the role of hydrocarbon production on subsidence and land loss in southern Louisiana. The first issue addressed in this thesis is that of the role of static stress changes on earthquake triggering. The first study investigated whether observed changes in seismicity rate following the 1992 Landers, California and 1995 Kobe, Japan earthquakes are accurately predicted by elastic Coulomb stress transfer models. The analyses found that for all the tested DeltaCFS models wherever seismicity rate changes could be resolved the rate increased regardless of whether the DeltaCFS theoretically promoted or inhibited failure. The second study the common definition of a stress shadow was extended to independently test the stress shadow hypothesis using a global catalog of seismicity. The analyses indicated that while stress shadows are subtle, they are present in the global catalog. It also explains why "classical" stress shadows, similar to what was observed following the 1906 San Francisco earthquake are rarely observed for individual main shocks. The second issue addressed in this thesis is the role of hydrocarbon production on subsidence and land loss in the Louisiana Coastal Zone. The two studies in this thesis extend previous work by modeling the effect of oil and gas production in the region in two ways. First, multiple producing oil and gas fields and multiple epochs of leveling data are considered to provide constraints on predicted subsidence. Second, the role of compaction of the reservoir bounding shales on the regional subsidence signal is included. The results of the two studies on the role of hydrocarbon production on subsidence in the Louisiana Coastal Zone indicate that regional models of subsidence must include the effects of production-induced subsidence due to both sands and shales, but that this can not account for the

  3. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  5. Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana

    Science.gov (United States)

    Jones, Cathleen E.; An, Karen; Blom, Ronald G.; Kent, Joshua D.; Ivins, Erik R.; Bekaert, David

    2016-05-01

    New measurements of ongoing subsidence of land proximal to the city of New Orleans, Louisiana, and including areas around the communities of Norco and Lutcher upriver along the Mississippi are reported. The rates of vertical motion are derived from interferometric synthetic aperture radar (InSAR) applied to Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired on 16 June 2009 and 2 July 2012. The subsidence trends are similar to those reported for 2002-2004 in parts of New Orleans where observations overlap, in particular in Michoud, the 9th Ward, and Chalmette, but are measured at much higher spatial resolution (6 m). The spatial associations of cumulative surface movements suggest that the most likely drivers of subsidence are groundwater withdrawal and surficial drainage/dewatering activities. High subsidence rates are observed localized around some major industrial facilities and can affect nearby flood control infrastructure. Substantial subsidence is observed to occur rapidly from shallow compaction in highly localized areas, which is why it could be missed in subsidence surveys relying on point measurements at limited locations.

  6. Evaluating Land Subsidence Rates and Their Implications for Land Loss in the Lower Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Lei Zou

    2015-12-01

    Full Text Available High subsidence rates, along with eustatic sea-level change, sediment accumulation and shoreline erosion have led to widespread land loss and the deterioration of ecosystem health around the Lower Mississippi River Basin (LMRB. A proper evaluation of the spatial pattern of subsidence rates in the LMRB is the key to understanding the mechanisms of the submergence, estimating its potential impacts on land loss and the long-term sustainability of the region. Based on the subsidence rate data derived from benchmark surveys from 1922 to 1995, this paper constructed a subsidence rate surface for the region through the empirical Bayesian kriging (EBK interpolation method. The results show that the subsidence rates in the region ranged from 1.7 to 29 mm/year, with an average rate of 9.4 mm/year. Subsidence rates increased from north to south as the outcome of both regional geophysical conditions and anthropogenic activities. Four areas of high subsidence rates were found, and they are located in Orleans, Jefferson, Terrebonne and Plaquemines parishes. A projection of future landscape loss using the interpolated subsidence rates reveals that areas below zero elevation in the LMRB will increase from 3.86% in 2004 to 19.79% in 2030 and 30.88% in 2050. This translates to a growing increase of areas that are vulnerable to land loss from 44.3 km2/year to 240.7 km2/year from 2011 to 2050. Under the same scenario, Lafourche, Plaquemines and Terrebonne parishes will experience serious loss of wetlands, whereas Orleans and Jefferson parishes will lose significant developed land, and Lafourche parish will endure severe loss of agriculture land.

  7. Land subsidence in the San Joaquin Valley, California, USA, 2007-14

    Science.gov (United States)

    Sneed, Michelle; Brandt, Justin

    2015-01-01

    Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.

  8. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  9. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  10. Review of subsidence and stabilization techniques

    International Nuclear Information System (INIS)

    Fernando, D.A.

    1988-01-01

    In Britain the damage caused by underground coal mining operations approximates to about 100 million pounds Sterling per annum, most of the damage resulting from longwall mining operations. Causes of subsidence can be attributed to the following factors: (1) roof failure (2) pillar failure (3) floor movements. Currently, in Britain, the mining industry is undergoing a state of decline for economic reasons. Consequently, the number of old coal sites available for development schemes has increased. Therefore, the problems associated with subsidence can be segregated into two parts. The first being the mitigation of the effects of subsidence on structures on actively mined areas. The second being the stabilization and rehabilitation of ground over and around old mine sites for new development schemes. In the former case the stabilization techniques employed may be local or global, depending on the problems encountered in any particular area. In the latter case, generally, grouting techniques are employed. This paper aims to review the causes of subsidence and the techniques used to minimize its effect on structures. Also, more economic alternative methods of ground stabilization techniques are described and proposed, to be used in this area of ground engineering

  11. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  12. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    Science.gov (United States)

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  13. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  14. Subsidence of Surtsey volcano, 1967-1991

    Science.gov (United States)

    Moore, J.G.; Jakobsson, S.; Holmjarn, J.

    1992-01-01

    The Surtsey marine volcano was built on the southern insular shelf of Iceland, along the seaward extension of the east volcanic zone, during episodic explosive and effusive activity from 1963 to 1967. A 1600-m-long, east-west line of 42 bench marks was established across the island shortly after volcanic activity stopped. From 1967 to 1991 a series of leveling surveys measured the relative elevation of the original bench marks, as well as additional bench marks installed in 1979, 1982 and 1985. Concurrent measurements were made of water levels in a pit dug on the north coast, in a drill hole, and along the coastline exposed to the open ocean. These surveys indicate that the dominant vertical movement of Surtsey is a general subsidence of about 1.1??0.3 m during the 24-year period of observations. The rate of subsidence decreased from 15-20 cm/year for 1967-1968 to 1-2 cm/year in 1991. Greatest subsidence is centered about the eastern vent area. Through 1970, subsidence was locally greatest where the lava plain is thinnest, adjacent to the flanks of the eastern tephra cone. From 1982 onward, the region closest to the hydrothermal zone, which is best developed in the vicinity of the eastern vent, began showing less subsidence relative to the rest of the surveyed bench marks. The general subsidence of the island probably results from compaction of the volcanic material comprising Surtsey, compaction of the sea-floor sediments underlying the island, and possibly downwarping of the lithosphere due to the laod of Surtsey. The more localized early downwarping near the eastern tephra cone is apparently due to greater compaction of tephra relative to lava. The later diminished local subsidence near the hydrothermal zone is probably due to a minor volume increase caused by hydrous alteration of glassy tephra. However, this volume increase is concentrated at depth beneath the bottom of the 176-m-deep cased drillhole. ?? 1992 Springer-Verlag.

  15. Coral ages and island subsidence, Hilo drill hole

    Science.gov (United States)

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  16. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K.; Mishima, K.; Furuya, M.

    2003-01-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by γ-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by γ-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co γ-ray irradiation

  17. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  18. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  19. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  20. Depletion region surface effects in electron beam induced current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Paul M.; Zhitenev, Nikolai B. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Yoon, Heayoung P. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Gaury, Benoit [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

  1. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  2. Subsidence Contours for South Louisiana; UTM 15N NAD83; LRA (2005); [subsidence_contours

    Data.gov (United States)

    Louisiana Geographic Information Center — The GIS data shapefile represents average subsidence contour intervals (0.02 cm/year over 10,000 years) for Coastal LA derived from the following: Kulp, M.A., 2000,...

  3. The influence of subsidence attributable to coal mining on the environment, development and restoration: some examples from western Europe and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bell, F.G.; Genske, D.D. [University of Natal, Durban (South Africa). Dept. of Geology & Applied Geology

    2001-02-01

    One of the consequences of coal mining is subsidence, and it is associated with past and present mine workings. Indeed, old abandoned coal mines worked by the room-and-pillar method, which occur at shallow depth, often present a potential hazard as pillars collapse or voids migrate to the surface. Frequently, the situation is compounded by the fact that such workings are unrecorded. Subsidence prediction in such cases is impossible. In longwall mining, the total extraction of panels takes place, the working face being supported, while support is removed from behind the working face allowing the roof to collapse. Subsidence consequent on longwall mining can be regarded as more or less contemporaneous with mining and is normally predictable. This means that it is possible to develop an area after subsidence due to longwall mining has occurred or to incorporate features into the design of buildings and structures that will accommodate ground movements generated by subsidence. The nature of subsidence can be affected by discontinuities in the surface strata or the presence of superficial deposits. Of course, subsidence can adversely affect existing buildings and structures which do not incorporate special design features. In severe cases of subsidence damage, buildings may have to be demolished. Important buildings may be restored. Another problem associated with subsidence is flooding due to notable lowering of the ground surface. Examples of such problems and solutions are highlighted by the examples given.

  4. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  5. Integrated geophysical survey in defining subsidence features on a golf course

    Science.gov (United States)

    Xia, J.; Miller, R.D.

    2007-01-01

    Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.

  6. Land subsidence in the southwestern Mojave Desert, California, 1992–2009

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle

    2017-07-19

    Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

  7. Evaluation of subsidence hazard in mantled karst setting: a case study from Val d'Orléans (France)

    Science.gov (United States)

    Perrin, Jérôme; Cartannaz, Charles; Noury, Gildas; Vanoudheusden, Emilie

    2015-04-01

    Soil subsidence/collapse is a major geohazard occurring in karst region. It occurs as suffosion or dropout sinkholes developing in the soft cover. Less frequently it corresponds to a breakdown of karst void ceiling (i.e., collapse sinkhole). This hazard can cause significant engineering challenges. Therefore decision-makers require the elaboration of methodologies for reliable predictions of such hazards (e.g., karst subsidence susceptibility and hazards maps, early-warning monitoring systems). A methodological framework was developed to evaluate relevant conditioning factors favouring subsidence (Perrin et al. submitted) and then to combine these factors to produce karst subsidence susceptibility maps. This approach was applied to a mantled karst area south of Paris (Val d'Orléans). Results show the significant roles of the overburden lithology (presence/absence of low-permeability layer) and of the karst aquifer piezometric surface position within the overburden. In parallel, an experimental site has been setup to improve the understanding of key processes leading to subsidence/collapse and includes piezometers for measurements of water levels and physico-chemical parameters in both the alluvial and karst aquifers as well as surface deformation monitoring. Results should help in designing monitoring systems to anticipate occurrence of subsidence/collapse. Perrin J., Cartannaz C., Noury G., Vanoudheusden E. 2015. A multicriteria approach to karst subsidence hazard mapping supported by Weights-of-Evidence analysis. Submitted to Engineering Geology.

  8. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  9. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  10. Laser-induced plasma spectrometry: truly a surface analytical tool

    International Nuclear Information System (INIS)

    Vadillo, Jose M.; Laserna, J.

    2004-01-01

    For a long period, analytical applications of laser induced plasma spectrometry (LIPS) have been mainly restricted to overall and quantitative determination of elemental composition in bulk, solid samples. However, introduction of new compact and reliable solid state lasers and technological development in multidimensional intensified detectors have made possible the seeking of new analytical niches for LIPS where its analytical advantages (direct sampling from any material irrespective of its conductive status without sample preparation and with sensitivity adequate for many elements in different matrices) could be fully exploited. In this sense, the field of surface analysis could take advantage from the cited advantages taking into account in addition, the capability of LIPS for spot analysis, line scan, depth-profiling, area analysis and compositional mapping with a single instrument in air at atmospheric pressure. This review paper outlines the fundamental principles of laser-induced plasma emission relevant to sample surface studies, discusses the experimental parameters governing the spatial (lateral and in-depth) resolution in LIPS analysis and presents the applications concerning surface examination

  11. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  12. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    E. Glowacka

    2015-11-01

    Full Text Available The Mexicali Valley (northwestern Mexico, situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500–3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF, has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008 in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C. have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015. The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011. In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain

  13. The relation between land use and subsidence in the Vietnamese Mekong delta

    Science.gov (United States)

    The Vietnamese Mekong delta is subsiding due to a combination of natural and human-induced causes. Over the past several decades, large-scale anthropogenic land-use changes have taken place as a result of increased agricultural production, population growth and urbanization in th...

  14. Current Land Subsidence in Tianjin, China Recorded by Three Continuous GPS stations (2010-2014)

    Science.gov (United States)

    Jia, X.; Jing, Q.; Yan, B.; Yu, J.; Gan, W.; Wang, G.

    2014-12-01

    In the past two decades, Global Positioning System (GPS) technologies have been frequently applied to urban subsidence studies, both as a complement, and an alternative to conventional surveying methods. These studies have demonstrated that high-accuracy GPS techniques are an efficient tool in tracking long-term land subsidence. A great number of Continuously Operating Reference GPS Stations (CORS) have been installed in China during the past five years. Considerable land subsidence has been observed from CORS stations installed in several large cities. This study investigated GPS time series observed at three CORS in Tianjin: TJBD (2010-2014), TJBH (2010-2014), and TJWQ (2010-2014). Tianjin is one of the largest cities that is experiencing severe land subsidence problems in China. The observations at the three GPS sites indicate different subsidence rates. The average subsidence rate over four years are 0.2 cm/year at TJBD, 2 cm/year at TJBH, and 4.4 cm/year at TJWQ. The GPS station TJBD is located at Baodi, Tianjin. This area is the least economically developed and have the smallest population compared to the other two areas. Over 80% of water usage in Baodi is for agriculture and only less than 15% is from groundwater. The rapid subsidence at TJBH and TJWQ were caused by huge groundwater withdrawals associate with rapid urban and industrial developments in Binhai and Wuqing. Wuqing district, with a unique location advantage called "Corridor of Beijing and Tianjin", has been experiencing major urbanization. The population has reached 1,053,300 and the water usage has reached 350 million cubic meters in 2012. Over 25% of water usage is from groundwater. Significant annual and half-annual seasonal ground surface fluctuation has been observed from all three GPS stations. The peak-to-peak amplitude of the annual signal is 1.5 cm.

  15. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Steven J Deverel

    2010-08-01

    Full Text Available To estimate and understand recent subsidence, we collected elevation and soils data on Bacon and Sherman islands in 2006 at locations of previous elevation measurements. Measured subsidence rates on Sherman Island from 1988 to 2006 averaged 1.23 cm/year (0.5 in/yr and ranged from 0.7 to 1.7 cm/year (0.3 to 0.7 in/year. Subsidence rates on Bacon Island from 1978 to 2006 averaged 2.2 cm/year (0.9 in/yr and ranged from 1.5 to 3.7 cm/year (0.6 to 1.5 in/yr. Changing land-management practices and decreasing soil organic matter content have resulted in decreasing subsidence rates. On Sherman Island, rates from 1988 to 2006 were about 35% of 1910 to 1988 rates. For Bacon Island, rates from 1978 to 2006 were about 40% less than the 1926-1958 rates. To help understand causes and estimate future subsidence, we developed a subsidence model, SUBCALC, that simulates oxidation and carbon losses, consolidation, wind erosion, and burning and changing soil organic matter content. SUBCALC results agreed well with measured land-surface elevation changes. We predicted elevation decreases from 2007 to 2050 will range from a few centimeters to over 1.3 m (4.3 ft. The largest elevation declines will occur in the central Sacramento-San Joaquin Delta. From 2007 to 2050, the most probable estimated increase in volume below sea level is 349,956,000 million cubic meters (281,300 acre-feet. Consequences of this continuing subsidence include increased drainage loads of water quality constituents of concern, seepage onto islands, and decreased arability.

  16. Surface-passivation-induced optical changes in Ge quantum dots

    International Nuclear Information System (INIS)

    Reboredo, F. A.; Zunger, Alex

    2001-01-01

    One of the most interesting properties of quantum dots is the possibility to tune the band gap as a function of their size. Here we explore the possibility of changing the lifetime of the lowest-energy excited state by altering the surface passivation. We show that a moderately electronegative passivation potential can induce long-lived excitons without appreciable changes to the band gap. In addition, for such passivation the symmetry of the valence-band maximum is γ 8# sub v# (t 1 derived) instead of the more usual γ 8v (t 2 derived). This reverses the effect of the exchange interaction on the bright-dark exciton splitting

  17. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  18. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  19. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  20. Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mingliang Gao

    2018-02-01

    Full Text Available Land subsidence is the disaster phenomenon of environmental geology with regionally surface altitude lowering caused by the natural or man-made factors. Beijing, the capital city of China, has suffered from land subsidence since the 1950s, and extreme groundwater extraction has led to subsidence rates of more than 100 mm/year. In this study, we employ two SAR datasets acquired by Envisat and TerraSAR-X satellites to investigate the surface deformation in Beijing Plain from 2003 to 2013 based on the multi-temporal InSAR technique. Furthermore, we also use observation wells to provide in situ hydraulic head levels to perform the evolution of land subsidence and spatial-temporal changes of groundwater level. Then, we analyze the accumulated displacement and hydraulic head level time series using continuous wavelet transform to separate periodic signal components. Finally, cross wavelet transform (XWT and wavelet transform coherence (WTC are implemented to analyze the relationship between the accumulated displacement and hydraulic head level time series. The results show that the subsidence centers in the northern Beijing Plain is spatially consistent with the groundwater drop funnels. According to the analysis of well based results located in different areas, the long-term groundwater exploitation in the northern subsidence area has led to the continuous decline of the water level, resulting in the inelastic and permanent compaction, while for the monitoring wells located outside the subsidence area, the subsidence time series show obvious elastic deformation characteristics (seasonal characteristics as the groundwater level changes. Moreover, according to the wavelet transformation, the land subsidence time series at monitoring well site lags several months behind the groundwater level change.

  1. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  2. New information on regional subsidence and soil fracturing in Mexico City Valley

    Directory of Open Access Journals (Sweden)

    G. Auvinet

    2015-11-01

    Full Text Available In this paper, updated information about regional subsidence in Mexico City downtown area is presented. Data obtained by R. Gayol in 1891, are compared with information obtained recently from surveys using the reference points of Sistema de Aguas de la Ciudad de México (2008 and on the elevation of a cloud of points on the ground surface determined using Light Detection and Ranging (LiDAR technology. In addition, this paper provides an overview of recent data obtained from systematic studies focused on understanding soil fracturing associated with regional land subsidence and mapping of areas susceptible to cracking in Mexico City Valley.

  3. Land subsidence caused by a single water extraction well and rapid water infiltration

    Directory of Open Access Journals (Sweden)

    I. Martinez-Noguez

    2015-11-01

    Full Text Available Nowadays several parts of the world suffer from land subsidence. This setting of the earth surface occurs due to different factors such as earth quakes, mining activities, and gas, oil and water withdrawal. This research presents a numerical study of the influence of land subsidence caused by a single water extraction well and rapid water infiltration into structural soil discontinuities. The numerical simulation of the infiltration was based on a two-phase flow-model for porous media, and for the deformation a Mohr–Coulomb model was used. A two-layered system with a fault zone is presented. First a single water extraction well is simulated producing a cone-shaped (conical water level depletion, which can cause land subsidence. Land Subsidence can be further increased if a hydrological barrier as a result of a discontinuity, exists. After water extraction a water column is applied on the top boundary for one hours in order to represent a strong storm which produces rapid water infiltration through the discontinuity as well as soil deformation. Both events are analysed and compared in order to characterize deformation of both elements and to get a better understanding of the land subsidence and new fracture formations.

  4. Review of corrective measures to stabilize subsidence in shallow-land burial trenches

    International Nuclear Information System (INIS)

    Roop, R.D.; Staub, W.P.; Hunsaker, D.B. Jr.; Ketelle, R.H.; Lee, D.W.; Pin, F.G.; Witten, A.J.

    1983-05-01

    Shallow-land burial of low-level radioactive wastes is frequently followed by subsidence: the slumping, cave-in, or depression of the trench's surface. This report describes and evaluates the measures proposed for correcting subsidence, including roller compaction, grouting, explosives, surcharging, falling mass, pile driving, in situ incineration, and accelerated decomposition. Subsidence, which has occurred at all the major waste disposal sites, has two major causes: filling of packing voids (spaces between waste containers) and filling of interior voids (spaces within containers). Four additional mechanisms also contribute to subsidence: collapse of trench walls, chemical and biological degradation, soil consolidation, and shrink and swell phenomena. Corrective measures for subsidence are evaluated on three criteria: effectiveness, applicability, and cost. The evaluation indicates that one method, falling mass, is considered to be effective, widely applicable, and relatively low in cost, suggesting that this would be the most generally useful technique and would yield the greatest payoff from further development and field trials. There are many uncertainties associated with the cost and effectiveness of corrective measures which can best be resolved by experimental field demonstrations. Site-specific analyses for each disposal area are recommended, to determine which techniques are appropriate and to evaluate the overall desirability of applying corrective measures

  5. Determination of Soft Lithology Causes The Land Subsidence in Coastal Semarang City by Resistivity Methods

    Science.gov (United States)

    Widada, Sugeng; Saputra, Sidhi; Hariadi

    2018-02-01

    Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.

