Sample records for surface structure dependence

  1. Structure dependence of Pt surface activated ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Santen, R A van; Offermans, W K [Schuit Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Ricart, J M; Novell-Leruth, G [Department of Chemical Physics and Inorganic Chemistry, University Rovira I Virgili, C/ Marcel.lI Domingo s/n, 43007 Tarragona (Spain); Perez-RamIrez, J [Institute of Chemical Research of Catalonia (ICIQ) and Catalan, Institution for Research and Advanced Studies (ICREA), Avinguda Paisos Catalans 16, 43007, Tarragona (Spain)], E-mail:


    Computational advances that enable the prediction of the structures and the energies of surface reaction intermediates are providing essential information to the formulation of theories of surface chemical reactivity. In this contribution this is illustrated for the activation of ammonia by coadsorbed oxygen and hydroxyl on the Pt(111), Pt(100), and Pt(211) surfaces.

  2. Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence (United States)


    of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence G.M...fiCAtson) Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Irodine Treated Platinum Surface Determined In Situ by...necessary and identify by block number) An in situ structural investigation of the underpotential deposition of copper on an iodine covered platinum

  3. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters (United States)

    Tsunekawa, S.; Ito, S.; Kawazoe, Y.


    Cerium oxide nanocrystalline particles are synthesized and monodispersed in the size range from 2 to 8nm in diameter. The dependence of the lattice parameters on particle size is obtained by x-ray and electron diffraction analyses. The size dependence well coincides with the estimation based on the assumption that the surface is composed of one layer of Ce2O3 and the inside consists of CeO2. The effect of particle size on lattice parameters is discussed from the differences in the fabrication method and the surface structure.

  4. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features (United States)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.


    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  5. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)


    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  6. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)


    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  7. Surface Structure Dependence of SO 2 Interaction with Ceria Nanocrystals with Well-Defined Surface Facets

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluri, Uma; Li, Meijun; Cook, Brandon G.; Sumpter, Bobby; Dai, Sheng; Wu, Zili


    The effects of the surface structure of ceria (CeO2) on the nature, strength, and amount of species resulting from SO2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO2 depend on the shape of the CeO2 nanocrystals. SO2 adsorbs mainly as surface sulfites and sulfates at room temperature on CeO2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO2 octahedra, whereas surface sulfates are more prominent on CeO2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO2 adsorption on reduced CeO2 rods. The formation of surface sulfites and sulfates on CeO2 cubes is in good agreement with our DFT results of SO2 interactions with the CeO2(100) surface. CeO2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO2 strongly and are the most degraded after SO2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO2 with CeO2 provides insights for the design of more sulfur-resistant CeO2-based catalysts.

  8. Pulsewidth dependence of laser-induced periodic surface structure formed on yttria-stabilized zirconia polycrystal (United States)

    Kakehata, Masayuki; Yashiro, Hidehiko; Oyane, Ayako; Ito, Atsuo; Torizuka, Kenji


    Three-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) is a fine engineering ceramic that offers high fracture resistance and flexural strength. Thus, it is often applied in mechanical components and medical implants. The surface roughness can be controlled to improve the device characters in some applications. Ultrashort pulse lasers can form laser-induced periodic surface structures (LIPSS) on 3Y-TZP, which have never been investigated in detail. Therefore, this paper reports the formation and characteristics of LIPSS formed on 3Y-TZP, focusing on the pulsewidth dependence. The LIPSS was formed by a Ti:sapphire chirped-pulse amplification system, which generates 810 nmcentered 80-fs pulses at a 570 Hz repetition rate. The measured ablation threshold peak fluence was ~1.5 J/cm2 and the LIPSS was formed at the peak fluence of 2.7-7.7 J/cm2. For linearly polarized pulses, the lines of the LIPSS were oriented parallel to the polarization direction, and their period was comparable to or larger than the center wavelength of the laser. These characteristics differ from the reported characteristics of LIPSS on metals and dielectrics. The pulsewidth dependence of the ablation and LIPSS was investigated for different pulsewidths and signs of chirp. Under the investigated fluence condition, the LIPSS period increased with increasing pulsewidth for both signs of chirp. Similar pulsewidth dependencies were observed for circularly polarized pulses.

