WorldWideScience

Sample records for surface study approaches

  1. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  2. Metacognitive and Motivational Predictors of Surface Approach to Studying and Academic Examination Performance

    Science.gov (United States)

    Spada, Marcantonio M.; Moneta, Giovanni B.

    2014-01-01

    The objective of this study was to verify the structure of a model of how surface approach to studying is influenced by the trait variables of motivation and metacognition and the state variables of avoidance coping and evaluation anxiety. We extended the model to include: (1) the investigation of the relative contribution of the five…

  3. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  4. DISCRETIZATION APPROACH USING RAY-TESTING MODEL IN PARTING LINE AND PARTING SURFACE GENERATION

    Institute of Scientific and Technical Information of China (English)

    HAN Jianwen; JIAN Bin; YAN Guangrong; LEI Yi

    2007-01-01

    Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in automatic cavity design based on the ray-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.

  5. Study strategies and approaches to learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    Process Questionnaire to identify their approach to learning. It was hypothesised that the students’ learning approach would depend more on the quality of the study work than on the quantity; that an active and reflective study strategy was required to obtain deep conceptual understanding. The result...... showed a weak correlation between the student’s main learning approach as defined by the ratio of the deep approach score to the surface approach score and the student’s study intensity as identified by the ratio of non-scheduled independent activities to scheduled teacher-controlled activities....... There was however a much stronger linear correlation (significant at the 0.01 level) between the deep-surface ratio and the total study load. The same result was observed when measuring other students’ study strategy and learning approach for a single course. The empirical basis is still too limited to draw...

  6. GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study

    Directory of Open Access Journals (Sweden)

    Vojtek Matej

    2016-09-01

    Full Text Available The issue of surface runoff assessment is one of the important and relevant topics of hydrological as well as geographical research. The aim of the paper is therefore to estimate and assess surface runoff on the example of Vyčoma catchment which is located in the Western Slovakia. For this purpose, SCS runoff curve number method, modeling in GIS and remote sensing were used. An important task was the creation of a digital elevation model (DEM, which enters the surface runoff modeling and affects its accuracy. Great attention was paid to the spatial interpretation of land use categories applying aerial imagery from 2013 and hydrological soil groups as well as calculation of maximum daily rainfall with N-year return periods as partial tasks in estimating surface runoff. From the methodological point of view, the importance of the paper can be seen in the use of a simple GIS-based approach to assess the surface runoff conditions in a small catchment.

  7. Computational approach to Riemann surfaces

    CERN Document Server

    Klein, Christian

    2011-01-01

    This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...

  8. Affective Underpinnings of Surface Approaches to Learning and Their Relationship with Sensation Seeking

    Science.gov (United States)

    Robinson, Peter M.

    2018-01-01

    Surface approaches to learning materials and tasks are a commonplace challenge to teachers, and they prove difficult to shift, even among students who are otherwise talented or motivated to learn. The present study investigates a theory that surface approaches are triggered by a suboptimal, aversive response to learning stimuli, which overrides…

  9. An integrated approach for analysing earthquake-induced surface effects: A case study from the Northern Apennines, Italy

    Science.gov (United States)

    Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.

    This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.

  10. Systematic approach to designing surface covers for uranium-mill tailings

    International Nuclear Information System (INIS)

    Beedlow, P.A.; Cadwell, L.L.; McShane, M.C.

    1982-01-01

    The wide range of environmental conditions present at uranium mill tailings sites precludes the use of a single type of surface cover. Surface covers must be designed on a site-specific basis. To facilitate site specific designs the UMTRA program is developing guidelines for designing surface covers. This paper presents a systematic approach to designing surface covers for tailings that can be applied under any site condition. The approach consists of three phases: (1) An assessment during which the degree of surface protection is determined. (2) A preliminary design that facilitates interaction with those designing other containment system elements. (3) A final design where the cost and effectiveness of the surface cover are determined. The types of information required to apply this approach are discussed

  11. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin; Rekha, T. N.

    2016-01-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  12. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  13. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  14. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  15. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  16. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  17. A substrate independent approach for generation of surface gradients

    Energy Technology Data Exchange (ETDEWEB)

    Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.

  18. A substrate independent approach for generation of surface gradients

    International Nuclear Information System (INIS)

    Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands

  19. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  20. A novel approach to generate random surface thermal loads in piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon

    2014-01-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures

  1. Design surface covers: an approach to long-term waste site stabilization

    International Nuclear Information System (INIS)

    Beedlow, P.A.; Cadwell, L.L.; McShane, M.C.

    1983-02-01

    The wide range of existing environmental conditions, potential contaminants and available cover materials at waste disposal sites necessitates site-specific designing of surface covers for effective long-term erosion resistance. This paper presents a systematic approach to designing surface covers for hazardous waste repositories that can be tailored to conditions at any site. The approach consists of three phases: (1) an assessment, during which the degree of required surface protection (erosion potential) is determined; (2) a preliminary design that integrates surface cover design with the need to minimize transport of contaminants; and (3) a final design, where the cost and effectiveness of the surface cover are determined. 1 figure

  2. Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces.

    Science.gov (United States)

    Gaw, Sheng Long; Sarkar, Sujoy; Nir, Sivan; Schnell, Yafit; Mandler, Daniel; Xu, Zhichuan J; Lee, Pooi See; Reches, Meital

    2017-08-09

    Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.

  3. The interplay between motivation, self-efficacy, and approaches to studying.

    Science.gov (United States)

    Prat-Sala, Mercè; Redford, Paul

    2010-06-01

    The strategies students adopt in their study are influenced by a number of social-cognitive factors and impact upon their academic performance. The present study examined the interrelationships between motivation orientation (intrinsic and extrinsic), self-efficacy (in reading academic texts and essay writing), and approaches to studying (deep, strategic, and surface). The study also examined changes in approaches to studying over time. A total of 163 first-year undergraduate students in psychology at a UK university took part in the study. Participants completed the Work Preference Inventory motivation questionnaire, self-efficacy in reading and writing questionnaires and the short version of the Revised Approaches to Study Inventory. The results showed that both intrinsic and extrinsic motivation orientations were correlated with approaches to studying. The results also showed that students classified as high in self-efficacy (reading and writing) were more likely to adopt a deep or strategic approach to studying, while students classified as low in self-efficacy (reading and writing) were more likely to adopt a surface approach. More importantly, changes in students' approaches to studying over time were related to their self-efficacy beliefs, where students with low levels of self-efficacy decreased in their deep approach and increased their surface approach across time. Students with high levels of self-efficacy (both reading and writing) demonstrated no such change in approaches to studying. Our results demonstrate the important role of self-efficacy in understanding both motivation and learning approaches in undergraduate students. Furthermore, given that reading academic text and writing essays are essential aspects of many undergraduate degrees, our results provide some indication that focusing on self-efficacy beliefs amongst students may be beneficial to improving their approaches to study.

  4. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  5. A new approach to the problem of bulk-mediated surface diffusion.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M

    2015-08-28

    This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.

  6. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Deng, R. [School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Hu, Y.M., E-mail: yongmaohu@163.com [College of Engineering, Dali University, Dali 671003 (China); Wang, L.; Li, Zh.H.; Shen, T. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhu, Y., E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xiang, J.Zh., E-mail: jzhxiang@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China)

    2017-04-30

    Highlights: • Superamphiphobic Al surfaces were achieved via an approach of chemical etching and low surface energy material modification. • The process of chemical etching and hot water bathing were optimized to obtain desirable hierarchical micro/nanoscale structures. • The surface morphology, chemistry and wetting properties of the as-prepared aluminum surfaces were characterized and discussed. • The mechanical robustness and chemical stability of the as-prepared superamphiphobic Al surfaces were tested and evaluated. - Abstract: Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO{sub 4} and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti

  7. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    International Nuclear Information System (INIS)

    Deng, R.; Hu, Y.M.; Wang, L.; Li, Zh.H.; Shen, T.; Zhu, Y.; Xiang, J.Zh.

    2017-01-01

    Highlights: • Superamphiphobic Al surfaces were achieved via an approach of chemical etching and low surface energy material modification. • The process of chemical etching and hot water bathing were optimized to obtain desirable hierarchical micro/nanoscale structures. • The surface morphology, chemistry and wetting properties of the as-prepared aluminum surfaces were characterized and discussed. • The mechanical robustness and chemical stability of the as-prepared superamphiphobic Al surfaces were tested and evaluated. - Abstract: Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO 4 and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti-corrosion, oil

  8. An Information Retrieval Approach for Robust Prediction of Road Surface States.

    Science.gov (United States)

    Park, Jae-Hyung; Kim, Kwanho

    2017-01-28

    Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.

  9. An Incremental Weighted Least Squares Approach to Surface Lights Fields

    Science.gov (United States)

    Coombe, Greg; Lastra, Anselmo

    An Image-Based Rendering (IBR) approach to appearance modelling enables the capture of a wide variety of real physical surfaces with complex reflectance behaviour. The challenges with this approach are handling the large amount of data, rendering the data efficiently, and previewing the model as it is being constructed. In this paper, we introduce the Incremental Weighted Least Squares approach to the representation and rendering of spatially and directionally varying illumination. Each surface patch consists of a set of Weighted Least Squares (WLS) node centers, which are low-degree polynomial representations of the anisotropic exitant radiance. During rendering, the representations are combined in a non-linear fashion to generate a full reconstruction of the exitant radiance. The rendering algorithm is fast, efficient, and implemented entirely on the GPU. The construction algorithm is incremental, which means that images are processed as they arrive instead of in the traditional batch fashion. This human-in-the-loop process enables the user to preview the model as it is being constructed and to adapt to over-sampling and under-sampling of the surface appearance.

  10. Focusing on first year assessment: Surface or deep approaches to learning?

    Directory of Open Access Journals (Sweden)

    Sharn Donnison

    2012-08-01

    Full Text Available This paper investigates the assessment and learning approaches that some first year students employ to assist them in their transition into their first year of study and extends our previous work on first year student engagement and timely academic support (Penn-Edwards & Donnison, 2011. It is situated within the First Year transition and student engagement literature and specifically speaks to concepts of learning within that body of literature. In this paper we argue that while students are in the transitional period of their studies, the use of assessment as a motivator for learning (surface approach is valid first year pedagogy and forms an initial learning stage in the student’s progress towards being lifelong learners. 

  11. A modular approach to creating large engineered cartilage surfaces.

    Science.gov (United States)

    Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D

    2018-01-23

    Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Single lump breast surface stress assessment study

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.

    2017-09-01

    Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.

  13. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  14. Tribological approach to study polishing of road surface under traffic

    OpenAIRE

    KANE, Malal; DO, Minh Tan

    2007-01-01

    The polishing phenomenon of road pavements under the vehicle traffic constitutes the main mechanism inherent to the loss of skid resistance over time. A better understanding of this phenomenon would allow an improvement of road safety. This study comprises a review of laboratory test and a model simulating the polishing of road surfaces. The laboratory test uses a polishing machine so called 'Wehner-Schulze' which can reproduce the evolution of the road texture from specimens taken directly f...

  15. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Science.gov (United States)

    Tian, Hui; Ribeill, Guilhem; Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  16. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    International Nuclear Information System (INIS)

    Tian Hui; Ribeill, Guilhem; Xu Chen; Reece, Charles E.; Kelley, Michael J.

    2011-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  17. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control

    Science.gov (United States)

    Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro

    2015-12-01

    Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.

  18. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    Science.gov (United States)

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  19. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

    Directory of Open Access Journals (Sweden)

    Sid-Ahmed Boukabara

    2018-04-01

    Full Text Available A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS on Suomi-National Polar-orbiting Partnership (SNPP, Special Sensor Microwave Imager/Sounder (SSMI/S on the Defense Meteorological Satellite Program (DMSP flight units, as well as to the Global Precipitation Mission (GPM Microwave Imager (GMI, to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance, but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice

  20. Occupational Therapy Students in Norway: Do Their Approaches to Studying Vary by Year In the Program?

    Directory of Open Access Journals (Sweden)

    Tore Bonsaksen

    2017-10-01

    Full Text Available Approaches to studying may be influenced by students’ age, maturity, and experience in higher education. Students’ approaches to studying may develop toward deep and/or strategic approaches and away from a surface approach as they move through the curriculum, which is generally considered a positive development. This study aimed to identify differences in approaches to studying among first-, second-, and third-year students enrolled in an occupational therapy program. Three cohorts of students (n = 160 from one university college completed the Approaches and Study Skills Inventory for Students (ASSIST along with sociodemographic information. One-way analyses of variance were used to identify differences in approaches to studying among the student cohorts. The scores on the ASSIST were largely similar between the cohorts. However, first-year students had higher scores on the surface approach and on syllabus-boundness, compared to third-year students. There was a linear trend of decreasing scores on these two scales: from highest among first-year students to lowest among third-year students. With few exceptions, students in three cohorts showed similar levels of deep, strategic, and surface approaches to studying. More efforts should be placed on assisting students to adopt a deep and/or strategic approach to studying and to reduce a surface approach.

  1. Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Khatir, Z.; Kubiak, K.J.; Jimack, P.K.; Mathia, T.G.

    2016-01-01

    Highlights: • Droplets jumping phenomenon can enhance condensate evacuation from the surface. • Droplets jumping velocity depends on droplets radius and surface static contact angle. • Optimum conditions are for droplets with radius 35–40 μm and contact angle near 160°. • Jumping phenomenon occurs only when static contact angle is above 140°. • The optimal functional surface design maximises jumping velocity and heat flux. - Abstract: Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using Design of Experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r = 20–40 μm and static contact angle θ_s ∼ 160°. Moreover, the jumping phenomenon was observed for droplets with initial

  2. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  3. Whole-body MRI using a sliding table and repositioning surface coil approach

    International Nuclear Information System (INIS)

    Takahara, Taro; Kwee, Thomas; Luijten, Peter; Kibune, Satoshi; Ochiai, Reiji; Sakamoto, Tetsuro; Niwa, Tetsu; Van Cauteren, Marc

    2010-01-01

    To introduce and assess a new way of performing whole-body magnetic resonance imaging (MRI) using a non-integrated surface coil approach as available on most clinical MRI systems worldwide. Ten consecutive asymptomatic subjects prospectively underwent whole-body MRI for health screening. Whole-body MRI included T1-, T2- and diffusion-weighted sequences, and was performed using a non-integrated surface coil to image four different stations without patient repositioning. The four separately acquired stations were merged, creating seamless coronal whole-body T1-, T2- and diffusion-weighted images. Anatomical alignment, image quality at the boundaries of adjacent stations, and overall image quality of all stations were qualitatively assessed. The average time (±SD) taken to change the surface coil from one station to the next station was 53.8 (±7.1) s. The average total extra examination time ± SD was 2 min 41.4 s (±15.3 s). Anatomical alignment, image quality at the boundaries of adjacent stations, and overall image quality of all stations of T1-, T2- and diffusion-weighted whole-body MRI were overall graded as ''good'' to ''excellent''. This study shows that a time-efficient and high-quality whole-body MRI examination can easily be performed by using a non-integrated sliding surface coil approach. (orig.)

  4. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  5. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach

    Science.gov (United States)

    Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.

    2015-01-01

    We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574

  6. Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures

    Directory of Open Access Journals (Sweden)

    Dmitri Rozgonjuk

    2018-01-01

    Full Text Available Several studies have shown that problematic smartphone use (PSU is related to detrimental outcomes, such as worse psychological well-being, higher cognitive distraction, and poorer academic outcomes. In addition, many studies have shown that PSU is strongly related to social media use. Despite this, the relationships between PSU, as well as the frequency of social media use in lectures, and different approaches to learning have not been previously studied. In our study, we hypothesized that both PSU and the frequency of social media use in lectures are negatively correlated with a deep approach to learning (defined as learning for understanding and positively correlated with a surface approach to learning (defined as superficial learning. The study participants were 415 Estonian university students aged 19–46 years (78.8% females; age M = 23.37, SD = 4.19; the effective sample comprised 405 participants aged 19–46 years (79.0% females; age M = 23.33, SD = 4.21. In addition to basic socio-demographics, participants were asked about the frequency of their social media use in lectures, and they filled out the Estonian Smartphone Addiction Proneness Scale and the Estonian Revised Study Process Questionnaire. Bivariate correlation analysis showed that PSU and the frequency of social media use in lectures were negatively correlated with a deep approach to learning and positively correlated with a surface approach to learning. Mediation analysis showed that social media use in lectures completely mediates the relationship between PSU and approaches to learning. These results indicate that the frequency of social media use in lectures might explain the relationships between poorer academic outcomes and PSU.

  7. Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures.

    Science.gov (United States)

    Rozgonjuk, Dmitri; Saal, Kristiina; Täht, Karin

    2018-01-08

    Several studies have shown that problematic smartphone use (PSU) is related to detrimental outcomes, such as worse psychological well-being, higher cognitive distraction, and poorer academic outcomes. In addition, many studies have shown that PSU is strongly related to social media use. Despite this, the relationships between PSU, as well as the frequency of social media use in lectures, and different approaches to learning have not been previously studied. In our study, we hypothesized that both PSU and the frequency of social media use in lectures are negatively correlated with a deep approach to learning (defined as learning for understanding) and positively correlated with a surface approach to learning (defined as superficial learning). The study participants were 415 Estonian university students aged 19-46 years (78.8% females; age M = 23.37, SD = 4.19); the effective sample comprised 405 participants aged 19-46 years (79.0% females; age M = 23.33, SD = 4.21). In addition to basic socio-demographics, participants were asked about the frequency of their social media use in lectures, and they filled out the Estonian Smartphone Addiction Proneness Scale and the Estonian Revised Study Process Questionnaire. Bivariate correlation analysis showed that PSU and the frequency of social media use in lectures were negatively correlated with a deep approach to learning and positively correlated with a surface approach to learning. Mediation analysis showed that social media use in lectures completely mediates the relationship between PSU and approaches to learning. These results indicate that the frequency of social media use in lectures might explain the relationships between poorer academic outcomes and PSU.

  8. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    Science.gov (United States)

    Deng, R.; Hu, Y. M.; Wang, L.; Li, Zh. H.; Shen, T.; Zhu, Y.; Xiang, J. Zh.

    2017-04-01

    Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO4 and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti-corrosion, oil transportation, energy harvesting, microfluidics, and so forth. The approach reported in this paper may easily realize the industrial production of superamphiphobic Al surfaces owing to the advantage of facile, low cost and environmentally-friendly.

  9. Surface laser marking optimization using an experimental design approach

    Science.gov (United States)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  10. A Initio Theoretical Studies of Surfaces of Semiconductors

    Science.gov (United States)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We

  11. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  12. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Science.gov (United States)

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  13. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  14. Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures †

    Science.gov (United States)

    Rozgonjuk, Dmitri; Saal, Kristiina

    2018-01-01

    Several studies have shown that problematic smartphone use (PSU) is related to detrimental outcomes, such as worse psychological well-being, higher cognitive distraction, and poorer academic outcomes. In addition, many studies have shown that PSU is strongly related to social media use. Despite this, the relationships between PSU, as well as the frequency of social media use in lectures, and different approaches to learning have not been previously studied. In our study, we hypothesized that both PSU and the frequency of social media use in lectures are negatively correlated with a deep approach to learning (defined as learning for understanding) and positively correlated with a surface approach to learning (defined as superficial learning). The study participants were 415 Estonian university students aged 19–46 years (78.8% females; age M = 23.37, SD = 4.19); the effective sample comprised 405 participants aged 19–46 years (79.0% females; age M = 23.33, SD = 4.21). In addition to basic socio-demographics, participants were asked about the frequency of their social media use in lectures, and they filled out the Estonian Smartphone Addiction Proneness Scale and the Estonian Revised Study Process Questionnaire. Bivariate correlation analysis showed that PSU and the frequency of social media use in lectures were negatively correlated with a deep approach to learning and positively correlated with a surface approach to learning. Mediation analysis showed that social media use in lectures completely mediates the relationship between PSU and approaches to learning. These results indicate that the frequency of social media use in lectures might explain the relationships between poorer academic outcomes and PSU. PMID:29316697

  15. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  16. Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach

    Science.gov (United States)

    Ortega, Pablo; Guilyardi, Eric; Swingedouw, Didier; Mignot, Juliette; Nguyen, Sébastien

    2017-11-01

    While the Atlantic Meridional Overturning Circulation (AMOC) is thought to be a crucial component of the North Atlantic climate, past changes in its strength are challenging to quantify, and only limited information is available. In this study, we use a perfect model approach with the IPSL-CM5A-LR model to assess the performance of several surface nudging techniques in reconstructing the variability of the AMOC. Special attention is given to the reproducibility of an extreme positive AMOC peak from a preindustrial control simulation. Nudging includes standard relaxation techniques towards the sea surface temperature and salinity anomalies of this target control simulation, and/or the prescription of the wind-stress fields. Surface nudging approaches using standard fixed restoring terms succeed in reproducing most of the target AMOC variability, including the timing of the extreme event, but systematically underestimate its amplitude. A detailed analysis of the AMOC variability mechanisms reveals that the underestimation of the extreme AMOC maximum comes from a deficit in the formation of the dense water masses in the main convection region, located south of Iceland in the model. This issue is largely corrected after introducing a novel surface nudging approach, which uses a varying restoring coefficient that is proportional to the simulated mixed layer depth, which, in essence, keeps the restoring time scale constant. This new technique substantially improves water mass transformation in the regions of convection, and in particular, the formation of the densest waters, which are key for the representation of the AMOC extreme. It is therefore a promising strategy that may help to better constrain the AMOC variability and other ocean features in the models. As this restoring technique only uses surface data, for which better and longer observations are available, it opens up opportunities for improved reconstructions of the AMOC over the last few decades.

  17. Urban pavement surface temperature. Comparison of numerical and statistical approach

    Science.gov (United States)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  18. Integrated Approaches for the Study of Real Mineral Flotation Systems

    Directory of Open Access Journals (Sweden)

    Andrea Gerson

    2013-01-01

    Full Text Available It is more common than not, for mineral processing studies to proceed via the examination of model flotation systems with the resulting data often lacking statistical verification. The resultant concentrates and tails may then be subjected to a restricted range of analyses, for diagnosis of the flotation behavior variations observed, that themselves bias the outcomes. For instance surface analysis may be undertaken without reference to solution speciation, or liberation may be studied but surface speciation may not be taken into account. We propose an integrated approach whereby firstly the flotation data are vigorously scrutinized and the mineralogy, liberation, surface and solution speciation are examined in parallel to establish a chemical over view of the system. It is proposed that to make progress in the understanding of flotation systems, in terms of the minerals chemistry, that a multi-dimensional analytical approach is utilized and that the focus shifts towards the analysis of real ores and industrial flotation systems.

  19. A simple approach to measure the surface resistivity of insulating materials

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Wang, Qian

    2011-01-01

    A simple approach for measuring high surface resistivity of insulating materials using standard laboratory equipments is proposed. The developed system consists of a DC power transformer, a concentric ring probe assembly and a digital multi-meter. The DC power transformer can provide either 500V ...... for different materials, source voltages, and serially connected resistors. The testing results showed that the developed system and methods can provide a reasonably accurate measurement of surface resistivity of insulating materials in a robust and economic manner.......A simple approach for measuring high surface resistivity of insulating materials using standard laboratory equipments is proposed. The developed system consists of a DC power transformer, a concentric ring probe assembly and a digital multi-meter. The DC power transformer can provide either 500V...... or 250V DC signal. The probe assembly is constructed according to Danish Standard (DS/EN 1149-1:2006). The multi-meter (Agilent 3440 1A 6½) is used to measure the micro voltage over a known resistor which is serially connected with electrodes in the probe assembly. In order to obtain reliable...

  20. Simplified Approach to Predicting Rough Surface Transition

    Science.gov (United States)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  1. Assessing Saudi medical students learning approach using the revised two-factor study process questionnaire.