  6. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  7. Magnitude and extent of land subsidence in central Mexico revealed by regional InSAR ALOS time-series survey

    Science.gov (United States)

    Chaussard, E.; Wdowinski, S.; Amelung, F.; Cabral-Cano, E.

    2013-05-01

    Massive groundwater extraction is very common in Mexico and is well known to result in land subsidence. However, most surveys dedicated to land subsidence focus on one single city, mainly Mexico City, and thus fail to provide a comprehensive picture of the problem. Here we use a space-based radar remote sensing technique, known as Interferometric Synthetic Aperture Radar (InSAR) to detect land subsidence in the entire central Mexico area. We used data from the Japanese satellite ALOS, processed over 600 SAR images acquired between 2007-2011 and produced over 3000 interferograms to cover and area of 200,000 km2 in central Mexico. We identify land subsidence in twenty-one areas, including seventeen cities, namely from east to west, Puebla, Mexico city, Toluca de Lerdo, Queretaro, San Luis de la Paz, south of San Luis de la Paz, Celaya, south of Villa de Reyes, San Luis Potosi, west of Villa de Arista, Morelia, Salamanca, Irapuato, Silao, Leon, Aguascalientes, north of Aguascalientes, Zamora de Hidalgo, Guadalajara, Ahuacatlan, and Tepic. Subsidence rates of 30 cm/yr are observed in Mexico City, while in the other locations typical rates of 5-10 cm/yr are noticed. Regional surveys of this type are necessary for the development of hazard mitigation plans and efficient use of ground-based monitoring. We additionally correlate subsidence with land use, surface geology, and faults distribution and suggest that groundwater extraction for agricultural, urban, and industrial uses are the main causes of land subsidence. We also reveal that the limits of the subsiding areas often correlate with existing faults, motion on these faults being driven by water extraction rather than by tectonic activity. In all the subsiding locations we observe high ground velocity gradients emphasizing the significant risks associated with land subsidence in central Mexico. Averaged 2007-2011 ground velocity map from ALOS InSAR time-series in central Mexico, revealing land subsidence in 21

  8. Taphonomic expressions of sedimentary hiatuses: field observations on bioclastic concentrations and sequence anatomy in low, moderate and high subsidence settings

    Science.gov (United States)

    Kidwell, S. M.

    1993-07-01

    Field studies of post-Palaeozoic siliciclastic records reveal a strong concordance between different types of bioclastic concentrations and discontinuity surfaces within third-order sequences (≈ 1 My duration), supporting the use of taphonomic criteria in establishing the relative magnitudes of sedimentary hiatuses. Comparison of records across a spectrum of subsidence rates, however (from ≤ 10 m to > 1 km/My), shows that, along with appreciable changes in sequence anatomy, the nature of surface-mantling bioclastic concentrations also changes. The most significant surfaces (second- and third-order sequence boundaries, surfaces or intervals of maximum transgression, transgressive surfaces) tend to be either bare or mantled with taphonomically complex hiatal and lag concentrations. These were more consistently encountered in low subsidence than in moderate subsidence records. In high subsidence records, major surfaces were more often mantled by composite or event concentrations, if they were bioclastic at all. In all subsidence settings, comparatively minor surfaces (parasequence boundaries, bed set boundaries and bedding planes) were bare or mantled with relatively simple event and composite concentrations. Although all fossil assemblages are biased taphonomically to some degree, relative degrees of bias should almost certainly vary among discontinuities as a general rule, suggesting specific adjustments in sampling strategies for evolutionary studies.

  9. Surface-Induced Hybridization between Graphene and Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Allen L. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Koch, Roland J. [Technische Universitat, Chemnitz (Germany); Ong, Mitchell T. [Stanford Univ., CA (United States); Fang, Wenjing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Hofmann, Mario [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kim, Ki Kang [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Seyller, Thomas [Technische Universitat, Chemnitz (Germany); Dresselhaus, Mildred S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Reed, Evan J. [Stanford Univ., CA (United States); Kong, Jing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Palacios, Tomás [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-08-26

    Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface-specific and has major consequences for contacting graphene nanoelectronic devices as well as applications toward metal-induced chemical functionalization of graphene.

  10. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling

    Science.gov (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  11. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  12. Evaluation of mining subsidence using GPS data

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Kajzar, Vlastimil; Souček, Kamil; Staš, Lubomír

    2009-01-01

    Roč. 6, č. 3 (2009), s. 359-367 ISSN 1214-9705. [Czech - Polish Workshop on recent geodynamics of the Sudeten and adjacent areas /9./. Náchod, 12.11.2009-15.11.2009] R&D Projects: GA ČR GA105/07/1586 Institutional research plan: CEZ:AV0Z30860518 Keywords : undermining * subsidence depression * tectonic faults Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.275, year: 2009 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode

  13. Tip Induced Motion of Adatoms on Metal Surfaces

    International Nuclear Information System (INIS)

    Kuerpick, U.; Rahman, T.S.

    1999-01-01

    From total energy calculations we show that for certain tip-adatom separations the activation barrier for the adatom to move towards the tip disappears and the adatom experiences an attractive force in the direction of the tip. For a Cu adatom at a (100) microfaceted step on Cu(111) this happens at a lateral separation of about one lattice constant, in agreement with recent experimental findings. Simultaneously, the activation barrier in the direction away from the tip increases significantly. The details of the changes in the potential energy surface induced by the tip are found to depend on the characteristics of the tip apex and its height above the adatom. copyright 1999 The American Physical Society

  14. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  15. Surface modifications induced by hydrogen in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Evangelista, G.E.; Miranda, P.E.V. de

    1983-01-01

    Hydrogen induced surface modifications of type AISI 304 SS were studied by charging the samples in a 1N a 1N H 2 SO 4 electrolyte at room temperature. Current densities were varied from 500 to 4000 A/m 2 and charging times from 2 to 50 hours. Charged specimens were analysed using optical and electron scanning microscopy. Vickers microhardness tests with small load was also performed. Metallographic etching metodologies were developed (in black and white and colored photographies) which permited identification of all phases present. It was shown that delayed cracks appear somewhat curved on austenite and perfectly strainght on martensite, following the intersections of a phase platlets. These are the regions where α' martensite is located. The habit plane of these cracks might belong to (100) sub(γ) or (221) sub(γ) plane families. A new phenomenon termed hydrogen induced softening was observed on type AISI 304 SS at elevated current densities and/or charging times. (Author) [pt

  16. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  17. Large networks of artificial radar reflectors to monitor land subsidence in natural lowlying coastal areas

    Science.gov (United States)

    Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro

    2014-05-01

    intensity of the surrounding area; (ii) the network must be established resembling a sort of levelling benchmark network, i.e. with the TCRs placed keeping to a value of about 1.0-1.5 km the maximum distance between the TCRs or between an 'artificial' and the adjacent 'natural' reflectors to reliably resolve the radar phase ambiguities in the presence of atmospheric artifacts. Moreover, our experiment provided new information in order to improve the knowledge of the regional and local processes acting in the Venice Lagoon. We found that the northern basin of the lagoon is subsiding at a rate of about 3-4 mm/yr, while the central and the southern lagoon regions are more stable. At the local scale, i.e., the scale of the single salt marshes, significant differences have been detected depending, for example, on the nature and the architecture of Holocene deposits (Tosi et al., 2009). Acknowledgments. This work was supported by Magistrato alle Acque di Venezia-Venice Water Authority (VWA) and Consorzio Venezia Nuova (CVN) through the INLET Project and partially developed within the RITMARE Flagship Project (CNR-MIUR), Action 2 (SP3-WP1). TERRASAR-X data courtesy COA0612, © DLR. References. Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Cecconi, G., Rosselli, R., & Libardo, S. (2012). Resolving land subsidence within the venice lagoon by persistent scatterer SAR interferometry. Physics and Chemistry of the Earth, 40-41, 72-79, doi: 10.1016/j.pce.2010.01.002. Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U., & Werner, C. (2013). Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. Journal of Geophysical Research F: Earth Surface, 118(2), 1177-1191, doi: 10.1002/jgrf.2008. Tosi, L., Rizzetto, F., Zecchin, M., Brancolini, G., & Baradello, L. (2009). Morphostratigraphic framework of the venice lagoon (italy) by very shallow water VHRS surveys: Evidence of radical changes triggered by human-induced river diversions

  18. Subsidence over AML and its causes - A case study

    International Nuclear Information System (INIS)

    Peng, S.S.; Lin, P.M.; Hsiung, S.M.

    1988-01-01

    Subsidence over abandoned mined lands can be attributed to several causes. For purposes of compensation and liability and developing remedial measures, it is essential to identify the real causes. The detailed procedures for a subsidence investigation and the keys to identify and determine the causes and severity of the damages are illustrated and discussed through a case study in this paper. A subsidence check list has been developed for investigation purposes. The case discussed in this paper is a mining-related subsidence. The associated subsidence index was 60%. The damage to the dwelling was due to tension. The major damage was developed within two days. A crackmeter was installed on the exterior wall to monitor the house movement. An inclinometer casing and a Sondex casing were installed in a borehole to monitor the ground movement. The results of the geotechnical instrumentation are presented to illustrate the procedures developed for investigating the subsidence cases over the abandoned mine lands

  19. Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico

    Science.gov (United States)

    Solano Rojas, D. E.; Pacheco, J.; Wdowinski, S.; Minderhoud, P. S. J.; Cabral-Cano, E.; Albino, F.

    2017-12-01

    The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model, based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stress along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.

  20. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    Science.gov (United States)

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  1. Space geodesy: subsidence and flooding in New Orleans.

    Science.gov (United States)

    Dixon, Timothy H; Amelung, Falk; Ferretti, Alessandro; Novali, Fabrizio; Rocca, Fabio; Dokka, Roy; Sella, Giovanni; Kim, Sang-Wan; Wdowinski, Shimon; Whitman, Dean

    2006-06-01

    It has long been recognized that New Orleans is subsiding and is therefore susceptible to catastrophic flooding. Here we present a new subsidence map for the city, generated from space-based synthetic-aperture radar measurements, which reveals that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area is next to the Mississippi River-Gulf Outlet (MRGO) canal, where levees failed during the peak storm surge: the map indicates that this weakness could be explained by subsidence of a metre or more since their construction.

  2. Ensemble of ground subsidence hazard maps using fuzzy logic

    Science.gov (United States)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  3. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts

    International Nuclear Information System (INIS)

    Du, J.; Olson, J.E.

    2001-01-01

    A forward model was constructed to numerically predict surface subsidence and reservoir compaction following the approach of Segall [Pure Appl. Phys. 139 (1992) 536]. A nucleus of poroelastic strain is numerically integrated over a rectangular prism assuming constant pressure change. This fundamental geometry allows a reservoir to be divided into many small cubic blocks in a manner similar to reservoir simulation. The subsidence and compaction effects of the pressure change throughout the reservoir are calculated by the superposition of results from each individual block. Using forward modeling, pressure boundary conditions can be acquired from pressure test data or reservoir simulation predictions. An inversion model also was developed that can track pressure fronts in a subsurface reservoir using surface displacements. The capability of the inversion model was demonstrated using synthetic examples of one-well and four-well cases with different layouts of surface observation locations. The impact of noise on the inversion result is also included

  4. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  5. Consideration on the restoring plan in the subsidence prone areas through the development of ground stability assessment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.O.; Kwon, K.S.; Kim, I.H.; Cho, W.J.; Shin, H.S.; Lee, J.R.; Song, W.K.; Synn, J.H.; Park, C. [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Most of the ground stability analysis on the subsidence prone areas used to be performed through the conventional routine work which consist of a geological survey, a review of the ragged mining map, a trace-investigation on the surface subsidence, a coring job on the prone areas, a rock mass classification, and a two dimensional numerical analysis. Through the above works, we could analyze the stability problems of a surface structure and the tendency of a surface subsidence. However so many problems have been pointed out during the analysis of the subsidence problem owing to the lack of quantitative data in geological survey, the unreliability of the input data for numerical analysis. Also new techniques for ground stability on subsidence area which can replace the conventional passive method are requested among the civil and mining engineers for the safety control of the surface structure including the road and tunnel. In this study, the basic mechanism for the surface subsidence was surveyed first, and the proper input data for the two and three dimensional numerical analysis was selected. And these results were applied to Si-Heung Mine. According to the two dimensional numerical analysis, there is no possibility of surface subsidence even though tension failure was developed up to the region three times to the height of the cavity. Meanwhile the existing data for joints and the ground water was re-evaluated in order to analyze their effects on the subsidence. If we can recognize the characteristics of the spatial data on them in the future, the effect of the joint and ground water on the subsidence can be found out more precisely through the combination with GIS. Finally a finite difference numerical method was applied to Si-Heung Mine in the three dimension. But it was revealed that there are some problems in the three dimensional technique. In other words, it is difficult to obtain the exact spatial coordinates of the cavity, and the researcher should have

  6. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer

    Science.gov (United States)

    Zheng, Y. Y.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    Land subsidence is a very serious problem of Zhuoshui River alluvial fan, Taiwan. The main reason of land subsidence is a compression of soil, but the compression measured in the wide area is very extensive (Maryam et al., 2013; Linlin et al., 2014). Chen et al. [2010] studied the linear relationship between groundwater level and subsurface altitude variations from Global Positioning System (GPS) station in Zhuoshui River alluvial fan. But the subsurface altitude data were only from two GPS stations. Their distributions are spared and small, not enough to express the altitude variations of Zhuoshui River alluvial fan. Hung et al. [2011] used Interferometry Synthetic Aperture Radar (InSAR) to measure the surface subsidence in Zhuoshui River alluvial fan, but haven't compared with groundwater level. The study compares the correlation between rainfall events and groundwater level and compares the correlation between groundwater level and subsurface altitude, these two correlation affected by heterogeneous soil. From these relationships, a numerical model is built to simulate the land subsidence variations and estimate the coefficient of aquifer soil compressibility. Finally, the model can estimate the long-term land subsidence. Keywords: Land Subsidence, InSAR, Groundwater Level, Numerical Model, Correlation Analyses

  7. Substrate texture properties induce triatomine probing on bitten warm surfaces

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcelo G

    2011-06-01

    Full Text Available Abstract Background In this work we initially evaluated whether the biting process of Rhodnius prolixus relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae. Results The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects. Conclusions Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.

  8. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    A treatment is given of the problem of surface diffusion processes occurring during surface topography development, whenever a surface is simultaneously seeded with impurities and ion bombarded. The development of controllable topography and the importance of surface diffusion parameters, which can be obtained during these studies, are also analyzed. 101 refs.; 7 figs.; 2 tabs

  9. The Monitoring and Spatial-Temporal Evolution Characteristic Analysis for Land Subsidence in Beijing

    Science.gov (United States)

    Zhou, Q.; Zhao, W.; Yu, J.

    2018-05-01

    At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can't satisfy the need of aquifer recharge that product the land subsidence. As China's political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR) images acquired in 2008 June-2010 August and ten TerraSAR images acquired in 2011 June-2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR) techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.

  10. Releveling and behavior of strap-retrofitted damaged test foundations exposed to mine subsidence

    International Nuclear Information System (INIS)

    Marino, G.G.

    1997-01-01

    Test foundation walls were constructed in an area of planned subsidence. These crawl space-sized block bearing walls were located in the tension zone of a longwall panel. The test walls were 1.2 m (40 ft) long and were vertically loaded on top with soil binds to simulate the weight of a house. As the longwall proceeded past these test foundations, subsidence movements damaged the test structures. These damaged foundations were then structurally and aesthetically repaired by using a steel strap retrofit and applying a cementitious surface coating. The repaired test foundations underwent significant subsequent subsidence as an adjacent longwall was mined beneath. The response of the repaired foundation is summarized in this paper. The steel straps were also used to relevel another set of the test foundations after they were tilted and damaged by subsidence. First, the straps were applied to the block bearing walls, and then wall jacks were used to lift the upper portion of the walls to a level position. This releveling procedure is outlined with the results

  11. Differential substrate subsidence of the EnviHUT project pitched extensive green roof

    Directory of Open Access Journals (Sweden)

    Nečadová Klára

    2017-01-01

    Full Text Available In primary phase of testing building physical characteristics of the EnviHUT project extensive and semi-intensive roofs with 30° inclination occurred exceptional substrate subsidence. An extensive testing field with retaining geocell-system evinced differential subsidence of individual sectors after six months. Measured subsidence of installed substrate reached 40 % subsidence compared to originally designed height (intended layer thickness. Subsequent deformation of geocell-system additionally caused partial slide of substrate to drip edge area. These slides also influenced initial development of stonecrop plants on its surface. Except functional shortages the aesthetical function of the whole construction is influenced by the mentioned problem. The stated paper solves mentioned issues in view of installation method optimization, selection and modification of used roof substrate and in view of modification of geometric and building installed elements retaining system arrangement. Careful adjustment of roof system geometry and enrichment of original substrate fraction allow full functionality from pitched extensive green roof setting up. The modification scheme and its substantiation is a part of this technical study output.

  12. THE MONITORING AND SPATIAL-TEMPORAL EVOLUTION CHARACTERISTIC ANALYSIS FOR LAND SUBSIDENCE IN BEIJING

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2018-05-01

    Full Text Available At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can’t satisfy the need of aquifer recharge that product the land subsidence. As China’s political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR images acquired in 2008 June–2010 August and ten TerraSAR images acquired in 2011 June–2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.

  13. Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece

    Science.gov (United States)

    Tzampoglou, P.; Loupasakis, C.

    2017-09-01

    Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.

  14. Is There a Tectonic Component On The Subsidence Process In Morelia, Mexico?

    Science.gov (United States)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Garduno-Monroy, V.; Avila-Olivera, J.; Hernández-Madrigal, V.; Hernández-Quintero, E.

    2009-12-01

    Subsidence and faulting have affected cities in central Mexico for decades. This process causes substantial damages to the urban infrastructure, housing and large buildings, and is an important factor to be consider when planning urban development, land use zoning and hazard mitigation strategies. In Mexico, studies using InSAR and GPS based observations have shown that high subsidence areas are usually associated with the presence of thick lacustrine and fluvial deposits. In most cases the subsidence is closely associated with intense groundwater extraction that results in sediment consolidation. However, recent studies in the colonial city of Morelia in central Mexico show a different scenario, where groundwater extraction cannot solely explain the observed surface deformation. Our results indicate that a more complex interplay between sediment consolidation and tectonic forces is responsible for the subsidence and fault distribution within the city. The city of Morelia has experienced fault development recognized since the 80’s. This situation has led to the recognition of 9 NE-SW trending faults that cover most of its urbanized area. Displacement maps derived from differential InSAR analysis show that the La Colina fault is the highest subsiding area in Morelia with maximum annual rates over -35 mm/yr. However, lithological mapping and field reconnaissance clearly show basalts outcropping this area of high surface deformation. The subsurface characterization of the La Colina fault was carried out along 27 Ground Penetrating Radar (GPR) sections and 6 seismic tomography profiles. Assuming a constant, linear past behavior of the subsidence as observed by InSAR techniques, and based on the interpretation of the fault dislocation imaged by the shallow GPR and seismic tomography, it is suggested that the La Colina fault may have been active for the past 220-340 years and clearly pre-dates the intense water well extraction from the past century. These conditions

  15. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is

  16. Acoustically Induced Microparticle Orbiting and Clustering on a Solid Surface

    Science.gov (United States)

    Abdel-Fattah, A.; Tarimala, S.; Roberts, P. M.

    2008-12-01

    Behavior of colloidal particles in the bulk solution or at interfaces under the effect of high-frequency acoustics is critical to many seemingly different applications ranging from enhanced oil recovery to improved mixing in microfluidic channels and from accelerated contaminant extractions to surface cleaning, drug delivery and microelectronics. It can be detrimental or beneficial, depending on the application. In medical research, flow cytometry and microfluidics, for example, acoustically induced clustering of tracer particles and/or their sticking to the walls of channels, vessels, or tubes often becomes a problem. On the other hand, it can be tailored to enhance processes such as mixing in microfluidic devices, particle separation and sizing, and power generation microdevices. To better understand the underlying mechanisms, microscopic visualization experiments were performed in which polystyrene fluorescent (468/508 nm wavelength) microspheres with a mean diameter of 2.26-µm and density of 1.05 g/cm3, were suspended in either de-ionized water or a 0.1M NaCl solution. The freshly-prepared colloidal suspension was injected into a parallel-plate glass flow cell, which was subjected to high-frequency acoustics (200-500 kHz) through a piezoelectric transducer attached to one of the cell's outer walls. When the suspending medium is de-ionized water, acoustic stimulation of the cell at 313 kHz induced three distinct particle behaviors: 1) entrainment and bulk transport via wavelength-scale Rayleigh streaming, 2) transport via direct radiation forces to concentrate at nodal or anti-nodal planes, and 3) entrapment via boundary layer vorticular microstreaming resulting in mobile particles orbiting deposited particles. This latter phenomenon is intriguing. It occurs at specific frequencies and the shape of the orbits is determined by the applied frequency, whereas the rotation speed is proportional to the applied amplitude. At the higher ionic strength, on the other

  17. Resolving the Subsidence Anomaly of the East Tasman Plateau Using New Insights from the Cascade Seamount, Southwest Tasman Sea

    Science.gov (United States)

    Vorsanger, S. L.; Scher, H.; Johnson, S.; Mundana, R.; Sauermilch, I.; Duggan, B.; Whittaker, J. M.