  9. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon. (United States)

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng


    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  10. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent (United States)

    Huang, Rixiang; Carney, Randy P.; Stellacci, Francesco; Lau, Boris L. T.


    Nanoparticles (NPs) in the biological environment are exposed to a large variety and concentration of proteins. Proteins are known to adsorb in a `corona' like structure on the surface of NPs. In this study, we focus on the effects of surface compositional and structural heterogeneity on protein adsorption by examining the interaction of self-assembled monolayer coated gold NPs (AuNPs) with two types of proteins: ubiquitin and fibrinogen. This work was designed to systematically investigate the role of surface heterogeneity in nanoparticle-protein interaction. We have chosen the particles as well as the proteins to provide different types (in distribution and length-scale) of heterogeneity. The goal was to unveil the role of heterogeneity and of its length-scale in the particle-protein interaction. Dynamic light scattering and circular dichroism spectroscopy were used to reveal different interactions at pH above and below the isoelectric points of the proteins, which is related to the charge heterogeneity on the protein surface. At pH 7.4, there was only a monolayer of proteins adsorbed onto the NPs and the secondary structure of proteins remained intact. At pH 4.0, large aggregates of nanoparticle-protein complexes were formed and the secondary structures of the proteins were significantly disrupted. In terms of interaction thermodynamics, results from isothermal titration calorimetry showed that ubiquitin adsorbed differently onto (1) AuNPs with charged and nonpolar terminals organized into nano-scale structure (66-34 OT), (2) AuNPs with randomly distributed terminals (66-34 brOT), and (3) AuNPs with homogeneously charged terminals (MUS). This difference in adsorption behavior was not observed when AuNPs interacted with fibrinogen. The results suggested that the interaction between the proteins and AuNPs was influenced by the surface heterogeneity on the AuNPs, and this influence depends on the scale of surface heterogeneity and the size of the proteins

  11. Model for Adsorption of Ligands to Colloidal Quantum Dots with Concentration-Dependent Surface Structure

    Energy Technology Data Exchange (ETDEWEB)

    Morris-cohen, Adam J [Northwestern University, Evanston; Vasilenko, Vladislav [Northwestern University, Evanston; Amin, Victor A [Northwestern University, Evanston; Reuter, Matthew G [ORNL; Weiss, Emily A [Northwestern University, Evanston


    A study of the adsorption equilibrium of solution-phase CdS quantum dots (QDs) and acid-derivatized viologen ligands (N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate, V{sup 2+}) reveals that the structure of the surfaces of the QDs depends on their concentration. This adsorption equilibrium is monitored through quenching of the photoluminescence of the QDs by V{sup 2+} upon photoinduced electron transfer. When modeled with a simple Langmuir isotherm, the equilibrium constant for QD-V{sup 2+} adsorption, K{sub a}, increases from 6.7 x 10{sup 5} to 8.6 x 10{sup 6} M{sup -1} upon decreasing the absolute concentration of the QDs from 1.4 x 10{sup 6} to 5.1 x 10{sup 8} M. The apparent increase in K{sub a} upon dilution results from an increase in the mean number of available adsorption sites per QD from 1.1 (for [QD] = 1.4 x 10{sup 6} M) to 37 (for [QD] = 5.1 x 10{sup 8} M) through desorption of native ligands from the surfaces of the QDs and through disaggregation of soluble QD clusters. A new model based on the Langmuir isotherm that treats both the number of adsorbed ligands per QD and the number of available binding sites per QD as binomially distributed quantities is described. This model yields a concentration-independent value for K{sub a} of 8.7 x 10{sup 5} M{sup -1} for the QD-V{sup 2+} system and provides a convenient means for quantitative analysis of QD-ligand adsorption in the presence of competing surface processes.

  12. Wavelength Dependence of Picosecond Laser-Induced Periodic Surface Structures on Copper


    Maragkaki, Stella; Derrien, Thibault J. -Y.; Levy, Yoann; Bulgakova, Nadezhda M.; Ostendorf, Andreas; Gurevich, Evgeny L.