    Science.gov (United States)

    Shaik, Shaffi Ahamed; Almarzuqi, Ahmed; Almogheer, Rakan; Alharbi, Omar; Jalal, Abdulaziz; Alorainy, Majed

    2017-08-17

    To assess learning approaches of 1st, 2nd, and 3rd-year medical students by using revised two-factor study process questionnaire, and to assess reliability and validity of the questionnaire. This cross-sectional study was conducted at the College of Medicine, Riyadh, Saudi Arabia in 2014. The revised two-factor study process questionnaire (R-SPQ-2F) was completed by 610 medical students of both genders, from foundation (first year), central nervous system (second year), medicine and surgery (third year) courses. The study process was evaluated by computing mean scores of two research study approaches (deep & surface) using student's t-test and one-way analysis of variance. The internal consistency and construct validity of the questionnaire were assessed using Cronbach's α and factor analysis. The mean score of deep approach was significantly higher than the surface approach among participants(t (770) =7.83, p= 0.000) for the four courses. The mean scores of deep approach were significantly higher among participants with higher grade point average (F (2,768) =13.31, p=0.001) along with more number of study hours by participants (F (2,768) =20.08, p=0.001). The Cronbach's α-values of items at 0.70 indicate the good internal consistency of questionnaire used. Factor analysis confirms two factors (deep and surface approaches) of R-SPQ-2F. The deep approach to learning was the primary approach among 1st, 2nd and 3rd-year King Saud University medical students. This study confirms reliability and validity of the revised two-factor study process questionnaire. Medical educators could use the results of such studies to make required changes in the curriculum.

  2. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  3. Structure and reactivity of heterogeneous surfaces and study of the geometry of surface complexes. Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Landman, U.

    1984-01-01

    Since the beginning of this project, our group has been involved in theoretical studies of surface phenomena and processes, aimed toward increasing our understanding of fundamental processes which govern the properties of material surfaces. Our studies cover a wide spectrum of surface phenomena: surface reactivity, surface crystallography, electronic and vibrational structure, dynamical processes, phase transformations and phase change, the properties of interfaces and investigations of material processing and novel materials preparation techniques. In these investigations we develop and employ analytical and novel numerical, simulation, methods for the study of complex surface phenomena. Our recent surface molecular dynamics studies and simulations of laser annealing phenomena opened new avenues for the investigation of the microscopic dynamics and evolution of equilibrium and non-equilibrium processes at surfaces and interfaces. Our current studies of metallic glasses using a new langrangian formulation which includes all components of the total energy (density dependent electron gas, single particle and pair interactions) of the system, represents a novel approach for theoretical studies of this important class of systems

  4. Polynomial fuzzy model-based approach for underactuated surface vessels

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  5. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    Science.gov (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  6. A New Approach to Bézier Surface Visualization by a Ray Tracing Method

    OpenAIRE

    Glazs, A; Sisojevs, A

    2008-01-01

    Problem of free – form surfaces visualization is actual in various areas of a science and engineering. One of mathematical models used for this purpose is the mathematical description of a Bézier surface. Classical methods of computer graphics based on polygonal models use only polygonal interpolation of a Bézier surface. Such approach inevitably leads to occurrence of an error and as a consequence – to discrepancy of an image.

  7. Associations between self-esteem, general self-efficacy and approaches to studying in occupational therapy students: A cross-sectional study

    OpenAIRE

    Bonsaksen, Tore; Sadeghi, Talieh; Thørrisen, Mikkel Magnus

    2017-01-01

    The aim of this study was to explore associations between self-esteem, general self-efficacy, and the deep, strategic, and surface approaches to studying. Norwegian occupational therapy students (n = 125) completed questionnaires measuring study approaches, self-esteem, and general self-efficacy. Regression analyses were used to explore the direct relationships between self-esteem, general self-efficacy and the approaches to studying, after controlling for age, gender, prior higher education,...

  8. Resolving the chemical nature of nanodesigned silica surface obtained via a bottom-up approach.

    Science.gov (United States)

    Rahma, Hakim; Buffeteau, Thierry; Belin, Colette; Le Bourdon, Gwenaëlle; Degueil, Marie; Bennetau, Bernard; Vellutini, Luc; Heuzé, Karine

    2013-08-14

    The covalent grafting on silica surfaces of a functional dendritic organosilane coupling agent inserted, in a long alkyl chain monolayer, is described. In this paper, we show that depending on experimental parameters, particularly the solvent, it is possible to obtain a nanodesigned surface via a bottom-up approach. Thus, we succeed in the formation of both homogeneous dense monolayer and a heterogeneous dense monolayer, the latter being characterized by a nanosized volcano-type pattern (4-6 nm of height, 100 nm of width, and around 3 volcanos/μm(2)) randomly distributed over the surface. The dendritic attribute of the grafted silylated coupling agent affords enough anchoring sites to immobilize covalently functional gold nanoparticles (GNPs), coated with amino PEG polymer to resolve the chemical nature of the surfaces and especially the volcano type nanopattern structures of the heterogeneous monolayer. Thus, the versatile surface chemistry developed herein is particularly challenging as the nanodesign is straightforward achieved in a bottom-up approach without any specific lithography device.

  9. Tuning the giant Rashba effect on a BiAg2 surface alloy: Two different approaches

    International Nuclear Information System (INIS)

    Frantzeskakis, E.; Crepaldi, A.; Pons, S.; Kern, K.; Grioni, M.

    2010-01-01

    We discuss two different approaches for tuning the giant spin-orbit splitting of a BiAg 2 surface alloy. The first approach consists of electron doping by alkaline metal deposition in order to shift the energy position of the spin-split surface states, while the second is based on the novel Si(1 1 1)-Ag-BiAg 2 trilayer system. In both cases the spin-polarized structure near the Fermi level can be controlled by an external parameter, while the second approach permits coupling the concept of giant spin-splitting with a semiconducting substrate.

  10. Studies of surface states in zinc oxide nanopowders

    Science.gov (United States)

    Peters, Raul Mugabe

    The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.

  11. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  12. Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration

    Science.gov (United States)

    Clark, P. E.

    2010-07-01

    The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.

  13. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    International Nuclear Information System (INIS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K.L.; Morelle, J.M.; Etcheberry, A.; Chalumeau, L.

    2013-01-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  14. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  15. Physisorption of helium on a TiO{sub 2}(110) surface: Periodic and finite cluster approaches

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, Maria Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Aguirre, Nestor F. [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France)

    2012-05-03

    Graphical abstract: The physisorption of helium on the TiO{sub 2}(110) surface is explored by using finite cluster and periodic approaches (see left panel). Once the basis set is specifically tailored to minimize the BSSE (rigth panel), DFT periodic calculations using the PBE functional (left panel) yield interaction potentials in good agreement with those obtained using post-HF methods as the LMP2 treatment (see left panel). Highlights: Black-Right-Pointing-Pointer He/TiO{sub 2}(110) is a simplest example of physisorption on transition-metal oxide surfaces. Black-Right-Pointing-Pointer Optimized basis sets that minimize the BSSE are better suited for physisorption problems. Black-Right-Pointing-Pointer FCI benchmarks on the He{sub 2} bound-state assess the Counterpoise scheme reliability. Black-Right-Pointing-Pointer Periodic DFT-PBE and post-HF results on H-saturated clusters compare satisfactorily. Black-Right-Pointing-Pointer Correlation energies by using embedded and H-saturated clusters agree well. - Abstract: As a proto-typical case of physisorption on an extended transition-metal oxide surface, the interaction of a helium atom with a TiO{sub 2}(110) - (1 Multiplication-Sign 1) surface is studied here by using finite cluster and periodic approaches and both wave-function-based (post-Hartree-Fock) quantum chemistry methods and density functional theory. Both classical and advanced finite cluster approaches, based on localized Wannier orbitals combined with one-particle embedding potentials, are applied to provide (reference) coupled-cluster and second-order Moeller-Plesset interaction energies. It is shown that, once the basis set is specifically tailored to minimize the basis set superposition error, periodic calculations using the Perdew-Burke-Ernzerhof functional yield short and medium-range interaction potentials in very reasonable agreement with those obtained using the correlated wave-function-based methods, while small long-range dispersion corrections

  16. Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718

    Science.gov (United States)

    Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.

    2017-11-01

    This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.

  17. Molecular approach of uranyl/mineral surfaces: theoretical approach

    International Nuclear Information System (INIS)

    Roques, J.

    2009-01-01

    As migration of radio-toxic elements through the geosphere is one of the processes which may affect the safety of a radioactive waste storage site, the author shows that numerical modelling is a support to experimental result exploitation, and allows the development of new interpretation and prediction codes. He shows that molecular modelling can be used to study processes of interaction between an actinide ion (notably a uranyl ion) and a mineral surface (a TiO 2 substrate). He also reports the predictive theoretical study of the interaction between an uranyl ion and a gibbsite substrate

  18. A material based approach to creating wear resistant surfaces for hot forging

    Science.gov (United States)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  19. Influence of a veterinary curriculum on the approaches and study skills of veterinary medical students.

    Science.gov (United States)

    Chigerwe, Munashe; Ilkiw, Jan E; Boudreaux, Karen A

    2011-01-01

    The objectives of the present study were to evaluate first-, second-, third-, and fourth-year veterinary medical students' approaches to studying and learning as well as the factors within the curriculum that may influence these approaches. A questionnaire consisting of the short version of the Approaches and Study Skills Inventory for Students (ASSIST) was completed by 405 students, and it included questions relating to conceptions about learning, approaches to studying, and preferences for different types of courses and teaching. Descriptive statistics, factor analysis, Cronbach's alpha analysis, and log-linear analysis were performed on the data. Deep, strategic, and surface learning approaches emerged. There were a few differences between our findings and those presented in previous studies in terms of the correlation of the subscale monitoring effectiveness, which showed loading with both the deep and strategic learning approaches. In addition, the subscale alertness to assessment demands showed correlation with the surface learning approach. The perception of high workloads, the use of previous test files as a method for studying, and examinations that are based only on material provided in lecture notes were positively associated with the surface learning approach. Focusing on improving specific teaching and assessment methods that enhance deep learning is anticipated to enhance students' positive learning experience. These teaching methods include instructors who encourage students to be critical thinkers, the integration of course material in other disciplines, courses that encourage thinking and reading about the learning material, and books and articles that challenge students while providing explanations beyond lecture material.

  20. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  1. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  2. The Impact of Unstructured Case Studies on Surface Learners: A Study of Second-Year Accounting Students

    Science.gov (United States)

    Wynn-Williams, Kate; Beatson, Nicola; Anderson, Cameron

    2016-01-01

    The empirical study described here uses the R-SPQ-2F questionnaire [Biggs, J., Kember, D., & Leung, D. Y. (2001). The revised two-factor study process questionnaire: R-SPQ-2F. "British Journal of Educational Psychology," 71(1), 133-149] to test deep and surface approaches to learning in a university intermediate-level accounting…

  3. Surface-sensitive conductivity measurement using a micro multi-point probe approach

    DEFF Research Database (Denmark)

    Perkins, Edward; Barreto, Lucas; Wells, Justin

    2013-01-01

    An instrument for microscale electrical transport measurements in ultra-high vacuum is presented. The setup is constructed around collinear lithographically-created multi-point probes with a contact spacing down to 500 nm. Most commonly, twelve-point probes are used. These probes are approached...... measurements with an equidistant four-point probe for a wide range of contact spacings. In this way, it is possible to distinguish between bulk-like and surface-like conduction. The paper describes the design of the instrument and the approach to data and error analysis. Application examples are given...

  4. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo; Zhang, Mengying; Wang, Xiang; Li, Shunbo; Wen, Weijia

    2011-01-01

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low

  5. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces

    KAUST Repository

    Käferböck, Florian

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application. 2013 Elsevier B.V.

  6. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  7. Nonlinear optical studies of surfaces

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect

  8. Surface reactivity of mercury on the oxygen-terminated hematite(0001) surface: a first-principle study

    Science.gov (United States)

    Jung, J. E.; Wilcox, J.

    2016-12-01

    Hematite (α-Fe2O3) is a common mineral found in Earth's near-surface environment. Due to its nontoxicity, corrosion-resistance, and high thermal stability, α-Fe2O3 has attracted attentions as materials for various applications such as photocatalysts, gas sensors, as well as for the removal of heavy metals. In this study, α-Fe2O3 is chosen for potential mercury (Hg) sorbent in order to remove Hg from coal-fired power plants. Specifically, theoretical approaches using density functional theory (DFT) is used to understand surface reactivity of Hg on oxygen (O) terminated α-Fe2O3(0001) surface. The most probable adsorption sites of Hg, chlorine (Cl), and mercury chloride (HgCl) on the α-Fe2O3 surface are found based on adsorption energy calculations, and the oxidation states of the adsorbates are determined by Bader charge analysis. Additionally, projected density of states (PDOS) analysis characterizes the surface-adsorbate bonding mechanism. The results of adsorption energy calculation proposes that Hg physisorbs to the α-Fe2O3(0001) surface with adsorption energy of -0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens Hg stability on the α-Fe2O3(0001) surface as evidenced by a shortened Hg-surface equilibrium distance. The PDOS analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing adsorption strength. In summary, α-Fe2O3 has ability to adsorb and oxidize Hg, and this reactivity is enhanced in the presence of Cl.

  9. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Crescenzi, Carlo; Pozzi, Daniela; Laganà , Aldo

    2011-01-01

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected

  10. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  11. Influence of surface finish on fatigue properties of metallic materials: a bibliographic study

    International Nuclear Information System (INIS)

    Akamatsu, M.

    1997-01-01

    The investigation of a fatigue failed component very often shows that cracks initiated at the surface. It is actually well known that the surface finish notably influences the fatigue strength of a component. We have carried out a bibliographic study in order to clarify the influence of the different surface parameters. The analysis of the literature has shown that most of the data concerns high cycle fatigue. Three aspects of the surface finish have been examined: geometry (roughness), residual stresses and microstructure. In a general way, the influence of geometrical surface finish is tackled either empirically, with a factor assessing the fatigue limit decrease when the roughness and the tensile strength increase, or theoretically, with approaches modelling geometrical irregularities as notches or cracks. In all cases, the effect of roughness on fatigue strength depends on the material, through mechanical properties or microstructural features. The theoretical approaches seem particularly interesting, but their use is not straightforward and requires further development. The creation of residual stresses at the surface of a component can just as well reduce as improve its fatigue strength. In a first approach, these stresses can be regarded as a mean service stress. In fact, mechanical and metallurgical gradients near the surface have to be taken into account, which affect the relaxation of residual stresses during fatigue cycling. Actually, the effect of residual stresses can hardly be isolated, because these stresses are associated with geometrical and microstructural modifications. Microstructural features (metallurgical structure, grain size, inclusions, strain hardening) have an undoubted influence on fatigue strength, but the quantification of the effects remains tricky. The influence of the microstructure of surface layers on fatigue strength generally depends on the mechanical properties of materials. In short, fatigue strength predictions through a

  12. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  13. Chaotic approach to evaluation of disturbed magnetic surfaces

    International Nuclear Information System (INIS)

    Kogoshi, Sumio; Mishimagi, Sigehiro; Yoshii, Keiichi; Maeda, Joji

    1998-01-01

    A circle mapping can approximately reproduce the cross section of magnetic surfaces and the value of the periodic driving force (K) at a magnetic island varies with the width of the magnetic island, which suggests the value of K is one of measures for the degradation of magnetic surfaces. The profile of a rotational transform has flat regions at the magnetic islands. The width of the flat region is proportional to the width of the magnetic island. Therefore it may be another measure of the degradation of magnetic surfaces. This method requires less data for the estimation than the usual method of calculating the width of magnetic islands. For collapsed magnetic surfaces that are produced by overlapping of two magnetic islands, the fractal dimension can effectively estimate the degradation of them. The fractal dimensions of cross sections of regular magnetic surfaces and clear magnetic islands are nearly 1, while that of a collapsed magnetic surface is about 1.2 in the present study. (author)

  14. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  15. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    Science.gov (United States)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  16. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  17. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    Science.gov (United States)

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach

  18. Glass transition near the free surface studied by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, M.

    2008-06-15

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-{mu}m length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  19. Glass transition near the free surface studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Sikorski, M.

    2008-06-01

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-μm length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  20. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  1. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  2. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  3. Nonlinear optical techniques for surface studies

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed

  4. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  5. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  6. Statistical Surface Recovery: A Study on Ear Canals

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2012-01-01

    We present a method for surface recovery in partial surface scans based on a statistical model. The framework is based on multivariate point prediction, where the distribution of the points are learned from an annotated data set. The training set consist of surfaces with dense correspondence...... that are Procrustes aligned. The average shape and point covariances can be estimated from this set. It is shown how missing data in a new given shape can be predicted using the learned statistics. The method is evaluated on a data set of 29 scans of ear canal impressions. By using a leave-one-out approach we...

  7. A new systematic and quantitative approach to characterization of surface nanostructures using fuzzy logic

    Science.gov (United States)

    Al-Mousa, Amjed A.

    Thin films are essential constituents of modern electronic devices and have a multitude of applications in such devices. The impact of the surface morphology of thin films on the device characteristics where these films are used has generated substantial attention to advanced film characterization techniques. In this work, we present a new approach to characterize surface nanostructures of thin films by focusing on isolating nanostructures and extracting quantitative information, such as the shape and size of the structures. This methodology is applicable to any Scanning Probe Microscopy (SPM) data, such as Atomic Force Microscopy (AFM) data which we are presenting here. The methodology starts by compensating the AFM data for some specific classes of measurement artifacts. After that, the methodology employs two distinct techniques. The first, which we call the overlay technique, proceeds by systematically processing the raster data that constitute the scanning probe image in both vertical and horizontal directions. It then proceeds by classifying points in each direction separately. Finally, the results from both the horizontal and the vertical subsets are overlaid, where a final decision on each surface point is made. The second technique, based on fuzzy logic, relies on a Fuzzy Inference Engine (FIE) to classify the surface points. Once classified, these points are clustered into surface structures. The latter technique also includes a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and then tune the fuzzy technique system uniquely for that surface. Both techniques have been applied to characterize organic semiconductor thin films of pentacene on different substrates. Also, we present a case study to demonstrate the effectiveness of our methodology to identify quantitatively particle sizes of two specimens of gold nanoparticles of different nominal dimensions dispersed on a mica surface. A comparison

  8. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  9. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance

    International Nuclear Information System (INIS)

    Michel, Laurent; Picasso, Marco; Farinotti, Daniel; Bauder, Andreas; Funk, Martin; Blatter, Heinz

    2013-01-01

    We present a numerical method to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution, which are relatively easy to obtain for a large number of glaciers. The inverse approach is based on the shallow ice approximation (SIA) of ice flow and requires neither filtering of the surface topography with a lower slope limit nor approximation of constant basal shear stress. We first address this problem for a steady-state surface geometry. Next, we use an apparent surface mass-balance description that makes the transient evolution quasi-stationary. Then, we employ a more elaborated fixed-point method in which the bedrock solution is iteratively obtained by adding the difference between the computed and known surface geometries at the end of the considered time interval. In a sensitivity study, we show that the procedure is much more susceptible to small perturbations in surface geometry than mass-balance. Finally, we present preliminary results for bed elevations in three space dimensions. (paper)

  10. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Jones, S; Hunt, H

    2009-01-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  11. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension

    Science.gov (United States)

    Durand, O.; Jaouen, S.; Soulard, L.; Heuzé, O.; Colombet, L.

    2017-10-01

    We compare, at similar scales, the processes of microjetting and ejecta production from shocked roughened metal surfaces by using atomistic and continuous approaches. The atomistic approach is based on very large scale molecular dynamics (MD) simulations with systems containing up to 700 × 106 atoms. The continuous approach is based on Eulerian hydrodynamics simulations with adaptive mesh refinement; the simulations take into account the effects of viscosity and surface tension, and the equation of state is calculated from the MD simulations. The microjetting is generated by shock-loading above its fusion point a three-dimensional tin crystal with an initial sinusoidal free surface perturbation, the crystal being set in contact with a vacuum. Several samples with homothetic wavelengths and amplitudes of defect are simulated in order to investigate the influence of viscosity and surface tension of the metal. The simulations show that the hydrodynamic code reproduces with very good agreement the profiles, calculated from the MD simulations, of the ejected mass and velocity along the jet. Both codes also exhibit a similar fragmentation phenomenology of the metallic liquid sheets ejected, although the fragmentation seed is different. We show in particular, that it depends on the mesh size in the continuous approach.

  12. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev; Batish, Ajay [Thapar University, Patiala (India); Singh, Rupinder [GNDEC, Ludhiana (India); Singh, T. P. [Symbiosis Institute of Technology, Pune (India)

    2014-07-15

    In the present study, electric discharge machining process was used for machining of titanium alloys. Eight process parameters were varied during the process. Experimental results showed that current and pulse-on-time significantly affected the performance characteristics. Artificial neural network coupled with Taguchi approach was applied for optimization and prediction of surface roughness. The experimental results and the predicted results showed good agreement. SEM was used to investigate the surface integrity. Analysis for migration of different chemical elements and formation of compounds on the surface was performed using EDS and XRD pattern. The results showed that high discharge energy caused surface defects such as cracks, craters, thick recast layer, micro pores, pin holes, residual stresses and debris. Also, migration of chemical elements both from electrode and dielectric media were observed during EDS analysis. Presence of carbon was seen on the machined surface. XRD results showed formation of titanium carbide compound which precipitated on the machined surface.

  13. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  14. Approaches to learning among occupational therapy undergraduate students: A cross-cultural study.

    Science.gov (United States)

    Brown, Ted; Fong, Kenneth N K; Bonsaksen, Tore; Lan, Tan Hwei; Murdolo, Yuki; Gonzalez, Pablo Cruz; Beng, Lim Hua

    2017-07-01

    Students may adopt various approaches to academic learning. Occupational therapy students' approaches to study and the impact of cultural context have not been formally investigated to date. To examine the approaches to study adopted by undergraduate occupational therapy students from four different cultural settings. 712 undergraduate occupational therapy students (n = 376 from Australia, n = 109 from Hong Kong, n = 160 from Norway and n = 67 from Singapore) completed the Approaches and Study Skills Inventory for Students (ASSIST). A one-way analysis of variance (ANOVA) was conducted to compare the ASSIST subscales for the students from the four countries. Post-hoc comparisons using the Tukey HSD test indicated that the mean scores for the strategic approach were significantly different between Australia and the other three countries. The mean scores for the surface approach were significantly different between Australia and Hong Kong, and Hong Kong and Norway. There were no significant differences between the deep approach to studying between Australia, Norway, Singapore and Hong Kong. Culture and educational context do appear to impact the approaches to study adopted by undergraduate occupational therapy students. Academic and practice educators need to be cognizant of what approaches to studying the students they work with adopt.

  15. Application of surface electrical discharges to the study of lightning strikes on aircraft

    Science.gov (United States)

    Boulay, J. L.; Larigaldie, S.

    1991-01-01

    Considered here is the characterization of surface discharges which provide a facility complementary to that of artificially triggered lightning. General characteristics of a simplified surface discharge, including current waveforms and the constitution of a surface discharge are outlined, and the application of this approach to the study of aircraft lightning strikes is considered. Representations of leader-streamer and return-stroke phases are discussed, and the application to the two-dimensional discharge phase is covered. It is noted that the fact that the initiation times of surface discharges could be controlled, and the path followed by the discharge channels could be predetermined, indicates that it is possible to produce a highly dedicated high performance instrumentation system.

  16. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  17. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  18. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  19. Learning from tutorials: a qualitative study of approaches to learning and perceptions of tutorial interaction

    DEFF Research Database (Denmark)

    Herrmann, Kim Jesper

    2014-01-01

    This study examines differences in university students’ approaches to learning when attending tutorials as well as variation in students’ perceptions of tutorials as an educational arena. In-depth qualitative analysis of semi-structured interviews with undergraduates showed how surface and deep...... approaches to learning were revealed in the students’ note-taking, listening, and engaging in dialogue. It was also shown how variation in the students’ approaches to learning were coherent with variation in the students’ perceptions of the tutors’ pedagogical role, the value of peer interaction......, and the overall purpose of tutorials. The results are discussed regarding the paradox that students relying on surface approaches to learning seemingly are the ones least likely to respond to tutorials in the way they were intended....

  20. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  1. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    OpenAIRE

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-01-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second...

  2. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  3. SERS and DFT study of copper surfaces coated with corrosion inhibitor

    Directory of Open Access Journals (Sweden)

    Maurizio Muniz-Miranda

    2014-12-01

    Full Text Available Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT approach.

  4. Using dual response surfaces to reduce variability in launch vehicle design: A case study

    International Nuclear Information System (INIS)

    Yeniay, Ozgur; Unal, Resit; Lepsch, Roger A.

    2006-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Uncertainties from one engineering discipline may propagate to another through linking parameters and the final system output may have an accumulation of risk. This may lead to significant deviations from expected performance. An estimate of variability or design risk therefore becomes essential for a robust design. This study utilizes the dual response surface approach to quantify variability in critical performance characteristics during conceptual design phase of a launch vehicle. Using design of experiments methods and disciplinary design analysis codes, dual response surfaces are constructed for the mean and standard deviation to quantify variability in vehicle weight and sizing analysis. Next, an optimum solution is sought to minimize variability subject to a constraint on mean weight. In this application, the dual response surface approach lead to quantifying and minimizing variability without much increase in design effort

  5. A Modified Approach in Modeling and Calculation of Contact Characteristics of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    J.A. Abdo

    2005-12-01

    Full Text Available A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a it provides a more accurate account of elasticplastic behavior of surfaces in contact and (b it is applicable to model formulations that involve asperity shoulder-to shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.