    2017-12-01

    The Cascade Seamount is a wave-planated feature located on the microcontinent of the East Tasman Plateau (ETP). The minimum subsidence rate of the Seamount and the ETP can be estimated by dividing the present-day depth of the wave-cut surface (640 m) by the age of Cascade Seamount basalts as determined by potassium-argon (K-Ar) dating (33.4 and 36 Ma). This approach yields a subsidence rate of 18 m/Myr. However, significantly more rapid subsidence rates of the East Tasman Plateau (ETP) — upon which the Cascade Seamount rests — since the Eocene-Oligocene transition have been proposed utilizing a nearby sediment core, Ocean Drilling Program (ODP) Site 1172. Late Eocene paleodepths determined by Stickley et al. (2004) using sedimentological and biostratigraphic techniques, indicate a subsidence rate of 85 m/Myr for the ETP. These two results present a paradox, which implies that the ETP subsided at a rate greater than the Seamount itself, over the same time interval. It also implies that the seamount formed above sea level. The subsidence ambiguity may be attributed to the presence of a turbidity current deposit in the sediment core, or uncertainty in the age and/or location of the K-Ar dated basalts of the Cascade Seamount. Statistical analysis of the published grain size measurements will be used to test for the presence of a turbidity current deposit in ODP Site 1172. We will also measure 87Sr/86Sr ratios of marine carbonate samples from conglomerates obtained from the Cascade Seamount during the August 2016 RV Investigator voyage (IN2016_E01) to confirm the age of the wave planated surfaces by Strontium Isotope Stratigraphy. This will allow for a more robust calculation for the subsidence of the ETP which was a critical barrier in the Tasmanian Gateway that allowed for the formation of the Antarctic Circumpolar Current.

  18. The effective subsidence capacity concept: How to assure that subsidence in the Wadden Sea remains within defined limits?

    NARCIS (Netherlands)

    Waal, J.A. de; Roest,J.P.A.; Fokker, P.A.; Kroon, I.C.; Breunese, J.N.; Muntendam-Bos, A.G.; Oost, P.A.; Wirdum, G. van

    2012-01-01

    Subsidence caused by extraction of hydrocarbons and solution salt mining is a sensitive issue in the Netherlands. An extensive legal, technical and organisational framework is in place to ensure a high probability that such subsidence will stay within predefined limits. The key question is: how much

  19. Family Home Childcare Providers: A Comparison of Subsidized and Non-Subsidized Working Environments and Employee Issues

    Science.gov (United States)

    Shriner, Michael; Schlee, Bethanne M.; Mullis, Ronald L.; Cornille, Thomas A.; Mullis, Ann K.

    2008-01-01

    Federal and State Governments provide childcare subsidies for low-income working families. This study compares the encountered issues and working environments of family home providers of subsidized and non-subsidized childcare. Questionnaires were distributed throughout a southeastern state in the United States to 548 family home childcare…

  20. Establishment of a Subsidence Superstation in the Mississippi Delta: Integrating sediment core, SET, GPS and vertical strainmeter data to understand subsidence

    Science.gov (United States)

    Steckler, M. S.; Allison, M. A.; Bridgeman, J.; Dixon, T. H.; Hatfield, W.; A Karegar, M.; Tornqvist, T. E.; Zumberge, M. A.; Wyatt, F. K.

    2017-12-01

    There is a great need for coordinated efforts to monitor and better understand subsidence rates in low-elevation coastal zones by integrating different, complementary techniques at carefully selected sites. We present recent efforts to establish a subsidence superstation in the Mississippi Delta. The site is 2 km from the river near Myrtle Grove, Louisiana, at a CRMS (Coastwide Reference Monitoring System) site. The CRMS site consists of a surface elevation table (SET) and marker horizon established in 2008. The surface elevation relative to a rod driven to refusal (26 m) and the sedimentation above the marker horizon is measured semiannually. Adjacent to this site we have added three borehole optical fiber strainmeters that have been providing continuous records of displacement between the near-surface and depths of 10, 26, and 42 m. The instruments provide unprecedented resolution for compaction studies (see Hatfield et al. abstract). We regularly record teleseismic events with amplitudes <1 μm. The records also show a number of days-long compaction and rebound events of less than 1 mm, resulting from changes in the weather and water level. We have attached GPS to each of the wells. For the deepest well, the GPS is anchored to the bottom of the well with the base of the optical strainmeter. For the other two wells, the GPS is anchored to the upper casing of the well. While drilling the wells, a 5" diameter continuous core was collected reaching the Pleistocene boundary at 37 m depth (see Bridgeman et al. abstract). The silty uppermost 10 m, comprised of proximal overbank deposits, reveal up to 5-6 m of subsidence over the past 3000 years. In contrast, the surficial sediments ( 70 cm) are almost entirely organic matter and show little subsidence. The SET shows only 0.4 mm/yr for a 7.4 yr time window. Over the first year, the strainmeters show no long-term compaction or extension greater than ± 0.5 mm. Precise processing of the available GPS data indicates the

  1. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.; Foulds, Ian G.; Goriely, A.

    2013-01-01

    heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore

  2. Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy

    Science.gov (United States)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2015-04-01

    quantify alterations to the flooding hazard due to large and rapid differential land-subsidence, shedding some light on whether to consider anthropogenic land-subsidence among the relevant human-induced drivers of flood-risk change.

  3. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    Science.gov (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  4. Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992-99

    Science.gov (United States)

    Pavelko, Michael T.; Hoffmann, Jörn; Damar, Nancy A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Nevada Department of Conservation and Natural Resources-Division of Water Resources and the Las Vegas Valley Water District, compiled 44 individual interferograms and 1 stacked interferogram comprising 29 satellite synthetic aperture radar acquisitions of Las Vegas Valley, Nevada, from 1992 to 1999. The interferograms, which depict short-term, seasonal, and long-term trends in land subsidence and uplift, are viewable with an interactive map. The interferograms show that land subsidence and uplift generally occur in localized areas, are responsive to ground-water pumpage and artificial recharge, and, in part, are fault controlled. Information from these interferograms can be used by water and land managers to mitigate land subsidence and associated damage. Land subsidence attributed to ground-water pumpage has been documented in Las Vegas Valley since the 1940s. Damage to roads, buildings, and other engineered structures has been associated with this land subsidence. Land uplift attributed to artificial recharge and reduced pumping has been documented since the 1990s. Measuring these land-surface changes with traditional benchmark and Global Positioning System surveys can be costly and time consuming, and results typically are spatially and temporally sparse. Interferograms are relatively inexpensive and provide temporal and spatial resolutions previously not achievable. The interferograms are viewable with an interactive map. Landsat images from 1993 and 2000 are viewable for frames of reference to locate areas of interest and help determine land use. A stacked interferogram for 1992-99 is viewable to visualize the cumulative vertical displacement for the period represented by the individual interferograms. The interactive map enables users to identify and estimate the magnitude of vertical displacement, visually analyze deformation trends, and view interferograms and Landsat images side by side. The

  5. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    Science.gov (United States)

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  6. The interaction between land subsidence and urban development in China

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2015-11-01

    Full Text Available The Yangtze River Delta and North China Plain are experiencing serious land subsidence development and are also the areas that have undergone the fastest urbanization. Rapid urban development inevitably requires more water resources. However, China is a country with small per capita water resources, nonuniform distribution of water resources, and over-exploitation of groundwater – all of which are critical factors contributing to the potential for a land subsidence disaster. In addition, land subsidence has brought about elevation loss, damaged buildings, decreased safety of rail transit projects, lowered land value, and other huge economic losses and potential safety hazards in China. In this paper, Beijing, a typical northern Chinese city deficient in water, is taken as an example to explore (a the problems of urban development, utilization of water resources, and land subsidence development; (b the harm and influence of land subsidence hazards on urban construction; and (c the relationship between urban development and land subsidence. Based on the results, the author has predicted the trend of urban development and land subsidence in Beijing and puts forward her viewpoints and suggestions.

  7. A study on the mechanism and prediction of mine subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Chan; Moon, Hyun-Koo [Hanyang University, Seoul(Korea)

    2001-06-30

    The ground subsidence problem due to the increasing number of abandoned coal mines becomes serious. Recently, the sinkhole type subsidence occurred in many abandoned mines has raised an urgent stability question on the nearby railroads, bridges and buildings. But the study on the mechanism of discontinuous subsidence has not attracted much attention in the past. This study is mainly concerned with the mechanism and prediction of mine subsidence. Analyzed and presented in this study are the maximum possible height of roof caving for various shapes of caved zone using bulking factor approach, the critical depth of protective coal seam using the limit equilibrium method, and the factor of safety of stops using the limit equilibrium method with the friction angle and cohesion of rock. As prediction tools the influence function method and the probabilistic method are presented. An empirical equation is obtained from the subsidence data in Chulam and Chungsung areas and applied to Manhang coal mine. The probability of subsidence in Manhang area turned out to be high according to the subsidence frequency of 9.66. (author). 12 refs., 7 tabs., 21 figs.

  8. An integrated assessment framework for land subsidence in delta cities

    Directory of Open Access Journals (Sweden)

    T. H. M. Bucx

    2015-11-01

    Full Text Available In many delta cities land subsidence exceeds absolute sea level rise up to a factor of ten by excessive groundwater extraction related to rapid urbanization and population growth. Without change, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other delta (and coastal cities will sink below sea level. Increased flooding and also other widespread impacts of land subsidence result already in damage of billions of dollars per year. In order to gain insight in the complex, multi-sectoral aspects of subsidence, to raise awareness and to support decision making on appropriate adaptation strategies and measures, an Integrated Assessment Framework (IAF for subsidence is introduced, illustrated by several (delta case studies. Based on that a list of 10 generic key issues and possible solutions is presented in order to further develop and support a (generic approach how to deal with subsidence in current and future subsidence-prone areas. For exchange of experiences and knowledge development.on subsidence in deltas the Delta Alliance, a knowledge network of deltas worldwide, can be supportive.

  9. Proceedings of the 1985 conference on coal mine subsidence in the Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, J.L. (ed.)

    1986-01-01

    A total of 20 papers were presented at the conference on the following subjects: reclamation projects; geological surveys; history and evolution of mining; essential components of mine subsidence; subsidence related damage; core recovery of poorly consolidated materials; evaluation of subsurface conditions; remote video inspection of abandoned coal mines; use of progressive failure model for subsidence prediction; chimney subsidence sinkhole development; analytical methods of subsidence prediction; monitoring networks; architectural mitigating measures; backfilling; awareness and planning; administrative aspects; mine subsidence insurance; risk management.

  10. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    pumps can be taken into account. This method can be extended to any desorption experiment employing the single shot method for measurement. Of special interest for the operation of the SIS100 at high intensities is the minimization of desorption from cryogenic surfaces. A previous examination of this topic found a breakdown of the familiar scaling of the desorption yield with the beam's energy loss for cryogenic targets. Further examination of this effect with the techniques described above is another goal of this thesis. Simultaneously, desorption measurements at room temperature for several other targets have been conducted. An unexpected result of these experiments is the influence of target surface properties, which was found to be very weak in comparison to previous results. The methods developed during this thesis, along with the results gained by their application, represent another step towards the comprehension of (heavy) ion beam induced desorption.

  11. X-ray impact induced desorption of gases from surfaces

    International Nuclear Information System (INIS)

    Brumbach, S.; Kaminsky, M.

    1976-02-01

    Measurements of gases released from 302 stainless steel and gold surfaces before and after discharge cleaning were made in ultrahigh vacuum using x-rays with an energy distribution typical of a tungsten bremsstrahlung spectrum. Similar measurements were also made for Al 2 O 3 surfaces which had not been discharge cleaned. For the non-discharge-cleaned surfaces of stainless steel, Al 2 O 3 , and gold the predominant gas species observed mass spectrometrically was CO 2 . For some stainless steel and Al 2 O 3 surfaces CO and O 2 were also readily observed. Mean quantum yields for CO, O 2 and CO 2 release from such stainless steel surfaces, for example, ranged from less than 6 x 10 -5 to 9 x 10 -4 molecules per photons in the bremsstrahlung spectrum characteristic for 50 keV electron energy. After discharge cleaning a decrease in the mean quantum yields was observed for the stainless steel and gold surfaces

  12. Cold cap subsidence for in situ vitrification and electrodes therefor

    Science.gov (United States)

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  13. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Costil, S., E-mail: sophie.costil@utbm.fr [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Lamraoui, A.; Langlade, C. [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Heintz, O.; Oltra, R. [ICB, Université de Bourgogne, 21078 Dijon Cedex (France)

    2014-01-01

    Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.

  14. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  15. Numerical Calculation of Distribution of Induced Carge Density on Planar Confined Surfaces

    International Nuclear Information System (INIS)

    Bolotov, V.; Druzhchenko, R.; Karazin, V.; Lominadze, J.; Kharadze, F.

    2007-01-01

    The calculation method of distribution of induced charge density on planar surfaces, including fractal structures of Sierpinski carpet type, is propesed. The calculation scheme is based on the fact that simply connected conducting surface of arbitrary geometry is an equipotential surface. (author)

  16. Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan

    KAUST Repository

    Nobile, Adriano

    2017-04-05

    The relation between unrest and eruption at calderas is still poorly understood. Aso caldera, Japan, shows minor episodic phreatomagmatic eruptions associated with steady subsidence. We analyse the deformation of Aso using SAR images from 1993 to 2011 and compare it with the eruptive activity. Although the dataset suffers from limitations (e.g. atmospheric effects, coherence loss, low signal-to-noise ratio), we observe a steady subsidence signal from 1996 to 1998, which suggests an overall contraction of a magmatic source below the caldera centre, from 4 to 5 km depth. We propose that the observed contraction may have been induced by the release of the magmatic fluids feeding the eruptions. If confirmed by further data, this hypothesis suggests that degassing processes play a crucial role in triggering minor eruptions within open conduit calderas, such as at Aso. Our study underlines the importance of defining any eruptive potential also from deflating magmatic systems with open conduit.

  17. Tax subsidization of personal assistance services.

    Science.gov (United States)

    Mendelsohn, Steven; Myhill, William N; Morris, Michael

    2012-04-01

    Personal assistance services (PAS) is the term used to describe the range of assistance, services, and supports many people with disabilities and older Americans need to remain in their homes and communities. The Americans with Disabilities Act requires that people with disabilities receive essential services in the communities of their choice rather than in institutional settings. PAS availability often determines whether persons with disabilities become institutionalized or remain in their communities. PAS, however, are not inexpensive or broadly available. Strategies are needed to improve their availability to people with disabilities and the elderly. We sought to analyze 8 provisions of the Internal Revenue Code for their utility to make PAS more affordable and available. The authors conducted a legal analysis of 8 statutory provisions, as interpreted by regulations, court decisions, and other authoritative sources. Each of the tax provisions analyzed covers some PAS expenses incurred by an individual or family. Favorable tax treatment is impacted by the nature and amount of expenses and by the location and conditions of services. The current limitations and complexities of legal interpretations and the fact that many individuals with disabilities are uninformed about these tax provisions present challenges and opportunities. As the need for PAS grows, reform of tax policy is an important complement to health care and long-term services and supports for people with disabilities. To increase utilization of current beneficial tax provisions that subsidize the cost of PAS, individuals with disabilities and tax preparers must become better informed about using these provisions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Analysis of geodetic surveying on the margin of subsidence depression

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Müller, Karel; Bláha, P.

    -, č. 273 (2006), s. 103-112 ISSN 0372-9508 Institutional research plan: CEZ:AV0Z30860518 Keywords : subsidence depression * levelling * height changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  19. Surveys for detection and measurement of subsidence resulting from solution mining--why, what and how

    International Nuclear Information System (INIS)

    Piper, T.B.

    1983-01-01

    Subsidence resulting from solution mining is usually expressed at the earth's surface by downwarping or change in elevation. Areas of several tens or hundreds of acres are involved. These settlements can sometimes be accommodated by buildings and other installations if the subsidence is gentle or the area is large. On the other hand, mineral extraction sometimes results in collapse of a relatively small area (on the order of a few acres) known as a sinkhole. The relationship between these two events has not been demonstrated. Subsidence can be detected by measurements made in the area involved by either access or non-access methods. The results provide early warning of surface downwarping and can be used as input in operating decisions. Precise levelling of a network of shallow monuments has shown a high level of applicability to solution mining sites and offers the maximum cost-benefit ratio. Time vs. settlement plots and summary contour maps serve to present the data and identify areas of concern

  20. Use of Cemented Super-Fine Unclassified Tailings Backfill for Control of Subsidence

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2017-11-01

    Full Text Available Known for its advantages in preventing geological and environmental hazards, cemented paste backfill (CPB has become a topic of interest for scientists and mining engineers in recent decades. This paper presents the results of a study on the use of cemented super-fine tailings backfill (CSUTB in an underground mine for control of surface subsidence. An analytical solution is developed based on the available model to calculate the required strength of backfill when in contact with non-cemented tailings (NCT. The effect of solid contents on the rheological properties of CSUTB is investigated. A reasonable mix proportion (RMP of CSUTB is determined for Zhongguan Iron Mine (ZGIM based on laboratory experiments. The validity of RMP in surface subsidence control is verified by a 3D numerical model. The obtained results show that CSUTB requires higher strength when in contact with NCT than when in contact with orebody. Rheological characteristics, e.g., slump, fluidity, and bleeding rate of fresh CSUTB, decrease with higher solids content, of which values with a certain solids content can be determined by quadratic polynomial regression equations. RMP with a cement to tailings (c/t ratio of 1:10 and a solids content of 70% is recommended for ZGIM, as it shows favorable mechanical and rheological abilities. The deformation parameters (curvature, inclination, and horizontal deformation rate obtained from numerical modeling are acceptable and lower than critical values, meaning CSUTB can feasibly be used with RMP in subsidence control.

  1. Oxidation-reduction induced roughening of platinum (111) surface

    International Nuclear Information System (INIS)

    You, H.; Nagy, Z.

    1993-06-01

    Platinum (111) single crystal surface was roughened by repeated cycles of oxidation and reduction to study dynamic evolution of surface roughening. The interface roughens progressively upon repeated cycles. The measured width of the interface was fit to an assumed pow law, W ∼t β , with β = 0.38(1). The results are compared with a simulation based on a random growth model. The fraction of the singly stepped surface apparently saturates to 0. 25 monolayer, which explains the apparent saturation to a steady roughness observed in previous studies

  2. Surface solitons of four-wave mixing in an electromagnetically induced lattice

    International Nuclear Information System (INIS)

    Zhang, Yanpeng; Yuan, Chenzhi; Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Xiao, Min

    2013-01-01

    By creating lattice states with two-dimensional spatial periodic atomic coherence, we report an experimental demonstration of generating two-dimensional surface solitons of a four-wave mixing signal in an electromagnetically induced lattice composed of two electromagnetically induced gratings with different orientations in an atomic medium, each of which can support a one-dimensional surface soliton. The surface solitons can be well controlled by different experimental parameters, such as probe frequency, pump power, and beam incident angles, and can be affected by coherent induced defect states. (letter)

  3. Adaptation and mitigation of land subsidence in Semarang

    Science.gov (United States)

    Andreas, Heri; Abidin, Hasanuddin Z.; Gumilar, Irwan; Sidiq, Teguh Purnama; Yuwono, Bambang

    2017-07-01

    Land subsidence is not a new phenomenon for Semarang. Some report said the subsidence in Semarang probably is occurring for more than 100 years. Based on the leveling surveys conducted by the Centre of Environmental Geology from 1999 to 2003 it was found that relatively large subsidence was detected around Semarang Harbor, Pondok Hasanuddin, Bandar Harjo and around Semarang Tawang Railway station, with the rates ranging from 1 to 17 cm/year. Results derived from GPS show that land subsidence in Semarang has spatial and temporal variations. In general, subsidence rates in Semarang have an average rate of about 6 to 7 cm/year, with maximum rates that can go up to 14-19 cm/year at certain locations. The impact of land subsidence in Semarang can be seen in several forms, such as the wider expansion of (coastal) flooding areas "rob", cracking of buildings and infrastructure, and increased inland sea water intrusion. It also badly influences the quality and amenity of the living environment and life (e.g. health and sanitation condition) in the affected areas. In the case of Semarang, adaptation and mitigation are considered very important. We have been done some investigations to this area by field observations (mapping the flooded area, mapping the infrastructure problems, interviewing people and seeing the adaptations, conduct GPS measurement to see deformation, etc.), gather information from Government, from digital media, etc., and we noticed people increased their house, and the local goverment elevated the road and the bridge, etc. regulary over less decade periode as part of adaptation. We also noticed the Central Goverment built the dyke and pumping station. Our conclusions said that the adaptation only made temporaly since significant land subsidence keep coming and worsening by the sea level which is keep rising. Another conclusion, so far we have seen lack of mitigation program, monitoring or even inevective mitigation in Semarang related to this subsidence

  4. Working to Reduce Poverty: A National Subsidized Employment Proposal

    OpenAIRE

    Indivar Dutta-Gupta; Kali Grant; Julie Kerksick; Dan Bloom; Ajay Chaudry

    2018-01-01

    Subsidized employment programs that increase labor supply and demand are a proven, underutilized strategy for reducing poverty in the short and long term. These programs use public and private funds to provide workers wage-paying jobs, training, and wraparound services to foster greater labor force attachment while offsetting employers’ cost for wages, on-the-job training, and overhead. This article proposes two new separate but harmonized federal funding streams for subsidized employment tha...

  5. Areas of ground subsidence due to geofluid withdrawal

    Energy Technology Data Exchange (ETDEWEB)

    Grimsrud, G.P.; Turner, B.L.; Frame, P.A.