    The physical mechanisms of the laser-induced periodic surface structures (LIPSS) formation are studied in this paper for single-pulse irradiation regimes. The change in the LIPSS period with wavelength of incident laser radiation is investigated experimentally, using a picosecond laser system, which provides 7-ps pulses in near-IR, visible, and UV spectral ranges. The experimental results are compared with predictions made under the assumption that the surface-scattered waves are involved in ...

  13. Polarisation-dependent generation of fs-laser induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Gräf, Stephan, E-mail:; Müller, Frank A.


    Highlights: • LIPSS formation was studied under static and dynamic alteration of laser polarisation. • The dynamic polarisation is based on a continuously rotating E-field vector. • LIPSS generated with static linear polarisation reveal a period of 925 nm. • LIPSS orientation follows the direction of the rotating E-field vector. • The approach facilitates the formation of disordered structures for optical applications. - Abstract: The formation of laser induced periodic surface structures (LIPPS) was investigated on polished stainless steel surfaces under irradiation with fs-laser pulses characterised by a pulse duration τ = 300 fs, a laser wavelength λ = 1025 nm, a repetition frequency f{sub rep} = 250 Hz and a laser fluence F = 1 J/cm{sup 2}. For this purpose line scans with a scanning velocity v = 0.5 mm/s were performed in air environment at normal incidence utilising a well-defined temporal control of the electrical field vector. The generated surface structures were characterised by optical microscopy, by scanning electron microscopy and by atomic force microscopy in combination with Fourier transformation. The results reveal the formation of a homogenous and highly periodic surface pattern of ripples with a period Λ{sub exp} ≈ 925 nm aligned perpendicular to the incident electric field vector for static linear polarisation states. Utilising a motor-driven rotation device it was demonstrated that a continuously rotating electric field vector allows to transfer the originally well-ordered periodic ripples into tailored disordered surface structures that could be of particular interest for e.g. absorbing surfaces, plasmonic enhanced optoelectronic devices and biomedical applications.

  14. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu


    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  15. Topography-Dependent Eikonal Traveltime Tomography for Upper Crustal Structure Beneath an Irregular Surface (United States)

    Ma, Ting; Zhang, Zhongjie


    Seismic modeling of the crust with nonflat topography can be made by first-arrival traveltime tomography, which faces the challenge of an irregular free surface. A feasible way to deal with this problem consists of expanding the physical space by overlapping a low velocity layer above the irregular surface in order to have a flat topography, besides using the classical eikonal equation solver for traveltime computation. However, the undesirable consequences of this method include seismic ray deviations due to the transition from an irregular surface that is the free boundary to an inner discontinuity lying in the expanded computational space. An alternative solution, called irregular surface flattening, which involves the transformation between curvilinear and Cartesian coordinate systems, has been recently proposed through the formulation of the topography-dependent eikonal equation (TDEE) and a new solver for forward modeling of traveltimes. Based on the solution of this equation, we present topography-dependent eikonal traveltime tomography (hereafter TDETT) for seismic modeling of the upper crust. First-arrival traveltimes are calculated using the TDEE solver and the raypaths with the minimum traveltime that can be found by following the steepest traveltime gradient from the receiver to the source. By solving an algebraic equation system that connects the slowness perturbations with the already determined traveltimes, these variables can be obtained making use of the back-projection algorithm. This working scheme is evaluated through three numerical examples with different topographic complexities that are conducted from synthetic data and a fourth example with somewhat more complicated topography and real data acquired in northeastern Tibet. The comparison of the results obtained by both methods, i.e., physical space expansion above the irregular surface and irregular surface flattening, fully validates the tomography scheme that is proposed to construct

  16. Surface-structure dependence of water-related adsorbates on platinum

    NARCIS (Netherlands)

    Badan, C.


    Today, the energy sector is highly dependent on heterogeneous catalysis because a future solution to end our dependency on natural sources lies in generating hydrogen by splitting water. Several transition metals, such as Pt, are known to be good catalyst materials for water splitting reactions. The

  17. Dependence of snow melting and surface-atmosphere interactions on the forest structure (United States)

    Otterman, J.; Staenz, K.; Itten, K. I.; Kukla, G.