  6. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface

    Science.gov (United States)

    Mittra, R.; Rushdi, A.

    1979-01-01

    An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.

  7. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  8. Quantification of the Pharmacodynamic Interaction of Morphine and Gabapentin Using a Response Surface Approach

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Gabel-Jensen, Charlotte

    2017-01-01

    The combination of morphine and gabapentin has shown to be promising for managing postoperative pain but finding the right dose for the combination has proven to be a challenge. The purpose of this study was to quantitatively characterize the pharmacodynamic interaction between the two drugs...... studies. The combined pharmacodynamic effect of morphine and gabapentin was analyzed and linked to drug plasma concentrations via a response surface approach using non-linear mixed-effect modeling. Full reversal of withdrawal thresholds for the pain stimulation to presurgery values was estimated...... of pharmacodynamic interactions. The proposed pharmacokinetic–pharmacodynamic model may provide the basis for a rational clinical trial design with the aim to identify the optimal dose combination ratios in humans....

  9. Multichannel approach to studying scalar resonances

    International Nuclear Information System (INIS)

    Krupa, D.; Surovtsev, Yu.S.

    1995-11-01

    The multichannel approach to the investigation of resonances is given in order to determine their quantum chromodynamical nature. The formula for the analytic continuation of the N-channel S-matrix to the unphysical sheets of the Riemann surface is given, which is a solution of the N-channel problem in that it enables a prediction of the coupled-process amplitudes on the uniformization plane of the S-matrix. The resonance representations by pairs of complex-conjugate clusters of poles and zeros on the Riemann surface are discussed. The concept of standard clusters as model-independent characteristics of the resonance is developed. 32 refs, 5 figs, 4 tabs

  10. Stretching of a polymer chain anchored to a surface: the massive field theory approach

    International Nuclear Information System (INIS)

    Usatenko, Zoryana

    2014-01-01

    Taking into account the well-known correspondence between the field theoretical φ 4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases z-tilde ≪1 and z-tilde ≫1, where z-tilde =z ′ /R z . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer. (paper)

  11. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  12. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  13. Ab initio-based approach to reconstruction, adsorption and incorporation on GaN surfaces

    International Nuclear Information System (INIS)

    Ito, T; Akiyama, T; Nakamura, K

    2012-01-01

    Reconstruction, adsorption and incorporation on various GaN surfaces are systematically investigated using an ab initio-based approach that predicts the surface phase diagram as functions of temperature and beam-equivalent pressure (BEP). The calculated results for GaN surface reconstructions with polar (0 0 0 1), nonpolar (1 1 −2 0), semipolar (1 −1 0 1) and semipolar (1 1 −2 2) orientations imply that reconstructions on GaN surfaces with Ga adlayers generally appear on the polar and the semipolar surfaces, while the stable ideal surface without Ga adsorption is found on the nonpolar GaN(1 1 −2 0) surface because it satisfies the electron counting rule. The hydrogen adsorption on GaN(0 0 0 1) and GaN(1 1 −2 0) realizes several surface structures forming N–H and Ga–NH 2 bonds on their surfaces that depend on temperature and Ga BEP during metal-organic vapor-phase epitaxy (MOVPE). In contrast, the stable structures due to hydrogen adsorption on the semipolar GaN(1 −1 0 1) and GaN(1 1 −2 2) surfaces are not varied over the wide range of temperature and Ga BEP. This implies that the hydrogen adsorbed stable structures are expected to emerge on the semipolar surfaces during MOVPE regardless of the growth conditions. Furthermore, we clarify that Mg incorporation on GaN(1 −1 0 1) surfaces is enhanced by hydrogen adsorption consistent with experimental findings

  14. A nested observation and model approach to non linear groundwater surface water interactions.

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  15. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  16. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  17. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  18. A comparative study of reinitialization approaches of the level set method for simulating free-surface flows

    Energy Technology Data Exchange (ETDEWEB)

    Sufyan, Muhammad; Ngo, Long Cu; Choi, Hyoung Gwon [Seoul National University, Seoul (Korea, Republic of)

    2016-04-15

    Unstructured grids were used to compare the performance of a direct reinitialization scheme with those of two reinitialization approaches based on the solution of a hyperbolic Partial differential equation (PDE). The problems of moving interface were solved in the context of a finite element method. A least-square weighted residual method was used to discretize the advection equation of the level set method. The benchmark problems of rotating Zalesak's disk, time-reversed single vortex, and two-dimensional sloshing were examined. Numerical results showed that the direct reinitialization scheme performed better than the PDE-based reinitialization approaches in terms of mass conservation, dissipation and dispersion error, and computational time. In the case of sloshing, numerical results were found to be in good agreement with existing experimental data. The direct reinitialization approach consumed considerably less CPU time than the PDE-based simulations for 20 time periods of sloshing. This approach was stable, accurate, and efficient for all the problems considered in this study.

  19. Molecular approach of uranyl/mineral surfaces: experimental approach

    International Nuclear Information System (INIS)

    Drot, R.

    2009-01-01

    The author reports an experimental approach in which different spectroscopic approaches are coupled (laser spectroscopy, X-ray absorption spectroscopy, vibrational spectroscopy) to investigate the mechanisms controlling actinide sorption processes by different substrates, in order to assess radioactive waste storage site safety. Different substrates have been considered: monocrystalline or powdered TiO 2 , montmorillonite, and gibbsite

  20. A surface-integral-equation approach to the propagation of waves in EBG-based devices

    NARCIS (Netherlands)

    Lancellotti, V.; Tijhuis, A.G.

    2012-01-01

    We combine surface integral equations with domain decomposition to formulate and (numerically) solve the problem of electromagnetic (EM) wave propagation inside finite-sized structures. The approach is of interest for (but not limited to) the analysis of devices based on the phenomenon of

  1. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.; McDaniel, J.A.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478 K approximately 15% of the surface is coverred for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this. (orig.)

  2. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; McDaniel, J.A.; Johnson, C.E.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478K approximately 15% of the surface is covered for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this

  3. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  4. LEAST SQUARE APPROACH FOR ESTIMATING OF LAND SURFACE TEMPERATURE FROM LANDSAT-8 SATELLITE DATA USING RADIATIVE TRANSFER EQUATION

    Directory of Open Access Journals (Sweden)

    Y. Jouybari-Moghaddam

    2017-09-01

    Full Text Available Land Surface Temperature (LST is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE. However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11 and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  5. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    Science.gov (United States)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  6. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  7. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  8. Coupling Plant-Derived Cyclotides to Metal Surfaces: An Antibacterial and Antibiofilm Study

    Directory of Open Access Journals (Sweden)

    Pan Cao

    2018-03-01

    Full Text Available Modification of metal surfaces with antimicrobial peptides is a promising approach to reduce bacterial adhesion. Here, cyclic peptides or cycloids, possessing remarkable stability and antimicrobial activities, were extracted and purified from Viola philippica Cav., and identified using mass spectrometry. Cyclotides were subsequently utilized to modify stainless steel surfaces via polydopamine-mediated coupling. The resulting cyclotide-modified surfaces were characterized by Fourier transform infrared (FTIR spectroscopy and contact angle analysis. The antibacterial capacity of these cyclotides against Staphylococcus aureus was assessed by Alamar blue assay. The antibiofilm capacity of the modified surfaces was assessed by crystal violet assay, and scanning electron microscopy (SEM. A composite of Kalata b1, Varv A, Viba 15 and Viba 17 (P1; Varv E (P2; and Viphi G (P3 were isolated and identified. FTIR analysis of the modified surfaces demonstrated that cyclotides bound to the surfaces and induced reduction of contact angles. Antimicrobial effects showed an order P3 > P1 and P2, with P3-treated surfaces demonstrating the strongest antibiofilm capacity. SEM confirmed reduced biofilm formation for P3-treated surfaces. This study provides novel evidence for cyclotides as a new class for development of antibacterial and antibiofilm agents.

  9. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  10. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  11. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  12. Approaches to learning for the ANZCA Final Examination and validation of the revised Study Process Questionnaire in specialist medical training.

    Science.gov (United States)

    Weller, J M; Henning, M; Civil, N; Lavery, L; Boyd, M J; Jolly, B

    2013-09-01

    When evaluating assessments, the impact on learning is often overlooked. Approaches to learning can be deep, surface and strategic. To provide insights into exam quality, we investigated the learning approaches taken by trainees preparing for the Australian and New Zealand College of Anaesthetists (ANZCA) Final Exam. The revised two-factor Study Process Questionnaire (R-SPQ-2F) was modified and validated for this context and was administered to ANZCA advanced trainees. Additional questions were asked about perceived value for anaesthetic practice, study time and approaches to learning for each exam component. Overall, 236 of 690 trainees responded (34%). Responses indicated both deep and surface approaches to learning with a clear preponderance of deep approaches. The anaesthetic viva was valued most highly and the multiple choice question component the least. Despite this, respondents spent the most time studying for the multiple choice questions. The traditionally low short answer questions pass rate could not be explained by limited study time, perceived lack of value or study approaches. Written responses suggested that preparation for multiple choice questions was characterised by a surface approach, with rote memorisation of past questions. Minimal reference was made to the ANZCA syllabus as a guide for learning. These findings indicate that, although trainees found the exam generally relevant to practice and adopted predominantly deep learning approaches, there was considerable variation between the four components. These results provide data with which to review the existing ANZCA Final Exam and comparative data for future studies of the revisions to the ANZCA curriculum and exam process.

  13. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  14. A systematic first-principles study of surface energies, surface relaxation and Friedel oscillation of magnesium surfaces

    International Nuclear Information System (INIS)

    Tang, Jia-Jun; Yang, Xiao-Bao; Zhao, Yu-Jun; OuYang, LiuZhang; Zhu, Min

    2014-01-01

    We systematically study the surface energies and surface relaxations of various low-index and high-index Mg surfaces. It is found that low-index surfaces are not necessarily stable as Mg(1 0  1-bar  0) is the most unstable surface in the series of Mg(1 0  1-bar  n) (n = 0–9). A surface-energy predicting model based on the bond cutting is proposed to explain the relative surface stabilities. The local relaxations of the low-index surfaces could be explained by the Friedel oscillation. For the high-index surfaces, the combination of charge smoothing effect and dramatic charge depletion influences the relaxations, which show a big difference from the low-index ones. Our findings provide theoretical data for considerable insights into the surface energies of hexagonal close-packed metals. (paper)

  15. Factors influencing the approaches to studying of preclinical and clinical students and postgraduate trainees

    Directory of Open Access Journals (Sweden)

    Samarasekera Dharmabandu N

    2011-05-01

    Full Text Available Abstract Background Students can be classified into three categories depending on their approaches to studying; namely, deep approach (DA, strategic approach (SA and surface apathetic or superficial approach (SAA. The aim of this study was to identify factors affecting the approaches to studying among Sri Lankan medical undergraduates and post graduate trainees and to analyze the change in the pattern of study skills with time and experience. Method Pre-clinical and clinical students of the Faculty of Medicine, University of Colombo and postgraduate trainees in Surgery at the National Hospital of Sri Lanka were invited to complete the Approaches and Study Skills Inventory for Students (ASSIST questionnaire. Results A total of 187 pre clinical (M: F = 96:91, 124 clinical (M: F = 61:63 and 53 post graduate trainees (M: F = 50:3 participated in the study. Approaches of male and female students were similar. SA was significantly affected by age among the preclinical students (p = 0.01, but not in other groups. Among pre-clinical students, males preferred a teacher who supported understanding (p = 0.04 but females preferred a passive transmission of information (p Conclusion Different factors affect the approach to studying in different groups but these explain only a small fraction of the variance observed.

  16. AN ARTIFICIAL INTELLIGENCE APPROACH FOR THE PREDICTION OF SURFACE ROUGHNESS IN CO2 LASER CUTTING

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2012-12-01

    Full Text Available In laser cutting, the cut quality is of great importance. Multiple non-linear effects of process parameters and their interactions make very difficult to predict cut quality. In this paper, artificial intelligence (AI approach was applied to predict the surface roughness in CO2 laser cutting. To this aim, artificial neural network (ANN model of surface roughness was developed in terms of cutting speed, laser power and assist gas pressure. The experimental results obtained from Taguchi’s L25 orthogonal array were used to develop ANN model. The ANN mathematical model of surface roughness was expressed as explicit nonlinear function of the selected input parameters. Statistical results indicate that the ANN model can predict the surface roughness with good accuracy. It was showed that ANNs may be used as a good alternative in analyzing the effects of cutting parameters on the surface roughness.

  17. A new approach to the retrieval of surface properties from earthshine measurements

    Energy Technology Data Exchange (ETDEWEB)

    Spurr, R.J.D. E-mail: rspurr@cfa.harvard.edu

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  18. A new approach to the retrieval of surface properties from earthshine measurements

    International Nuclear Information System (INIS)

    Spurr, R.J.D.

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  19. A Generic Deep-Learning-Based Approach for Automated Surface Inspection.

    Science.gov (United States)

    Ren, Ruoxu; Hung, Terence; Tan, Kay Chen

    2018-03-01

    Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%-25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%-19.00% in three defect types and improves accuracies by 2.29%-9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.

  20. "Cleaning" the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach.

    Science.gov (United States)

    Cao, Binrui; Yang, Mingying; Wang, Lin; Xu, Hong; Zhu, Ye; Mao, Chuanbin

    2015-10-21

    Synthetic nanoparticles are always terminated with coating molecules, which are often cytotoxic and not desired in biomedicine. Here we propose a novel reaction-dissolution approach to remove the cytotoxic coating molecules. A two-component solution is added to the nanoparticle solution; one component reacts with the coating molecules to form a salt whereas another is a solvent for dissolving and thus removing the salt. As a proof of concept, this work uses a NaOH-ethanol solution to remove the cytotoxic linoleic acid molecules coated on the hydroxyapatite nanorods (HAP-NRs). The removal of the coating molecules not only significantly improves the biocompatibility of HAP-NRs but also enables their oriented attachment into tightly-bound superstructures, which mimic the organized HAP crystals in bone and enamel and can promote the osteogenic differentiation of mesenchymal stem cells. Our reaction-dissolution approach can be extended to the surface "cleaning" of other nanomaterials.

  1. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-01-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  2. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  3. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA),enzyme-linkedimmunosorbentassay(EIA...... solution. Adsorbed masses of BSM onto hydrophobic surface, as probe by BCA, showed a continuously increasing trend up to 2mg/mL. But, the signals from EIA and ELLA, which probe the concentration of available unglycosylatedC-terminals and the central glycosylated regions, respectively, showed complicated...

  4. Surface inspection system for industrial components based on shape from shading minimization approach

    Science.gov (United States)

    Kotan, Muhammed; Öz, Cemil

    2017-12-01

    An inspection system using estimated three-dimensional (3-D) surface characteristics information to detect and classify the faults to increase the quality control on the frequently used industrial components is proposed. Shape from shading (SFS) is one of the basic and classic 3-D shape recovery problems in computer vision. In our application, we developed a system using Frankot and Chellappa SFS method based on the minimization of the selected basis function. First, the specialized image acquisition system captured the images of the component. To eliminate noise, wavelet transform is applied to the taken images. Then, estimated gradients were used to obtain depth and surface profiles. Depth information was used to determine and classify the surface defects. Also, a comparison made with some linearization-based SFS algorithms was discussed. The developed system was applied to real products and the results indicated that using SFS approaches is useful and various types of defects can easily be detected in a short period of time.

  5. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  6. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Science.gov (United States)

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  7. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  8. Wetting study of patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)], E-mail: Bhushan.2@osu.edu; Jung, Yong Chae [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)

    2007-10-15

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements.

  9. Model surface studies of metal oxides: Adsorption of water and methanol on ultrathin MgO films on Mo(100)

    International Nuclear Information System (INIS)

    Wu, M.; Estrada, C.A.; Corneille, J.S.; Goodman, D.W.

    1992-01-01

    Model surface studies of magnesium oxide have been carried out using surface sensitive techniques. Ultrathin MgO films have been synthesized under ultrahigh vacuum (UHV) conditions by thermally evaporating Mg onto Mo(100) in the presence of oxygen. Low-energy electron diffraction (LEED) studies indicate that the MgO films grow epitaxially with the (100) face of MgO oriented parallel to Mo(100). The MgO films, prepared under optimum synthesis conditions, have essentially one-to-one stoichiometry, are nearly free from pointlike surface defects, and have properties essentially identical to those of bulk, single-crystal MgO. Adsorption of water and methanol onto the MgO films has been studied using high-resolution electron energy-loss spectroscopy (HREELS) and temperature programmed desorption (TPD). In order to circumvent the difficulty associated with intense multiple surface optical phonon (Fuchs--Kliewer modes) losses, a new approach to acquisition of HREELS data has been demonstrated. This new approach enables the direct observation of weak loss features due to excitation of the adsorbates without serious interference from multiple phonon losses. Our HREELS studies show that water and methanol undergo heterolytic dissociation, leading to the formation of hydroxyl and methoxy species, respectively

  10. Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study.

    Science.gov (United States)

    Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C

    2015-09-29

    Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.

  11. A simplified ALARA approach to demonstration of compliance with surface contaminated object regulatory requirements

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Boyle, R.W.; Cook, J.C.

    1998-02-01

    The US Department of Transportation (DOT) and the US Nuclear Regulatory Commission (NRC) have jointly prepared a comprehensive set of draft guidance for consignors and inspectors to use when applying the newly imposed regulatory requirements for low specific activity (LSA) material and surface contaminated objects (SCOs). The guidance is being developed to facilitate compliance with the new LSA material and SCO requirements, not to impose additional requirements. These new requirements represent, in some areas, significant departures from the manner in which packaging and transportation of these materials and objects were previously controlled. On occasion, it may be appropriate to use conservative approaches to demonstrate compliance with some of the requirements, ensuring that personnel are not exposed to radiation at unnecessary levels, so that exposures are kept as low as reasonably achievable (ALARA). In the draft guidance, one such approach would assist consignors preparing a shipment of a large number of SCOs in demonstrating compliance without unnecessarily exposing personnel. In applying this approach, users need to demonstrate that four conditions are met. These four conditions are used to categorize non-activated, contaminated objects as SCO-2. It is expected that, by applying this approach, it will be possible to categorize a large number of small contaminated objects as SCO-2 without the need for detailed, quantitative measurements of fixed, accessible contamination, or of total (fixed and non-fixed) contamination on inaccessible surfaces. The method, which is based upon reasoned argument coupled with limited measurements and the application of a sum of fractions rule, is described and examples of its use are provided

  12. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  13. Comment on 'Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies'

    International Nuclear Information System (INIS)

    Gutman, E M

    2010-01-01

    In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity. (comment)

  14. A Collaborative Approach for Surface Inspection Using Aerial Robots and Computer Vision

    Directory of Open Access Journals (Sweden)

    Martin Molina

    2018-03-01

    Full Text Available Aerial robots with cameras on board can be used in surface inspection to observe areas that are difficult to reach by other means. In this type of problem, it is desirable for aerial robots to have a high degree of autonomy. A way to provide more autonomy would be to use computer vision techniques to automatically detect anomalies on the surface. However, the performance of automated visual recognition methods is limited in uncontrolled environments, so that in practice it is not possible to perform a fully automatic inspection. This paper presents a solution for visual inspection that increases the degree of autonomy of aerial robots following a semi-automatic approach. The solution is based on human-robot collaboration in which the operator delegates tasks to the drone for exploration and visual recognition and the drone requests assistance in the presence of uncertainty. We validate this proposal with the development of an experimental robotic system using the software framework Aerostack. The paper describes technical challenges that we had to solve to develop such a system and the impact on this solution on the degree of autonomy to detect anomalies on the surface.

  15. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  16. Preferences for Deep-Surface Learning: A Vocational Education Case Study Using a Multimedia Assessment Activity

    Science.gov (United States)

    Hamm, Simon; Robertson, Ian

    2010-01-01

    This research tests the proposition that the integration of a multimedia assessment activity into a Diploma of Events Management program promotes a deep learning approach. Firstly, learners' preferences for deep or surface learning were evaluated using the revised two-factor Study Process Questionnaire. Secondly, after completion of an assessment…

  17. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  18. Numerical studies on helium cooled divertor finger mock up with sectorial extended surfaces

    International Nuclear Information System (INIS)

    Rimza, Sandeep; Satpathy, Kamalakanta; Khirwadkar, Samir; Velusamy, Karupanna

    2014-01-01

    Highlights: • Studies on heat transfer enhancement for divertor finger mock-up. • Heat transfer characteristics of jet impingement with extended surfaces have been investigated. • Effect of critical parameters that influence the thermal performance of the finger mock-up by CFD approach. • Effect of extended surface in enhancing heat removal potential with pumping power assessed. • Practicability of the chosen design is verified by structural analysis. - Abstract: Jet impinging technique is an advance divertor concept for the design of future fusion power plants. This technique is extensively used due to its high heat removal capability with reasonable pumping power and for safe operation. In this design, plasma-facing components are fabricated with numerous fingers cooled by helium jets to reduce the thermal stresses. The present study is focused towards finding an optimum performance of one such finger mock-up through systematic computational fluid dynamics (CFD) studies. Heat transfer characteristics of jet impingement have been numerically investigated with sectorial extended surfaces (SES). The result shows that addition of SES enhances heat removal potential with minimum pumping power. Detailed parametric studies on critical parameters that influence thermal performance of the finger mock-up have been analyzed. Thermo-mechanical analysis has been carried out through finite element based approach to know the state of stress in the assembly as a result of large temperature gradients. It is seen that the stresses are within the permissible limits for the present design. The whole numerical simulation has been carried out using general-purpose CFD software (ANSYS FLUENT, Release 14.0, User Guide, Ansys, Inc., 2011). Benchmark validation studies have been performed against high-heat flux experiments (B. Končar, P. Norajitra, K. Oblak, Appl. Therm. Eng., 30, 697–705, 2010) and a good agreement is noticed between the present simulation and the reported

  19. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  20. A STUDY ON THE APPLICATION OF THE ECAP TO SURFACE PLATING

    Directory of Open Access Journals (Sweden)

    Osman KONUK

    2014-01-01

    Full Text Available Metal forming processes with shear stresses that very high plastic strains are obtained in one pass are defined as severe plastic deformation (SPD processes. Strain values can additionally be increased with additional passes throughout the process. Equal channel angular processing (ECAP is the most applied method among the SPD processes. In the presented study, an approach of application of ECAP method was used in surface plating. Previously manufactured ECAP dies using separated die design approach were used in the study. 5083 Aluminum and Ms 58 Brass alloy strips having 2 and 4 mm thickness were placed in the ECAP die side by side and processed with single and double passes in order to model the metallic plating under cold pressure welding conditions. There were no successful and full joints between the strips although some partial joints were observed. The results were discussed and some suggestions are made in order to obtain successful joints.

  1. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  2. A NEW APPROACH OF DIGITAL BRIDGE SURFACE MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    H. Ju

    2012-07-01

    Full Text Available Bridge areas present difficulties for orthophotos generation and to avoid “collapsed” bridges in the orthoimage, operator assistance is required to create the precise DBM (Digital Bridge Model, which is, subsequently, used for the orthoimage generation. In this paper, a new approach of DBM generation, based on fusing LiDAR (Light Detection And Ranging data and aerial imagery, is proposed. The no precise exterior orientation of the aerial image is required for the DBM generation. First, a coarse DBM is produced from LiDAR data. Then, a robust co-registration between LiDAR intensity and aerial image using the orientation constraint is performed. The from-coarse-to-fine hybrid co-registration approach includes LPFFT (Log-Polar Fast Fourier Transform, Harris Corners, PDF (Probability Density Function feature descriptor mean-shift matching, and RANSAC (RANdom Sample Consensus as main components. After that, bridge ROI (Region Of Interest from LiDAR data domain is projected to the aerial image domain as the ROI in the aerial image. Hough transform linear features are extracted in the aerial image ROI. For the straight bridge, the 1st order polynomial function is used; whereas, for the curved bridge, 2nd order polynomial function is used to fit those endpoints of Hough linear features. The last step is the transformation of the smooth bridge boundaries from aerial image back to LiDAR data domain and merge them with the coarse DBM. Based on our experiments, this new approach is capable of providing precise DBM which can be further merged with DTM (Digital Terrain Model derived from LiDAR data to obtain the precise DSM (Digital Surface Model. Such a precise DSM can be used to improve the orthophoto product quality.