    1978-08-01

    Detailed information is provided on four geothermal areas with histories of subsidence. These were selected on the basis of: physical relevance of subsidence areas to high priority US geothermal sites in terms of withdrawn geofluid type, reservoir depth, reservoir geology and rock characteristics, and overburden characteristics; and data completeness, quality, and availability. The four areas are: Chocolate Bayou, Raft River Valley, Wairakei, and the Geysers. (MHR)

  6. Experimental and theoretical studies of bombardment induced surface morphology changes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Williams, J.S.

    1980-01-01

    In this review results of experimental and theoretical studies of solid surface morphology changes due to ion bombardment are discussed. An attempt is undertaken to classify the observed specific features of a structure, generated by ion bombardment [ru

  7. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    International Nuclear Information System (INIS)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S.; Sofferman, D. L.; Beskin, I.

    2013-01-01

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport

  8. Spontaneous formation of optically induced surface relief gratings

    International Nuclear Information System (INIS)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M; Ortyl, E; Kucharski, S

    2009-01-01

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  9. Spontaneous formation of optically induced surface relief gratings

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M [Laboratoire POMA, Universite d' Angers, CNRS FRE 2988, 2, Bd Lavoisier, 49045 Angers (France); Ortyl, E; Kucharski, S, E-mail: herve.leblond@univ-angers.f [Wroclaw University of Technology, Faculty of Chemistry, Department of Polymer Engineering and Technology, 50-370 Wroclaw (Poland)

    2009-10-28

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  10. Natural versus anthropogenic subsidence of Venice: investigation of the present occurrence by PSI

    Science.gov (United States)

    Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro

    2014-05-01

    We detected land displacements of Venice by Persistent Scatterer Interferometry (PSI) using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. PSI provides the cumulative land displacements (natural plus anthropogenic) of the investigated area independently of the radar band. The natural subsidence rate depends on the reference period and, due to the present elevation of Venice with respect to the sea level, it is much more interesting for the city to evaluate the natural displacement over the last few decades, i.e. the present natural land subsidence, than that averaged over geological periods. Concerning anthropogenic land subsidence the contribution due to activities characterized by large scale and long term effects, e.g., that caused by groundwater withdrawals, ended a few decades ago. Today, the anthropogenic component of the land subsidence is only due to local, short-time interventions such as restoration works and inherent deformations of historical structures. By reason of the larger observation period, the C-band sensors were used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution, short revisiting time X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. The statistical analysis of the displacement distributions measured by PSI points out that the average rates, i.e. the natural component of the subsidence, are almost equal with the C-band and X-band satellites. Conversely, the standard deviation with X-band acquisitions (1.6 mm/yr) is characterized by a value significantly larger than that detected with C-band images (0.7 mm/yr). The larger X-band variability superposes to a background velocity similar to that given by ERS/ENVISAT. It is reasonable to assume that the difference between the movements provided by ERS/ENVISAT and Terra

  11. Modeling agricultural impacts of longwall mine subsidence: A GIS approach

    International Nuclear Information System (INIS)

    Darmody, R.G.; Vance, S.L.

    1994-01-01

    Illinois is both a major agricultural State and one of the leading coal-producing States. The future of coal mining in Illinois is longwall mining. One of the advantages of longwall mining, and the most noticeable consequence, is immediate subsidence. Mitigation of subsidence effects is the responsibility of the coal company. Research has shown that mitigation is usually effective, but may be difficult in many cases. Minimizing subsidence impact by avoiding sensitive soils in the mine plan is a possibility that should be considered. Predicting agricultural impacts of subsidence would give mine designers and regulating agencies an additional tool to use when evaluating mine plans. This paper reports on the development and an application of a predictive model of agricultural soil subsidence sensitivity (SSS). The SSS model involves integration of selected soil properties in a GIS (geographical information system) to assign a subsidence sensitivity class to a given area. Predicted crop yield losses at a proposed longwall mine in southern Illinois, using corn (Zea mays L.) as a reference, were 6.8% for the longwall panel area but ranged from 4.1% to 9.5% for the individual panels. The model also predicted that mitigation of the affected areas would reduce yield losses to 1.2% for the longwall area and to 0.5% to 1.7% for the individual panels

  12. Characterizing land subsidence mechanisms as a function of urban basin geohazards using space geodesy

    Science.gov (United States)

    Bawden, G. W.

    2016-12-01

    Land subsidence in urban basins will likely become a more significant geohazard in many of the global sedimentary basins as population growth, resource availability, and climate change compound natural and anthropogenic contributors that influence basin elevation. Coastal basins are at the greatest risk where land subsidence is additive to sea level rise, thereby increasing the rate of exposure to coastal populations. Land surface elevation change is a function of many different parameters, including: elastic and inelastic surface response to managed and natural groundwater levels; anthropogenic activities (hydrocarbon extraction, wastewater injection, fracking, geothermal production, and mass redistribution); local tectonic deformation and regional tectonic drivers (such as repeated uplift and subsidence cycles above subduction zones); climate change (influencing the timing, magnitude, nature and duration of seasonal/annual precipitation and permafrost extent); material properties of the basin sediments (influencing susceptibility to soil compaction, oxidization, and dissolution); post glacial rebound; isostatic flexure associated with sea-level and local mass changes; and large scale gravitational processes (such as growth faults and landslides). Geodetic measurements, such as InSAR and GPS, help track spatial and temporal changes in both relative and absolute basin elevation thereby helping to characterize the mechanism(s) driving the geohazards. In addition to a number of commercial radar satellites, European Space Agency's Sentinel-1a/b satellites are beginning to provide a wealth of data over many basin targets with C-band (5.5 cm wavelength). The NISAR (NASA-ISRO Synthetic Aperture Radar) L-band (24 cm wavelength) mission (anticipated 2021 launch) will image nearly every basin globally every 12 days and data from the mission will help characterize land subsidence and many other solid-Earth and hydrologic geohazards that impact urban basins.

  13. Time series analysis of Mexico City subsidence constrained by radar interferometry

    Science.gov (United States)

    Doin, Marie-Pierre; Lopez-Quiroz, Penelope; Yan, Yajing; Bascou, Pascale; Pinel, Virginie

    2010-05-01

    In Mexico City, subsidence rates reach up to 40 cm/yr mainly due to soil compaction led by the over exploitation of the Mexico Basin aquifer. The Mexico Valley, an endoreic basin surrounded by mountains, was in the past covered by large lakes. After the Spanish conquest, the lakes have almost completely disappeared, being progressively replaced by buildings of the current Mexican capital. The simplified hydrogeologic structure includes a superficial 50 to 300 m thick lacustrine aquitard overlying a thicker aquifer made of alluvial deposits. The aquitard layer plays a crucial role in the subsidence process due to the extremely high compressibility of its clay deposits separated by a less compressible sand layer where the biggest buildings of the city are anchored. The aquifer over-exploitation leads to a large scale 30m depression of its piezometric level, inducing water downwards flow in the clays, yielding compaction and subsidence. In order to quantitatively link subsidence to water pumping, the Mexico city subsidence needs to be mapped and analyzed through space and time. We map its spatial and temporal patterns by differential radar interferometry, using 38 ENVISAT images acquired between end of 2002 and beginning of 2007. We employ both a Permanent Scatterer (PS) and a small baseline (SBAS) approach. The main difficulty consists in the severe unwrapping problems mostly due to the high deformation rate. We develop a specific SBAS approach based on 71 differential interferograms with a perpendicular baseline smaller than 500 m and a temporal baseline smaller than 9 months, forming a redundant network linking all images: (1) To help the unwrapping step, we use the fact that the deformation shape is stable for similar time intervals during the studied period. As a result, a stack of the five best interferograms can be used to reduce the number of fringes in wrapped interferograms. (2) Based on the redundancy of the interferometric data base, we quantify the

  14. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    Laser induced selective activation (LISA) is a molded interconnected devices technique for selective metallization of polymers. On the working piece, only the laser-machined area can be metalized in the subsequent plating. The principle of the technology is introduced. Surface analysis was perfor...

  15. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  16. Laser induced damage threshold on metallic surfaces during laser cleaning

    CSIR Research Space (South Africa)

    Labuschagne, K

    2005-07-01

    Full Text Available laser paint removal. Laser induced damage on 316L stainless steel was studied, with the target subjected to single and multiple pulse irradiations using a Q-switched Nd:YAG, with fluences between 0.15 and 11.8 J/cm2. Several different damage morphologies...

  17. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  18. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  19. Monitoring Subsidence in California with InSAR

    Science.gov (United States)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the

  20. Grinding induced martensite on the surface of rails

    DEFF Research Database (Denmark)

    Rasmussen, C.J.; Zhang, Xiaodan; Danielsen, Hilmar Kjartansson

    2014-01-01

    determined. Two different rail types R260 and R350HT that both had been ground by a grinding train were investigated. The rail sections, studied using optical and scanning electron microscopy, showed that the surface of both types of rails is covered with WELs. The hardness of the WEL is increased compared...

  1. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  2. Potential of Holocene deltaic sequences for subsidence due to peat compaction

    NARCIS (Netherlands)

    Stouthamer, E.; van Asselen, S.

    2015-01-01

    Land subsidence is a major threat for the livability of deltas worldwide. Mitigation of the negative impacts of subsidence, like increasing flooding risk, requires an assessment of the potential of the deltas’ subsurfaces for subsidence. This enables the prediction of current and future subsidence

  3. A new soil mechanics approach to quantify and predict land subsidence by peat compression

    NARCIS (Netherlands)

    Koster, K.; Erkens, G.; Zwanenburg, C.

    2016-01-01

    Land subsidence threatens many coastal areas. Quantifying current and predicting future subsidence are essential to sustain the viability of these areas with respect to rising sea levels. Despite its scale and severity, methods to quantify subsidence are scarce. In peat-rich subsidence hot spots,

  4. New model for surface fracture induced by dynamical stress

    OpenAIRE

    Andersen, J. V.; Lewis, L. J.

    1997-01-01

    We introduce a model where an isotropic, dynamically-imposed stress induces fracture in a thin film. Using molecular dynamics simulations, we study how the integrated fragment distribution function depends on the rate of change and magnitude of the imposed stress, as well as on temperature. A mean-field argument shows that the system becomes unstable for a critical value of the stress. We find a striking invariance of the distribution of fragments for fixed ratio of temperature and rate of ch...

  5. U.S. Geological Survey Subsidence Interest Group conference, Edwards Air Force Base, Antelope Valley, California, November 18-19, 1992; abstracts and summary

    Science.gov (United States)

    Prince, Keith R.; Galloway, Devin L.; Leake, Stanley A.

    1995-01-01

    Land subsidence, the loss of surface elevation as a result of the removal of subsurface support, affects every state in the United States. More than 17,000 mi2 of land in the United States has been lowered by the various processes that produce land subsidence with annual costs from resulting flooding and structural damage that exceed $125 million. It is estimated that an additional $400 million is spent nationwide in attempts to control subsidence. Common causes of land subsidence include the removal of oil, gas, and water from underground reservoirs; dissolution of limestone aquifers (sinkholes); underground mining activities; drainage of organic soils; and hydrocompaction (the initial wetting of dry soils). Overdrafting of aquifers is the major cause of areally extensive land subsidence, and as ground-water pumping increases, land subsidence also will increase. Land subsidence and its effects on engineering structures have been recognized for centuries, but it was not until this century that the processes that produce land subsidence were identified and understood. In 1928, while working with field data from a test of the Dakota Sandstone aquifer, O.E. Meinzer of the U.S. Geological Survey recognized the compressibility of aquifers. Around the same time, Karl Terzaghi, a soil scientist working at Harvard University, developed the one-dimensional consolidation theory that provided a quantitative means of predicting soil compaction resulting from the drainage of compressible soils. Thus, with the recognition of the compressibility of aquifers (Meinzer), and the development of a quantitative means of predicting soil compaction as a consequence of the reduction of intergranular pore pressure (Terzaghi), the theory of aquifer-system compaction was formed. With the widespread availa- bility of electric power in rural areas, and the advent of the deep turbine pump, ground-water withdrawals increased dramatically throughout the country in the 1940's and 1950's. Along

  6. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr−1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  7. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen L.; Hickman, Stephen H.; Eneva, Mariana

    2016-07-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr-1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  8. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  9. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  10. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  11. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    Science.gov (United States)

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  12. Ionic liquid nanotribology: stiction suppression and surface induced shear thinning.

    Science.gov (United States)

    Asencio, Rubén Álvarez; Cranston, Emily D; Atkin, Rob; Rutland, Mark W

    2012-07-03

    The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses.

  13. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  14. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Kuijpers, C.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We studied the deformation of thin liquid films induced by surface charge patterns at the solid–liquid interface quantitatively by experiments and numerical simulations. We deposited a surface charge distribution on dielectric substrates by applying potential differences between a conductive liquid

  15. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  16. Subsidence and carbon loss in drained tropical peatlands

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2012-03-01

    Full Text Available Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are

  17. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    OpenAIRE

    Zhuo Wang; Quanzhong Zhao; Chengwei Wang

    2015-01-01

    We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS) on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade) steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures...

  18. Chemical changes in titanate surfaces induced by Ar+ ion bombardment

    International Nuclear Information System (INIS)

    Gonzalez-Elipe, A.R.; Fernandez, A.; Espinos, J.P.; Munuera, G.; Sanz, J.M.

    1992-01-01

    The reduction effects and compositional changes induced by 3.5 keV Ar + bombardment of several titanates (i.e. SrTiO 3 , Al 2 TiO 5 and NiTiO 3 ) have been quantitatively investigated by XPS. In all the samples studied here the original Ti 4+ species were reduced to lower oxidation states (i.e. Ti 3+ and Ti 2+ ), although to a lesser extent than in pure TiO 2 . On the contrary, whereas Sr 2+ and Al 3+ seem to remain unaffected by Ar + bombardment, in agreement with the behaviour of the respective oxides (i.e. SrO and Al 2 O 3 ), Ni 2+ appears more easily reducible to Ni o in NiTiO 3 than in NiO. In addition, other specific differences were observed between the titanates, which reveal the existence of interesting chemical effects related to the presence of the different counter-ions in the titanates. In the case of Al 2 TiO 5 , its Ar + -induced decomposition to form TiO 2 + Al 2 O 3 could be followed by XPS. (Author)

  19. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  20. What’s the Score? Walkable Environments and Subsidized Households

    Directory of Open Access Journals (Sweden)

    Young-Jae Kim

    2016-04-01

    Full Text Available Neighborhood walkability can influence individual health, social interactions, and environmental quality, but the relationships between subsidized households and their walkable environment have not been sufficiently examined in previous empirical studies. Focusing on two types of subsidized housing developments (Low-Income Housing Tax Credit (LIHTC and Public Housing (PH in Austin, Texas, this study evaluates the neighborhood walkability of place-based subsidized households, utilizing objectively measured Walk Score and walking-related built environment data. We also used U.S. Census block group data to account for the socio-demographic covariates. Based on various data, we employed bivariate and multivariate analyses to specify the relationships between subsidized households and their neighborhood walkable environment. The results of our bivariate analyses show that LIHTC households tend to be located in car-dependent neighborhoods and have more undesirable walking-related built environment conditions compared with non-LIHTC neighborhoods. Our regression results also represent that LIHTC households are more likely to be exposed to neighborhoods with low Walk Score, less sidewalk coverage, and more highways and major roads, while there are no significant associations for PH households. These findings imply that more attention and effort toward reducing the inequitable distributions of walkable neighborhood features supporting rather than hindering healthy lifestyles must be provided to subsidized households.

  1. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending...... on the architecture of the polymer. Extensive mass transport over long distances has been observed, paving the way for easy replication of nanostructures. We also show that it is possible to store microscopic images as topographic features in the polymers just through polarized light irradiation. (C) 1999 American...... Institute of Physics....

  2. Enhancement of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  3. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  4. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  5. Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003-10

    Science.gov (United States)

    Sneed, Michelle; Brandt, Justin; Solt, Mike

    2013-01-01

    Extensive groundwater withdrawal from the unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and resultant land subsidence from 1926 to 1970—locally exceeding 8.5 meters. The importation of surface water beginning in the early 1950s through the Delta-Mendota Canal and in the early 1970s through the California Aqueduct resulted in decreased pumping, initiation of water-level recovery, and a reduced rate of compaction in some areas of the San Joaquin Valley. However, drought conditions during 1976–77 and 1987–92, and drought conditions and regulatory reductions in surface-water deliveries during 2007–10, decreased surface-water availability, causing pumping to increase, water levels to decline, and renewed compaction. Land subsidence from this compaction has reduced freeboard and flow capacity of the Delta-Mendota Canal, the California Aqueduct, and other canals that deliver irrigation water and transport floodwater. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation and the San Luis and Delta-Mendota Water Authority, assessed land subsidence in the vicinity of the Delta-Mendota Canal as part of an effort to minimize future subsidence-related damages to the canal. The location, magnitude, and stress regime of land-surface deformation during 2003–10 were determined by using extensometer, Global Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), spirit leveling, and groundwater-level data. Comparison of continuous GPS, shallow extensometer, and groundwater-level data, combined with results from a one-dimensional model, indicated the vast majority of the compaction took place beneath the Corcoran Clay, the primary regional confining unit. Land-surface deformation measurements indicated that much of the northern portion of the Delta-Mendota Canal (Clifton Court Forebay to Check 14) was fairly stable or minimally subsiding on an annual basis; some areas showed

  6. Coupled Modeling of Groundwater Flow and Land Subsidence with Secular Strain (Creep)

    Science.gov (United States)

    Bakr, M.

    2012-12-01

    Land subsidence limits sustainable development of many areas around the world. This is especially the case in low lying regions such as deltas which accommodate a significant percentage of the human population. Among the most common human-induced factors for land subsidence, is groundwater extractions. In these cases, groundwater flow and land subsidence are coupled processes, especially in basins with extensive spatial extent of soft soils (e.g. clay, peat). Creep (or secondary consolidation) is a land subsidence component that usually contributes to total land subsidence in soft soils. It leads to a reduction in void ratio at constant effective stress, and consequently, to the development of an apparent pre-consolidation pressure. The creep component has been usually ignored in the analysis of coupled groundwater flow and land subsidence. Here, the focus is the development of a coupled model of groundwater flow and land subsidence in porous media considering secular strain (creep). The Bjerrum method for settlement calculation (Bjerrum, 1967) due to change in effective stresses is coupled with MODFLOW to tackle the problem. In particular, the SUB-WT package of MODFLOW (Leake and Galloway, 2007) is modified where the Bjerrum method is used to calculate the primary and secondary consolidation due to change in effective stresses as a result of groundwater abstraction. The Bjerrum model is based on linear strains relationship. Usage of linear strains means that the model directly supports the common parameters Cr, Cc, Cα (i.e. re-compression, compression, and secondary compression indices; respectively). The Bjerrum model assumes that creep rate will reduce with increasing over-consolidation and that over-consolidation will grow by unloading and by ageing. To verify the coupled model, a hypothetical problem is considered where a simple hydrogeological system consisting of a shallow unconfined aquifer and a deeper confined aquifer separated by a (semi

  7. Subsidence detection by TerraSAR-X interferometry on a network of natural persistent scatterers and artificial corner reflectors

    Science.gov (United States)

    Yu, Bing; Liu, Guoxiang; Li, Zhilin; Zhang, Rui; Jia, Hongguo; Wang, Xiaowen; Cai, Guolin

    2013-08-01

    The German satellite TerraSAR-X (TSX) is able to provide high-resolution synthetic aperture radar (SAR) images for mapping surface deformation by the persistent scatterer interferometry (PSI) technique. To extend the application of PSI in detecting subsidence in areas with frequent surface changes, this paper presents a method of TSX PSI on a network of natural persistent scatterers (NPSs) and artificial corner reflectors (CRs) deployed on site. We select a suburban area of southwest Tianjin (China) as the testing site where 16 CRs and 10 leveling points (LPs) are deployed, and utilize 13 TSX images collected over this area between 2009 and 2010 to extract subsidence by the method proposed. Two types of CRs are set around the fishponds and crop parcels. 6 CRs are the conventional ones, i.e., fixed CRs (FCRs), while 10 CRs are the newly-designed ones, i.e., so-called portable CRs (PCRs) with capability of repeatable installation. The numerical analysis shows that the PCRs have the higher temporal stability of radar backscattering than the FCRs, and both of them are better than the NPSs in performance of radar reflectivity. The comparison with the leveling data at the CRs and LPs indicates that the subsidence measurements derived by the TSX PSI method can reach up to a millimeter level accuracy. This demonstrates that the TSX PSI method based on a network of NPSs and CRs is useful for detecting land subsidence in cultivated lands.

  8. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  9. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Pardoen, T.; Favache, A. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities – signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  10. Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO2 Based on Surface Plasmon Resonance and Waveguide.