    The surface albedo and the surface roughness for forested areas with snow on the ground are expressed in terms of the tree silhouette parameter, s, the projection on the vertical plane of trees per unit area. The absorption of insolation (direct solar beam) is quantitatively described for a horizontal snow surface with vertical tree trunks, stressing the role of the bark at snow level as triggering the snow melt. Measurement of s by field sampling in two forested sites in central Switzerland yielded values ranging from 1.8 to 2.1.

  18. Supersaturation-dependent surface structure evolution: from ionic, molecular to metallic micro/nanocrystals. (United States)

    Lin, Hai-xin; Lei, Zhi-chao; Jiang, Zhi-yuan; Hou, Chang-ping; Liu, De-yu; Xu, Min-min; Tian, Zhong-qun; Xie, Zhao-xiong


    Deduced from thermodynamics and the Thomson-Gibbs equation that the surface energy of crystal face is in proportion to the supersaturation of crystal growth units during the crystal growth, we propose that the exposed crystal faces can be simply tuned by controlling the supersaturation, and higher supersaturation will result in the formation of crystallites with higher surface-energy faces. We have successfully applied it for the growth of ionic (NaCl), molecular (TBPe), and metallic (Au, Pd) micro/nanocrystals with high-surface-energy faces. The above proposed strategy can be rationally designed to synthesize micro/nanocrystals with specific crystal faces and functionality toward specific applications.

  19. The Interactions between Blood and Polymeric Nanoparticles Depend on the Nature and Structure of the Hydrogel Covering the Surface

    Directory of Open Access Journals (Sweden)

    Denis Labarre


    Full Text Available Polymeric surfaces in contact with blood in vivo are foreign bodies and are quickly isolated from blood by the non-specific defense systems. Nanoparticles (NP used as drug carriers are normally quickly taken up by phagocytes and sequestered in liver and spleen to which they can deliver drugs. Long-circulating and/or low complement activating core-shell NPs can be obtained from PEO/PEG amphiphilic copolymers forming brush or loops on the surface. Core-shell NPs can also be obtained from polysaccharidic graft or block amphiphilic copolymers. Complement activation by the NPs and protein adsorption both depend on the structure, nature and molecular weight of the polysaccharide chains composing the shell. NPs showing low complement activation can be obtained if the polysaccharide on the surface is long and in a brush configuration. Fragile molecules such as hemoglobin or siRNA can be loaded and protected by appropriate brush shells without modifying the low complement activation properties.

  20. Helical surface structures

    CERN Document Server

    Brandenburg, A; Brandenburg, Axel; Blackman, Eric G.


    Over the past few years there has been growing interest in helical magnetic field structures seen at the solar surface, in coronal mass ejections, as well as in the solar wind. Although there is a great deal of randomness in the data, on average the extended structures are mostly left-handed on the northern hemisphere and right-handed on the southern. Surface field structures are also classified as dextral (= right bearing) and sinistral (= left bearing) occurring preferentially in the northern and southern hemispheres respectively. Of particular interest here is a quantitative measurement of the associated emergence rates of helical structures, which translate to magnetic helicity fluxes. In this review, we give a brief survey of what has been found so far and what is expected based on models. Particular emphasis is put on the scale dependence of the associated fields and an attempt is made to estimate the helicity flux of the mean field vs. fluctuating field.

  1. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Zhou, Jun, E-mail: [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Rippa, Massimo; Petti, Lucia [Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, Via Campi Flegrei 34, 80072 Pozzuoli (Italy)


    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  2. Investigation on the temperature-dependence of absorption properties of solar cells with micro-structured surfaces

    Institute of Scientific and Technical Information of China (English)


    The temperature of a solar cell will increase when it is exposed to the sunlight,which results in variations of optical parameters and thermal expansion coefficient of the cell,thus affecting its spectral absorption feature.This paper is aimed to investigate the effects of temperature on the absorption property of solar cells with micro-structured surfaces.By taking hemispherical, cylindrical and spherical surfaces as models,numerical computation is conducted to obtain spectral distribution of absorptance of such surfaces with different structural parameters by means of the finite difference time domain(FDTD)method.Furthermore,the effects of material properties and structural period on the absorption property are also investigated.