  3. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  4. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines.

    Science.gov (United States)

    Piantadosi, Steven

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.

  5. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  6. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  7. Wavelet-fractal approach to surface characterization of nanocrystalline ITO thin films

    International Nuclear Information System (INIS)

    Raoufi, Davood; Kalali, Zahra

    2012-01-01

    In this study, indium tin oxide (ITO) thin films were prepared by electron beam deposition method on glass substrates at room temperature (RT). Surface morphology characterization of ITO thin films, before and after annealing at 500 °C, were investigated by analyzing the surface profile of atomic force microscopy (AFM) images using wavelet transform formalism. The wavelet coefficients related to the thin film surface profiles have been calculated, and then roughness exponent (α) of the films has been estimated using the scalegram method. The results reveal that the surface profiles of the films before and after annealing process have self-affine nature.

  8. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  9. A pulsed source neutron reflectometer for surface studies

    International Nuclear Information System (INIS)

    Penfold, J.; Williams, W.G.

    1985-05-01

    A design for a neutron reflectometer for surface studies to be constructed at the SNS is presented. Examples of its use to study problems in surface chemistry, surface magnetism and low dimensional structures are highlighted. (author)

  10. Dyslexia, authorial identity, and approaches to learning and writing: a mixed methods study.

    Science.gov (United States)

    Kinder, Julianne; Elander, James

    2012-06-01

    Dyslexia may lead to difficulties with academic writing as well as reading. The authorial identity approach aims to help students improve their academic writing and avoid unintentional plagiarism, and could help to understand dyslexic students' approaches to writing. (1) To compare dyslexic and non-dyslexic students' authorial identity and approaches to learning and writing; (2) to compare correlations between approaches to writing and approaches to learning among dyslexic and non-dyslexic students; (3) to explore dyslexic students' understandings of authorship and beliefs about dyslexia, writing and plagiarism. Dyslexic (n= 31) and non-dyslexic (n= 31) university students. Questionnaire measures of self-rated confidence in writing, understanding of authorship, knowledge to avoid plagiarism, and top-down, bottom-up and pragmatic approaches to writing (Student Authorship Questionnaire; SAQ), and deep, surface and strategic approaches to learning (Approaches and Study Skills Inventory for Students; ASSIST), plus qualitative interviews with dyslexic students with high and low SAQ scores. Dyslexic students scored lower for confidence in writing, understanding authorship, and strategic approaches to learning, and higher for surface approaches to learning. Correlations among SAQ and ASSIST scores were larger and more frequently significant among non-dyslexic students. Self-rated knowledge to avoid plagiarism was associated with a top-down approach to writing among dyslexic students and with a bottom-up approach to writing among non-dyslexic students. All the dyslexic students interviewed described how dyslexia made writing more difficult and reduced their confidence in academic writing, but they had varying views about whether dyslexia increased the risk of plagiarism. Dyslexic students have less strong authorial identities, and less congruent approaches to learning and writing. Knowledge to avoid plagiarism may be more salient for dyslexic students, who may benefit from

  11. Technical Note: A novel approach to estimation of time-variable surface sources and sinks of carbon dioxide using empirical orthogonal functions and the Kalman filter

    Directory of Open Access Journals (Sweden)

    R. Zhuravlev

    2011-10-01

    Full Text Available In this work we propose an approach to solving a source estimation problem based on representation of carbon dioxide surface emissions as a linear combination of a finite number of pre-computed empirical orthogonal functions (EOFs. We used National Institute for Environmental Studies (NIES transport model for computing response functions and Kalman filter for estimating carbon dioxide emissions. Our approach produces results similar to these of other models participating in the TransCom3 experiment.

    Using the EOFs we can estimate surface fluxes at higher spatial resolution, while keeping the dimensionality of the problem comparable with that in the regions approach. This also allows us to avoid potentially artificial sharp gradients in the fluxes in between pre-defined regions. EOF results generally match observations more closely given the same error structure as the traditional method.

    Additionally, the proposed approach does not require additional effort of defining independent self-contained emission regions.

  12. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1979-01-01

    Progress in Surface and Membrane Science, Volume 12 covers the advances in the study of surface and membrane science. The book discusses the topographical differentiation of the cell surface; the NMR studies of model biological membrane system; and an irreversible thermodynamic approach to energy coupling in mitochondria and chloroplasts. The text also describes water at surfaces; the nature of microemulsions; and the energy principle in the stability of interfaces. Biochemists, physicists, chemical engineers, and people involved in surface and coatings research will find the book invaluable.

  13. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  15. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    Science.gov (United States)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  16. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  17. Surface Water Contamination and Los Alamos National Laboratory's Holistic Approach to Mitigation

    International Nuclear Information System (INIS)

    Katzman, D.; Veenis, S.; Reneau, S.

    2009-01-01

    A sediment and contaminant transport mitigation project is being implemented at Los Alamos National Laboratory. This effort is driven by a requirement from State of New Mexico regulators and is also in concert with efforts underway to support a surface-water diversion project by a Santa Fe, NM, public water utility. The effort is being implemented in a large geomorphically and hydrologically complex watershed. Rather than simply attempting to trap sediment in a retention basin, this effort uses a watershed-scale holistic approach with intent to promote watershed healing. (authors)

  18. Surface-seeking radionuclides in the skeleton: current approach and recent developments in biokinetic modelling for humans and beagles

    International Nuclear Information System (INIS)

    Luciani, A.; Polig, E.

    2007-01-01

    In the last decade, the biokinetics of surface-seeking radionuclides in the skeleton has been the object of several studies. Investigations were carried out to determine the kinetics of plutonium and americium in the skeleton of humans and beagles. As a result of these investigations, in recent years the models presented by ICRP in Publication 67 for humans were partially revised, particularly the skeletal part. The aim of the present work is to present recent developments in the biokinetic modelling of surface-seeking radionuclides (plutonium and americium) in beagles and humans. Various assumptions and physiological interpretations of the different approaches to the biokinetic modelling of the skeleton are discussed. Current ICRP concepts and skeleton modelling of plutonium and americium in humans are compared to the latest developments in biokinetic modelling in beagles. (authors)

  19. Electromagnetic study of surface enhanced Raman scattering of plasmonic-biomolecule: An interaction between nanodimer and single biomolecule

    Science.gov (United States)

    Pandey, Gyanendra Krishna; Pathak, Nilesh Kumar; Uma, R.; Sharma, R. P.

    2017-04-01

    In this article we have investigated the electromagnetic surface enhanced Raman scattering (SERS) of single biomolecule adsorbed at the surface of spherical nanodimer. The SERS mechanism has been studied using first principle approach for spherical nanodimer geometry. The coupling of plasmonic concept to biomolecule results the broadband tunable enhancement in Raman gain factor. In this observation the enhancement factor was observed around ≈ 1015. The plasmonic properties of metal nanodimer are analysed in terms of surface plasmon resonances, extinction efficiency and polarisability that have been derived under quasistatic approximation. In this paper, various facets like interdipole separation, molecule distance and size of the plasmonic nanogeometry are taken into account to analyse the Raman gain factor. We also observe that the frequency range expands sufficiently which increases the broad detectability range of the molecule which generates signal even in the outside of Raman range i.e. in between IR to UV region. Lastly, the extinction spectra and electric field profile have been evaluated at resonance wavelength 364 nm. The comparison between electrostatic approach and numerical approach (using DDA) has also been done in terms of extinction spectra.

  20. Synchrotron x-ray diffraction study of liquid surfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Pershan, P.S.

    1983-01-01

    A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented.......A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented....

  1. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  2. A new approach for calculation of volume confined by ECR surface and its area in ECR ion source

    International Nuclear Information System (INIS)

    Filippov, A.V.

    2007-01-01

    The volume confined by the resonance surface and its area are important parameters of the balance equations model for calculation of ion charge-state distribution (CSD) in the electron-cyclotron resonance (ECR) ion source. A new approach for calculation of these parameters is given. This approach allows one to reduce the number of parameters in the balance equations model

  3. Metal/metal-oxide interfaces: A surface science approach to the study of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C.H.F.; Kidd, K.B.; Shinn, N.D. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (USA))

    1991-05-01

    Metal-oxide/metal interfaces play an important role, for example, in the joining of an oxide ceramic to a metal for sealing applications. In order to probe the chemical and physical properties of such an interface, we have performed Auger electron spectroscopic (AES) and temperature programed desorption (TPD) experiments on a model system composed of very thin films of Cr, Fe, Ni, or Cu evaporated onto a very thin thermally grown oxide on a W single crystal. Monolayer films of Fe and Cr were found (by AES) to completely wet the oxide surface upon deposition, and were stable up to temperatures at which the films desorbed ({approx}1300 K). In contrast, monolayer Ni and Cu films formed three-dimensional islands exposing the oxidized W surface either upon annealing (Ni) or even upon room-temperature deposition (Cu). The relative interfacial interaction between the overlayer metal and the oxide, as assessed by TPD, increases in the series Cu{lt}Ni{lt}Fe{lt}Cr. This trend follows the heats of formation of the various oxides of these metals.

  4. Investigation of AA2024-T3 surfaces modified by cerium compounds: A localized approach

    International Nuclear Information System (INIS)

    Paussa, L.; Andreatta, F.; De Felicis, D.; Bemporad, E.; Fedrizzi, L.

    2014-01-01

    Highlights: •The precipitation of cerium compounds occurs on the entire AA2024-T3 surface. •The matrix is less involved in the cerium precipitation. •Cerium intensely precipitates on Mg-rich IM particles. •The electrochemical behavior of Mg-rich IM particles influences the mechanism of cerium precipitation. -- Abstract: The precipitation of cerium compounds on polished AA2024-T3 surfaces was investigated following an electrochemical and microstructural localized approach. It was found that cerium precipitation occurs on the entire surface covering intermetallic particles and the matrix as well. The matrix is the region where the precipitation of cerium is less favoured. The highest amount of cerium was observed on magnesium-rich intermetallic particles. The localized analyses suggest that precipitation of cerium on magnesium-rich intermetallic particles could happen following two mechanisms: the former based on a potential reversal of the intermetallic particles and the latter due to a partial magnesium dissolution

  5. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    Science.gov (United States)

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-12-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.

  6. Imaging of stellar surfaces with the Occamian approach and the least-squares deconvolution technique

    Science.gov (United States)

    Järvinen, S. P.; Berdyugina, S. V.

    2010-10-01

    Context. We present in this paper a new technique for the indirect imaging of stellar surfaces (Doppler imaging, DI), when low signal-to-noise spectral data have been improved by the least-squares deconvolution (LSD) method and inverted into temperature maps with the Occamian approach. We apply this technique to both simulated and real data and investigate its applicability for different stellar rotation rates and noise levels in data. Aims: Our goal is to boost the signal of spots in spectral lines and to reduce the effect of photon noise without loosing the temperature information in the lines. Methods: We simulated data from a test star, to which we added different amounts of noise, and employed the inversion technique based on the Occamian approach with and without LSD. In order to be able to infer a temperature map from LSD profiles, we applied the LSD technique for the first time to both the simulated observations and theoretical local line profiles, which remain dependent on temperature and limb angles. We also investigated how the excitation energy of individual lines effects the obtained solution by using three submasks that have lines with low, medium, and high excitation energy levels. Results: We show that our novel approach enables us to overcome the limitations of the two-temperature approximation, which was previously employed for LSD profiles, and to obtain true temperature maps with stellar atmosphere models. The resulting maps agree well with those obtained using the inversion code without LSD, provided the data are noiseless. However, using LSD is only advisable for poor signal-to-noise data. Further, we show that the Occamian technique, both with and without LSD, approaches the surface temperature distribution reasonably well for an adequate spatial resolution. Thus, the stellar rotation rate has a great influence on the result. For instance, in a slowly rotating star, closely situated spots are usually recovered blurred and unresolved, which

  7. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  8. Surface Analytical Study of CuInSe2 Treated in Cd-Containing Partial Electrolyte Solution

    International Nuclear Information System (INIS)

    Niles, D.W.

    1998-01-01

    Junction formation in CuInSe2 (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH4OH and CdSO4. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample

  9. Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukova, I.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, Ph.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); Anisimova, N.Y.; Gloushankova, N.A.; Zhitnyak, I.Y. [N.N Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation); Benesova, J. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 15006 (Czech Republic); Amler, E. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague (Czech Republic); Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)

    2015-03-01

    Graphical abstract: - Highlights: • Bioactive materials with rate-controlled release of antibacterial agent. • Ag{sup +} ion release from TiCaPCON-Ag films depended on Ag content. • TiCaPCON-coated Ti network structure with blind pores loaded with co-amoxiclav. • Strong bactericidal effect of drug-loaded samples. • Antibacterial yet biocompatible and bioactive surfaces. - Abstract: Two approaches (surface doping with bactericidal element and loading of antibiotic into specially formed surface microcontainers) to the fabrication of antibacterial yet biocompatible and bioactive surfaces are described. A network structure with square-shaped blind pores of 2.6 ± 0.6 × 10{sup −3} mm{sup 3} for drug loading was obtained by selective laser sintering (SLS). The SLS-fabricated samples were loaded with 0.03, 0.3, 2.4, and 4 mg/cm{sup 2} of co-amoxiclav (amoxicillin and clavulanic acid). Ag-doped TiCaPCON films with 0.4, 1.2, and 4.0 at.% of Ag were obtained by co-sputtering of composite TiC{sub 0.5}-Ca{sub 3}(PO{sub 4}){sub 2} and metallic Ag targets. The surface structure of SLS-prepared samples and cross-sectional morphology of TiCaPCON-Ag films were studied by scanning electron microscopy. The through-thickness of Ag distribution in the TiCaPCON-Ag films was obtained by glow discharge optical emission spectroscopy. The kinetics of Ag ion release in normal saline solution was studied using inductively coupled plasma mass spectrometry. Bacterial activity of the samples was evaluated against S. epidermidis, S. aureus, and K. pneum. ozaenae using the agar diffusion test and photometric method by controlling the variation of optical density of the bacterial suspension over time. Cytocompatibility of the Ag-doped TiCaPCON films was observed in vitro using chondrocytic and MC3T3-E1 osteoblastic cells. The viability and proliferation of chondrocytic cells were determined using the MTS assay and PicoGreen assay tests, respectively. The alkaline phosphatase (ALP

  10. Characterizing the surface circulation in the Ebro Delta using a HF radar data-model approach

    Science.gov (United States)

    Lorente Jimenez, Pablo; Piedracoba Varela, Silvia; Soto-Navarro, Javier; Garcia-Sotillo, Marcos; Alvarez Fanjul, Enrique

    2016-04-01

    One year-long (2014) quality-controlled current observations from a CODAR SeaSonde High Frequency (HF) radar network deployed in the Ebro Delta (northwestern Mediterranean) were combined with operational products provided by a regional ocean forecasting system named IBI (Iberia-Biscay-Ireland) in order to comprehensively portray the ocean state and its variability. First, accurate HF radar data were used as benchmark for the rigorous validation of IBI performance by means of the computation of skill metrics and quality indicators. The analysis of the monthly averaged current maps for 2014 showed that IBI properly captured the prevailing dynamic features of the coastal circulation observed by the HF radar, according to the resemblance of circulation patterns and the eddy kinetic energy spatial distribution. The model skill assessment was completed with an exploration of dominant modes of variability both in time and space. The EOF analysis confirmed that the modeled surface current field evolved in space and time according to three significantly dominant modes of variability which accounted for the 49.2% of the total variance, in close agreement with the results obtained for the HF radar (46.1%). The response of the subtidal surface current field to prevalent wind regimes in the study area was examined in terms of induced circulation structures by performing a conditional averaging approach. This data-model synergistic approach has proved to be valid to operationally monitor and describe the complex coastal circulation in Ebro Delta despite the observed model drawbacks in terms of reduced energy content in surface currents and some inaccuracies in the wind-driven low frequency response. This integrated methodology constitutes a powerful tool for improving operational ocean forecasting systems at European level within the frame of the Copernicus Marine Environment Monitoring Service (CMEMS). It also facilitates high-stakes decision-making for coastal management and

  11. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  12. Clean Chlorination of Silica Surfaces by a Single-site Substitution Approach

    KAUST Repository

    Maity, Niladri; Barman, Samir; Abou-Hamad, Edy; D'Elia, Valerio; Basset, Jean-Marie

    2018-01-01

    A chlorination method for the selective substitution of well-defined isolated silanol groups of the silica surface has been developed using the catalytic Appel reaction. Spectroscopic analysis, complemented by elemental microanalysis studies, reveals that a quantitative chlorination could be achieved with highly dehydroxylated silica materials that exclusively possess non-hydrogen bonded silanol groups. The employed method did not leave any carbon or phosphorous residue on the silica surface and can be regarded as a promising tool for the future functionalization of metal oxide surfaces.

  13. Clean Chlorination of Silica Surfaces by a Single-site Substitution Approach

    KAUST Repository

    Maity, Niladri

    2018-02-12

    A chlorination method for the selective substitution of well-defined isolated silanol groups of the silica surface has been developed using the catalytic Appel reaction. Spectroscopic analysis, complemented by elemental microanalysis studies, reveals that a quantitative chlorination could be achieved with highly dehydroxylated silica materials that exclusively possess non-hydrogen bonded silanol groups. The employed method did not leave any carbon or phosphorous residue on the silica surface and can be regarded as a promising tool for the future functionalization of metal oxide surfaces.

  14. A new approach to define surface/sub-surface transition in gravel beds

    Science.gov (United States)

    Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William

    2012-12-01

    The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.

  15. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.

  16. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  17. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  18. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  19. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.

    Science.gov (United States)

    Bottiglione, F; Carbone, G

    2015-01-14

    The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

  20. Biomechanical aspects of playing surfaces.

    Science.gov (United States)

    Nigg, B M; Yeadon, M R

    1987-01-01

    The purpose of this paper is to discuss some biomechanical aspects of playing surfaces with special focus on (a) surface induced injuries, (b) methodologies used to assess surfaces and (c) findings from various sports. The paper concentrates primarily on questions related to load on the athlete's body. Data from epidemiological studies suggest strongly that the surface is an important factor in the aetiology of injuries. Injury frequencies are reported to be significantly different for different surfaces in several sports. The methodologies used to assess surfaces with respect to load or performance include material tests and tests using experimental subjects. There is only little correlation between the results of these two approaches. Material tests used in many standardized test procedures are not validated which suggests that one should exercise restraint in the interpretation of these results. Point elastic surfaces are widely studied while area elastic surfaces have received little attention to date. Questions of energy losses on sport surfaces have rarely been studied scientifically.

  1. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  2. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  3. A facile and cost-effective approach to engineer surface roughness for preparation of large-scale superhydrophobic substrate with high adhesive force

    Science.gov (United States)

    Zhou, Bingpu; Tian, Jingxuan; Wang, Cong; Gao, Yibo; Wen, Weijia

    2016-12-01

    This study presents a convenient avenue to fabricate polydimethylsiloxane (PDMS) with controllable surface morphologies and wetting characteristics via standard molding technique. The templates with engineered surface roughness were simply prepared by combinations of microfluidics and photo-polymerization of N-Isopropylacrylamide (NIPAM). The surface morphology of mold could be adjusted via ultraviolet-curing duration or the grafting density, which means that the surface of PDMS sample replicated from the mold could also be easily controlled based on the proposed method. Furthermore, via multiple grafting and replication processes, we have successfully demonstrated that hydrophobicity properties of prepared PDMS samples could be swiftly enhanced to ∼154° with highly adhesive force with resident water droplets. The obtained PDMS samples exhibited well resistance to external mechanical deformation even up to 100 cycles. The proposed scheme is timesaving, cost-effective and suitable for large-scale production of superhydrophobic PDMS substrates. We believe that the presented approach can provide a promising method for preparing superhydrophobic surface with highly adhesive force for on-chip liquid transport, localized reaction, etc.

  4. Surface studies of plasma processed Nb samples

    International Nuclear Information System (INIS)

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO_2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  5. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  7. Hydroxyapatite synthesis on solid surfaces using a biological approach

    International Nuclear Information System (INIS)

    Wang, A; Mei, J; Tse, Y Y; Jones, I P; Sammons, R L

    2012-01-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  8. Hydroxyapatite synthesis on solid surfaces using a biological approach

    Science.gov (United States)

    Wang, A.; Mei, J.; Tse, Y. Y.; Jones, I. P.; Sammons, R. L.

    2012-12-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  9. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  10. Surface-to-surface registration using level sets

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Erbou, Søren G.; Vester-Christensen, Martin

    2007-01-01

    This paper presents a general approach for surface-to-surface registration (S2SR) with the Euclidean metric using signed distance maps. In addition, the method is symmetric such that the registration of a shape A to a shape B is identical to the registration of the shape B to the shape A. The S2SR...... problem can be approximated by the image registration (IR) problem of the signed distance maps (SDMs) of the surfaces confined to some narrow band. By shrinking the narrow bands around the zero level sets the solution to the IR problem converges towards the S2SR problem. It is our hypothesis...... that this approach is more robust and less prone to fall into local minima than ordinary surface-to-surface registration. The IR problem is solved using the inverse compositional algorithm. In this paper, a set of 40 pelvic bones of Duroc pigs are registered to each other w.r.t. the Euclidean transformation...

  11. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  12. Comment on 'Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies'

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, E M, E-mail: gutman@bgu.ac.i [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2010-10-27

    In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity. (comment)

  13. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  14. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  15. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  16. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav; Mantega, Mauro; Rungger, Ivan; Sanvito, Stefano; Boland, John J.

    2011-01-01

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  17. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    Science.gov (United States)

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  18. Small Glacier Area Studies: A New Approach for Turkey

    Science.gov (United States)

    Yavasli, Dogukan D.; Tucker, Compton J.

    2012-01-01

    Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.

  19. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach.

    Science.gov (United States)

    Roosa, Stéphanie; Prygiel, Emilie; Lesven, Ludovic; Wattiez, Ruddy; Gillan, David; Ferrari, Benoît J D; Criquet, Justine; Billon, Gabriel

    2016-06-01

    The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of "bioavailability." Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates.

  20. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  1. High field surface magnetic study of Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kihal, A. [Laboratoire de Magnetisme et Spectroscopie des Solides (LM2S), Universite Badji Mokhtar, BP-12 Annaba (Algeria); LNCMI-G, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France); Fillion, G. [LNCMI-G, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France); Bouzabata, B. [Laboratoire de Magnetisme et Spectroscopie des Solides (LM2S), Universite Badji Mokhtar, BP-12 Annaba (Algeria); Barbara, B. [Institut Neel, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France)

    2012-03-15

    Magnetic properties of magnetite (Fe{sub 3}O{sub 4}) powders, milled for various times up to 15 h, are studied by magnetization measurements. For the starting powder, like in the bulk single crystal, the approach to magnetic saturation is mainly ruled by the usual 1/H and 1/H{sup 2} terms. But for the milled samples, as the grain size decreases, a 1/H{sup 1/2} term rises as the leading term and is interpreted in the framework of the theory of Chudnovsky et al. accounting for the effect of a random anisotropy generated near the surface, aside from a large constant high field susceptibility related to the canted spins at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    Science.gov (United States)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  3. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    Science.gov (United States)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  4. Characterizing the Surface Connectivity of Depressional Wetlands: Linking Remote Sensing and Hydrologic Modeling Approaches

    Science.gov (United States)

    Christensen, J.; Evenson, G. R.; Vanderhoof, M.; Wu, Q.; Golden, H. E.; Lane, C.

    2017-12-01

    Surface connectivity of wetlands in the 700,000 km2 Prairie Pothole Region of North America (PPR) can occur through fill-spill and fill-merge mechanisms, with some wetlands eventually spilling into stream/river systems. These wetland-to-wetland and wetland-to-stream connections vary both spatially and temporally in PPR watersheds and are important to understanding hydrologic and biogeochemical processes in the landscape. To explore how to best characterize spatial and temporal variability in aquatic connectivity, we compared three approaches, 1) hydrological modeling alone, 2) remotely-sensed data alone, and 3) integrating remotely-sensed data into a hydrological model. These approaches were tested in the Pipestem Creek Watershed, North Dakota across a drought to deluge cycle (1990-2011). A Soil and Water Assessment Tool (SWAT) model was modified to include the water storage capacity of individual non-floodplain wetlands identified in the National Wetland Inventory (NWI) dataset. The SWAT-NWI model simulated the water balance and storage of each wetland and the temporal variability of their hydrologic connections between wetlands during the 21-year study period. However, SWAT-NWI only accounted for fill-spill, and did not allow for the expansion and merging of wetlands situated within larger depressions. Alternatively, we assessed the occurrence of fill-merge mechanisms using inundation maps derived from Landsat images on 19 cloud-free days during the 21 years. We found fill-merge mechanisms to be prevalent across the Pipestem watershed during times of deluge. The SWAT-NWI model was then modified to use LiDAR-derived depressions that account for the potential maximum depression extent, including the merging of smaller wetlands. The inundation maps were used to evaluate the ability of the SWAT-depression model to simulate fill-merge dynamics in addition to fill-spill dynamics throughout the study watershed. Ultimately, using remote sensing to inform and validate

  5. Surface characterization protocol for precision aspheric optics

    Science.gov (United States)

    Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra

    2017-10-01

    In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.