    Science.gov (United States)

    Zhang, Peng; Guo, Jin-Song; Yan, Peng; Chen, You-Peng; Wang, Wei; Dai, You-Zhi; Fang, Fang; Wang, Gui-Xue; Shen, Yu

    2018-05-01

    Pollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO 2 (n-TiO 2 ) on the average thicknesses of Bacillus subtilis biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO 2 to the cell surface was also probed. The results revealed that n-TiO 2 caused biofilm dispersal and the thicknesses decreased by 2.0 to 2.6 μm after several hours of exposure. The attachment abilities of bacteria with extracellular polymeric substances (EPS) on hydrophilic surfaces were significantly reduced by 31% and 81% under 10 and 100 mg/liter of n-TiO 2 , respectively, whereas those of bacteria without EPS were significantly reduced by 43% and 87%, respectively. The attachment abilities of bacteria with and without EPS on hydrophobic surfaces were significantly reduced by 50% and 56%, respectively, under 100 mg/liter of n-TiO 2 The results demonstrated that biofilm dispersal can be attributed to the changes in the cell surface structure and the reduction of microbial attachment ability. IMPORTANCE Nanoparticles can penetrate into the outer layer of biofilm in a relatively short period and can bind onto EPS and bacterial surfaces. The current work probed the effects of nanosized TiO 2 (n-TiO 2 ) on biofilm thickness, bacterial migration, and surface properties of the cell in the early stage using the surface plasmon resonance waveguide mode. The results demonstrated that n-TiO 2 decreased the adhesive ability of both cell and EPS and induced bacterial migration and biofilm detachment in several hours. The decreased adhesive ability of microbes and EPS worked against microbial aggregation, reducing the effluent quality in the biological wastewater treatment process. Copyright © 2018 American Society for Microbiology.

  11. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  12. Subsidence of the South Polar Terrain and global tectonic of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2016-04-01

    compressional surface features do not have to be dominant. The SPT is compressed, so "tiger stripes" could exist for long time. Only after significant subsidence (below 1200 m) the regime of stresses changes to compressional. We suppose that it means the end of activity in a given region. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.

  13. Coupling of a reservoir model and of a poro-mechanical model. Application to the study of the compaction of petroleum reservoirs and of the associated subsidence; Couplage d'un modele de gisement et d'un modele mecanique. Application a l'etude de la compaction des reservoirs petroliers et de la subsidence associee

    Energy Technology Data Exchange (ETDEWEB)

    Bevillon, D.

    2000-11-30

    The aim of this study is to provide a better description of the rock contribution to fluid flows in petroleum reservoirs. The production of oil/gas in soft highly compacting reservoirs induces important reduction of the pore volume, which increases oil productivity. This compaction leads to undesirable effects such as surface subsidence or damage of well equipment. Analysis of compaction and subsidence can be performed using either engineering reservoir models or coupled poro-mechanical models. Poro-mechanical model offers a rigorous mechanical framework, but does not permit a complete description of the fluids. The reservoir model gives a good description of the fluid phases, but the description of the mechanic phenomenon is then simplified. To satisfy the set of equations (mechanical equilibrium and diffusivity equations), two simulators can be used together sequentially. Each of the two simulators solves its own system independently, and information passed both directions between simulators. This technique is usually referred to the partially coupled scheme. In this study, reservoir and hydro-mechanical simulations show that reservoir theory is not a rigorous framework to represent the evolution of the high porous rocks strains. Then, we introduce a partially coupled scheme that is shown to be consistent and unconditionally stable, which permits to describe correctly poro-mechanical theory in reservoir models. (author)

  14. Surface Modifications of Polymers Induced by Heavy Ions Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Mazzei, R O; Lombardo, J; Camporotondi, D; Tadey, D; Bermudez, G G [National Atomic Energy Commission, Ezeiza Atomic Centre, Ezeiza (Argentina)

    2012-09-15

    Polymer surfaces are modified by the application of swift heavy ions etching and grafting procedures. The residual active sites produced by heavy ion beams, remaining after the etching process, were used to start the grafting process. In order to produce tracks on foils of poly(vinylidene fluoride) (PVDF) they were irradiated with {sup 208}Pb of 25.62 MeV/n or with 115 MeV Cl ions. Moreover, foils of polypropylene (PP) were irradiated with {sup 208}Pb of 25.62 MeV/n. Then, they were etched and grafted with N-isopropylacrylamide (NIPAAm) monomers or with acrylic acid (AAc) monomers, respectively. The replica method allowed the observation of the shape of the grafted tracks using transmission electron microscopy (TEM). In addition NIPAAm grafted foils were analyzed using Fourier transform infrared spectroscopy (FTIR). The sulfonation procedure (methodology previously described for perfluorated polymers) was applied on grafted PVDF. A new method is described to produce a thin layer of poly-acrylic-acid (membranes) that grows on the surface of PVDF foils implanted by an Ar{sup +} beam with energies between 30-150 keV. Different combinations of monomers in water solutions were used such as: acrylic acid (AAc); acrylic acid-glycidyl methacrylate (AAc-GMA); acrylic acid-styrene (AAc-S); acrylic acid-N-isopropyl acrylamide (AAc-NIPAAm) and acrylic acid-N-isopropyl acrylamide - glycidyl methacrylate (AAc-NIPAAm-GMA). The experimental results show that for particular values of: ion fluence and energy, AAc concentration, sulphuric acid and PVDF polymorphous (alpha or beta) a huge percentage of grafting was obtained. At certain point of the grafting process the development of the PolyAAc-Xmonomer produce a detachment from the irradiated substrate and continue its grafting outside it. This method produces a membrane that is an increased replica of the original implanted surface. Finally, PVDF films implanted by an Ar{sup +} beam with energies about 100 keV and a fluence of 10

  15. Subsidence and settlement and their effect on shallow land burial

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1985-01-01

    Subsidence and settlement are phenomena that are much more destructive than generally thought. In shallow land burials they may lead to cracking of the overburden and eventual exposure and escape of waste material. The primary causes are consolidation and cave-ins. Laboratory studies performed at Los Alamos permit us to predict settlement caused by consolidation or natural compaction of the crushed tuff overburden. Examples of expected settlement and subsidence are calculated based on the known geotechnical characteristics of crushed tuff. The same thing is done for bentonite/tuff mixes because some field experiments were performed using this additive (bentonite) to reduce the hydraulic conductivity of the crushed tuff. Remedial actions, i.e., means to limit the amount of settlement, are discussed. Finally, we briefly comment on our current field experiment, which studies the influence of subsidence on layered systems in general and on biobarriers in particular

  16. Subsidence and settlement and their effect on shallow land burial

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1985-01-01

    Subsidence and settlement are phenomena that are much more destructive than generally thought. In shallow land burials they may lead to cracking of the overburden and eventual exposure and escape of waste material. The primary causes are consolidation and cave-ins. Laboratory studies performed at Los Alamos permit us to predict settlement caused by consolidation or natural compaction of the crushed tuff overburden. Examples of expected settlement and subsidence are calculated based on the known geotechnical characteristics of crushed tuff. The same thing is done for bentonite/tuff mixes because some field experiments were performed using this additive (bentonite) to reduce the hydraulic conductivity of the crushed tuff. Remedial actions, i.e., means to limit the amount of settlement, are discussed. Finally, we briefly comment on our current field experiment, which studies the influence of subsidence on layered systems, in general, and on biobarriers, in particular. 16 references, 7 figures, 5 tables

  17. Photo-induced surface functionalization of carbon surfaces: The role of photoelectron ejection

    International Nuclear Information System (INIS)

    Colavita, Paula E.; Sun Bin; Tse, K.-Y.; Hamers, Robert J.

    2008-01-01

    Carbon-based materials are attractive for a wide range of applications, from biomaterials to fuel cells; however, their effective use often requires controlling the surface chemistry to incorporate recognition moieties or reactive centers. The high stability of carbon also makes it a challenging material to functionalize; recently, the use of ultraviolet light (254 nm) to initiate functionalization of carbon surfaces has emerged as a way to obtain carbon/organic interfaces with tailored properties. The authors have investigated the mechanism of covalent grafting of amorphous carbon surfaces with functional organic molecules using the photochemical reaction of terminal alkenes. Measurements comparing the reactivity of different n-alkenes bearing different terminal groups at the terminus opposite the olefin showed pronounced differences in reactivity. They characterized the rate and final coverage of the resulting organic layers using x-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy. Ultraviolet photoelectron spectroscopy and photocurrent measurements suggested that the reaction involves photoelectron emission from the carbon surface into the liquid phase. Density functional calculations show a strong correlation between the electron affinity of the alkenes and the observed reactivity. The specific terminal group opposite to the olefin was found to play an important role in the stabilization of excess negative charges on the molecule, thus explaining the strong dependence of reactivity on the particular terminal group. These findings suggest that the reaction involves injection of photoelectrons into the alkene acceptor levels, leading to the formation of radical anions in the liquid phase. Finally, the authors demonstrate that the grafting of marginally reactive alkenes can be enhanced by seeding the surface with a small amount of good electron accepting groups. These results provide fundamental new insights into the role of

  18. Land Subsidence Caused by Groundwater Exploitation in Quetta Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Najeebullah Kakar

    2016-12-01

    Full Text Available Land subsidence is affecting several metropolitan cities in developing as well as developed countries around the world such as Nagoya (Japan, Shanghai (China, Venice (Italy and San Joaquin valley (United States. This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortage in the region was further aggravated by the drought during (1998-2004 that hit the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS stations were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of this study revealed that the land of Quetta valley is subsiding from 30mm/y on the flanks to 120 mm/y in the central part. 1.5-5.0 m/y of groundwater level drop was recorded in the area where the rate of subsidence is highest. So the extensive groundwater withdrawals in Quetta valley is considered to be the driving force behind land subsidence.

  19. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2014-01-01

    Full Text Available The purpose of this study was to develop the pathway of silk fibroin (SF biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed.

  20. The UNESCO-IHP Working Group on Land Subsidence: Four Decades of International Contributions to Hydrogeological Related Subsidence Research and Knowledge Exchange

    Science.gov (United States)

    Galloway, D. L.; Carreon-Freyre, D.; Teatini, P.; Ye, S.

    2015-12-01

    Subsidence is globally prevalent and because much of it is related to hydrological processes affected by human development of local land and water resources, "Land Subsidence" was included in the UNESCO programme of the International Hydrological Decade (IHD), 1965-1974 and an ad hoc working group on land subsidence was formed. In 1975 subsidence was retained under the framework of the UNESCO IHP (subproject 8.4: "Investigation of Land Subsidence due to Groundwater Exploitation"), and UNESCO IHP formerly codified the Working Group on Land Subsidence (WGLS). In 1984 the WGLS produced a comprehensive guidebook to serve scientists and engineers, confronting land subsidence problems, particularly in developing countries (http://unesdoc.unesco.org/$other/unesdoc/pdf/065167eo.pdf). During the IHD, UNESCO IHP convened the 1st International Symposium on Land Subsidence in 1969 in Tokyo, Japan. In collaboration with UNESCO IHP, IAHS, and other scientific organizations, the WGLS has convened eight more International Symposia on Land Subsidence in different countries in Asia, Europe and North America. The 9 published symposia proceedings constitute an important source of global subsidence research and case studies during the past 45 years, covering both anthropogenic and natural subsidence processes. Currently, the WGLS comprising 20 subsidence experts from 9 countries promotes and facilitates the international exchange of information regarding the design, implementation and evaluation of risk assessments and mitigation measures, the definition of water and land resource-management strategies that support sustainable development in areas vulnerable to subsidence (http://landsubsidence-unesco.org), and the assessment of related geological risks such as earth fissuring and fault activation (www.igcp641.org). The WGLS has become an important global leader in promoting subsidence awareness, scientific research and its application to subsidence monitoring, analysis and management.

  1. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  2. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    Science.gov (United States)

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  3. Low-level waste disposal site geotechnical subsidence corrective measures: technical progress

    International Nuclear Information System (INIS)

    Phillips, S.J.; Winterhalder, J.A.; Gilbert, T.W.

    1983-01-01

    A geotechnical test facility has been constructed at the Hanford Site Richland Site Richland, Washington. The purpose of this facility is to quantitatively evaluate the performance of alternative technologies to ameliorate geomechanical subsidence in solid waste burial structures. Alternatives to be tested include; accelerating mass ground surface impact, and two optional subsurface rod injection/withdrawal techniques. The alternatives involve the principle of dynamic consolidation of buried waste and matrix materials. A description of the geotechnical test facility, the monitoring instrumentation used therein, laboratory soil mechanics data evaluation, and facility baseline monitoring data are presented. 6 references, 5 figures

  4. Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (between Bismil Batman, Turkey)

    Science.gov (United States)

    Doğan, Uğur

    2005-11-01

    Karstification-based land subsidence was found in the Upper Tigris Basin with dimensions not seen anywhere else in Turkey. The area of land subsidence, where there are secondary and tertiary subsidence developments, reaches 140 km 2. Subsidence depth ranges between 40 and 70 m. The subsidence was formed as a result of subsurface gypsum dissolution in Lower Miocene formation. Although there are limestones together with gypsum and Eocene limestone below them in the area, a subsidence with such a large area is indicative of karstification in the gypsum. The stratigraphical cross-sections taken from the wells and the water analyses also verify this fact. The Lower Miocene gypsum, which shows confined aquifer features, was completely dissolved by the aggressive waters injected from the top and discharged through by Zellek Fault. This resulted in the development of subsidence and formation of caprock dolines on loosely textured Upper Miocene-Pliocene cover formations. The Tigris River runs through the subsidence area between Batman and Bismil. There are four terrace levels as T1 (40 m), T2 (30 m), T3 (10 m) and T4 (4-5 m) in the Tigris River valley. It was also found that there were some movements of the levels of the terraces in the valley by subsidence. The subsidence developed gradually throughout the Quaternary; however no terrace was formed purely because of subsidence.

  5. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  6. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  7. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  8. Reduction of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  9. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  10. Subsidence and Rebound in California's Central Valley: Effects of Pumping, Geology, and Precipitation

    Science.gov (United States)

    Farr, T. G.; Fairbanks, A.

    2017-12-01

    Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources

  11. [Effects of surface roughness of bone cements on histological characteristics of induced membranes].

    Science.gov (United States)

    Liu, Hai-Xiao; Xu, Hua-Zi; Zhang, Yu; Hu, Gang; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei

    2012-08-01

    To explore surface roughness of bone cement and surround tissue on histological characteristic of induced membranes. Bone cements with smooth and rough surface were implanted in radius bone defect, intramuscular and subcutaneous sites of rabbits, and formed induced membranes. Membranes were obtained and stained (HE) 6 weeks later. Images of membrane tissue were obtained and analyzed with an automated image analysis system. Five histological parameters of membranes were measured with thickness,area,cell density,ECM density and microvessel density. Double factor variance analysis was used to evaluate the effect of the two factors on histological characteristics of induced membranes. Membranes can be induced by each kind of bone cement and at all the three tissue sites. In histological parameters of thickness,area and micro vessel,there were significant differences among the membranes induced at different tissue sites (P = 0.000, P = 0.000, P = 0.000); whereas, there were no significant differences in histological parameters of cell density and ECM density (P = 0.734, P = 0.638). In all five histological parameters of membranes, there were no significant differences between the membranes induced by bone cements with different surface roughness (P = 0.506, P = 0.185, P = 0.883, P = 0.093, P = 0.918). Surround tissue rather than surface roughness of bone cements can affect the histological characteristics of induced membranes. The fibrocystic number, vascularity, mechanical tension and micro motion of the surround tissue may be closely correlated with the histological characteristics of induced membranes.

  12. How large-scale subsidence affects stratocumulus transitions

    Directory of Open Access Journals (Sweden)

    J. J. van der Dussen

    2016-01-01

    Full Text Available Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP budget from large-eddy simulation (LES results of three idealized stratocumulus transition cases, each with a different subsidence rate. As shown in previous studies a reduced subsidence is found to lead to a deeper stratocumulus-topped boundary layer, an enhanced cloud-top entrainment rate and a delay in the transition of stratocumulus clouds into shallow cumulus clouds during its equatorwards advection by the prevailing trade winds. The effect of a reduction of the subsidence rate can be summarized as follows. The initial deepening of the stratocumulus layer is partly counteracted by an enhanced absorption of solar radiation. After some hours the deepening of the boundary layer is accelerated by an enhancement of the entrainment rate. Because this is accompanied by a change in the cloud-base turbulent fluxes of moisture and heat, the net change in the LWP due to changes in the turbulent flux profiles is negligibly small.

  13. IMPACT OF OIL ON THE MECHANICAL PROPERTIES OF SOIL SUBSIDENCE

    Directory of Open Access Journals (Sweden)

    Алексей Алексеевич Бурцев

    2016-08-01

    Full Text Available The paper studied the effect of oil content on the mechanical properties of soil subsidence - Ek modulus and compressibility factor m0, obtained in the laboratory with the help of artificial impregnation oil soil samples. A comparison of the above parameters with samples of the same soil in the natural and water-saturated conditions has been perfomed.

  14. Subsidence analysis Forsmark nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  15. Estimating the distribution of salt cavern squeeze using subsidence measurements

    NARCIS (Netherlands)

    Fokker, P.A.; Visser, J.

    2014-01-01

    We report a field study on solution mining of magnesium chloride from bischofite layers in the Netherlands at depths between 1500 and 1850 m. Subsidence that was observed in the area is due to part of the brine production being realized by cavern squeeze; some of which were connccted. Wc used an

  16. The Opportunity Illusion: Subsidized Housing and Failing Schools in California

    Science.gov (United States)

    Pfeiffer, Deirdre

    2009-01-01

    Since the late 1980s, the Low-Income Housing Tax Credit (LIHTC) program has funded the bulk of subsidized development nationwide, enabling the construction of over 100,000 units targeted to lower income households in California alone (California Tax Credit Allocation Committee 2009c). Yet, by not encouraging the siting of projects in racially…

  17. Subsidized Housing, Public Housing, and Adolescent Violence and Substance Use

    Science.gov (United States)

    Leech, Tamara G. J.

    2012-01-01

    This study examines the separate relationships of public housing residence and subsidized housing residence to adolescent health risk behavior. Data include 2,530 adolescents aged 14 to 19 who were children of the National the Longitudinal Study of Youth. The author used stratified propensity methods to compare the behaviors of each…

  18. At whose service? Subsidizing services and the skill premium

    NARCIS (Netherlands)

    van Groezen, Bas; Meijdam, L.

    2009-01-01

    In this paper we investigate the effects of subsidizing low-skilled, labour-intensive services hired by high-skilled individuals in the presence of labour income taxation. Whether such a subsidy can be Pareto-improving depends crucially on the degree of substitutability of both types of labour in

  19. At Whose Service? Subsidizing Services and the Skill Premium

    NARCIS (Netherlands)

    van Groezen, B.J.A.M.; Meijdam, A.C.

    2010-01-01

    In this paper we investigate the effects of subsidizing low-skilled, labourintensive services hired by high-skilled individuals in the presence of labour income taxation. Whether such a subsidy can be Paretoimproving depends crucially on the degree of substitutability of both types of labour in the

  20. Land subsidence and hydrodynamic compaction of sedimentary basins

    Directory of Open Access Journals (Sweden)

    H. Kooi

    1998-01-01

    Full Text Available A one-dimensional model is used to investigate the relationship between land subsidence and compaction of basin sediments in response to sediment loading. Analysis of the model equations and numerical experiments demonstrate quasi-linear systems behaviour and show that rates of land subsidence due to compaction: (i can attain a significant fraction (>40% of the long-term sedimentation rate; (ii are hydrodynamically delayed with respect to sediment loading. The delay is controlled by a compaction response time τc that can reach values of 10-5-107 yr for thick shale sequences. Both the behaviour of single sediment layers and multiple-layer systems are analysed. Subsequently the model is applied to the coastal area of the Netherlands to illustrate that lateral variability in compaction-derived land subsidence in sedimentary basins largely reflects the spatial variability in both sediment loading and compaction response time. Typical rates of compaction-derived subsidence predicted by the model are of the order of 0.1 mm/yr but may reach values in excess of 1 mm/yr under favourable conditions.

  1. The nanostructure formation on muscovite mica surface induced by intermediate-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Zhang, HQ., E-mail: zhanghq@lzu.edu.cn; Zhang, Q.; Liu, Z.; Guan, S.; Wang, G.; Zhou, C.; Jia, J.; Lv, X.; Shao, J.; Cui, Y.; Chen, L.; Chen, X., E-mail: chenxm@lzu.edu.cn

    2013-07-15

    Muscovite mica sheets were bombarded by lithium, carbon and oxygen ions in the energy range from several hundred keV to several MeV. The induced surface structures were measured in the air with atomic force microscopy (AFM) in the tapping mode. The hillock-like structure on the mica surface was observed. The height of the hillock increases linearly when the energy loss is above 1.2 keV/nm. The induced structures are similar with the similar electronic stopping powers but different projectiles for muscovite mica.

  2. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  3. Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps

    International Nuclear Information System (INIS)

    Park, Woojin; Jo, Gunho; Hong, Woong-Ki; Yoon, Jongwon; Choe, Minhyeok; Ji, Yongsung; Kim, Geunjin; Kahng, Yung Ho; Lee, Kwanghee; Lee, Takhee; Lee, Sangchul; Wang, Deli

    2011-01-01

    We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires. Thus, chemical treatment with IPA can be a useful method for improving the photoresponse of ZnO nanowire devices.

  4. Effect of substrate surface on electromigration-induced sliding at hetero-interfaces

    International Nuclear Information System (INIS)

    Kumar, Praveen; Dutta, Indranath

    2013-01-01

    Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding. (paper)

  5. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  6. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  7. DORIS downstream service: a support to civil defence autorithies in landslides and subsidence risk management

    Science.gov (United States)

    Ciampalini, A.; Del Ventisette, C.; Moretti, S.; Manunta, M.; Calò, F.; Paglia, L.; Ardizzone, F.; Guzzetti, F.; Rossi, M.; Bellotti, F.; Colombo, D.; Strozzi, T.; Wegmuller, U.; Mora, O.; Sanches, F.