  6. A Geostatistical Approach to Indoor Surface Sampling Strategies

    DEFF Research Database (Denmark)

    Schneider, Thomas; Petersen, Ole Holm; Nielsen, Allan Aasbjerg

    1990-01-01

    Particulate surface contamination is of concern in production industries such as food processing, aerospace, electronics and semiconductor manufacturing. There is also an increased awareness that surface contamination should be monitored in industrial hygiene surveys. A conceptual and theoretical...... framework for designing sampling strategies is thus developed. The distribution and spatial correlation of surface contamination can be characterized using concepts from geostatistical science, where spatial applications of statistics is most developed. The theory is summarized and particulate surface...... contamination, sampled from small areas on a table, have been used to illustrate the method. First, the spatial correlation is modelled and the parameters estimated from the data. Next, it is shown how the contamination at positions not measured can be estimated with kriging, a minimum mean square error method...

  7. Surface study of liquid 3He using surface state electrons

    International Nuclear Information System (INIS)

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  8. Density functional study of NO adsorption on undefected and oxygen defective Au–BaO(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Añez, Rafael, E-mail: ranez@ivic.gob.ve [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Sierraalta, Aníbal; Bastardo, Anelisse [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Coll, David [Laboratorio de Físico Química Teórica de Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Garcia, Belkis [Instituto Universitario de Tecnología de Valencia IUTVAL, Valencia, Edo. Carabobo (Venezuela, Bolivarian Republic of)

    2014-07-01

    A periodic density functional approach has been used in order to explore the interaction of NO with undoped and Au doped BaO(1 0 0) surface. Due to oxygen vacancies increase the interaction between the doping metal and the surface, F{sub S} and F{sub S}{sup +} vacancies were studied and compared with the results obtained on the undefected doped BaO(1 0 0). Our results indicate that the high basicity of the BaO surface, besides the electron density changes produced by the oxygen vacancies, modify considerably how the Au atom interacts with the surface increasing the ionic character of the interaction. F{sub S} vacancy shows to be a promise center to activate de NO bond on the BaO(1 0 0) surface.

  9. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Desaunay, Aurélien; Martins, Jean M.F., E-mail: jean.martins@ujf-grenoble.fr

    2014-05-01

    Highlights: • Subcellular distribution of cadmium in Cupriavidus metallidurans CH34 cells. • Comparison of a chemical (EDTA washing) and a physical method (physical disruption). • EDTA washings strongly overestimated membrane-bound Cd concentrations. • The physical method revealed surprisingly over 80% of Cd internalization in the cells. • Metal biosorption by bacteria cannot be considered as a surface complexation process. - Abstract: Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.

  10. Molecular Dynamics Studies of Overbased Detergents on a Water Surface.

    Science.gov (United States)

    Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S

    2017-07-25

    Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.

  11. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    International Nuclear Information System (INIS)

    Le-Pecheur, Anne

    2008-01-01

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  12. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  13. Surface magnetization of the Ising ferromagnet in semi-infinite cubic lattice: renormalization group approach

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Tsallis, C.

    1988-01-01

    The behaviour of the spontaneous surface and bulk magnetizations as function of the temperature for the Ising ferromagnet in a semi-infinitre cubic lattice for various ratios JS/JB (JS and JB are the surface and bulk coupling constants, respectively), is studied. The extraordinary transition where the surface maintains its magnetization as the bulk disorders, was study, in particular; a discontinuity on the first derivative of the surface magnetization at the bulk transition temperature was found. The criticality of the system (universality classes, critical exponents and amplitudes) is discussed. An unexpected slight lack of monotonicity of the surface magnetization as a function of JS/JB for JS/JB [pt

  14. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    Science.gov (United States)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  15. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  16. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    Science.gov (United States)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  17. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  18. Using Paraffin PCM, Cryogel and TEC to Maintain Comet Surface Sample Cold from Earth Approach Through Retrieval

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    An innovative thermal design concept to maintain comet surface samples cold (for example, 263 degrees Kelvin, 243 degrees Kelvin or 223 degrees Kelvin) from Earth approach through retrieval is presented. It uses paraffin phase change material (PCM), Cryogel insulation and thermoelectric cooler (TEC), which are commercially available.

  19. Experimental/Computational Approach to Accommodation Coefficients and its Application to Noble Gases on Aluminum Surface (Preprint)

    Science.gov (United States)

    2009-02-03

    computational approach to accommodation coefficients and its application to noble gases on aluminum surface Nathaniel Selden Uruversity of Southern Cahfornia, Los ...8217 ,. 0.’ a~ .......,..,P. • " ,,-0, "p"’U".. ,Po"D.’ 0.’P.... uro . P." FIG. 5: Experimental and computed radiometri~ force for argon (left), xenon

  20. Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Shim, Do-Jun

    2005-01-01

    To investigate the relevance of the definition of the reference stress to estimate J and C* for surface crack problems, this paper compares finite element (FE) J and C* results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface cracks and finite internal axial cracks are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) a local limit load (ii), a global limit load, (iii) a global limit load determined from the FE limit analysis, and (iv) the optimised reference load. It is found that the reference stress based on a local limit load gives overall excessively conservative estimates of J and C*. Use of a global limit load clearly reduces the conservatism, compared to that of a local limit load, although it can sometimes provide non-conservative estimates of J and C*. The use of the FE global limit load gives overall non-conservative estimates of J and C*. The reference stress based on the optimised reference load gives overall accurate estimates of J and C*, compared to other definitions of the reference stress. Based on the present findings, general guidance on the choice of the reference stress for surface crack problems is given

  1. TED Study of Si(113) Surfaces

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    A TED study of Si(113) surfaces was carried out. Reflections from the 3 × 2 reconstruction were seen at room temperature, while half-order reflections were very faint. The surface showed the phase transition between the 3 × 1 and the disordered (rough) structures at about 930°C. The (113) surface structure at room temperature was analyzed using TED intensity. Four kinds of structure models proposed previously, including both the 3 × 1 and the 3 × 2 reconstructed structures, were examined. The R-factors calculated using the energy-optimized atomic coordinates are not sufficiently small. After minimization of the R-factors, Dabrowski's 3 × 2 structure model is most agreeable, while Ranke's 3 × 1 and 3 × 2 structure models are not to be excluded. STM observation showed that the surface is composed of small domains of the 3 × 2 structure.

  2. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    Science.gov (United States)

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  3. Alternative approach to the surface-excitation model

    International Nuclear Information System (INIS)

    Krohn, V.E.

    1981-01-01

    Although the development of the surface-excitation model of sputtered-ion emission involved a detailed description of the ionization process, one can arrive at the same result by assuming an equilibrium treatment, e.g. the Saha-Langmuir equation, with the temperature falling as the collision casade develops. This suggests that, even if situations are found where the surface-excitation model is successful, it does not follow that the original detailed description of the ionization process is correct. Nevertheless, the surface-excitation model does contain an interesting new idea which should not be overlooked, i.e. that atoms sputtered during the early stages of a collision cascade will be relatively energetic, and to the extent that the Saha-Langmuir equation has some applicability, will have a probability of positive ionization which will be low for atoms of low ionization potential (I phi), relative to lower-energy atoms emitted during the later stages of the collision cascade. The extended abstract will discuss recent experimental results

  4. Sum-frequency spectroscopic studies: I. Surface melting of ice, II. Surface alignment of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Surface vibrational spectroscopy via infrared-visible sum-frequency generation (SFG) has been established as a useful tool to study the structures of different kinds of surfaces and interfaces. This technique was used to study the (0001) face of hexagonal ice (Ih). SFG spectra in the O-H stretch frequency range were obtained at various sample temperatures. For the vapor(air)/ice interface, the degree of orientational order of the dangling OH bonds at the surface was measured as a function of temperature. Disordering sets in around 200 K and increases dramatically with temperature, which is strong evidence of surface melting of ice. For the other ice interfaces (silica/OTS/ice and silica/ice), a similar temperature dependence of the hydrogen bonded OH stretch peak was observed; the free OH stretch mode, however, appears to be different from that of the vapor (air)/ice interface due to interactions at the interfaces. The technique was also used to measure the orientational distributions of the polymer chains on a rubbed polyvinyl alcohol surface. Results show that the polymer chains at the surface appear to be well aligned by rubbing, and the adsorbed liquid crystal molecules are aligned, in turn, by the surface polymer chains. A strong correlation exists between the orientational distributions of the polymer chains and the liquid crystal molecules, indicating that the surface-induced bulk alignment of a liquid crystal film by rubbed polymer surfaces is via an orientational epitaxy-like mechanism. This thesis also contains studies on some related issues that are crucial to the above applications. An experiment was designed to measure SFG spectra in both reflection and transmission. The result confirms that SFG in reflection is generally dominated by the surface contribution. Another issue is the motional effect due to fast orientational motion of molecules at a surface or interface. Calculations show that the effect is significant if the molecular orientation varies

  5. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  6. Role of surface studies in science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Karkhanavala, M D [Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.

    1977-01-01

    Reactivity of solids is influenced by the surface properties such as structure, dislocations and composition. Corrosion and erosion are essentially surface phenomena. Surface studies, therefore, assume importance in prevention and minimization of corrosion and erosion. Discussion is illustrated with examples drawn from the field of nuclear power reactor technology.

  7. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    Molecular synthesis is essential in the bottom-up approach of achieving highly stable nanostructures. On-surface synthesis is highly interesting from the basic science of view to improve the understanding of molecular behavior adsorbed on metal surfaces, and has potential applications such as mol......Molecular synthesis is essential in the bottom-up approach of achieving highly stable nanostructures. On-surface synthesis is highly interesting from the basic science of view to improve the understanding of molecular behavior adsorbed on metal surfaces, and has potential applications...... such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  8. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    Science.gov (United States)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between

  9. Surface and Interface Studies with Radioactive Ions

    CERN Multimedia

    Weber, A

    2002-01-01

    Investigations on the atomic scale of magnetic surfaces and magnetic multilayers were performed by Perturbed Angular Correlation (PAC) spectroscopy. The unique combination of the Booster ISOLDE facility equipped with a UHV beamline and the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) is ideally suited for such microscopic studies. Main advantages are the choice of problem-oriented radioactive probes and the purity of mass-separated beams. The following results were obtained: $\\,$i) Magnetic hyperfine fields (B$_{hf}$) of Se on Fe, Co, Ni surfaces were determined. The results prompted a theoretical study on the B$_{hf}$ values of the 4sp-elements in adatom position on Ni and Fe, confirming our results and predicting unexpected behaviour for the other elements. $\\,$ii) Exemplarily we have determined B$_{hf}$ values of $^{111}$Cd at many different adsorption sites on Ni surfaces. We found a strong dependence on the coordination number of the probes. With decreasing coordination nu...

  10. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  11. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  12. Optimal control of open quantum systems: a combined surrogate hamiltonian optimal control theory approach applied to photochemistry on surfaces.

    Science.gov (United States)

    Asplund, Erik; Klüner, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.

  13. Evolution of Western Mediterranean Sea Surface Temperature between 1985 and 2005: a complementary study in situ, satellite and modelling approaches

    Science.gov (United States)

    Troupin, C.; Lenartz, F.; Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Ouberdous, M.; Beckers, J.-M.

    2009-04-01

    In order to evaluate the variability of the sea surface temperature (SST) in the Western Mediterranean Sea between 1985 and 2005, an integrated approach combining geostatistical tools and modelling techniques has been set up. The objectives are: underline the capability of each tool to capture characteristic phenomena, compare and assess the quality of their outputs, infer an interannual trend from the results. Diva (Data Interpolating Variationnal Analysis, Brasseur et al. (1996) Deep-Sea Res.) was applied on a collection of in situ data gathered from various sources (World Ocean Database 2005, Hydrobase2, Coriolis and MedAtlas2), from which duplicates and suspect values were removed. This provided monthly gridded fields in the region of interest. Heterogeneous time data coverage was taken into account by computing and removing the annual trend, provided by Diva detrending tool. Heterogeneous correlation length was applied through an advection constraint. Statistical technique DINEOF (Data Interpolation with Empirical Orthogonal Functions, Alvera-Azc

  14. SFG and AFM Studies of Polymer Surface Monolayers

    Science.gov (United States)

    Somorjai, Gabor A.

    2003-03-01

    Sum frequency generation vibrational spectroscopy and atomic force microscopy techniques were utilized to study the structure and composition of polymer surfaces ranging from polyethylene and polypropylene to copolymers of polyurethane and polystyrene. The surface methyl groups aligned perpendicular to the surface above the glass transition temperature of polypropylene. Large side groups such as the phenyl group on polystyrene is also near the surface normal at the polymer-air interface. At the air interface hydrophobic groups are dominant on the polymer surface while at solid-water interface hydrophilic groups segregate to the surface. Minimizing surface energy is the cause of readjusting the surface composition at polymer-water interfaces as compared to polymer-air interfaces. Upon stretching the soft component of two-component polymer systems segregates to the surface and both the surface structure and the surface composition undergo reversible or irreversible changes depending on the magnitude of the stretch. Since the heart beat forces bio-polymers to stretch over 40 million times a year the molecular behavior due to stretching has important physiological consequences.

  15. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene

    International Nuclear Information System (INIS)

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-01-01

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications

  16. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO{sub 2} films with patterned surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongfan, E-mail: duanzf@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China); Zhao, Zhen; Luo, Dan; Zhao, Maiqun [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Zhao, Gaoyang, E-mail: Zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Patterned TiO{sub 2} films were prepared by photosensitive sol–gel method. • Surface had quasi micro-lens array structure, leading to superhydrophobicity. • The surface with the lowest period exhibited the highest contact angel of 163°. • UV irradiation induced the conversion to superhydrophilicity. - Abstract: Superhydrophobic TiO{sub 2} films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol–gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO{sub 2} surface was investigated. The water contact angles (CAs) of micro-patterned TiO{sub 2} surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO{sub 2} Surface.

  17. Approaches for integrated assessment of ecological and eutrophication status of surface waters in Nordic Countries

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Aroviita, Jukka; Carstensen, Jacob

    2016-01-01

    We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of ‘ecological status’ sensu the EU Water Framework Directive as well as assessment of ‘eutrophication status’ in coastal and marine waters. Integration principles for...... principles applied within BQEs are critical and in need of harmonisation if we want a better understanding of potential transition in ecological status between surface water types, e.g. when riverine water enters a downstream lake or coastal water body.......We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of ‘ecological status’ sensu the EU Water Framework Directive as well as assessment of ‘eutrophication status’ in coastal and marine waters. Integration principles...

  18. Efficient maximal Poisson-disk sampling and remeshing on surfaces

    KAUST Repository

    Guo, Jianwei; Yan, Dongming; Jia, Xiaohong; Zhang, Xiaopeng

    2015-01-01

    Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.

  19. Efficient maximal Poisson-disk sampling and remeshing on surfaces

    KAUST Repository

    Guo, Jianwei

    2015-02-01

    Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.

  20. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  1. The Si(100)-Sb 2x1 and Ge(100) 2x1 surfaces: A multi-technique study

    International Nuclear Information System (INIS)

    Richter, M.

    1993-08-01

    The electronic and geometric structures of the clean and Sb terminated Si(100)2x1 and Ge(100)-2x1 surfaces have been investigated using a multi-technique approach. Low energy electron diffraction (LEED), scanning tunneling microscopy (STM), surface extended X-ray absorption fine structure (SEXAFS) spectroscopy and angle-integrated core-level photoemission electron spectroscopy (PES) were employed to measure the surface symmetry, defect structure, relevant bond lengths, atomic coordination and electronic structure. By employing a multi-technique approach, it is possible to correlate changes in the geometric structure to specific features of the core-level lineshape of the substrate. This allows for the assignment of components of the core-level lineshape to be assigned to specific surface and near-surface atoms

  2. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  3. The relationship between approaches to study and academic performance among Australian undergraduate occupational therapy students.

    Science.gov (United States)

    Brown, Ted; Murdolo, Yuki

    2017-06-01

    The academic success and degree completion of tertiary students depends on their academic performance (AP), commonly measured by the percentage grades for the units they complete. No research has examined whether occupational therapy students' approaches to study are predictive of their AP. This study investigated whether approaches to study were predictive of the AP among a group of Australian undergraduate occupational therapy students. A total of 376 undergraduate occupational therapy students completed the Approaches and Study Skills Inventory for Students (ASSIST). Regression analysis was conducted using a range of demographic characteristics and the ASSIST scores as independent variables with students' self-reported by their self-reported mean percentage grade range (as a proxy indicator of their AP) as the dependent variable. The deep and the strategic approaches to study were not significantly correlated with occupational therapy students' AP. The ASSIST fear of failure subscale of the surface approach to study had a unique contribution to AP, accounting for 1.3% of its total variance. Occupational therapy students' year level of enrolment made a unique contribution to their AP, accounting for 4.2% of the total variance. Age and gender made a unique contribution to AP as well although their impact was small. Undergraduate occupational therapy students' approaches to study were predictive of their AP to a very limited degree. However, their AP was predicted by a number of demographic variables, including age, gender and year level of enrolment. Further study in this area is recommended. © 2016 Occupational Therapy Australia.

  4. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Directory of Open Access Journals (Sweden)

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  5. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  6. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers

    Science.gov (United States)

    Tanahashi, Mitsuru

    2010-01-01

    Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

  8. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers

    Directory of Open Access Journals (Sweden)

    Mitsuru Tanahashi

    2010-03-01

    Full Text Available Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

  9. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  10. Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth

    Science.gov (United States)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2009-01-01

    Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.

  11. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  12. Positron beam studies of solids and surfaces: A summary

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2006-01-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations

  13. Positron beam studies of solids and surfaces: A summary

    Science.gov (United States)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  14. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  15. Coupling surface and mantle dynamics: A novel experimental approach

    Science.gov (United States)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  16. High-yielding and photolabile approaches to the covalent attachment of biomolecules to surfaces via hydrazone chemistry.

    Science.gov (United States)

    Lee, Ju Hun; Domaille, Dylan W; Noh, Hyunwoo; Oh, Taeseok; Choi, Chulmin; Jin, Sungho; Cha, Jennifer N

    2014-07-22

    The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation--the reaction of a hydrazine with an aldehyde or ketone--as both hydrazines and aldehydes/ketones are largely bioorthogonal, which makes this particular reaction suitable for conjugating biomolecules to a variety of substrates. We show that the mild reaction conditions afforded by hydrazone conjugation enable the conjugation of DNA and proteins to the substrate surface in significantly higher yields than can be achieved with traditional bioconjugation techniques, such as maleimide chemistry. Next, we designed and synthesized a photocaged aryl ketone that can be conjugated to a surface and photochemically activated to provide a suitable partner for subsequent hydrazone formation between the surface-anchored ketone and DNA- or protein-hydrazines. Finally, we exploit the latent functionality of the photocaged ketone and pattern multiple biomolecules on the same substrate, effectively demonstrating a strategy for designing substrates with well-defined domains of different biomolecules. We expect that this approach can be extended to the production of multiplexed assays by using an appropriate mask with sequential photoexposure and biomolecule conjugation steps.

  17. Sulfide Mineral Surfaces

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Vaughan, David J.

    2006-01-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  18. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  19. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo

    2011-05-17

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low concentration of Rhodamine-B (RB) (2 × 10 -7 mol/L). Interestingly, RB at that concentration was found to be aggregated at the air-liquid and solid (hydrophobic patch only)-liquid interfaces, which helps us to distinguish the liquid and solid interfaces as well as hydrophobic and hydrophilic patches by their corresponding fluorescent intensities. From the measured local contact angles, the line tension can be easily derived and the value is found to be (-2.06-1.53) × 10-6 J/m. © 2011 American Chemical Society.

  20. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  1. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  2. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields.

    Science.gov (United States)

    Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars

    2016-09-01

    This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ti and Zr surfaces studied by molecular dynamics

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Passianot, Roberto C.; Monti, Ana M.

    2003-01-01

    The interaction between point defects technique and the (0001), (1-210), (10-10) surfaces in Ti and Zr is studied by the molecular dynamics technique. Both of metals are in the hexagonal structure and within a temperature range of 100 to 900 K. The atomic interactions are modeled by EAM-type many-body potentials, that were used previously in static simulations. New migration mechanisms are unraveled and others are verified with respect to those already proposed in the static studies. Also included is an analysis of the vacancy stability in the sub-surface layers of the prismatic surfaces. (author)

  5. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    Science.gov (United States)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  6. A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation

    Science.gov (United States)

    Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.

    2017-12-01

    Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 0­3 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.

  7. Network Approach in Political Communication Studies

    Directory of Open Access Journals (Sweden)

    Нина Васильевна Опанасенко

    2013-12-01

    Full Text Available The article is devoted to issues of network approach application in political communication studies. The author considers communication in online and offline areas and gives the definition of rhizome, its characteristics, identifies links between rhizome and network approach. The author also analyses conditions and possibilities of the network approach in modern political communication. Both positive and negative features of the network approach are emphasized.

  8. 3D SEM for surface topography quantification – a case study on dental surfaces

    International Nuclear Information System (INIS)

    Glon, F; Flys, O; Lööf, P-J; Rosén, B-G

    2014-01-01

    3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales

  9. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  10. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    International Nuclear Information System (INIS)

    Asplund, Erik; Kluener, Thorsten

    2012-01-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., (ℎ/2π)=m e =e=a 0 = 1, have been used unless otherwise stated.

  11. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  12. Modern methods of studying surfaces and their application to glasses

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Haehnert, M.

    1977-05-01

    In the works are demonstrated modern methods for study of solid surfaces and its use of glasses. Study of the interaction of ions, electrons and photons with the glass surface provides information about the composition of the surface and its structure on an atomic scale. A qualitative analysis of a surface can be made with the aid of the Auger electron spectroscopy (AES) and the electron spectroscopy for chemical analysis (ESCA) and with the ion scattering (ISS and RBS) and the secondary ion mass spectrometry (SIMS). The structure of a surface can be studied by means of ion scattering and low-energy electron diffraction (LEED) and the topography of a surface by means of scanning electron microscopy (SEM). The ellipsometry is generally confined to measuring the thickness of very thin layers. The application these methods to the glass surfaces is demonstrated on series of examples. (author)

  13. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  14. First-principles study on the interaction of nitrogen atom with α–uranium: From surface adsorption to bulk diffusion

    International Nuclear Information System (INIS)

    Su, Qiulei; Deng, Huiqiu; Xiao, Shifang; Li, Xiaofan; Hu, Wangyu; Ao, Bingyun; Chen, Piheng

    2014-01-01

    Experimental studies of nitriding on uranium surfaces show that the modified layers provide considerable protection against air corrosion. The bimodal distribution of nitrogen is affected by both its implantation and diffusion, and the diffusion of nitrogen during implantation is also governed by vacancy trapping. In the present paper, nitrogen adsorption, absorption, diffusion, and vacancy trapping on the surface of and in the bulk of α–uranium are studied with a first-principles density functional theory approach and the climbing image nudged elastic band method. The calculated results indicate that, regardless of the nitrogen coverage, a nitrogen atom prefers to reside at the hollow1 site and octahedral (Oct) site on and below the surface, respectively. The lowest energy barriers for on-surface and penetration diffusion occur at a coverage of 1/2 monolayer. A nitrogen atom prefers to occupy the Oct site in bulk α–uranium. High energy barriers are observed during the diffusion between neighboring Oct sites. A vacancy can capture its nearby interstitial nitrogen atom with a low energy barrier, providing a significant attractive nitrogen-vacancy interaction at the trapping center site. This study provides a reference for understanding the nitriding process on uranium surfaces

  15. Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach

    International Nuclear Information System (INIS)

    Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C.

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to study surface reactions between nitrogen oxides and TiO 2 on surfaces. - The bandgap of solid-state TiO 2 (3.2 eV) enables it to be a useful photocatalyst in the ultraviolet (λ 2 surface in the presence of sunlight therefore enables the removal of harmful NO x gases from the atmosphere by oxidation to nitrates. These properties, in addition to the whiteness, relative cheapness and non-toxicity, make TiO 2 ideal for the many de-NOX catalysts that are currently being commercially exploited both in the UK and Japan for concrete paving materials in inner cities. There is need, however, for further academic understanding of the surface reactions involved. Hence, we have used surface specific techniques, including X-ray photoelectron spectroscopy and Raman spectroscopy, to investigate the NO x adsorbate reaction at the TiO 2 substrate surface

  16. A Generic Approach for Inversion of Surface Reflectance over Land: Overview, Application and Validation Using MODIS and LANDSAT8 Data

    Science.gov (United States)

    Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.

    2016-01-01

    This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.

  17. Deep and surface learning in problem-based learning: a review of the literature.

    Science.gov (United States)

    Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David

    2016-12-01

    In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.

  18. Seismic Input Motion Determined from a Surface-Downhole Pair of Sensors: A Constrained Deconvolution Approach

    OpenAIRE

    Dino Bindi; Stefano Parolai; M. Picozzi; A. Ansal

    2010-01-01

    We apply a deconvolution approach to the problem of determining the input motion at the base of an instrumented borehole using only a pair of recordings, one at the borehole surface and the other at its bottom. To stabilize the bottom-tosurface spectral ratio, we apply an iterative regularization algorithm that allows us to constrain the solution to be positively defined and to have a finite time duration. Through the analysis of synthetic data, we show that the method is capab...

  19. Aims and accomplishments of surface theory

    International Nuclear Information System (INIS)

    Feibelman, P.J.

    1979-01-01

    The goals of surface science include the understanding of surface structure, transport and chemistry. However, present activities are mainly focussed on the most basic problem, viz., what are the constituents of a given surface and where are they located. Theorists are approaching this surface characterization problem from two sides. To make better use of the data available from the many experimental surface probes, an understanding of the force laws which govern the motion of probe-particles near surfaces is being developed, and the relation between the excitation and ground state spectra of a solid are being studied. In order to develop a predictive capability regarding surface structure, a variety of intrinsic surface properties are being studied, including the nature of bonds at transition metal surfaces, the meaning of bond locality in extended systems, and the electronic factors underlying the forces which govern surface geometry. These studies often raise technical issues such as the validity of using local exchange-correlation potentials and the applicability of cluster calculations to the analysis of extended surface situations, which, however, should not obscure the main thrust of current work - empirical and predictive surface structure determination. These points are illustrated with examples from recent research and ways in which experimental surface work might assist theoretical efforts are indicated

  20. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  1. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  2. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  3. Surface self-organization: From wear to self-healing in biological and technical surfaces

    International Nuclear Information System (INIS)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-01-01

    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  4. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  5. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  6. First-principles study of surface plasmons on Ag(111) and H/Ag(111)

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2011-01-01

    Linear-response time-dependent density functional theory is used to investigate the relation between molecular bonding and surface plasmons for the model system H/Ag(111). We employ an orbital-dependent exchange-correlation functional to obtain a correct description of the Ag 3d band, which...... is crucial to avoid overscreening the plasmon by the s-d interband transitions. For the clean surface, this approach reproduces the experimental plasmon energies and dispersion to within 0.15 eV. Adsorption of hydrogen shifts and damps the Ag(111) surface plasmon and induces a new peak in the loss function...... at 0.6 eV below the Ag(111) plasmon peak. This feature originates from interband transitions between states located on the hydrogen atoms and states on the Ag surface atoms....

  7. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells

    International Nuclear Information System (INIS)

    Khung, Y.L.; Barritt, G.; Voelcker, N.H.

    2008-01-01

    The effects of surface topography on cell behaviour are the subject of intense research in cell biology. These effects have so far only been studied using substrate surfaces of discretely different topography. In this paper, we present a new approach to characterise cell growth on porous silicon gradients displaying pore sizes from several thousands to a few nanometers. This widely applicable format has the potential to significantly reduce sample numbers and hence analysis time and cost. Our gradient format was applied here to the culture of neuroblastoma cells in order to determine the effects of topography on cell growth parameters. Cell viability, morphology, length and area were characterised by fluorescence and scanning electron microscopy. We observed a dramatic influence of changes in surface topography on the density and morphology of adherent neuroblastoma cells. For example, pore size regimes where cell attachment is strongly discouraged were identified providing cues for the design of low-fouling surfaces. On pore size regimes more conducive to cell attachment, lateral cell-cell interactions crosslinked the cell layer to the substratum surface, while direct substrate-cell interactions were scarce. Finally, our study revealed that cells were sensitive to nanoscale surface topography with feature sizes of < 20 nm

  8. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  9. Critical review of gamma spectrometry detection approaches for in-plant surface deposition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, Carola [Nuclear Fuels and Chemistry at the Electric Power Research Institute, Palo Alto, CA 94304, (United States)

    2015-07-01

    Surface deposition of activated corrosion product on oxide layers of light-water reactor primary system components is the primary source for ex-core radiation fields and personnel radiation exposure. Understanding the deposition mechanism and what factors influence the deposition and release behaviors are crucial for developing effective radiation field reduction measures. One of the available tools to assess the surface deposition is in-plant gamma spectrometry, which has been performed for several decades using either sodium iodide (NaI) or high-purity germanium (HPGe) detectors. Lately, the much more mobile cadmium-zinc-telluride (CZT) detectors are increasingly employed by stations because of their ease in use and handling. However, all of these gamma detectors face the same challenges; namely large-geometry samples of inconsistent sample compositions and sometimes gaps in the information necessary to establish proper efficiency calibrations. This paper reviews current measurements and efficiency calibration approaches taken in the industry. The validity of the measurement results and the feasibility of the data's use in understanding source term behavior is examined. Suggestions are made for the development of a more robust deposit characterization and radiation field monitoring program. (authors)

  10. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  11. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  12. Theoretical study of the surface resistivity of (111) surfaces of NixPt1-x(111) alloys

    International Nuclear Information System (INIS)

    Rous, P. J.

    2001-01-01

    A layer-Korringa - Kohn - Rostoker calculation is used to study the compositional dependence of the surface resistivity of the (111) surface of Ni x Pt 1-x (111) alloys. The compositional disorder in the bulk and at the surface is described by the coherent potential approximation. If it is assumed that the atomic planes near the (111) surface Ni x Pt 1-x have the same composition as the bulk layers, then a weak Nordheim effect is observed in the compositional dependence of the surface resistivity. However, we show that surface segregation in Ni x Pt 1-x (111) causes an inverse Nordheim dependence in the actual surface resistivity as the bulk composition is varied. [copyright] 2001 American Institute of Physics

  13. Surface-Based Regional Homogeneity in First-Episode, Drug-Naïve Major Depression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Hui-Jie Li

    2014-01-01

    Full Text Available Background. Previous volume-based regional homogeneity (ReHo studies neglected the intersubject variability in cortical folding patterns. Recently, surface-based ReHo was developed to reduce the intersubject variability and to increase statistical power. The present study used this novel surface-based ReHo approach to explore the brain functional activity differences between first-episode, drug-naïve MDD patients and healthy controls. Methods. Thirty-three first-episode, drug-naïve MDD patients and 32 healthy controls participated in structural and resting-state fMRI scans. MDD patients were rated with a 17-item Hamilton Rating Scale for Depression prior to the scan. Results. In comparison with the healthy controls, MDD patients showed reduced surface-based ReHo in the left insula. There was no increase in surface-based ReHo in MDD patients. The surface-based ReHo value in the left insula was not significantly correlated with the clinical information or the depressive scores in the MDD group. Conclusions. The decreased surface-based ReHo in the left insula in MDD may lead to the abnormal top-down cortical-limbic regulation of emotional and cognitive information. The surface-based ReHo may be a useful index to explore the pathophysiological mechanism of MDD.

  14. Research Approaches in the Study of Religion

    Directory of Open Access Journals (Sweden)

    Szocik Konrad

    2015-02-01

    Full Text Available Despite development of secular ideas and concepts in the Western world, we can observe increasing interest in the study of religion. However, this popularity of the study of religion and different research approaches has caused that in some sense scholars that were studying religion came to a dead point. Here I show that the most optimal research approach in the study of religion is pluralistic, integral paradigm which connects old traditional methods with naturalistic, cognitive and sometimes experimental approach.

  15. Study of crater formation and its characteristics due to impact of a cluster projectile on a metal surface by molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Naspoori, Srujan Kumar; Kammara, Kishore K.; Kumar, Rakesh, E-mail: rkm@iitk.ac.in

    2017-04-01

    Impingement of energetic particles/ions on material surfaces is of great interest as these impacts give rise to various interesting phenomena, such as sputtering, back-scattering, crater formation, emission of electrons and photons from material surfaces etc. Surface erosion occurring in the plasma-facing material of nuclear fusion reactors reduce their performance and this motivated the course of the current work in understanding the underlying physics of solid–particle interactions. In the present work, we have studied sputtering, crater formation and its characteristics on the surface of a plasma-facing material due to the impact of a low to high energy dust particle (a conglomerate of a few to a thousand atoms) using the molecular dynamics method. Sputtering yield, excavated atoms from the crater, crater depth, height of crater rim, radius and aspect ratio of the crater are calculated for a range of incident energies (10 eV to 10 keV), and the variation of these parameters with varying size (formed of 14, 32, 64 atoms) of dust particle at different temperatures of the target material are computed.

  16. On the Role of Discipline-Related Self-Concept in Deep and Surface Approaches to Learning among University Students

    Science.gov (United States)

    Platow, Michael J.; Mavor, Kenneth I.; Grace, Diana M.

    2013-01-01

    The current research examined the role that students' discipline-related self-concepts may play in their deep and surface approaches to learning, their overall learning outcomes, and continued engagement in the discipline itself. Using a cross-lagged panel design of first-year university psychology students, a causal path was observed in which…

  17. Surface Roughness of Al-5Cu Alloy using a Taguchi-Fuzzy Based Approach

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2014-07-01

    Full Text Available The present paper investigates the application of traditional Taguchi method with fuzzy logic for multi objective optimization of the turning process of Al-5Cu alloy in CNC Lathe machine. The cutting parameters are optimized with considerations of the multiple surface roughness characteristics (Centre line average roughness Ra, Average maximum height of the profile Rz, Maximum height of the profile Rt, Mean spacing of local peaks of the profile Sa . Experimental results are demonstrated to present the effectiveness of this approach. The parameters used in the experiment were cutting speed, depth of cut, feed rate. Other parameters such as tool nose radius, tool material, workpiece length, workpiece diameter, and workpiece material were taken as constant.

  18. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  19. Reconstruction of freeform surfaces for metrology

    International Nuclear Information System (INIS)

    El-Hayek, N; Nouira, H; Anwer, N; Damak, M; Gibaru, O

    2014-01-01

    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks ® or Geomagic ® ). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces

  20. Surface functionalization of magnetite nanoparticle: A new approach using condensation of alkoxysilanes

    Science.gov (United States)

    Rodriguez, A. F. R.; Costa, T. P.; Bini, R. A.; Faria, F. S. E. D. V.; Azevedo, R. B.; Jafelicci, M.; Coaquira, J. A. H.; Martínez, M. A. R.; Mantilla, J. C.; Marques, R. F. C.; Morais, P. C.

    2017-09-01

    In this study we report on successful production of two samples (BR15 and BR16) comprising magnetite (Fe3O4) nanoparticles ( 10 nm) surface-functionalized via hydrolysis and condensation of alkoxysilane agents, namely 3-aminopropyl-trimethoxisilane (APTS) and N-propyl-trimethoxisilane (NPTS). The as-produced samples were characterized using transmission electron microscopy (TEM), x-ray diffraction (XRD), magnetization measurements (5 K and 300 K hysteresis cycles and zero field-cooled/field-cooled measurements), and Mössbauer spectroscopy (77 and 297 K). The Mössbauer data supported the model picture of a core-shell magnetite-based system. This material system shows shell properties influenced by the surface-coating design, either APTS-coated (BR15) or APTS+NPTS-coated (sample BR16). Analyses of the Mössbauer spectra indicates that the APTS-coated sample presents Fe(III)-rich core and Fe(II)-rich shell with strong hyperfine field; whereas, the APTS+NPTS-coated sample leads to a mixture of two main nanostructures, one essentially surface-terminated with APTS whereas the other surface-terminated with NPTS, both presenting weak hyperfine fields compared with the single surface-coated sample. Magnetization measurements support the core-shell picture built from the analyses of the Mössbauer data. Our findings emphasize the capability of the Mössbauer spectroscopy in assessing subtle differences in surface-functionalized iron-based core-shell nanostructures.

  1. Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach

    Science.gov (United States)

    Jutebring Sterte, Elin; Johansson, Emma; Sjöberg, Ylva; Huseby Karlsen, Reinert; Laudon, Hjalmar

    2018-05-01

    Groundwater and surface-water interactions are regulated by catchment characteristics and complex inter- and intra-annual variations in climatic conditions that are not yet fully understood. Our objective was to investigate the influence of catchment characteristics and freeze-thaw processes on surface and groundwater interactions in a boreal landscape, the Krycklan catchment in Sweden. We used a numerical modelling approach and sub-catchment evaluation method to identify and evaluate fundamental catchment characteristics and processes. The model reproduced observed stream discharge patterns of the 14 sub-catchments and the dynamics of the 15 groundwater wells with an average accumulated discharge error of 1% (15% standard deviation) and an average groundwater-level mean error of 0.1 m (0.23 m standard deviation). We show how peatland characteristics dampen the effect of intense rain, and how soil freeze-thaw processes regulate surface and groundwater partitioning during snowmelt. With these results, we demonstrate the importance of defining, understanding and quantifying the role of landscape heterogeneity and sub-catchment characteristics for accurately representing catchment hydrological functioning.

  2. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, Denis Emmanuel [Univ. of California, Berkeley, CA (United States)

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  3. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  5. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  6. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  7. The Hermeneutical Approach in Translation Studies

    Directory of Open Access Journals (Sweden)

    Bernd Stefanink

    2017-09-01

    Full Text Available Our aim is to convince the reader of the validity of the hermeneutical approach in translation studies. In a first part, we will show that this validity is based on the fact that the hermeneutical approach integrates factors like subjectivity, intuition, corporeality and creativity in its theoretical reflection, being thus close to the reality of the translation process. In a second part, we will situate this approach in the context of the development of modern translation studies since the 1950s, and show that this development was characterized by a dominating tendency that led from an atomistic to a more and more holistic view of the translation unit, legitimating the holistic approach, which is fundamental in translational hermeneutics. Our third part relates the history of philosophical hermeneutics as the legitimate foundation of translational hermeneutics. In a fourth part, devoted to the “outcoming perspectives”, we will try to reinforce the legitimacy of the hermeneutical approach by showing how it is supported by recent results of research in cognitive science. In order to foster further research in translational hermeneutics we also offer a methodology based on hermeneutic principles to study the translation process. Finally, we give an example of legitimation of a creative problemsolving based on a hermeneutical approach of a translation problem which finds its validation in the results of cognitive research.

  8. The frequency-domain approach for apparent density mapping

    Science.gov (United States)

    Tong, T.; Guo, L.

    2017-12-01

    Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.

  9. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    International Nuclear Information System (INIS)

    Atenco A, N.; Perez R, F.; Makarov, N.M.

    2005-01-01

    A theory for calculating the relaxation frequency ν and the shift δ ω of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R C for the well width fluctuations is much larger than the exciton radius a 0 (R C >> a 0 ). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al 0.3 Ga 0.7 As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of ν and δ ω be quite realistic. In particular, the relaxation frequency ν for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency ω 0 , while the surface-induced resonance shift δ ω vanishes near ω 0 , and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs

  10. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    International Nuclear Information System (INIS)

    Heß, Mirco; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-01-01

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical 18 F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found

  11. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  12. A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments.

    Science.gov (United States)

    Fermo, Paola; Turrion, Raquel Gonzalez; Rosa, Mario; Omegna, Alessandra

    2015-04-01

    The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon-TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.

  13. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    Science.gov (United States)

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  14. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  15. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  16. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  17. Surface localization of sacral foramina for neuromodulation of bladder function. An anatomical study.

    Science.gov (United States)

    Hasan, S T; Shanahan, D A; Pridie, A K; Neal, D E

    1996-01-01

    A method is described for percutaneous localization of the sacral foramina, for neuromodulation of bladder function. We carried out an anatomical study of 5 male and 5 female human cadaver pelves. Using the described surface markings, needles were placed percutaneously into all sacral foramina from nine different angles. Paths of needle entry were studied by subsequent dissection. We observed that although it was possible to enter any sacral foramen at a wide range of insertion angles, the incidence of nerve root/vascular penetration increased with increasing angle of needle entry. Also, the incidence of nerve root penetration was higher with the medial approach compared with lateral entry. The insertion of a needle into the S1 foramen was associated with a higher incidence of nerve root penetration and presents a potential for arterial haemorrhage. On the other hand the smaller S3 and S4 nerve roots were surrounded by venous plexuses, presenting a potential source of venous haemorrhage during procedures. Our study suggests a new method for identifying the surface markings of sacral foramina and it describes the paths of inserted needles into the respective foramina. In addition, it has highlighted some potential risk factors secondary to needle insertion.

  18. A Lookup-Table-Based Approach to Estimating Surface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-03-01

    Full Text Available Incoming surface solar irradiance (SSI is essential for calculating Earth’s surface radiation budget and is a key parameter for terrestrial ecological modeling and climate change research. Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper presents a new scheme for estimating SSI from the visible and infrared channels of geostationary meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical parameters were retrieved from Geostationary Operational Environmental Satellite (GOES system images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara Discrete Ordinate Radiative Transfer (SBDART, to balance computational efficiency and accuracy. The atmospheric attenuation effects considered in our approach were water vapor absorption and aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements from seven stations in the SURFRAD (SURFace RADiation budget network. The results of the comparison for 2012 showed that the estimated SSI agreed with ground measurements with correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2 for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error (RMSE of instantaneous SSI was 80.0 W/m2 (16.8%, 127.6 W/m2 (55.1%, and 99.5 W/m2 (25.5% for clear-sky, cloudy-sky (overcast sky and partly cloudy sky, and all-sky (clear-sky and cloudy-sky conditions, respectively. A comparison with other state

  19. Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach

    Science.gov (United States)

    Caselli, Paola; Stantcheva, Tatiana; Shalabiea, Osama; Shematovich, Valery I.; Herbst, Eric

    2002-10-01

    The formation of singly and doubly deuterated isotopomers of formaldehyde and of singly, doubly, and multiply deuterated isotopomers of methanol on interstellar grain surfaces has been studied with a semi-empirical modified rate approach and a Monte Carlo method in the temperature range 10- 20 K. Agreement between the results of the two methods is satisfactory for all major and many minor species throughout this range. If gas-phase fractionation can produce a high abundance of atomic deuterium, which then accretes onto grain surfaces, diffusive surface chemistry can produce large abundances of deuterated species, especially at low temperatures and high gas densities. Warming temperatures will then permit these surface species to evaporate into the gas, where they will remain abundant for a considerable period. We calculate that the doubly deuterated molecules CHD 2OH and CH 2DOD are particularly abundant and should be searched for in the gas phase of protostellar sources. For example, at 10 K and high density, these species can achieve up to 10-20% of the abundance of methanol.

  20. New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments

    KAUST Repository

    Hamieh, Ali Imad Ali

    2017-01-01

    The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF).

  1. New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments

    KAUST Repository

    Hamieh, Ali Imad

    2017-02-01

    The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF).

  2. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X...

  3. Bubbling surface operators and S-duality

    International Nuclear Information System (INIS)

    Gomis, Jaume; Matsuura, Shunji

    2007-01-01

    We construct smooth asymptotically /ADS solutions of Type IIB supergravity corresponding to all the half-BPS surface operators in N = 4 SYM. All the parameters labeling a half-BPS surface operator are identified in the corresponding bubbling geometry. We use the supergravity description of surface operators to study the action of the SL(2,Z) duality group of N 4 SYM on the parameters of the surface operator, and find that it coincides with the recent proposal by Gukov and Witten in the framework of the gauge theory approach to the geometrical Langlands with ramification. We also show that whenever a bubbling geometry becomes singular that the path integral description of the corresponding surface operator also becomes singular

  4. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Directory of Open Access Journals (Sweden)

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  5. Derivation of quantitative acceptance criteria for disposal of radioactive waste to near surface facilities: Development and implementation of an approach for the post-closure phase

    International Nuclear Information System (INIS)

    Torres, C.

    2000-01-01

    The International Atomic Energy Agency has established a project to develop and illustrate, through practical examples, an approach that allows the derivation of quantitative waste acceptance criteria for near surface disposal of radioactive waste. The first phase focussed on the derivation of example post-closure safety waste acceptance criteria through the use of a safety assessment approach that allows for the derivation of values in a clear and well documented manner. The approach consists of five steps: the specification of the assessment context; the description of the disposal system; the development and justification of scenarios; the formulation and implementation of models; and the calculation and derivation of example values. The approach has been successfully used to derive activity values for the disposal of radioactive waste to illustrative near surface facilities. (author)

  6. X-ray scattering studies of surfaces and interfaces

    International Nuclear Information System (INIS)

    Sanyal, M.K.

    1998-01-01

    Here we shall briefly review the basics and some applications of x-ray specular reflectivity and diffuse scattering techniques. These x-ray scattering techniques are uniquely suited to study of the structure of surfaces and interfaces at atomic resolutions as they are nondestructive and can probe even interfaces which are buried. The study of structure of surfaces and interfaces is not only required in understanding physics in reduced dimensions but is also essential in developing technologically important materials

  7. Stereophotogrammetric study of surface topography in ion irradiated silver

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Fayazov, I.M.

    1993-01-01

    The irradiated surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The surface of silver was irradiated with 30 keV argon ions at variation for the ion incidence angle in interval of 0-80 deg relative to a surface normal. The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture of the irradiated surface is discussed. The parameters of cones on the irradiated surface of silver were measured by the SEM-stereomethod. The measurements of the sample section perpendicular to the incidence plane are also carried out

  8. Surface modification for interaction study with bacteria and preosteoblast cells

    Science.gov (United States)

    Song, Qing

    on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.

  9. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  10. Sodium-cutting: a new top-down approach to cut open nanostructures on nonplanar surfaces on a large scale.

    Science.gov (United States)

    Chen, Wei; Deng, Da

    2014-11-11

    We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.

  11. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  12. Formation control of marine surface craft: a Lagrangian approach

    DEFF Research Database (Denmark)

    Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.

    2006-01-01

    This paper presents a method for formation control of marine surface craft inspired by Lagrangian mechanics. The desired formation configuration and response of the marine surface craft are given as a set of constraints in analytical mechanics. Thus, constraints forces arise and feedback from...

  13. Development and application of QM/MM methods to study the solvation effects and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dibya, Pooja Arora [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize the computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work

  14. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  15. Ab-initio study of surface segregation in aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yifa, E-mail: yfqin10s@imr.ac.cn; Wang, Shaoqing

    2017-03-31

    Highlights: • A thorough study of surface segregation energies of 41 elements in Al is performed. • Segregation energies vary periodically with the atomic numbers of impurities. • 41 elements are classified into 3 groups according to the signs of segregation energies. • The results are validated by the surface/total concentration ratio in Al alloys. - Abstract: We have calculated surface segregation energies of 41 impurities by means of density functional theory calculations. An interesting periodical variation tendency was found for surface segregation energies derived. For the majority of main group elements, segregation energies are negative which means solute elements enrichment at Al surface is energetically more favorable than uniformly dissolution. Half of transition elements possess positive segregation energies and the energies are sensitive to surface crystallographic orientations. A strong correlation is found between the segregation energies at the Al surface and the surface energ of solute elements.

  16. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  17. Prevention of postoperative visual field defect after the occipital transtentorial approach: anatomical study.