    2012-04-01

    DORIS is an advanced FP7-EU project for the design of a pre-operational advanced downstream service aimed at detecting, mapping, monitoring and forecasting surface deformations, including landslides and ground subsidence, by exploiting multiple Earth Observation (EO) and ground-based (non-EO) data technologies. Ground deformations are the result of a variety of natural and human-induced causes and triggers. These phenomena are frequent and widespread in Europe, causing extensive economic damage to private properties and public assets and their social impact is relevant. In Europe, the large number of areas affected by ground deformations, the frequency and extent of the triggering events, the extent of the impact and the magnitude of the damage, make it mandatory a multiscale, systemic approach. Further, the complexity and extent of the problem is such that it cannot be tackled (and solved) at an individual, site-specific scale, or using a single technique or methodology. The problem can be approached only through the integration of data and information taken at different scales, and with the collaborative efforts of multiple expertise. With this respect, the several satellite sensors now available, including about forty passive - optical - sensors and nine active - synthetic aperture radar (SAR) - sensors, provide valuable technological alternatives to traditional methods and tools to detect, map, monitor and forecast ground deformations over large areas and with the required accuracy. The temporal continuity and the geometric compatibility among time series of ERS-1, ERS-2 and ENVISAT data represents an unprecedented opportunity to generate very long time series of ground deformations. This provides exclusive information for an improved understanding of the long term behavior of slow and very-slow ground deformation phenomena. In this context, DORIS intends to exploit the extensive catalogues of multiple C-band SAR sensors to provide, via a joint analysis

  8. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  9. Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro

    2017-10-01

    In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.

  10. Investigation of the Active layer thickness and ground subsidence in Taimyr

    Science.gov (United States)

    Grebenets, V. I.; Tolmanov, V. A.; Streletskiy, D. A.

    2017-12-01

    The active layer of permafrost (ALT) is highly unstable and dynamic in space and time. Soil undergoes frost heave during the freezing process, and ground subsidence during the thawing. The problem of the development of soil sediments' deformations in ALT is relevant as for natural objects (influence on runoff, changing of landscape and vegetation, etc.), so for industrial infrastructure (pipelines, roads, buildings and structures). The observations in the frame of the CALM program in Taimyr were carried out since 2005 (site R-32) with the measurements of the geodetic level of soil surface since 2007. The results of these measurements were processed and the maps of thawing and changes in meso- and micro-relief were constructed. The differentiation of seasonally thawed layer and ground subsidence in different micro-landscape conditions was investigated. The depth of seasonal thawing and the changes of surface movements were found to be determined by three main systems: a) the weather conditions and the climate trends; b) the permafrost-lithological conditions and drainage; c) the micro-landscape characteristics. It was established that for the Norilsk region (Taimyr) the trend in increasing ALT was 0.3 cm / year (for the period of observations 2005-2016) with a certain slowdown in the last 3 to 4 years. Increase in the depth of the ALT was related to the rising Summer temperatures and reduction of the cold period. A strong high impact of the summer precipitation conditions was revealed: in rather cold summer of 2012, with large amount of precipitation mainly in the warmest month (July), the defrosting was the highest. In the year with the record-breaking number of positive degree days (from all the 85 years of regular meteorological observations) but anomalously dry year 2013 (in July - less than 10 mm atmospheric precipitation), the thawing was minimal at the R-32 site. It is interesting that the ground subsidence in 2012 was 30-40% less, than in 2013. This is due

  11. Self-induced oscillation of free surface in a tank with circulating flow, 2

    International Nuclear Information System (INIS)

    Okamoto, Koji; Madarame, Haruki; Hagiwara, Tsuyoshi

    1991-01-01

    An energy supply mechanism to self-induced sloshing in a tank with circulating flow is proposed. The circulating flow impinges on the free surface making it swell partially. The amount of swell increases with increasing water level under the condition of growing sloshing. The change of the free surface contour by this effect supplies sufficient energy to the sloshing. The dependency of the sloshing growth on the flow rate and the water level is explained well by this model. (author)

  12. Application of positron annihilation induced auger electron spectroscopy to the study of surface chemistry

    International Nuclear Information System (INIS)

    Weiss, A.H.; Yang, G.; Nangia, A.; Kim, J.H.; Fazleev, N.G.

    1996-01-01

    Positron annihilation induced Auger Electron Spectroscopy (PAES), makes use a beam of low energy positrons to excite Auger transitions by annihilating core electrons. This novel mechanism provides PAES with a number of unique features which distinguishes it from other methods of surface analysis. In PAES the very large collisionally induced secondary electron background which is present under the low energy Auger peaks using conventional techniques can be eliminated by using a positron beam whose energy is below the range of Auger electron energies. In addition, PAES is more surface selective than conventional Auger Spectroscopy because the PAES signal originates almost exclusively from the topmost atomic layer due to the fact that the positrons annihilating with the core electrons are trapped in an image correlation well just outside the surface. In this paper, recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) to the study of surface structure and surface chemistry will be discussed including studies of the growth, alloying and inter-diffusion of ultrathin layers of metals, metals on semiconductors, and semiconductors on semiconductors. In addition, the possibilities for future application of PAES to the study of catalysis and surface chemistry will be outlined. (author)

  13. The ground subsidence anomaly investigation around Ambala, India by InSAR and spatial analyses: Why and how the Ambala city behaves as the most significant subsidence region in the Northwest India?

    Science.gov (United States)

    Kim, J.; Lin, S. Y.; Tsai, Y.; Singh, S.; Singh, T.

    2017-12-01

    A large ground deformation which may be caused by a significant groundwater depletion of the Northwest India Aquifer has been successfully observed throughout space geodesy techniques (Tsai et al, 2016). Employing advanced time-series ScanSAR InSAR analysis and Gravity Recovery and Climate Experiment (GRACE) satellites data, it revealed 400-km wide huge ground deformation in and around Haryana. It was further notified that the Ambala city located in northern Haryana district shown the most significant ground subsidence with maximum cumulative deformation up to 0.2 meters within 3 years in contrast to the nearby cities such as Patiala and Chandigarh that did not present similar subsidence. In this study, we investigated the details of "Ambala Anomaly" employing advanced time-series InSAR and spatial analyses together with local geology and anthropogenic contexts and tried to identify the factors causing such a highly unique ground deformation pattern. To explore the pattern and trend of Ambala' subsidence, we integrated the time-series deformation results of both ascending L-band PALSAR-1 (Phased Array type L-band Synthetic Aperture Radar) from 2007/1 to 2011/1 and descending C-band ASAR (Advanced Synthetic Aperture Radar) from 2008/9 to 2010/8 to process the 3D decomposition, expecting to reveal the asymmetric movement of the surface. In addition. The spatial analyses incorporating detected ground deformations and local economical/social factors were then applied for the interpretation of "Ambala Anomaly". The detailed interrelationship of driving factors of the "Ambala Anomaly" and the spatial pattern of corresponding ground subsidence will be further demonstrated. After all, we determined the uniqueness of Ambala subsidence possibly be driven by both anthropogenic behaviors including the rapid growth rate of population and constructing of industrial centers as well as the natural geological characteristics and sediment deposition.

  14. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  15. Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Robin L. Miller

    2008-10-01

    Full Text Available The stability of levees in the Sacramento-San Joaquin Delta is threatened by continued subsidence of Delta peat islands. Up to 6 meters of land-surface elevation has been lost in the 150 years since Delta marshes were leveed and drained, primarily from oxidation of peat soils. Flooding subsided peat islands halts peat oxidation by creating anoxic soils, but net accumulation of new material in restored wetlands is required to recover land-surface elevations. We investigated the subsidence reversal potential of two 3 hectare, permanently flooded, impounded wetlands re-established on a deeply subsided field on Twitchell Island. The shallower wetland (design water depth 25 cm was almost completely colonized by dense emergent marsh vegetation within two years; whereas, the deeper wetland (design water depth 55 cm which developed spatially variable depths as a result of heterogeneous colonization by emergent vegetation, still had some areas remaining as open water after nine years. Changes in land-surface elevation were quantified using repeated sedimentation-erosion table measurements. New material accumulating in the wetlands was sampled by coring. Land-surface elevations increased by an average of 4 cm/yr in both wetlands from 1997 to 2006; however, the rates at different sites in the wetlands ranged from -0.5 to +9.2 cm/yr. Open water areas of the deeper wetland without emergent vegetation had the lowest rates of land-surface elevation gain. The greatest rates occurred in areas of the deeper wetland most isolated from the river water inlets, with dense stands of emergent marsh vegetation (tules and cattails. Vegetated areas of the deeper wetland in the transition zones between open water and mature emergent stands had intermediate rates of land-surface gain, as did the entire shallower wetland. These results suggest that the dominant component contributing to land-surface elevation gain in these wetlands was accumulation of organic matter, rather

  16. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  17. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  18. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Antończak, Arkadiusz J., E-mail: arkadiusz.antonczak@pwr.edu.pl [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Skowroński, Łukasz; Trzcinski, Marek [Institute of Mathematics and Physics, University of Technology and Life Sciences, Kaliskiego 7, 85-789 Bydgoszcz (Poland); Kinzhybalo, Vasyl V. [Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Low Temperature and Structure Research, Okólna 2, 50-422 Wrocław (Poland); Łazarek, Łukasz K.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-01-15

    Highlights: • Chemical structure of the films induced by laser on titanium surface was analyzed. • It was shown that outer layer of this films consist of oxides doped with nitrogen. • The optical properties of the laser-induced oxynitride films were characterized. • We found that the films demonstrated significant absorption in the band of 300–580 nm. • The morphology of the layers as a function of the laser fluence was investigated. - Abstract: This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO{sub 2} as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar{sup +} ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  19. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  20. Method of predicting surface deformation in the form of sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Chudek, M.; Arkuszewski, J.

    1980-06-01

    Proposes a method for predicting probability of sinkhole shaped subsidence, number of funnel-shaped subsidences and size of individual funnels. The following factors which influence the sudden subsidence of the surface in the form of funnels are analyzed: geologic structure of the strata between mining workings and the surface, mining depth, time factor, and geologic disolocations. Sudden surface subsidence is observed only in the case of workings situated up to a few dozen meters from the surface. Using the proposed method is explained with some examples. It is suggested that the method produces correct results which can be used in coal mining and in ore mining. (1 ref.) (In Polish)

  1. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    Science.gov (United States)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  2. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces.

    Science.gov (United States)

    Siretanu, Igor; Chapel, Jean-Paul; Bastos-González, Delfi; Drummond, Carlos

    2013-06-06

    The effect of surface charges on the ionic distribution in close proximity to an interface has been extensively studied. On the contrary, the influence of ions (from dissolved salts) on deformable interfaces has been barely investigated. Ions can adsorb from aqueous solutions on hydrophobic surfaces, generating forces that can induce long-lasting deformation of glassy polymer films, a process called ion-induced polymer nanostructuration, IPN. We have found that this process is ion-specific; larger surface modifications are observed in the presence of water ions and hydrophobic and amphiphilic ions. Surface structuration is also observed in the presence of certain salts of lithium. We have used streaming potential and atomic force microscopy to study the effect of dissolved ions on the surface properties of polystyrene films, finding a good correlation between ionic adsorption and IPN. Our results also suggest that the presence of strongly hydrated lithium promotes the interaction of anions with polystyrene surfaces and more generally with hydrophobic polymer surfaces, triggering then the IPN process.

  3. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  4. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  5. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Science.gov (United States)

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  6. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling

    DEFF Research Database (Denmark)

    Kammersgaard, L P; Rasmussen, B H; Jørgensen, Henrik Stig

    2000-01-01

    Hypothermia reduces neuronal damage in animal stroke models. Whether hypothermia is neuroprotective in patients with acute stroke remains to be clarified. In this case-control study, we evaluated the feasibility and safety of inducing modest hypothermia by a surface cooling method in awake patients...

  7. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  8. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  9. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laser-induced desorption determinations of surface diffusion on Rh(111)

    International Nuclear Information System (INIS)

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab

  11. Xe ion beam induced rippled structures on differently oriented single-crystalline Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg; Facsko, Stefan [Forschungszentrum Dresden-Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, PO Box 510119, 01314 Dresden (Germany); Biermanns, Andreas; Pietsch, Ullrich, E-mail: A.Hanisch@fzd.d [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany)

    2010-03-24

    We report on Xe{sup +} induced ripple formation at medium energy on single-crystalline silicon surfaces of different orientations using substrates with an intentional miscut from the [0 0 1] direction and a [1 1 1] oriented wafer. The ion beam incidence angle with respect to the surface normal was kept fixed at 65{sup 0} and the ion beam projection was parallel or perpendicular to the [1 1 0] direction. By a combination of atomic force microscopy, x-ray diffraction and high-resolution transmission electron microscopy we found that the features of the surface and subsurface rippled structures such as ripple wavelength and amplitude and the degree of order do not depend on the surface orientation as assumed in recent models of pattern formation for semiconductor surfaces. (fast track communication)

  12. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.

    Science.gov (United States)

    Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W

    2007-05-01

    Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.

  13. Fault Length Vs Fault Displacement Evaluation In The Case Of Cerro Prieto Pull-Apart Basin (Baja California, Mexico) Subsidence

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Nava Pichardo, F. A.; Farfan, F.; Garcia Arthur, M. A.; Orozco, L.; Brassea, J.

    2013-05-01

    The Cerro Prieto pull-apart basin is located in the southern part of San Andreas Fault system, and is characterized by high seismicity, recent volcanism, tectonic deformation and hydrothermal activity (Lomnitz et al, 1970; Elders et al., 1984; Suárez-Vidal et al., 2008). Since the Cerro Prieto geothermal field production started, in 1973, significant subsidence increase was observed (Glowacka and Nava, 1996, Glowacka et al., 1999), and a relation between fluid extraction rate and subsidence rate has been suggested (op. cit.). Analysis of existing deformation data (Glowacka et al., 1999, 2005, Sarychikhina 2011) points to the fact that, although the extraction changes influence the subsidence rate, the tectonic faults control the spatial extent of the observed subsidence. Tectonic faults act as water barriers in the direction perpendicular to the fault, and/or separate regions with different compaction, and as effect the significant part of the subsidence is released as vertical displacement on the ground surface along fault rupture. These faults ruptures cause damages to roads and irrigation canals and water leakage. Since 1996, a network of geotechnical instruments has operated in the Mexicali Valley, for continuous recording of deformation phenomena. To date, the network (REDECVAM: Mexicali Valley Crustal Strain Measurement Array) includes two crackmeters and eight tiltmeters installed on, or very close to, the main faults; all instruments have sampling intervals in the 1 to 20 minutes range. Additionally, there are benchmarks for measuring vertical fault displacements for which readings are recorded every 3 months. Since the crackmeter measures vertical displacement on the fault at one place only, the question appears: can we use the crackmeter data to evaluate how long is the lenth of the fractured fault, and how quickly it grows, so we can know where we can expect fractures in the canals or roads? We used the Wells and Coppersmith (1994) relations between

  14. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.

    Science.gov (United States)

    Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz

    2016-10-01

    Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.

  15. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo; Kristiansen, Kai De Lange; Wang, Peng; Bergli, Joakim; Israelachvili, Jacob N.

    2011-01-01

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  16. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo

    2011-06-07

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  17. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  18. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  19. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  20. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  1. Mardels, natural subsidence basins or abandoned quarries?

    Science.gov (United States)

    van Mourik, Jan; Slotboom, Ruud

    2015-04-01

    Coversands (chemical poor Late-glacial aeolian sand deposits) dominate the surface geology of an extensive area in northwestern Europe. Plaggic Anthrosols occur in cultural landscapes, developed on coversands. They are the characteristic soils that developed on ancient fertilized arable fields. Plaggic Anthrosols have a complex genesis. They are records of aspects environmental and agricultural history. In previous studies information of the soil records was unlocked by application of pollen analysis, 14C and OSL dating. In this study we applied biomarker analysis to unlock additional information about the applied organic sources in the production of plaggic manure. Radiocarbon dating suggested the start of sedentary agriculture (after a period, characterized by shifting cultivation and Celtic fields) between 3000 and 2000 BP. In previous studies is assumed that farmers applied organic sods, dug on forest soils and heath to produce organic stable manure to fertilize the fields. The mineral fraction of the sods was supposed to be responsible for the development of the plaggic horizon and the raise of the land surface. Optically stimulated Luminescence dating however suggested that plaggic deposition on the fields started relatively late, in the 18th century. The use of ectorganic matter from the forest soils must have been ended in the 10th-12th century, due to commercial forest clear cuttings as recorded in archived documents. These deforestations resulted in the first extension of sand drifting and famers had to protect the valuable heath against this 'environmental catastrophe'. The use of heath for sheep grazing and other purposes as honey production could continue till the 18th century, as recorded in archived documents. In the course of the 18th century, the population growth resulted in increasing demand for food. The deep stable economy was introduced and the booming demand for manure resulted in intensive sod digging on the heath. This caused heath

  2. 24 CFR 982.521 - Rent to owner in subsidized project.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Rent and Housing Assistance Payment § 982.521 Rent to owner in subsidized project. (a) Applicability to subsidized project. This section applies to a program tenancy in any of the following types of federally subsidized project...

  3. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  4. Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2004-01-01

    Vacuum expectation value of the surface energy-momentum tensor is evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two parallel branes located on (D+1)-dimensional anti-de Sitter bulk. The general case of different Robin coefficients on separate branes is considered. As a regularization procedure the generalized zeta function technique is used, in combination with contour integral representations. The surface energies on the branes are presented in the form of the sums of single brane and second brane-induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem between the gravitational and electroweak mass scales, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations

  5. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    Science.gov (United States)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  6. Formation of organic layer on femtosecond laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Yasumaru, Naoki, E-mail: yasuma@fukui-nct.ac.jp [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Sentoku, Eisuke [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Kiuchi, Junsuke [Eyetec Co., Ltd., Sabae, Fukui 916-0016 (Japan)

    2017-05-31

    Highlights: • Surface analyses of two types of femtosecond laser-induced periodic surface structures (LIPSS) on titanium were conducted. • The parallel-oriented ultrafine LIPSS showed the almost same roughness and chemical states as the non-irradiated Ti surface. • The well-known perpendicular-oriented LIPSS were typically covered with an organic layer similar to a cellulose derivative. - Abstract: Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  7. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  8. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  9. Lifting and protecting residential structures from subsidence damage using airbags

    International Nuclear Information System (INIS)

    Triplett, T.L.; Bennett, R.M.

    1998-01-01

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements

  10. Working to Reduce Poverty: A National Subsidized Employment Proposal

    Directory of Open Access Journals (Sweden)

    Indivar Dutta-Gupta

    2018-02-01

    Full Text Available Subsidized employment programs that increase labor supply and demand are a proven, underutilized strategy for reducing poverty in the short and long term. These programs use public and private funds to provide workers wage-paying jobs, training, and wraparound services to foster greater labor force attachment while offsetting employers’ cost for wages, on-the-job training, and overhead. This article proposes two new separate but harmonized federal funding streams for subsidized employment that would expand automatically when and where economic conditions deteriorate. Participating states and local organizations would be offered generous matching funds to target adult workers most in need and to secure employer participation. The proposal would effectively reduce poverty among workers during work placements, and improve long-term unsubsidized employment and other outcomes for participants and their families.

  11. Monitoring Rates of Subsidence and Relative Sea-Level Rise in Low-Elevation Coastal Zones: A New Approach

    Science.gov (United States)

    Tornqvist, T. E.; Jankowski, K. L.; Fernandes, A. M.; Keogh, M.; Nienhuis, J.

    2017-12-01

    Low-elevation coastal zones (LECZs) that often host large population centers are particularly vulnerable to accelerating rates of relative sea-level rise (RSLR). Traditionally, tide-gauge records are used to obtain quantitative data on rates of RSLR, given that they are perceived to capture the rise of the sea surface, as well as land subsidence which is often substantial in such settings. We argue here that tide gauges in LECZs often provide ambiguous data because they ultimately measure RSLR with respect to a benchmark that is typically anchored tens of meters deep. This is problematic because the prime target of interest is usually the rate of RSLR with respect to the land surface. We illustrate this problem with newly obtained rod surface elevation table - marker horizon (RSET-MH) data from coastal Louisiana (n = 274) that show that shallow subsidence in the uppermost 5-10 m accounts for 60-85% of total subsidence. Since benchmarks in this region are anchored at 23 m depth on average, tide-gauge records by definition do not capture this important process and thus underestimate RSLR by a considerable amount. We show how RSET-MH data, combined with GPS and satellite altimetry data, enable us to bypass this problem. Rates of RSLR in coastal Louisiana over the past 6-10 years are 12 ± 8 mm/yr, considerably higher than numbers reported in recent studies based on tide-gauge analysis. Subsidence rates, averaged across this region, total about 9 mm/yr. It is likely that the problems with tide-gauge data are not unique to coastal Louisiana, so we suggest that our new approach to RSLR measurements may be useful in LECZs worldwide, with considerable implications for metropolitan areas like New Orleans that are located within such settings.

  12. Generalization of the influence function method in mining subsidence

    International Nuclear Information System (INIS)

    Bello Garcia, A.; Mendendez Diaz, A.; Ordieres Mere, J.B.; Gonzalez Nicieza, C.

    1996-01-01

    A generic approach to subsidence prediction based on the influence function method is presented. The changes proposed to the classical approach are the result of a previous analysis stage where a generalization to the 3D problem was made. In addition other hypothesis in order to relax the structural principles of the classical model are suggested. The quantitative results of this process and a brief discussion of its method of employment is presented. 13 refs., 8 figs., 5 tabs

  13. Observation of heights on the margin of subsidence depression

    Czech Academy of Sciences Publication Activity Database

    Bláha, P.; Doležalová, Hana; Müller, Karel; Skopal, R.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 9-15 ISSN 1213-1962. [Nové poznatky a měření v seismologii, inženýrské geofyzice a geotechnice/15./. Ostrava, 11.04.2006-13.04.2006] Institutional research plan: CEZ:AV0Z30860518 Keywords : subsidence depression * levelling * fluctuation Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  14. Employer Subsidized Meals and FAFH Consumption in Urban China

    OpenAIRE

    Teng, Zhijing; Seale, James Jr.; Bai, Junfei; Wahl, Thomas I.

    2015-01-01

    This study investigates factors influencing household decisions on food away from home (FAFH) consumption with special interest given to the effects of employer subsidized meals on FAFH consumption. Using data from a new urban food consumption survey and collected by the Center for Chinese Agriculture Policy from 2009 to 2012 in 10 cities, a double-hurdle model is utilized to estimate the demand for FAFH as a whole and by type of facility (restaurant, fast-food outlet, and other facilities). ...

  15. Subsidence of the pit slab at SLC experimental hall

    International Nuclear Information System (INIS)

    Inaba, J.; Himeno, Yoichi; Katsura, Yutaka

    1992-01-01

    Detectors installed at particle accelerator facilities are quite heavy, weighing thousands of tons. On the other hand, ground subsidence caused by the installation of a detector adversely affects the beam line alignment of the collider. It becomes, therefore, very important to figure out the expected amount of ground settlement by means of adequate evaluation methods in advance. At Stanford Linear Accelerator Center (SLAC), a 1700 mT (metric tons) Mark II detector was replaced with a 4000 mT SLD detector in Stanford Linear Collider (SLC). The exchange started in December 1990 and lasted until March 1991, and the amount of ground settlement was measured by SLAC during that period. We performed simulation studies to evaluate the subsidence of the pit slab using several analysis methods. Parameters used for the analyses were decided based on the information of the SLC structure and the ground conditions at the SLAC area. The objective of this study is to verify the applicability of several simulation methods by comparing the analytical results with the actual subsidence data obtained by SLAC

  16. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  17. Modeling of flexible reciprocating compressor considering the crosshead subsidence

    Science.gov (United States)

    Xue, Xiaogang; Liu, Shulin; Sun, Xin

    2018-01-01

    Crank-slider mechanisms are important parts of heavy duty machines, including reciprocating compressors, combustion motors. This paper targets on the dynamic response of the crosshead in a reciprocating compressor, taking into consideration the crosshead deviation from the original level. The traditional model of the compressor is usually a slider-mechanism system without considering the deflection of the crosshead, thus neglecting the influence of the piston rod, which has some flexible features. In this paper, a rigid-flexible model of slider-crank is described theoretically, using the commercial software MATLAB, where the crank, connecting rod and crosshead are treated as rigid bodies, while the piston rod connected to the crosshead is considered as a flexible body. The dynamic response of the mechanism with the crosshead subsidence is discussed detailedly in this paper. After calculated theoretically, the MATLAB simulation showed that the dynamic response of the crosshead will be greatly influenced if the crosshead subsided from the original level. Also, the influence of the crosshead subsidence was also investigated, and some extra vibration of the crosshead arises.

  18. How to subsidize energy efficiency under duopoly efficiently?

    International Nuclear Information System (INIS)

    Nie, Pu-yan; Yang, Yong-cong; Chen, You-hua; Wang, Zhao-hui

    2016-01-01

    Highlights: • This article captures the effects of output subsidy. • Firms without subsidy are not willing to improve energy efficiency. • Subsidy stimulates the subsidized firms’ outputs and deters the others’ outputs. • The subsidy intensity depends on firms’ position. • Overdue subsidy cannot reach the environmental object. - Abstract: Establishing a game theory model, this paper captures the effects of output subsidy on energy efficiency under Cournot competition and Stackelberg competition. Three types of subsidies are considered in the model, namely without subsidy, unilateral subsidy and bilateral subsidy. The findings indicate that firms without subsidy are not willing to improve energy efficiency. Also, subsidy stimulates the subsidized firms’ outputs while deters the outputs of other firms. Meanwhile, the equilibrium subsidy intensity depends on firms’ position. Furthermore, the minimal subsidy budgets under different situations are presented. Especially, given the fixed subsidy budget, the output of the subsidized firm is the highest if this firm plays the leading position. In addition, certain subsidy can reduce the total emission, while overdue subsidy cannot reach the environmental object.

  19. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  20. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  1. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  2. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    Science.gov (United States)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  3. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  4. Housing building with steel framing system in subsidence zones: Pertinence and Sustainability

    Directory of Open Access Journals (Sweden)

    Luis Alfredo Hernádez Castillo

    2014-04-01

    Full Text Available The phenomenon of subsidence caused by the extraction of groundwater is a problem that occurs in different places around the world. Particularly in the Mexican Republic is a situation that affects several cities in at least eight states located in the central region. Given the particular nature of the subsoil that occurs in these regions affected, subsidence can generate cracks and fractures that are evident on the surface of the soil causing differential settlement affecting all types of construction causing considerable damage to the structural elements of the dwellings. The materials traditionally used for housing construction such as masonry and concrete among others, have stiffness characteristics that make them especially vulnerable to these effects. In contrast, steel is an excellent choice for use due to their structural characteristics, such as its high tensile strength, ductility, compressive good performance, high efficiency in weight — strength ratio, among other qualities. The cold formed thin-walled steel elements, are another type of very light profiles, although its use has been known for several decades, is in recent times that have extended their application, mainly in housing construction, and to a lesser scale commercial and industrial construction. The main advantage of this material is that it retains the mechanical properties of steel, but with a significant reduction in the weight of the items. The most common use of this type of profile is in the manufacture of structural frames as standard modules, the most common form it is assembly profile channel with rigid edge section and section profiles of single channel, with different dimensions and sizes. In full-scale testing and numerical simulation models, the system exhibits an excellent performance under differential displacements as those caused by subsidence, accepting considerable deformations without reaching the failure of structural elements. In the goodness of

  5. The deformation behavior of soil mass in the subsidence region of Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Tian

    2015-11-01

    Full Text Available Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.

  6. Problem definition study of subsidence caused by geopressured geothermal resource development

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  7. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  8. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images

    Science.gov (United States)

    El Bastawesy, M.; Cherif, O. H.; Sultan, M.

    2017-12-01

    This paper investigates the relevance of landforms to the subsidence of the Nile Delta using a high resolution topographic digital elevation model (DEM) and sets of multi-temporal Landsat satellite images. 195 topographic map sheets produced in 1946 at 1:25,000 scale were digitized, and the DEM was interpolated. The undertaken processing techniques have distinguished all the natural low-lying closed depressions from the artificial errors induced by the interpolation of the DEM. The local subsidence of these depressions from their surroundings reaches a maximum depth of 2.5 m. The regional subsidence of the Nile Delta has developed inverted topography, where the tracts occupied by the contemporary distributary channels are standing at higher elevations than the areas in between. This inversion could be related to the differences in the hydrological and sedimentological properties of underlying sediments, as the channels are underlain by water-saturated sands while the successions of clay and silt on flood plains are prone to compaction. Furthermore, the analysis of remote sensing and topographic data clearly show significant changes in the land cover and land use, particularly in the northern lagoons and adjacent sabkhas, which are dominated by numerous low subsiding depressions. The areas covered by water logging and ponds are increasing on the expense of agricultural areas, and aquaculture have been practiced instead. The precise estimation of subsidence rates and distribution should be worked out to evaluate probable changes in land cover and land use.

  9. Light-Induced Tellurium Enrichment on CdZnTe Crystal Surfaces Detected by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hawkins, Samantha A.; Villa-Aleman, Eliel; Duff, Martine C.; Hunter, Doug B.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Black, David R.

    2008-01-01

    CdZnTe (CZT) crystals can be grown under controlled conditions to produce high-quality crystals to be used as room-temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro-Raman spectroscopy. The growth of Te rich areas on the surface was induced by low-power lasers. The growth was observed versus time with low-power Raman scattering and was observed immediately under higher-power conditions. The detector response was also measured after induced Te enrichment.

  10. LIGHT INDUCED TELLURIUM ENRICHMENT ON CDZNTE CRYSTAL SURFACES DETECTED BY RAMAN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Hawkins, S; Eliel Villa-Aleman, E; Martine Duff, M; Douglas Hunter, D

    2007-01-01

    Synthetic CdZnTe or 'CZT' crystals can be grown under controlled conditions to produce high quality crystals to be used as room temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro Raman spectroscopy. The growth of Te rich areas on the surface was induced by low powered lasers. The growth was observed versus time with low power Raman scattering and was observed immediately under higher power conditions. The detector response was also measured after induced Te enrichment

  11. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  12. Hydrogen induced surface effects on the mechanical properties of type 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V. da; Pascual, R.; Miranda, P.E.V. de.

    1983-01-01

    The possibilities of modifying the mechanical properties of type 304 stainless steel by cathodic hydrogen charging were studied. The situations analysed included hydrogen embrittlement itself in tensile tests of hydrogen containing samples and the effects of delayed cracks in fatigue tests of hydrogenated and outgassed samples. SEM and TEM observations were also performed. It was found that hydrogen induced surface delayed cracks appear in great quantity during outgassing (of the order of several millions in a square centimeter). Hydrogen embrittlement was responsible for drastic losses in ductility in tension, while surface cracks severely reduced fatigue life. (author) [pt

  13. Surface induced ordering of micelles at the solid-liquid interface

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. copyright 1998 The American Physical Society

  14. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  15. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    Science.gov (United States)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  16. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of ion-bombardment-induced surface topography of silver by stereophotogrammetric method

    International Nuclear Information System (INIS)

    Fayazov, I.M.; Sokolov, V.N.

    1992-01-01

    The ion-bombardment-induced surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The samples were irradiated with 30keV argon ions at fairly high fluences (> 10 17 ions/cm 2 ). The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture is discussed. To analyse the irradiated surfaces covered with cones, the SEM-stereotechnique is proposed. The measurements of the sample section perpendicular to the incidence plane are also carried out. (author)

  18. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  19. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  20. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  1. RCRA Part A permit characterization plan for the U-2bu subsidence crater. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    This plan presents the characterization strategy for Corrective Action Unit (CAU) 109, U-2bu Subsidence Crater (referred to as U-2bu) in Area 2 at the Nevada Test Site (NTS). The objective of the planned activities is to obtain sufficient characterization data for the crater soils and observed wastes under the conditions of the current Resource Conservation and Recovery Act (RCRA) Part A permit. The scope of the characterization plan includes collecting surface and subsurface soil samples with hand augers and for the purpose of site characterization. The sampling strategy is to characterize the study area soils and look for RCRA constituents. Observable waste soils and surrounding crater soils will be analyzed and evaluated according to RCRA closure criteria. Because of the status of the crater a RCRA Part A permit site, acquired radionuclide analyses will only be evaluated in regards to the health and safety of site workers and the disposition of wastes generated during site characterization. The U-2bu Subsidence Crater was created in 1971 by a Lawrence Livermore National Laboratory underground nuclear test, event name Miniata, and was used as a land-disposal unit for radioactive and hazardous waste from 1973 to 1988

  2. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  3. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  4. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  5. Gait Characteristics Associated with Trip-Induced Falls on Level and Sloped Irregular Surfaces

    Directory of Open Access Journals (Sweden)

    Andrew Merryweather

    2011-11-01

    Full Text Available Same level falls continue to contribute to an alarming number of slip/trip/fall injuries in the mining workforce. The objective of this study was to investigate how walking on different surface types and transverse slopes influences gait parameters that may be associated with a trip event. Gait analysis was performed for ten subjects on two orientations (level and sloped on smooth, hard surface (control and irregular (gravel, larger rocks surfaces. Walking on irregular surfaces significantly increased toe clearance compared to walking on the smooth surface. There was a significant (p < 0.05 decrease in cadence (steps/min, stride length (m, and speed (m/s from control to gravel to larger rocks. Significant changes in external rotation and increased knee flexion while walking on irregular surfaces were observed. Toe and heel clearance requirements increased on irregular surfaces, which may provide an explanation for trip-induced falls; however, the gait alterations observed in the experienced workers used as subjects would likely improve stability and recovery from a trip.

  6. Land Subsidence Prediction by Back Calculation Method and its Effects on Sewage Network

    Directory of Open Access Journals (Sweden)

    Mohammad Mohsen Toufigh

    2009-03-01

    Full Text Available Groundwater overdraft is one of the main reasons of land subsidence. Differential subsidence leads to earth fissures and damages to structures, roads, railroads, pipelines, irrigation canals, and sewage networks. In order to simulate land subsidence due to groundwater overdraft, a fully coupled finite element consolidation model was developed. Formulation of finite element was based on Biot three-dimensional consolidation theory. Land subsidence studies inRafsanjanCitywere conducted by collecting and analyzing data on geology, geophysics, hydrology, soil properties, and observed land subsidence. Due to lack of sufficient experimental data about different soil profiles, land subsidence monitoring and back calculation were used in several spots to obtain the necessary data for use in other places. A computer model was finally developed to predict the subsidence of the city and its effects on the sewage network were studied.

  7. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    Vergara, L.I.; Passeggi, M.C.G.; Ferron, J.

    2007-01-01

    We study the TiO 2 (Ti 4+ ) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO 2 sample is characterized by the appearance of a lower Ti oxidation state, Ti 2 O 3 (Ti 3+ ), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  8. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  9. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    Science.gov (United States)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  10. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  11. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  12. Surface-induced ordering of a liquid crystal in the isotropic phase

    International Nuclear Information System (INIS)

    Miyano, K.

    1979-01-01

    A detailed account of a measurement of order parameter of a liquid crystal at the boundary by means of the wall-induced pretransitional birefringence is given. Several surface treatments were studied including surfactants and evaporated films. Although all treatments produced good alignment in the nematic phase, the boundary order parameter (hence the strength of the aligning force) in the isotropic phase differed very much depending on the treatment, indicating the diverse nature of the alignment process

  13. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  14. Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1990-01-01

    A model calculation based on the effective-medium theory of the oxygen-induced reconstruction of the (110) and (100) surfaces of Cu is presented. Equilibrium structures are calculated from a minimization of the total energy of the system. Missing-row-type reconstructions are found to be most stable...... in both cases, and an analysis is presented, showing what the driving force is behind these reconstructions....

  15. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  16. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  17. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  18. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  19. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  20. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  1. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  2. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  3. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  4. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  5. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  6. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  8. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  9. The effect of incidence angle on ion bombardment induced surface topography development on single crystal copper

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Lewis, G.W.; Whitton, J.L.

    1982-01-01

    The fluence dependence of development of microscopic surface features, particularly etch pits, during 9 keV Ar + ion bombardment of (11,3,1) oriented Cu single crystals has been studied employing quasi-dynamic irradiation and observation techniques in a scanning electron microscope-accelerator system. 9 keV ions are observed not to produce crystallographic pyramids under all irradiation conditions for this surface, a very different result from our earlier studies with higher energy ions. The bombardment does elaborate etch pits however, the habits and growth kinetics of which depend upon both polar and azimuthal angles of ion incidence to the surface. The results are explained in terms of differential erosion of crystal planes modified by the presence of pre-existing and irradiation induces extended defects. (orig.)

  10. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  11. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  12. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  13. Structural Analysis for Subsidence of Stacked B-25 Boxes

    International Nuclear Information System (INIS)

    Jones, W.E.

    2003-01-01

    The Savannah River Site (SRS) and other U.S. Department of Energy (DOE) sites use shallow land burial facilities (i.e., trenches) to dispose low-level radioactive waste. However, at SRS and other DOE sites, waste containers with up to 90 percent void space are disposed in the shallow land burial facilities. Corrosion and degradation of these containers can result in significant subsidence over time, which can compromise the integrity of the long-term cover. This in turn can lead to increased water infiltration through the long-term cover into the waste and subsequent increased radionuclide transport into the environment. Understanding and predicting shallow-buried, low-level waste subsidence behavior is necessary for evaluating cost-effective and appropriate stabilization required to maintain cover system long-term stability and viability, and to obtain stakeholder acceptance of the long-term implications of waste disposal practices. Two methods (dynamic compaction and static surcharge) have been used at SRS to accelerate waste and container consolidation and reduce potential subsidence prior to long term cover construction. Dynamic compaction comprises repeatedly dropping a heavy (20 ton) weight from about a 40-ft height to consolidate the waste and containers. Static surcharge is the use of a thick (15 ft to 30 ft) soil cover to consolidate the underlying materials over a longer time period (three to six months in this case). Quasi-static modeling of a stack of four B-25 boxes at various stags of corrosion with an applied static surcharge has been conducted and is presented herein

  14. INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kris Budiono

    2017-07-01

    Full Text Available A survey of Ground Penetrating Radar (GPR was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition

  15. Land subsidence in Yunlin, Taiwan, due to Agricultural and Domestic Water Use

    Science.gov (United States)

    Hsu, K.; Lin, P.; Lin, Z.

    2013-12-01

    Subsidence in a layered aquifer is caused by groundwater excess extraction and results in complicated problems in Taiwan. Commonly, responsibility to subsidence for agricultural and domestic water users is difficulty to identify due to the lack of quantitative evidences. An integrated model was proposed to analyze subsidence problem. The flow field utilizes analytical solution for pumping in a layered system from Neuman and Witherspoon (1969) to calculate the head drawdown variation. The subsidence estimation applies Terzaghi (1943) one-dimensional consolidation theory to calculate the deformation in each layer. The proposed model was applied to estimate land subsidence and drawdown variation at the Yuanchang Township of Yunlin County in Taiwan. Groundwater data for dry-season periods were used for calibration and validation. Seasonal effect in groundwater variation was first filtered out. Dry-season pumping effect on land subsidence was analyzed. The results show that multi-layer pumping contributes more in subsidence than single-layer pumping on the response of drawdown and land subsidence in aquifer 2 with a contribution of 97% total change at Yuanchang station. Pumping in aquifer 2 contributes more significant than pumping in aquifer 3 to cause change in drawdown and land subsidence in aquifer 2 with a contribution of 70% total change at Yuanchang station. Larger area of subsidence in Yuanchang Township was attributed pumping at aquifer 2 while pumping at aquifer 3 results in significant subsidence near the well field. The single-layer user contributes most area of subsidence but the multi-layer user generates more serious subsidence.

  16. Ground subsidence information as a valuable layer in GIS analysis

    Science.gov (United States)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    Among the technologies used to improve functioning of local governments the geographic information systems (GIS) are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR) method.

  17. Ground subsidence information as a valuable layer in GIS analysis

    Directory of Open Access Journals (Sweden)

    Murdzek Radosław

    2018-01-01

    Full Text Available Among the technologies used to improve functioning of local governments the geographic information systems (GIS are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR method.

  18. Cenozoic uplift and subsidence in the North Atlantic region

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Artemieva, Irina

    2009-01-01

    and the surrounding areas. (2) A regional increase in subsidence in the offshore marginal areas of Norway, the northern North Sea, the northern British Isles and west Greenland took place in the Eocene (ca 57-35 Ma). (3) The Oligocene and Miocene (35-5 Ma) were characterized by regional tectonic quiescence, with only...... localised uplift, probably related to changes in plate dynamics. (4) The second major phase of regional uplift that affected all marginal areas of the North Atlantic occurred in the Plio-Pleistocene (5-0 Ma). Its amplitude was enhanced by erosion-driven glacio-isostatic compensation. Despite inconclusive...

  19. Geothermal-subsidence research program plan and review

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Noble, J.E.; Simkin, T.L.

    1980-09-01

    The revised Geothermal Subsidence Research Plan (GSRP) presented here is the result of two years of research based on the recommendations of a technical advisory committee and on the DOE/DGE's wish to include specific components applicable to the geopressure resources on the Gulf Coast. This revised plan describes events leading up to FY 1979 and 1980 and the resulting research activities completed for that period. At the time of this writing most of the projects are completed; this document summarizes the accomplishments of the GSRP during FY 1979 and 1980 and includes recommendations for the FY 1981 and 1982 programs.

  20. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  1. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    Science.gov (United States)

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  2. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  3. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  4. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  5. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  6. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  7. Surface-induced dissociation and chemical reactions of C2D4(+) on stainless steel, carbon (HOPG), and two different diamond surfaces.

    Science.gov (United States)

    Feketeová, Linda; Zabka, Jan; Zappa, Fabio; Grill, Verena; Scheier, Paul; Märk, Tilmann D; Herman, Zdenek

    2009-06-01

    Surface-induced interactions of the projectile ion C(2)D(4)(+) with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar(+) ions (5-400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).

  8. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    Science.gov (United States)

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  9. Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar

    Science.gov (United States)

    Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin

    2018-04-01

    More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.