    Science.gov (United States)

    Matsuo, Satoshi; Baydin, Serhat; Güngör, Abuzer; Middlebrooks, Erik H; Komune, Noritaka; Iihara, Koji; Rhoton, Albert L

    2017-10-20

    OBJECTIVE A postoperative visual field defect resulting from damage to the occipital lobe during surgery is a unique complication of the occipital transtentorial approach. Though the association between patient position and this complication is well investigated, preventing the complication remains a challenge. To define the area of the occipital lobe in which retraction is least harmful, the surface anatomy of the brain, course of the optic radiations, and microsurgical anatomy of the occipital transtentorial approach were examined. METHODS Twelve formalin-fixed cadaveric adult heads were examined with the aid of a surgical microscope and 0° and 45° endoscopes. The optic radiations were examined by fiber dissection and MR tractography techniques. RESULTS The arterial and venous relationships of the lateral, medial, and inferior surfaces of the occipital lobe were defined anatomically. The full course of the optic radiations was displayed via both fiber dissection and MR tractography. Although the stems of the optic radiations as exposed by both techniques are similar, the terminations of the fibers are slightly different. The occipital transtentorial approach provides access for the removal of lesions involving the splenium, pineal gland, collicular plate, cerebellomesencephalic fissure, and anterosuperior part of the cerebellum. An angled endoscope can aid in exposing the superior medullary velum and superior cerebellar peduncles. CONCLUSIONS Anatomical findings suggest that retracting the inferior surface of the occipital lobe may avoid direct damage and perfusion deficiency around the calcarine cortex and optic radiations near their termination. An accurate understanding of the course of the optic radiations and vascular relationships around the occipital lobe and careful retraction of the inferior surface of the occipital lobe may reduce the incidence of postoperative visual field defect.

  18. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  19. Defective pyrite (100) surface: An ab initio study

    International Nuclear Information System (INIS)

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-01-01

    The structural and electronic properties of sulfur monomeric defects at the FeS 2 (100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed

  20. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  1. A new approach to spherically symmetric junction surfaces and the matching of FLRW regions

    International Nuclear Information System (INIS)

    Kirchner, U

    2004-01-01

    We investigate timelike junctions (with surface layer) between spherically symmetric solutions of the Einstein-field equation. In contrast to previous investigations, this is done in a coordinate system in which the junction surface motion is absorbed in the metric, while all coordinates are continuous at the junction surface. The evolution equations for all relevant quantities are derived. We discuss the no-surface layer case (boundary surface) and study the behaviour for small surface energies. It is shown that one should expect cases in which the speed of light is reached within a finite proper time. We carefully discuss necessary and sufficient conditions for a possible matching of spherically symmetric sections. For timelike junctions between spherically symmetric spacetime sections we show explicitly that the time component of the Lanczos equation always reduces to an identity (independent of the surface equation of state). The results are applied to the matching of Friedmann-LemaItre-Robertson-Walker (FLRW) models. We discuss 'vacuum bubbles' and closed-open junctions in detail. As illustrations several numerical integration results are presented, some of them indicate that (observers comoving with) the junction surface can reach the speed of light within a finite time

  2. Ab initio lattice dynamics of metal surfaces

    International Nuclear Information System (INIS)

    Heid, R.; Bohnen, K.-P.

    2003-01-01

    Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces

  3. Study on Surface Permeability of Concrete under Immersion.

    Science.gov (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-28

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  4. Study of the behaviour of trace elements in estuaries: experimental approaches and modeling

    International Nuclear Information System (INIS)

    Dange, Catherine

    2002-01-01

    Most of trace elements have a non conservative behavior in estuarine environments. It is the case of cadmium, cobalt and caesium for which the fate in estuarine and coastal zones is largely controlled by their distribution between water and suspended particles, which generally have high residence times or can be definitely deposited in these areas. Metallic contaminants and radionuclides can be present under various species: dissolved (mineral and organic complexes), colloidal and particulate forms (adsorbed, precipitated) or integrated by various mechanisms in the organisms. Such distributions are the result of processes (physical, chemical, biological) which are controlled by many factors (ionic strength, pH, E_h, major cations concentration, nature and concentration of suspended matter, primary production,...). Geochemical modeling is a very useful approach to understand the dynamics of this type of contaminant, especially in the complex systems which are the estuaries. A speciation model was used to simulate the measurements of dissolved and particulate Cd, Co and Cs, taken during various cruises carried out in the Seine, Loire, Gironde and Rhone estuaries. The model is able to reproduce the distribution of metals between the dissolved and particulate phases, and also to evaluate the concentrations of various chemical species (especially those which are most bio-available). The approach presented treats adsorption processes as a formation of inner sphere complexes with functional surface groups (surface complexation model) or as an cationic exchange reaction. The calculation of chemical species takes into account the presence of dissolved ligands or major cations of seawater, which compete with the metal for the surface sites. The model can consider the various natural particle components (metal oxy-hydroxides, organic matter) as individual adsorbent phases or treat natural particles in a 'global manner'. The choice of modeled processes is based on studies of

  5. Tile-based rigidization surface parametric design study

    Science.gov (United States)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  6. On topological approach to local theory of surfaces in Calabi-Yau threefolds

    DEFF Research Database (Denmark)

    Gukov, Sergei; Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-01-01

    We study the web of dualities relating various enumerative invariants, notably Gromov-Witten invariants and invariants that arise in topological gauge theory. In particular, we study Donaldson-Thomas gauge theory and its reductions to D=4 and D=2 which are relevant to the local theory of surfaces...

  7. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  8. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  9. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  10. The present and future on surface analysis for corrosion study

    International Nuclear Information System (INIS)

    Ohtsuka, Toshiaki

    2015-01-01

    Surface analysis for corrosion study was reviewed. For the study, the in-situ analysis was desired to describe the real feature. Light i.e., electromagnetic wave from gamma rays to infrared light has been used for the in-situ measurement of the corroded surface, although various ideas should be introduced for the study. For the application of the electromagnetic waves, a suitable window material and a suitable distance between the window and specimen surface depending on the properties of the wave must be selected. Electron spectroscopy including X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) is not applicable for the in-situ study and, however, it is very available for the corrosion study from the following points; elemental analysis, state analysis of the element, and microscopic analysis. In future, the tip enhance Raman scattering (TERS) for which the scanning probe microscopy (SPM) is combined with the surface enhanced Raman scattering (SERS) may be useful for the in-situ corrosion study. (author)

  11. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2

  12. Multiple sectioning and perforation techniques for TEM sub-surface studies

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.

    1978-01-01

    Techniques for preparing multiple electron transparent regions at several depth levels below the surface of a metal disk specimen are described. These techniques are relatively rapid and find application in many areas involving surface studies. Examples are shown of multiple thin areas produced at intervals of approximately 200 nm below the original surface of a stainless steel bombarded with 4 MeV Ni +2 ions for void swelling studies

  13. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Science.gov (United States)

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  14. Approaches to single-nanoparticle catalysis.

    Science.gov (United States)

    Sambur, Justin B; Chen, Peng

    2014-01-01

    Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution.

  15. Relative approach to nano-film topography and magnetic characteristics: a study of their interdependence in a Ni/Au system

    International Nuclear Information System (INIS)

    Ebothé, Jean

    2014-01-01

    The present study investigates the influence of surface features on the magnetic properties of thin films by taking into account the role of the surface roughness (σ) /film thickness (d) ratio. Examination of the ratio from microscopic down to mesoscopic d values is then undertaken in connection with the evolution of the films' magnetic properties (p). The double dependence of p on d and σ expected from a real nano-film, emerged into a new relative approach to film characteristics, associated with the described (σ/d) ratio. A direct and consistent link between surface roughness and magnetic properties is established with no film surface treatment. This results in a revisited analytical treatment adapted for the study of nano-structured and mesoscopic-scale films. Application to the topography and magnetic properties of nano-crystallized Ni electrodeposits 60 < d < 1200 nm thick and grown on Au substrate, led to the identification of their Bloch-type acting magnetic structures. (papers)

  16. Electroreflectance and the problem of studying plasma-surface interactions

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1995-01-01

    A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques

  17. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Atenco A, N.; Perez R, F. [lnstituto de Fisica, Universidad Autonoma de Puebla, A.P. J-48, 72570 Puebla (Mexico); Makarov, N.M. [lnstituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, 72050 Puebla (Mexico)

    2005-07-01

    A theory for calculating the relaxation frequency {nu} and the shift {delta} {omega} of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R{sub C} for the well width fluctuations is much larger than the exciton radius a{sub 0} (R{sub C} >> a{sub 0}). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al{sub 0.3} Ga{sub 0.7}As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of {nu} and {delta} {omega} be quite realistic. In particular, the relaxation frequency {nu} for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency {omega}{sub 0}, while the surface-induced resonance shift {delta} {omega} vanishes near {omega}{sub 0}, and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs.

  18. A New Approach for Biologically-Inhibiting Surfaces

    DEFF Research Database (Denmark)

    Møller, Per; Hilbert, Lisbeth Rischel; Corfitzen, Charlotte B.

    2007-01-01

    in nanometers. Due to the difference in potentials, the biologically-inhibiting material will act as a galvanic element in contact with an electrolyte. The electrochemical processes taking place at the metal surface seem to exhibit a catalytic oxidation character more than an oligomeric effect from the silver....

  19. Second-harmonic and sum-frequency generation for surface studies

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-07-01

    Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions

  20. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation...... to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role...

  1. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  2. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  3. First-Year Students' Approaches to Learning, and Factors Related to Change or Stability in Their Deep Approach during a Pharmacy Course

    Science.gov (United States)

    Varunki, Maaret; Katajavuori, Nina; Postareff, Liisa

    2017-01-01

    Research shows that a surface approach to learning is more common among students in the natural sciences, while students representing the "soft" sciences are more likely to apply a deep approach. However, findings conflict concerning the stability of approaches to learning in general. This study explores the variation in students'…

  4. Development of a surface plasmon resonance biosensing approach for the rapid detection of porcine circovirus type2 in sample solutions.

    Directory of Open Access Journals (Sweden)

    Jiandong Hu

    Full Text Available A sensitive and label-free analytical approach for the detection of porcine circovirus type 2 (PCV2 instead of PCV2 antibody in serum sample was systematically investigated in this research based on surface plasmon resonance (SPR with an establishment of special molecular identification membrane. The experimental device for constructing the biosensing analyzer is composed of an integrated biosensor, a home-made microfluidic module, and an electrical control circuit incorporated with a photoelectric converter. In order to detect the PCV2 using the surface plasmon resonance immunoassay, the mercaptopropionic acid has been used to bind the Au film in advance through the known form of the strong S-Au covalent bonds formed by the chemical radical of the mercaptopropionic acid and the Au film. PCV2 antibodies were bonded with the mercaptopropionic acid by covalent -CO-NH- amide bonding. For the purpose of evaluating the performance of this approach, the known concentrations of PCV2 Cap protein of 10 µg/mL, 7.5 µg/mL, 5 µg/mL, 2.5 µg/mL, 1 µg/mL, and 0.5 µg/mL were prepared by diluting with PBS successively and then the delta response units (ΔRUs were measured individually. Using the data collected from the linear CCD array, the ΔRUs gave a linear response over a wide concentration range of standard known concentrations of PCV2 Cap protein with the R-Squared value of 0.99625. The theoretical limit of detection was calculated to be 0.04 µg/mL for the surface plasmon resonance biosensing approach. Correspondingly, the recovery rate ranged from 81.0% to 89.3% was obtained. In contrast to the PCV2 detection kits, this surface plasmon resonance biosensing system was validated through linearity, precision and recovery, which demonstrated that the surface plasmon resonance immunoassay is reliable and robust. It was concluded that the detection method which is associated with biomembrane properties is expected to contribute much to determine the PCV2

  5. High school students educational usage of Internet and their learning approaches

    Directory of Open Access Journals (Sweden)

    M. Betül Yılmaz, Feza Orhan

    2010-08-01

    Full Text Available This study examines the Internet usage of high school students for educational needs in respect to their learning approaches. The “learning approach” categorizes individuals as ‘surface learners’ and ‘deep learners’. Surface learners mainly choose to rehearse and memorize the course material they work on and they acquire the information they need to learn in a disconnected way, by memorization. On the other hand, deep learners want to grasp the meaning of the course material. In the study, adapted Turkish version of Learning Process Questionnaire (LPQ was used to determine high school students’ learning approaches. 921 secondary school students were subjected and the Cronbach alpha values were 0.73 for a deep approach and 0.66 for a surface approach. According to the data obtained, surface learners use the Internet more when compared to deep learners, though they use it for non-instructional purposes. The ratios of the Internet use of deep learners for educational needs are higher when compared to those of surface learners. Ratios of the Internet use for educational needs by the students who are given assignments requiring the use of the Internet are higher.

  6. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  7. Surface phonons and elastic surface waves

    Science.gov (United States)

    Büscher, H.; Klein-Heßling, W.; Ludwig, W.

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.

  8. Surface phonons and elastic surface waves

    International Nuclear Information System (INIS)

    Buescher, H.; Klein-Hessling, W.; Ludwig, W.

    1993-01-01

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)

  9. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    Science.gov (United States)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  10. Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    International Nuclear Information System (INIS)

    Blashenkov, Nikolai M; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied. (instruments and methods of investigation)

  11. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  12. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  13. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  14. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  15. U-Zr alloy: XPS and TEM study of surface passivation

    Science.gov (United States)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  16. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  17. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  18. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  19. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2018-03-01

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Universidad Tecnológica Nacional (UTN), Bahía Blanca (Argentina); Compañy, A. Díaz [Comisión de Investigaciones Científicas (CIC), Buenos Aires (Argentina); Pronsato, E.; Juan, A.; Brizuela, G. [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Lam, A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba)

    2015-12-30

    Graphical abstract: - Highlights: • Favorable energies results in optimum four adsorption geometries. • Silanols are partially weakening and establish H-bonds with polar groups of 5-FU drug. • Dispersion forces approach the 5-FU molecule toward the surface. • Electron exchange is presented after adsorption. • H-bonds stabilize the molecule playing significant role in the adsorption mechanism. - Abstract: Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's—D2 correction were performed to elucidate the drug–silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO{sub 2} (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  1. Study of Volcanic Activity at Different Time Scales Using Hypertemporal Land Surface Temperature Data

    NARCIS (Netherlands)

    Pavlidou, Efthymia; Hecker, Chris; van der Werff, Harald; van der Meijder, Mark

    2017-01-01

    We apply a method for detecting subtle spatiotemporal signal fluctuations to monitor volcanic activity. Whereas midwave infrared data are commonly used for volcanic hot spot detection, our approach utilizes hypertemporal longwave infrared-based land surface temperature (LST) data. Using LST data of

  2. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  3. Constructive, collaborative, contextual, and self-directed learning in surface anatomy education.

    Science.gov (United States)

    Bergman, Esther M; Sieben, Judith M; Smailbegovic, Ida; de Bruin, Anique B H; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self-directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self-directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Copyright © 2012 American Association of Anatomists.

  4. Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach

    Directory of Open Access Journals (Sweden)

    E. Bauer

    2017-07-01

    Full Text Available Glacial cycles of the late Quaternary are controlled by the asymmetrically varying mass balance of continental ice sheets in the Northern Hemisphere. Surface mass balance is governed by processes of ablation and accumulation. Here two ablation schemes, the positive-degree-day (PDD method and the surface energy balance (SEB approach, are compared in transient simulations of the last glacial cycle with the Earth system model of intermediate complexity CLIMBER-2. The standard version of the CLIMBER-2 model incorporates the SEB approach and simulates ice volume variations in reasonable agreement with paleoclimate reconstructions during the entire last glacial cycle. Using results from the standard CLIMBER-2 model version, we simulated ablation with the PDD method in offline mode by applying different combinations of three empirical parameters of the PDD scheme. We found that none of the parameter combinations allow us to simulate a surface mass balance of the American and European ice sheets that is similar to that obtained with the standard SEB method. The use of constant values for the empirical PDD parameters led either to too much ablation during the first phase of the last glacial cycle or too little ablation during the final phase. We then substituted the standard SEB scheme in CLIMBER-2 with the PDD scheme and performed a suite of fully interactive (online simulations of the last glacial cycle with different combinations of PDD parameters. The results of these simulations confirmed the results of the offline simulations: no combination of PDD parameters realistically simulates the evolution of the ice sheets during the entire glacial cycle. The use of constant parameter values in the online simulations leads either to a buildup of too much ice volume at the end of glacial cycle or too little ice volume at the beginning. Even when the model correctly simulates global ice volume at the last glacial maximum (21 ka, it is unable to simulate

  5. A Multisensor Approach to Global Retrievals of Land Surface Albedo

    Directory of Open Access Journals (Sweden)

    Aku Riihelä

    2018-05-01

    Full Text Available Satellite-based retrievals offer the most cost-effective way to comprehensively map the surface albedo of the Earth, a key variable for understanding the dynamics of radiative energy interactions in the atmosphere-surface system. Surface albedo retrievals have commonly been designed separately for each different spaceborne optical imager. Here, we introduce a novel type of processing framework that combines the data from two polar-orbiting optical imager families, the Advanced Very High-Resolution Radiometer (AVHRR and Moderate Resolution Imaging Spectroradiometer (MODIS. The goal of the paper is to demonstrate that multisensor albedo retrievals can provide a significant reduction in the sampling time required for a robust and comprehensive surface albedo retrieval, without a major degradation in retrieval accuracy, as compared to state-of-the-art single-sensor retrievals. We evaluated the multisensor retrievals against reference in situ albedo measurements and compare them with existing datasets. The results show that global land surface albedo retrievals with a sampling period of 10 days can offer near-complete spatial coverage, with a retrieval bias mostly comparable to existing single sensor datasets, except for bright surfaces (deserts and snow where the retrieval framework shows degraded performance because of atmospheric correction design compromises. A level difference is found between the single sensor datasets and the demonstrator developed here, pointing towards a need for further work in the atmospheric correction, particularly over bright surfaces, and inter-sensor radiance homogenization. The introduced framework is expandable to include other sensors in the future.

  6. Fermi surface study of CeSb

    International Nuclear Information System (INIS)

    Aoki, H.; Crabtree, G.W.; Joss, W.; Hulliger, F.

    1984-09-01

    A Fermi surface study of the ferromagnetic phase of CeSb is presented. The γ frequency branches arising from the electron surfaces at the X points, three separate frequency branches from the hole surfaces at the GAMMA point and the low frequency branch α have been observed. The effective mass ratios are low and range from approx. 0.2 for the α branch to approx. 1.0 for the high frequency branch of γ. The low effective mass ratios suggest that the admixture of the conduction states with the f state is small. We have observed a drastic change in the appearance of the dHvA signal at the phase transition between the ferromagnetic and lower field antiferromagnetic phases: The low frequency α oscillation suddenly disappears as the crystal enters the antiferromagnetic phase. By utilizing the change in the signal appearance, the transition field strength has been measured as a function of the field direction. The present experimental results, particularly the origin of the α oscillation, are discussed in the light of the p-f mixing theory and recent band structure calculations based on localized f orbitals

  7. Fermi surface study of CeSb

    International Nuclear Information System (INIS)

    Aoki, H.; Crabtree, G.; Joss, W.; Hulliger, F.

    1985-01-01

    A Fermi surface study of the ferromagnetic phase of CeSb is presented. The γ frequency branches arising from the electron surfaces at the X points, three separate frequency branches from the hole surfaces at the GAMMA point, and the low-frequency branch α have been observed. The effective mass ratios are low and range from approx.0.2 for the α branch to approx.1.0 for the high-frequency branch of γ. The low effective mass ratios suggest that the admixture of the conduction states with the f state is small. We have observed a drastic change in the appearance of the de Haas--van Alpen signal at the phase transition between the ferromagnetic and lower field antiferromagnetic phases: the low-frequency α oscillation suddenly disappears as the crystal enters the antiferromagnetic phase. By utilizing the change in the signal appearance, the transition field strength has been measured as a function of the field direction. The present experimental results particularly the origin of the α oscillation, are discussed in the light of the p-f mixing theory and recent band-structure calculations based on localized f orbitals

  8. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  9. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Study on the KALIMER safety approach

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Han, Do Hee; Kim, Young Cheol.

    1997-01-01

    This study describes KALIMER's safety approach, how to establish the safety criteria and temperature limit, how to define safety evaluation events, and some safety research and development needs items. It is recommended that the KALIMER's approach to safety use seven levels of safety design and a defense-in-depth design approach with particular emphasis on inherent passive features. In order to establish as set DBEs for KALIMER safety evaluation, the procedure is explained how to define safety evaluation events. Final selection is to be determined later with the final establishment of design concepts. On the basis of preliminary studies and evaluation of the plant safety related areas, the KALIMER and PRISM have following three main difference that may require special research and development for KALIMER. (author). 7 refs., 6 tabs., 6 figs

  11. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  12. A neural-fuzzy approach to classify the ecological status in surface waters

    International Nuclear Information System (INIS)

    Ocampo-Duque, William; Schuhmacher, Marta; Domingo, Jose L.

    2007-01-01

    A methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters. This methodology has been proposed to deal efficiently with the non-linearity and highly subjective nature of variables involved in this serious problem. Ecological status has been assessed with biological, hydro-morphological, and physicochemical indicators. A data set collected from 378 sampling sites in the Ebro river basin has been used to train and validate the hybrid model. Up to 97.6% of sampling sites have been correctly classified with neural-fuzzy models. Such performance resulted very competitive when compared with other classification algorithms. With non-parametric classification-regression trees and probabilistic neural networks, the predictive capacities were 90.7% and 97.0%, respectively. The proposed methodology can support decision-makers in evaluation and classification of ecological status, as required by the EU Water Framework Directive. - Fuzzy inference systems can be used as environmental classifiers

  13. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  14. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  15. A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus.

    Science.gov (United States)

    Zhao, Gutian; Cai, Di; Wu, Gensheng; Tan, Qiyan; Xiang, Li; Zhang, Yin; Xiang, Nan

    2014-11-01

    A novel approach for studying the adsorption and evaporation processes of molecularly thin methanol film by the modified surface forces apparatus (M-SFA) is reported. This method can be used precisely to measure the thickness, morphology, and mechanical properties of the film confined between two mica surfaces in a real-time manner at gas atmosphere. By observing the adsorption and evaporation processes of the methanol molecule, it is found that the first adsorbed layer of the methanol film on the mica surface behaves as a solid-like structure. The thickness of this layer is measured to be about 3.2 Å, approximately equal to the diameter of a methanol molecule. Besides, this first adsorbed layer can carry normalized loads of more than 5.6 atm due to the carrying capacity conserved by the bond of mica-OH. The outer layers of the methanol film are further adsorbed with the increase of the exposure time, which are liquid-like and can be easily eliminated out from the substrate. The present study suggests that the interacting mode between hydroxy and mica is of great potential in material science and biomedical systems. © 2014 Wiley Periodicals, Inc.

  16. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    Science.gov (United States)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  17. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    International Nuclear Information System (INIS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-01-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  18. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3 Surfaces

    Directory of Open Access Journals (Sweden)

    Nelson Y. Dzade

    2014-02-01

    Full Text Available The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these minerals. Nonetheless, with the rapid increase in computer processing speed and memory, computer simulations using different theoretical techniques can now probe the nature of matter at both the atomic and sub-atomic levels and are rapidly becoming an effective and quantitatively accurate method for successfully predicting structures, properties and processes occurring at mineral surfaces. In this study, we have used Density Functional Theory calculations to study the adsorption of benzene on hematite (α-Fe2O3 surfaces. The strong electron correlation effects of the Fe 3d-electrons in α-Fe2O3 were described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach, which was found to provide an accurate description of the electronic and magnetic properties of hematite. For the adsorption of benzene on the hematite surfaces, we show that the adsorption geometries parallel to the surface are energetically more stable than the vertical ones. The benzene molecule interacts with the hematite surfaces through π-bonding in the parallel adsorption geometries and through weak hydrogen bonds in the vertical geometries. Van der Waals interactions are found to play a significant role in stabilizing the absorbed benzene molecule. Analyses of the electronic structures reveal that upon benzene adsorption, the conduction band edge of the surface atoms is shifted towards the valence bands, thereby considerably reducing the band gap and the magnetic moments of the surface Fe atoms.

  19. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)

    2016-08-07

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  20. Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, O.S. [Geochimie et Biogeochimie Experimentale, LMTG, Universite de Toulouse, CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France)], E-mail: oleg@lmtg.obs-mip.fr; Martinez, R.E.; Golubev, S.V. [Geochimie et Biogeochimie Experimentale, LMTG, Universite de Toulouse, CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Kompantseva, E.I. [Winogradsky Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Shirokova, L.S. [Institute of Ecological Problems of the Northern Regions, Russian Academy of Science, 29 Naberezhnaja Sev. Dviny, Arkhangelsk (Russian Federation)

    2008-09-15

    The purpose of the present work is to extend our knowledge of metal-cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid-base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01-1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal-proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 deg. C in 0.01 M NaNO{sub 3} as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help

  1. Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach

    International Nuclear Information System (INIS)

    Pokrovsky, O.S.; Martinez, R.E.; Golubev, S.V.; Kompantseva, E.I.; Shirokova, L.S.