  10. Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.M., E-mail: praveenkmiiucnn@gmail.com [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Thomas, Sabu [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Grohens, Yves [Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Mozetič, Miran; Junkar, Ita; Primc, Gregor [Department of Surface Engineering, Jozef Stefan Institute, Jamovacesta 39, Ljubljana 1000 (Slovenia); Gorjanc, Marija [Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, Ljubljana 1000 (Slovenia)

    2016-04-15

    Graphical abstract: Plasma induced changes on the morphology of coir fibres (Viewed and Analysed using scanning electron microscopy, Jeol JSM 7600 FEG). The O{sub 2} plasma treated fibre possessed increased hydrophilicity due to the chemical and physical changes induced by plasma. - Highlights: • Plasma-induced effects on the surface properties of lignocellulosic natural coir fibres were investigated. • The morphological study using SEM analysis also confirmed the surface changes which were observed after plasma treatment. • The water absorption studies show an increase of water absorption from 39% to around 100%. • The topographic measurements done using atomic force microscopy (AFM) showed etching of fibre wall, and this is responsible for higher water absorption. • XPS analysis reveals that the oxygen content measured for samples treated at 50 Pa increased from initial 18 at% to about 32 at%. - Abstract: The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic

  11. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Herder, M.; Schleberger, M.; Wucher, A. [Fakultät für Physik, Universität Duisburg-Essen and Cenide, 47057 Duisburg (Germany); Bender, M.; Severin, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Lebius, H. [CIMAP (CEA-CNRS-ENSICAEN-UCN), 14070 Caen Cedex 5 (France)

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  12. Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2006-01-01

    We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed

  13. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    H. L. Chen

    2015-11-01

    Full Text Available Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  14. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Science.gov (United States)

    Stupakov, A.; Neslušan, M.; Perevertov, O.

    2016-07-01

    The potential of the magnetic Barkhausen noise method for a non-destructive evaluation of the steel surface damage cased by milling was comprehensively investigated. A typical bearing steel was heat treated to three different hardnesses and then machined using the cutting tools with different degrees of the flank wear. The magnetic low-frequency measurements with a high reading depth were performed using a unique laboratory system providing a full control of the magnetization process. The high-frequency measurements were performed using a commercial Rollscan device. To study the induced magnetic anisotropy, the measurements were performed in two magnetization directions. In the feeding direction, the Barkhausen noise profiles showed a second high-field peak ascribed to an induced hardened surface layer, a so-called white layer. The most reliable results were obtained with the controlled waveform of the surface magnetic field measured directly by Hall sensors. In the perpendicular rotation direction, formation of the preferentially oriented matrix resulted in an enormously high Barkhausen noise activity. Based on these results, new magnetic parameters were proposed for the non-destructive evaluation of the white layer formation.

  15. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Z., E-mail: pscientific5@aec.org.sy [Scientific Service Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Chemistry Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic)

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  16. 6 MeV pulsed electron beam induced surface and structural changes in polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, Narendra L.; Bhoraskar, Vasant N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India); Dhole, Sanjay D., E-mail: sanjay@physics.unipune.ernet.i [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India)

    2010-04-15

    Thin films of polyimide (PMDA-ODA, Kapton) having 50 mum thickness were irradiated with 6 MeV pulsed electron beam. The bulk and surface properties of pristine and irradiated samples were characterized by several techniques such as stress-strain measurements, Fourier Transform Infrared (FTIR), UV-vis spectroscopy, contact angle, atomic force microscopy (AFM) and profilometry. The tensile strength, percentage elongation and strain energy show an enhancement from pristine value of 73-89 MPa, 10-22% and 4.75-14.2 MJ/m{sup 3} respectively at the maximum fluence of 4 x 10{sup 15} electrons/cm{sup 2}. This signifies that polyimide being an excessively aromatic polymer is crosslinked due to high-energy electron irradiation. In surface properties, the contact angle shows a significant decrease from 59 deg. to 32 deg. indicating enhancement in hydrophilicity. This mainly attributes to surface roughening, which is due to the electron beam induced sputtering. The surface roughening is confirmed in AFM and profilometry measurements. The AFM images clearly show that surface roughness increases after electron irradiation. Moreover, the roughness average (R{sub a}) as measured from surface profilograms is found to increase from 0.06 to 0.1. The FTIR and UV-vis spectra do not show noticeable changes as regards to scissioning of bonds and the oxidation. This work leads to a definite conclusion that 6 MeV pulsed electron beam can be used to bring about desired changes in surface as well as bulk properties of polyimide, which is considered to be a high performance space quality polymer.

  17. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  18. Coastal city subsidence in Shenzhen (China), monitored using multi-frequency radar interferometry time-series techniques

    Science.gov (United States)

    Liu, Peng; Li, Yongsheng; Singleton, Andrew; Li, Qingquan; Zhang, Jingfa; Li, Zhenhong

    2014-05-01

    In just 26 years, the coastal city of Shenzhen (Southern China) has been transformed from a small fishing village to a modern city with a population exceeding 8.5 million people. Following its designation as a Special Economic Zone in the 1980s, the city became a test bed for China's economic reforms and currently leads many new practices in urban planning. The rapid economic development was matched by a sharp increase in the demand for usable land and consequently, extensive coastal reclamation has been undertaken by piling rock fragments from nearby hills onto the seabed. However, it has recently been reported that new apartments, offices and transport networks built on the reclaimed land have become unusable due to ground subsidence. The additional threat of coastal inundation from sea-level rise also requires serious consideration. InSAR time-series techniques (such as Persistent Scatterer and Small Baseline InSAR) are capable of detecting sub-centimetre elevation changes of the Earth's surface over large areas and at a density far exceeding the capabilities of a GPS network - particularly for such an urban environment as Shenzhen. This study uses numerous independent tracks of SAR data (two ENVISAT C-band tracks and two ALOS L-band tracks) to determine the surface movements between 2004 and 2013. Quantitative comparative analyses are carried out in the overlapping area between two adjacent tracks, and thus no ground data is required to validate InSAR results. The results show greatest subsidence in coastal areas with the areas of reclaimed land also predominantly undergoing subsidence. The combination of different ascending and descending tracks allows 2D velocity fields to be estimated and it will be important to determine whether the subsidence from the recently reclaimed land is consolidation or part of a longer-term trend. This ability to provide accurate measurements of ground stability for the city of Shenzhen will help focus investigations into areas of

  19. Data on the role of accessible surface area on osmolytes-induced protein stabilization

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    2017-02-01

    Full Text Available This paper describes data related to the research article “Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins” [1]. Heat- and guanidinium chloride (GdmCl-induced denaturation of three disulfide free proteins (bovine cytochrome c (b-cyt-c, myoglobin (Mb and barstar in the presence of different concentrations of methylamines (sarcosine, glycine-betaine (GB and trimethylamine-N-oxide (TMAO was monitored by [ϴ]222, the mean residue ellipticity at 222 nm at pH 7.0. Methylamines belong to a class of osmolytes known to protect proteins from deleterious effect of urea. This paper includes comprehensive thermodynamic data obtained from the heat- and GdmCl-induced denaturations of barstar, b-cyt-c and Mb.

  20. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  1. The coupling of mechanical dynamics and induced currents in plates and surfaces

    International Nuclear Information System (INIS)

    Weissenburger, D.W.; Bialek, J.M.

    1986-10-01

    Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem

  2. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  3. The analysis of subsidence associated with geothermal development. Volume 1. Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, R.W.; Finnemore, E.J.; Gillam, M.L.

    1976-09-01

    This study evaluates the state of knowledge of subsidence associated with geothermal development, and provides preliminary methods to assess the potential of land subsidence for any specific geothermal site. The results of this study are presented in three volumes. Volume 1 is designed to serve as a concise reference, a handbook, for the evaluation of the potential for land subsidence from the development of geothermal resources.

  4. Assessing the Land Subsidence Governance in Ningbo City: By a Close Study of the Building Collapse at the Strictly Protected Land Subsidence Area

    Science.gov (United States)

    Yu, Xia

    2016-04-01

    Ningbo is a coastal city in East China, its land subsidence problem was noticed in the 1960s. However, scientific management was insufficient at that time, so with the fast city development from the 1980s, groundwater was used by a large amount of small factories, and tall buildings were built on the land. It was in 2008, scientists predicted that if without doing anything to prevent the land from subsiding, the city will be covered by the East Sea in 2030. From then on, the local government implied several policies, such as shut down most of the groundwater pumping wells, set up a new authority to enhance the cooperation among different administration departments, and also set up a land subsidence monitoring center for the city. Recently, it is declared that a Stereo regulatory system of land subsidence governance has been achieved. However, in 2012, a 23-years old building in the city center collapsed. According to the City Planning 2009, this building is located just in the strictly protected land subsidence area. The experts, however, think that land subsidence is not the main reason, since there are many illegal changes to the building during the past 23 years. The aim of my research is to assess the land subsidence governance in Ningbo city. I studied the collapsed building, how it was built, what has changed after building, how the environment changed in this area, and how this area became the strictly protected land subsidence area, and what kind of protections have been made. Actually, during the case study I discuss the land subsidence governance design of Ningbo, and to see what practices and lessons we can learn from this case.

  5. Heat pretreatment-induced activation of gadolinium surfaces towards the initial precipitation of hydrides

    International Nuclear Information System (INIS)

    Benamar, G.; Schweke, D.; Shamir, N.; Zalkind, S.; Livneh, T.; Danon, A.; Kimmel, G.; Mintz, M.H.

    2010-01-01

    A vacuum heat pretreatment is applied, in order to enhance the reactivity of hydride-forming metals towards hydrogen reaction. For gadolinium, as for other rare-earth metals and some actinides, pretreatment temperatures of about 470 K are sufficient to induce such activation. The different factors that may be involved in that activation mechanism are identified and analyzed for gadolinium and their role is evaluated. It is concluded that the most prominent effect is desorption of surface hydroxyl groups, which impede the dissociative chemisorptions of hydrogen.

  6. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  7. Influence of irradiation dose on laser-induced surface nanostructures on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Varlamova, Olga [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Cottbus JointLab, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Bounhalli, Mourad [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Laboratoire Hubert Curien, Université St. Etienne, Bâtiment F 18 Rue du Professeur Benoît Lauras, 42000 Saint-Etienne (France); Reif, Juergen, E-mail: REIF@TU-COTTBUS.DE [Brandenburgische Technische Universität BTU Cottbus, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Cottbus JointLab, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2013-08-01

    We report on the dependence of femtosecond laser-induced periodic surface structures on an increase of incident pulse number. On silicon, the patterns evolve from linear, parallel sub-wavelength ripples, grossly perpendicular to the laser polarization, via coalesced wider features parallel to the polarization, to a crater with periodically structured, pillar-like walls. Closer inspection of the patterns indicates that the different features always continue to exhibit reminiscence to the preceding lower-dose patterns, suggesting that, indeed, all patterns can be created by ONE single GENERAL formation process, as in self-organized structure formation, and the different structures/feature sizes are NOT due to DIFFERENT mechanisms.

  8. Influence of irradiation dose on laser-induced surface nanostructures on silicon

    International Nuclear Information System (INIS)

    Varlamova, Olga; Bounhalli, Mourad; Reif, Juergen

    2013-01-01

    We report on the dependence of femtosecond laser-induced periodic surface structures on an increase of incident pulse number. On silicon, the patterns evolve from linear, parallel sub-wavelength ripples, grossly perpendicular to the laser polarization, via coalesced wider features parallel to the polarization, to a crater with periodically structured, pillar-like walls. Closer inspection of the patterns indicates that the different features always continue to exhibit reminiscence to the preceding lower-dose patterns, suggesting that, indeed, all patterns can be created by ONE single GENERAL formation process, as in self-organized structure formation, and the different structures/feature sizes are NOT due to DIFFERENT mechanisms.

  9. Ion bombardment induced surface topography modification of clean and contaminated single crystal Cu and Si

    International Nuclear Information System (INIS)

    Lewis, G.W.; Kiriakides, G.; Carter, G.; Nobes, M.J.

    1982-01-01

    Among the several factors which lead to depth resolution deterioration during sputter profiling, surface morphological modification resulting from local differences of sputtering rate can be important. This paper reports the results of direct scanning, electron microscopic studies obtained quasi-dynamically during increasing fluence ion bombardment of the evolution of etch pit structures on Si and Cu, and how such elaboration may be suppressed. It also reports on the elaboration of contaminant-induced cone generation for different ion species bombardment. The influence of such etch pit and cone generation on achievable depth resolution is assessed. (author)

  10. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  11. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  12. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  13. Innovative nuclear technologies based on radiation induced surface activation (RISA). 1. The project overview

    International Nuclear Information System (INIS)

    Fujisawa, Kyosuke; Morooka, Shinichi; Hishida, Mamoru

    2004-01-01

    This research of the Innovative nuclear technologies based on Radiation Induced Surface Activation (RISA) is due to start from 2003 and to be ended to 2006, and performed fund by Ministry of Economy, Trade and Industry (METI) Japan. One of the innovative technologies is to develop a high performance corrosion-proof film to prevent the surface of reactor internals from stress corrosion cracking (SCC), the other one is to develop the film for improving the heat transfer performance a high performance of the nuclear fuel rod. Both of these properties are derived under gamma ray irradiation by the RISA effect. This paper reports about the summary of this subsidy enterprise by METI. (author)

  14. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  15. Plasma-induced surface degradation in 304 stainless steel used for TRIAM-1M limiter

    International Nuclear Information System (INIS)

    Tsukuda, N.; Kuramoto, E.; Tokunaga, K.; Muroga, T.; Yoshida, N.; Itoh, S.

    1994-01-01

    Surface degradation in a 304 stainless steel limiter of TRIAM-1M by long-pulse discharge during long period operation has been examined by means of X-ray diffraction, scanning electron microscopy and dynamical microindentation tests. Particular exfoliation and hardening of the surface of the electron drift side were observed. These result from the formation of α prime martensite induced by hydrogen in the plasma. The stability of the martensitic phase has been studied by annealing experiments on the cathodically hydrogen charged 316 stainless steel by X-ray diffraction. Both ε and α prime martensites were formed by 22 h cathodic charging. The former reverts to γ-phase and/or converts to α prime martensite below 723 K and the latter reverts to γ-phase below 923 K, repectively. ((orig.))

  16. Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment

    International Nuclear Information System (INIS)

    Ni Zhichun; Wang Xiaowei; Wu Erdong; Liu Gang

    2005-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and x-ray diffraction (XRD) analysis have been used to investigate the relationship between characteristics of phase transformation and the treatment time in surface nanocrystallized 316L stainless steel induced by surface mechanical attrition treatment (SMAT). A similar trend of development of the martensitic phase upon the treatment time has been observed from both CEMS and XRD measurements. However, in the CEMS measurement, two types of martensite phase with different magnetic hyperfine fields are revealed. Based on a random distribution of the non-iron coordinating atoms, a three-element theoretical model is developed to illustrate the difference of two types of martensite phase. The calculated results indicate the segregation of the non-iron atoms associated with SMAT treatment

  17. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    Science.gov (United States)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  18. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  19. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  20. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  1. Swift heavy ion induced surface and microstructural evolution in metallic glass thin films

    International Nuclear Information System (INIS)

    Thomas, Hysen; Thomas, Senoy; Ramanujan, Raju V.; Avasthi, D.K.; Al- Omari, I.A.; Al-Harthi, Salim; Anantharaman, M.R.

    2012-01-01

    Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au 9+ beam with fluences ranging from 3 × 10 11 to 3 × 10 13 ions/cm 2 . The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion.

  2. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    Science.gov (United States)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and

  3. Superior coexistence: systematicALLY regulatING land subsidence BASED on set pair theory

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2015-11-01

    Full Text Available Anthropogenic land subsidence is an environmental side effect of exploring and using natural resources in the process of economic development. The key points of the system for controlling land subsidence include cooperation and superior coexistence while the economy develops, exploring and using natural resources, and geological environmental safety. Using the theory and method of set pair analysis (SPA, this article anatomises the factors, effects, and transformation of land subsidence. Based on the principle of superior coexistence, this paper promotes a technical approach to the system for controlling land subsidence, in order to improve the prevention and control of geological hazards.

  4. E-Area LLWF Vadose Zone Model: Probabilistic Model for Estimating Subsided-Area Infiltration Rates

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    A probabilistic model employing a Monte Carlo sampling technique was developed in Python to generate statistical distributions of the upslope-intact-area to subsided-area ratio (AreaUAi/AreaSAi) for closure cap subsidence scenarios that differ in assumed percent subsidence and the total number of intact plus subsided compartments. The plan is to use this model as a component in the probabilistic system model for the E-Area Performance Assessment (PA), contributing uncertainty in infiltration estimates.

  5. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  6. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  7. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  8. Graphite surface topography induced by Ta cluster impact and oxidative etching

    International Nuclear Information System (INIS)

    Reimann, C.T.; Olsson, L.; Erlandsson, R.; Henkel, M.; Urbassek, H.M.

    1998-01-01

    Freshly cleaved highly oriented pyrolytic graphite (HOPG), when baked in air at ∝630 C, forms one-monolayer(ML)-deep circular pits due to oxidation initiated at surface defect sites. We found that the areal density and depths of these pits could be modulated by deliberately introducing surface and sub-surface defects by energetic ion bombardment prior to baking. Bombardment by 555-eV/atom Ta 1 + , Ta 2 + , Ta 4 + , or Ta 9 + , always enhanced the areal density of etch pits, but only bombardment by Ta 4 + , or Ta 9 + significantly enhanced the depths of the pits. We performed molecular dynamics simulations of Ta n cluster bombardment of HOPG (n = 1, 2, 4, and 9) with the aim of characterizing the damage structures induced by the bombardment and correlating them with the experimental data. For Ta 9 + , the simulations showed a high level of damage extending from the surface down to nine MLs, in agreement with the most probable etch pit depth observed. For other cluster species, predicted etch pit depths were deeper than the observed ones. Annealing or steric requirements for initiating oxidation may account for some of the differences between simulations and experimental results. (orig.)

  9. Effect of surface grinding on chloride induced SCC of 304L

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nian, E-mail: nzh@du.se [Department of Material Science, Dalarna University, SE-79188 Falun (Sweden); KTH, SE-10044 Stockholm (Sweden); Pettersson, Rachel [KTH, SE-10044 Stockholm (Sweden); Jernkontoret, SE-11187 Stockholm (Sweden); Lin Peng, Ru [Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Schönning, Mikael [Corrosion Department, Avesta Research Centre – Outokumpu Stainless AB, SE-774 22 Avesta (Sweden)

    2016-03-21

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  10. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  11. Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization

    Science.gov (United States)

    Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

  12. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  13. Effect of surface grinding on chloride induced SCC of 304L

    International Nuclear Information System (INIS)

    Zhou, Nian; Pettersson, Rachel; Lin Peng, Ru; Schönning, Mikael

    2016-01-01

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  14. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  15. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  16. Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces

    Science.gov (United States)

    Attarzadeh, Reza; Dolatabadi, Ali

    2017-01-01

    The phenomenon of droplets coalescence-induced self-propelled jumping on homogeneous and heterogeneous superhydrophobic surfaces was numerically modeled using the volume of fluid method coupled with a dynamic contact angle model. The heterogeneity of the surface was directly modeled as a series of micro-patterned pillars. To resolve the influence of air around a droplet and between the pillars, extensive simulations were performed for different droplet sizes on a textured surface. Parallel computations with the OpenMP algorithm were used to accelerate computation speed to meet the convergence criteria. The composition of the air-solid surface underneath the droplet facilitated capturing the transition from a no-slip/no-penetration to a partial-slip with penetration as the contact line at triple point started moving to the air pockets. The wettability effect from the nanoscopic roughness and the coating was included in the model by using the intrinsic contact angle obtained from a previously published study. As the coalescence started, the radial velocity of the coalescing liquid bridge was partially reverted to the upward direction due to the counter-action of the surface. However, we found that the velocity varied with the size of the droplets. A part of the droplet kinetic energy was dissipated as the merged droplet started penetrating into the cavities. This was due to a different area in contact between the liquid and solid and, consequently, a higher viscous dissipation rate in the system. We showed that the effect of surface roughness is strongly significant when the size of the micro-droplet is comparable with the size of the roughness features. In addition, the relevance of droplet size to surface roughness (critical relative roughness) was numerically quantified. We also found that regardless of the viscous cutoff radius, as the relative roughness approached the value of 44, the direct inclusion of surface topography was crucial in the modeling of the

  17. Detection of induced seismicity effects on ground surface using data from Sentinel 1A/1B satellites

    Science.gov (United States)

    Milczarek, W.

    2017-12-01

    Induced seismicity is the result of human activity and manifests itself in the form of shock and vibration of the ground surface. One of the most common factors causing the occurrence of induced shocks is underground mining activity. Sufficiently strong high-energy shocks may cause displacements of the ground surface. This type of shocks can have a significant impact on buildings and infrastructure. Assessment of the size and influence of induced seismicity on the ground surface is one of the major problems associated with mining activity. In Poland (Central Eastern Europe) induced seismicity occurs in the area of hard coal mining in the Upper Silesian Coal Basin and in the area of the Legnica - Głogów Copper Basin.The study presents an assessment of the use of satellite radar data (SAR) for the detection influence of induced seismicity in mining regions. Selected induced shocks from the period 2015- 2017 which occurred in the Upper Silesian Coal Basin and the Legnica - Głogów Copper Basin areas have been analyzed. In the calculations SAR data from the Sentinel 1A and Sentinel 1B satellites have been used. The results indicate the possibility of quickly and accurate detection of ground surface displacements after an induced shock. The results of SAR data processing were compared with the results from geodetic measurements. It has been shown that SAR data can be used to detect ground surface displacements on the relative small regions.

  18. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  19. Phonon-mediated decay of an atom in a surface-induced potential

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.; Dutta Gupta, S.

    2007-01-01

    We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential. We present a general master equation governing the dynamics of the translational states of the atom. In the framework of the Debye model, we derive compact expressions for the rates for both upward and downward transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the range from 100 μK to 400 μK in the vicinity of a silica surface with a temperature of 300 K, the adsorption (free-to-bound decay) rate is about two times larger than the heating (free-to-free upward decay) rate, while the cooling (free-to-free downward decay) rate is negligible

  20. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    International Nuclear Information System (INIS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was p