    2008-01-01

    The purpose of the present work is to extend our knowledge of metal-cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid-base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01-1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal-proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 deg. C in 0.01 M NaNO 3 as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help to

  2. Dedicated detectors for surface studies by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bibicu, I.; Rogalski, M.S.; Nicolescu, G.

    2001-01-01

    Moessbauer spectroscopy is a nuclear resonance method largely utilized in solid state studies. Following resonant nuclear absorption, gamma radiations, conversion X-rays, conversion or Auger electrons are emitted. By detection of gamma radiations information about the sample as a whole are obtained while by detection of electrons or X radiation one obtains data on the surface layer. Our laboratory was among the firsts to produce and use flow gas proportional detectors for surface studies by Moessbauer spectroscopy. Four types of detectors were devised: - detectors for electron detection (90% He + 10% CH 4 ); - detectors for conversion X-ray detection (90% Ar + 10% CH 4 ); - detectors for electrons or internal conversion X rays; - detectors for simultaneous detection of electrons and conversion X rays emitted from the same source. All detectors allow simultaneous Moessbauer measurements both for surface and volume for a given sample. Details of construction are presented for the four types of detectors

  3. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    Science.gov (United States)

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  4. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique

    Directory of Open Access Journals (Sweden)

    Xiangdong LIU

    2017-08-01

    Full Text Available An autonomous approach and landing (A&L guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV at the designated runway touchdown. Considering the full nonlinear point-mass dynamics, a guidance scheme is developed in three-dimensional space. In order to guarantee a successful A&L movement, the multiple sliding surfaces guidance (MSSG technique is applied to derive the closed-loop guidance law, which stems from higher order sliding mode control theory and has advantage in the finite time reaching property. The global stability of the proposed guidance approach is proved by the Lyapunov-based method. The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase. Finally, simulation results show the effectiveness of the proposed guidance law in different scenarios.

  5. International approaches to the hydraulic control of surface water runoff in mitigating flood and environmental risks

    Directory of Open Access Journals (Sweden)

    Ballard Bridget Woods

    2016-01-01

    Full Text Available This paper compares and contrasts a number of international approaches to the hydraulic control of surface water runoff from new development and redevelopment, known as sustainable drainage systems (SuDS or low impact development (LID. The paper provides a commentary on the progress and current status of national standards for SuDS in the UK to control the frequency, flow rate and volume of runoff from both frequent and extreme rainfall events, and the best practice design criteria presented in the revised UK CIRIA SuDS Manual, published in November 2015. The paper then compares these design criteria and standards with those developed and applied in China, USA, France and Germany and also looks at the drivers behind their development. The benefits of these different approaches are assessed in the context of flood risk mitigation, climate resilience and wider environmental protection objectives, including water quality, morphology and ecology. The paper also reviews the design approaches promoted by the new SuDS Manual and internationally for delivering additional benefits for urban spaces (such as recreation, visual character, education and economic growth through multi-functional urban design.

  6. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces.

    Science.gov (United States)

    Schutzius, Thomas M; Graeber, Gustav; Elsharkawy, Mohamed; Oreluk, James; Megaridis, Constantine M

    2014-11-13

    Driven by its importance in nature and technology, droplet impact on solid surfaces has been studied for decades. To date, research on control of droplet impact outcome has focused on optimizing pre-impact parameters, e.g., droplet size and velocity. Here we follow a different, post-impact, surface engineering approach yielding controlled vectoring and morphing of droplets during and after impact. Surfaces with patterned domains of extreme wettability (high or low) are fabricated and implemented for controlling the impact process during and even after rebound--a previously neglected aspect of impact studies on non-wetting surfaces. For non-rebound cases, droplets can be morphed from spheres to complex shapes--without unwanted loss of liquid. The procedure relies on competition between surface tension and fluid inertial forces, and harnesses the naturally occurring contact-line pinning mechanisms at sharp wettability changes to create viable dry regions in the spread liquid volume. Utilizing the same forces central to morphing, we demonstrate the ability to rebound orthogonally-impacting droplets with an additional non-orthogonal velocity component. We theoretically analyze this capability and derive a We(-.25) dependence of the lateral restitution coefficient. This study offers wettability-engineered surfaces as a new approach to manipulate impacting droplet microvolumes, with ramifications for surface microfluidics and fluid-assisted templating applications.

  7. Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies

    KAUST Repository

    AbuElela, Ayman; Sakashita, Kosuke; Merzaban, Jasmeen

    2014-01-01

    The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes

  8. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  9. Quantum interference in grazing scattering of swift He atoms from LiF(0 0 1) surfaces: Surface eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)], E-mail: msilvia@iafe.uba.ar; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2009-02-15

    This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the <1 1 0> direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.

  10. Quantum interference in grazing scattering of swift He atoms from LiF(0 0 1) surfaces: Surface eikonal approximation

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Miraglia, J.E.

    2009-01-01

    This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.

  11. Use of surface electromyography in phonation studies: an integrative review

    Science.gov (United States)

    Balata, Patricia Maria Mendes; Silva, Hilton Justino da; Moraes, Kyvia Juliana Rocha de; Pernambuco, Leandro de Araújo; Moraes, Sílvia Regina Arruda de

    2013-01-01

    Summary Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others). Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies. PMID:25992030

  12. Use of surface electromyography in phonation studies: an integrative review

    Directory of Open Access Journals (Sweden)

    Balata, Patricia Maria Mendes

    2014-01-01

    Full Text Available Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others. Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies.

  13. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae.

    Science.gov (United States)

    Pribyl, Thomas; Moche, Martin; Dreisbach, Annette; Bijlsma, Jetta J E; Saleh, Malek; Abdullah, Mohammed R; Hecker, Michael; van Dijl, Jan Maarten; Becher, Dörte; Hammerschmidt, Sven

    2014-02-07

    Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires powerful tools. In this study, two different methods, an optimized biotinylation approach and shaving with trypsin beads, were applied to study the pneumococcal surface proteome and to identify surface-exposed protein domains, respectively. The identification of nearly 95% of the predicted lipoproteins and 75% of the predicted sortase substrates reflects the high coverage of the two classical surface protein classes accomplished in this study. Furthermore, the biotinylation approach was applied to study the impact of an impaired lipoprotein maturation pathway on the cell envelope proteome and exoproteome. Loss of the lipoprotein diacylglyceryl transferase Lgt leads to striking changes in the lipoprotein distribution. Many lipoproteins disappear from the surface proteome and accumulate in the exoproteome. Further insights into lipoprotein processing in pneumococci are provided by immunoblot analyses of bacterial lysates and corresponding supernatant fractions. Taken together, the first comprehensive overview of the pneumococcal surface and exoproteome is presented, and a model for lipoprotein processing in S. pneumoniae is proposed.

  14. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  15. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-01-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurements of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and photosynthetically active radiation relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  16. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  17. Study of plasma-surface interaction at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S., E-mail: asarakcheev@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arzhannikov, A.V., E-mail: A.V.Arzhannikov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V., E-mail: a.v.burdakov@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Ivanov, I.A., E-mail: I.A.Ivanov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kasatov, A.A., E-mail: a.a.kasatov@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kuklin, K.N., E-mail: K.N.Kuklin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V., E-mail: S.V.Polosatkin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Postupaev, V.V., E-mail: V.V.Postupaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Sinitsky, S.L., E-mail: S.L.Sinitsky@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); and others

    2017-01-15

    The review presents experimental studies of plasma-surface interaction and materials behavior under plasma loads done in the multiple-mirror trap of the GOL-3 facility. In the experiments for the PSI, the energy density in the extracted plasma stream varies from 0.5 to 30 MJ/m{sup 2}. Parameters of near-surface plasma measured by a set of diagnostics are reviewed. Surface patterns of targets exposed to the plasma are analyzed. The erosion depth depends on the energy loads—it rises from 0 to 600 μm at 0.5 and 30 MJ/m{sup 2}, correspondingly. Cracking and evolution of graphite and tungsten surface morphology are discussed. The enthalpy of brittle destruction of graphite (10 kJ/g), which determines the threshold of bulk damage of targets irradiated with a charged-particle flux with large penetration depth, was determined. Comparison of different facilities for PSI studies are presented. Heat flux play a key role to the target surface erosion.

  18. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen

    2015-11-27

    We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

  19. First principles study of hydroxyapatite surface

    Science.gov (United States)

    Slepko, Alexander; Demkov, Alexander A.

    2013-07-01

    The biomineral hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the main mineral constituent of mammal bone. We report a theoretical investigation of the HA surface. We identify the low energy surface orientations and stoichiometry under a variety of chemical environments. The surface most stable in the physiologically relevant OH-rich environment is the OH-terminated (1000) surface. We calculate the work function of HA and relate it to the surface composition. For the lowest energy OH-terminated surface we find the work function of 5.1 eV, in close agreement with the experimentally reported range of 4.7 eV-5.1 eV [V. S. Bystrov, E. Paramonova, Y. Dekhtyar, A. Katashev, A. Karlov, N. Polyaka, A. V. Bystrova, A. Patmalnieks, and A. L. Kholkin, J. Phys.: Condens. Matter 23, 065302 (2011), 10.1088/0953-8984/23/6/065302].

  20. [Study on preparation and physicochemical properties of surface modified sintered bone].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  1. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  2. Biomolecular surface construction by PDE transform.

    Science.gov (United States)

    Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei

    2012-03-01

    This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a

  3. A Modular Approach to Model Oscillating Control Surfaces Using Navier Stokes Equations

    Science.gov (United States)

    Guruswamy, Guru P.; Lee, Henry

    2014-01-01

    The use of active controls for rotorcraft is becoming more important for modern aerospace configurations. Efforts to reduce the vibrations of helicopter blades with use of active-controls are in progress. Modeling oscillating control surfaces using the linear aerodynamics theory is well established. However, higher-fidelity methods are needed to account for nonlinear effects, such as those that occur in transonic flow. The aeroelastic responses of a wing with an oscillating control surface, computed using the transonic small perturbation (TSP) theory, have been shown to cause important transonic flow effects such as a reversal of control surface effectiveness that occurs as the shock wave crosses the hinge line. In order to account for flow complexities such as blade-vortex interactions of rotor blades higher-fidelity methods based on the Navier-Stokes equations are used. Reference 6 presents a procedure that uses the Navier-Stokes equations with moving-sheared grids and demonstrates up to 8 degrees of control-surface amplitude, using a single grid. Later, this procedure was extended to accommodate larger amplitudes, based on sliding grid zones. The sheared grid method implemented in EulerlNavier-Stokes-based aeroelastic code ENS AERO was successfully applied to active control design by industry. Recently there are several papers that present results for oscillating control surface using Reynolds Averaged Navier-Stokes (RANS) equations. References 9 and 10 report 2-D cases by filling gaps with overset grids. Reference 9 compares integrated forces with the experiment at low oscillating frequencies whereas Ref. 10 reports parametric studies but with no validation. Reference II reports results for a 3D case by modeling the gap region with a deformed grid and compares force results with the experiment only at the mid-span of flap. In Ref. II grid is deformed to match the control surface deflections at the section where the measurements are made. However, there is no

  4. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    Science.gov (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  5. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  6. A molecular approach to immunoscintigraphy: A study of the T-antigen conformation on the surface of tumors

    International Nuclear Information System (INIS)

    Noujaim, A.; Selvaraj, S.; Suresh, M.R.; Turner, C.; McLean, G.; Willans, D.; Longenecker, B.M.; Haines, D.M.

    1987-01-01

    The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both α and β configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models. (orig.) [de

  7. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  8. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  9. Albumin grafting on biomaterial surfaces using gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls

  10. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  11. Quantum reflection of fast atoms from insulator surfaces: Eikonal description

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M S; Miraglia, J E, E-mail: msilvia@iafe.uba.a, E-mail: miraglia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Dpto. de Fisica, FCEN, Universidad de Buenos Aires (Argentina)

    2009-11-01

    Interference effects recently observed in grazing scattering of swift atoms from insulator surfaces are studied within a distorted-wave method - the surface eikonal approximation. This approach makes use of the eikonal wave function, involving axial channeled trajectories. The theory is applied to helium atoms colliding with a LiF(001) surface along low-index crystallographic directions. The roles played by the projectile polarization and the surface rumpling are investigated, finding that both effects are important for the description of the experimental projectile distributions.

  12. Comparison of Exposure in the Kaplan Versus the Kocher Approach in the Treatment of Radial Head Fractures.

    Science.gov (United States)

    Barnes, Leslie Fink; Lombardi, Joseph; Gardner, Thomas R; Strauch, Robert J; Rosenwasser, Melvin P

    2018-01-01

    The aim of this study was to compare the complete visible surface area of the radial head, neck, and coronoid in the Kaplan and Kocher approaches to the lateral elbow. The hypothesis was that the Kaplan approach would afford greater visibility due to the differential anatomy of the intermuscular planes. Ten cadavers were dissected with the Kaplan and Kocher approaches, and the visible surface area was measured in situ using a 3-dimensional digitizer. Six measurements were taken for each approach by 2 surgeons, and the mean of these measurements were analyzed. The mean surface area visible with the lateral collateral ligament (LCL) preserved in the Kaplan approach was 616.6 mm 2 in comparison with the surface area of 136.2 mm 2 visible in the Kocher approach when the LCL was preserved. Using a 2-way analysis of variance, the difference between these 2 approaches was statistically significant. When the LCL complex was incised in the Kocher approach, the average visible surface area of the Kocher approach was 456.1 mm 2 and was statistically less than the Kaplan approach. The average surface area of the coronoid visible using a proximally extended Kaplan approach was 197.8 mm 2 . The Kaplan approach affords significantly greater visible surface area of the proximal radius than the Kocher approach.

  13. Overview of surface study of fusion research in universities linkage organization, (2)

    International Nuclear Information System (INIS)

    Miyahara, Akira; Kamada, Kohji; Yamashina, Toshiro.

    1981-02-01

    Overview of surface material developments for fusion devices in university linkage organization has been described. Including subjects are surface properties investigations, surface diagnostics, coating technologies tritium related surface problems and permeation studies. Because surface material investigations are wide spread subjects, necessities of problem definitions from plasma physics side were recognized. (author)

  14. A theoretical study of hydrogen atoms adsorption and diffusion on PuO_2 (110) surface

    International Nuclear Information System (INIS)

    Yu, H.L.; Tang, T.; Zheng, S.T.; Shi, Y.; Qiu, R.Z.; Luo, W.H.; Meng, D.Q.

    2016-01-01

    The mechanisms of adsorption and diffusion of hydrogen atoms on the PuO_2 (110) surface are investigated by density functional theory corrected for onsite Coulombic interactions (GGA + U). In order to find out the energetically more favorable adsorption site and optimum diffusion path, adsorption energy of atomic H on various sites and the diffusion energy barrier are derived and compared. Our results show that both chemisorption and physisorption exist for H atoms adsorption configurations on PuO_2 (110) surface. Two processes for H diffusion are investigated using the climbing nudged-elastic-band (cNEB) approach. We have identified two diffusion mechanisms, leading to migration of atomic H on the surface and diffusion from surface to subsurface. The energy barriers indicate that it is energetically more favorable for H atom to be on the surface. Hydrogen permeation through purity PuO_2 surface is mainly inhibited from hydrogen atom diffusion from surface to subsurface. - Highlights: • H atoms adsorption on PuO_2 (110) surface are investigated by GGA + U. • Both chemisorption and physisorption exist for H atoms adsorption configurations. • H atoms migration into PuO_2 (100) surface are inhibited with the barrier of 2.15 eV. • H atoms diffusion on PuO_2 (110) surface are difficult at room temperature.

  15. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  16. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  17. Ab-initio study of Mg-doped InN(0001 surface

    Directory of Open Access Journals (Sweden)

    A. Belabbes

    2013-01-01

    Full Text Available We study the incorporation of Mg atoms into the InN(0001 surface. Energies and atomic geometries are described within density functional theory, while the electronic structure is investigated by an approximate quasiparticle method that yields a gap value of 0.7 eV for bulk InN. The formation of substitutional Mg is energetically favored in the surface layer. The surface electronic structure is less influenced by Mg-derived states. The Fermi level is pinned by In-derived surface states. With increasing depth of Mg beneath the surface the Fermi-level position moves toward the valence band top, suggesting formation of holes and, hence, p-doping of Mg in bulk-like layers.

  18. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  19. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  20. Surface studies of Os Re W alloy-coated impregnated tungsten cathodes

    International Nuclear Information System (INIS)

    Ares Fang, C.S.; Maloney, C.E.

    1990-01-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os Re W alloy at right angles were studied to compare the effects of Os Re W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os Re W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os Re W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os Re W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces

  1. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  2. Approach towards total knee arthroplasty in Brazil: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Raul Frankllim de Carvalho Almeida

    Full Text Available CONTEXT AND OBJECTIVE: Total knee arthroplasty (TKA has evolved particularly since the 1970s, with improvements in implants and surgical instruments, and has thus become an effective intervention for treating knee arthrosis. Many studies have presented rates of satisfactory clinical and radiological results greater than 90%, from follow-ups of over ten years. Nevertheless, despite scientific evidence showing the efficacy of TKA, the approaches taken present controversies in certain respects. The objective of this study was to evaluate how the Brazilian orthopedists deal with TKA, with investigation of the main aspects of this procedure. DESIGN AND SETTING: Cross-sectional survey conducted during the 39th Brazilian Congress of Orthopedics and Traumatology, in São Paulo, Brazil, in November 2007. METHODS: We applied a questionnaire to orthopedists registered at the congress. The questionnaire was randomly distributed and participation was voluntary; 858 completed questionnaires were included in the analysis. RESULTS: Most of the Brazilian orthopedists were members of SBOT and worked in the southeastern region. They used imported cemented implants through an anterior access route centered on the patella, with replacement of the joint surface of the patella and preservation of the posterior cruciate ligament. They did not have experience with simultaneous bilateral TKA. Postoperatively, they used antibiotics and suction drains for 48 hours. There was no consensus regarding prophylaxis for venous thromboembolism or the frequency of the main complications. CONCLUSION: The majority of Brazilian orthopedists work in the southeastern region of the country and agree about the main aspects of the approaches towards TKA.

  3. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  4. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions

    Science.gov (United States)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al

    2017-04-01

    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  5. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  6. He-atom surface scattering apparatus for studies of crystalline surface dynamics. Progress report, May 1, 1985-April 30, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The primary goal of this grant is the construction of a state-of-the-art He atom-crystal surface scattering apparatus which will be capable of measuring both elastic and inelastic scattering of He atoms from crystal surfaces of metals, semiconductors and insulators. First, the apparatus will be constructed and characterized, after which a program of studies on the surface dynamics of a variety of crystal surfaces will be started. 6 refs., 2 figs

  7. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gou, F.; Gleeson, M.A.; Villette, J.; Kleyn, S.E.F.; Kleyn, A.W.

    2004-01-01

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale

  8. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    International Nuclear Information System (INIS)

    Achtelik, J.; Sievers, W.; Lindner, J.K.N.

    2013-01-01

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented

  9. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Achtelik, J.; Sievers, W. [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany); Lindner, J.K.N., E-mail: lindner@physik.uni-paderborn.de [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany)

    2013-05-15

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented.

  10. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  11. Design, development and applications of novel techniques for studying surface mechanical properties

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.

  12. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  13. Heterogeneous Photochemistry of Agrochemicals at the Leaf Surface: A Case Study of Plant Activator Acibenzolar-S-methyl.

    Science.gov (United States)

    Sleiman, M; de Sainte Claire, P; Richard, C

    2017-09-06

    The photoreactivity of plant activator benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), commonly named acibenzolar-S-methyl, was studied on the surfaces of glass, paraffinic wax films, and apple leaves. Experiments were carried out in a solar simulator using pure and formulated BTH (BION). Surface photoproducts were identified using liquid chromatography coupled with electrospray ionization and high-resolution Orbitrap mass spectrometry, while volatile photoproducts were characterized using an online thermal desorption system coupled to a gas chromatography-mass spectrometry (GC-MS) system. Pure BTH degraded quickly on wax surfaces with a half-life of 5.0 ± 0.5 h, whereas photolysis of formulated BTH was 7 times slower (t 1/2 = 36 ± 14 h). On the other hand, formulated BTH was found to photolyze quickly on detached apple leaves with a half-life of 2.8 h ± 0.4 h. This drastic difference in photoreactivity was attributed to the nature and spreading of the BTH deposit, as influenced by the surfactant and surface characteristics. Abiotic stress of irradiated apple leaf was also shown to produce OH radicals which might contribute to the enhanced photodegradability. Eight surface photoproducts were identified, whereas GC-MS analyses revealed the formation of gaseous dimethyl disulfide and methanethiol. The yield of dimethyl disulfide ranged between 1.5% and 12%, and a significant fraction of dimethyl disulfide produced was found to be absorbed by the leaf. This is the first study to report on the formation of volatile chemicals and OH radicals during agrochemical photolysis on plant surfaces. The developed experimental approach can provide valuable insights into the heterogeneous photoreactivity of sprayed agrochemicals and could help improve dissipation models.

  14. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Approaches to learning, need for cognition, and strategic flexibility among university students.

    Science.gov (United States)

    Evans, Christina J; Kirby, John R; Fabrigar, Leandre R

    2003-12-01

    Considerable research has described students' deep and surface approaches to learning. Other research has described individuals' self-regulated learning and need for cognition. There is a need for research examining the relationships among these constructs. This study explored relationships among approaches to learning (deep, surface), need for cognition, and three types of control of learning (adaptive, inflexible, irresolute). Theory suggested similarities among the deep approach, need for cognition, and adaptive control (aspects of self-regulated learning); and among surface, inflexible, and irresolute control (aspects of an ineffective approach to learning). One-factor and two-factor models were proposed. Participants were 226 Canadian military college students. Participants completed the following questionnaires: the Study Process Questionnaire (Biggs, 1978), the Need for Cognition Scale (Cacioppo & Petty, 1982), and the Strategic Flexibility Questionnaire (Cantwell & Moore, 1996). Confirmatory factor analysis supported the identification of the six scale factors. Second order confirmatory factor analysis indicated three factors representing constructs underlying these factors. Neither the one- nor two-factor models accounted adequately for the data. Self-regulated learning was defined by measures of the deep approach to learning, need for cognition, and adaptive control of learning. The second factor divided into one factor consisting of irresolute control, the surface approach, and negative need for cognition; and another consisting of inflexible and negative adaptive control. Substantial relationships among scales support the need for further theory development.

  16. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gubala, Vladimir, E-mail: V.Gubala@kent.ac.uk [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Medway School of Pharmacy, University of Kent, Central Avenue, Anson 120, Chatham Maritime, Kent ME4 4TB (United Kingdom); Siegrist, Jonathan; Monaghan, Ruairi; O' Reilly, Brian; Gandhiraman, Ram Prasad [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Daniels, Stephen [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology (NCPST), Dublin City University, Dublin 9 (Ireland); Williams, David E. [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Ducree, Jens [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland)

    2013-01-14

    neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real, microfluidic systems. This method provides a straightforward and rapid way to screen surface compositions and chemistry, and relate these to their effects on the sensitivity and resistance to non-specific binding of bioassays using them. In an additional set of experiments, the surface area of the channels in this universal microfluidic chip was increased by precision milling of microscale trenches. This modified surface was then coated with APTES and tested for its potential to serve as a unique protein dilution feature.

  17. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    International Nuclear Information System (INIS)

    Gubala, Vladimir; Siegrist, Jonathan; Monaghan, Ruairi; O’Reilly, Brian; Gandhiraman, Ram Prasad; Daniels, Stephen; Williams, David E.; Ducrée, Jens

    2013-01-01

    Highlights: ► A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. ► Development for dilution by surface-adsorption based depletion of protein samples. ► It can easily be done using a readily available apparatus like a spin-coater. ► The assessment tool is facile and quantitative. ► Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor ® ) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor ® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor ® , and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real

  18. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.; Sanchez, E.A.; Grizzi, O.; Universidad Nacional de Cuyo, Mendoza

    1998-01-01

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  19. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    Science.gov (United States)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll

  20. An ab initio study of plutonium oxides surfaces

    International Nuclear Information System (INIS)

    Jomard, G.; Bottin, F.; Amadon, B.

    2007-01-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO 2 and β-Pu 2 O 3 in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO 2 in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p O 2 ). We conclude that at room temperature and for p O 2 ∼10 atm., the polar O 2 -(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)