  3. Applying Alkyl-Chain Surface Functionalizations in Mesoporous Inorganic Structures: Their Impact on Gas Flow and Selectivity Depending on Temperature. (United States)

    Besser, Benjamin; Ahmed, Atiq; Baune, Michael; Kroll, Stephen; Thöming, Jorg; Rezwan, Kurosch


    Porous inorganic capillary membranes are prepared to serve as model structures for the experimental investigation of the gas transport in functionalized mesopores. The porous structures possess a mean pore diameter of 23 nm which is slightly reduced to 20 nm after immobilizing C16-alkyl chains on the surface. Gas permeation measurements are performed at temperatures ranging from 0 to 80 °C using Ar, N2, and CO2. Nonfunctionalized structures feature a gas transport according to Knudsen diffusion with regard to gas flow and selectivity. After C16-functionalization, the gas flow is reduced by a factor of 10, and the ideal selectivities deviate from the Knudsen theory. CO2 adsorption measurements show a decrease in total amount of adsorbed gas and isosteric heat of adsorption. It is hypothesized that the immobilized C16-chains sterically influence the gas transport behavior without a contribution from adsorption effects. The reduced gas flow derives from an additional surface resistance caused by the C16-chains spacially limiting the adsorption and desorption directions for gas molecules propagating through the structure, resulting in longer diffusion paths. In agreement, the gas flow is found to correlate with the molecular diameter of the gas species (CO2 ideal selectivities with the relation [Formula: see text]. The influence on selectivity increases with increasing temperature which leads to the conclusion that the temperature induced movement of the C16-chains is responsible for the stronger interaction between gas molecules and surface functional groups.

  4. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef


    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  5. Do radiative feedbacks depend on the structure and type of climate forcing, or only on the spatial pattern of surface temperature change? (United States)

    Haugstad, A.; Battisti, D. S.; Armour, K.


    Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.

  6. Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic thermodynamics. (United States)

    Hao, Xiaobin; Wang, Baojun; Wang, Qiang; Zhang, Riguang; Li, Debao


    CO adsorption and activation on Ni(100), (110) and (111) surfaces have been systematically investigated to probe the effect of coverage and surface structure on CO adsorption and activation. Herein, dispersion-corrected density functional theory calculations (DFT-D) were employed, and the related thermodynamic energies at 523 K were calculated by including the zero-point energy, thermal energy and entropic corrections; the results show that the saturated coverage of CO on the Ni(111), (100) and (110) surfaces correspond to 8/9, 9/12 and 9/9 ML, respectively. As the coverage increases, the stepwise adsorption free energies decrease on the flat (111) and (100) surfaces, whereas small changes occur on the corrugated (110) surface. CO migrates from the three-fold hollow site to the top site on the (111) surface, and from the four-fold hollow to the two-fold bridge site on the (100) surface, while all the CO molecules remain at the short-bridge site on the (110) surface. As a result, the obtained intermolecular CO-CO repulsive interactions on the flat surface are stronger than the interactions on the corrugated surface. Furthermore, the computed CO vibrational frequencies at different levels of coverage over the Ni surfaces agree well with the experimental results. On the other hand, kinetic analyses were utilized to compare the stepwise CO desorption with the dissociation at different degrees of coverage on the three Ni surfaces. CO desorption is more favorable than its dissociation at all coverage levels on the most exposed Ni(111) surface. Analogously, CO desorption becomes more favorable than its dissociation on the Ni(110) surface at higher coverage, except for coverage of 1/9 ML, in which CO desorption competes with its dissociation. However, on the Ni(100) surface, CO dissociation is more favorable than its desorption at 1/12 ML; when the coverage increases from 2/12 to 3/12 ML, equilibrium states exist between dissociation and desorption over the surface; when

  7. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. (United States)

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder


    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  8. Two-photon photoemission study of the coverage-dependent electronic structure of chemisorbed alkali atoms on a Ag(111) surface. (United States)

    Wang, Lei-Ming; Sametoglu, Vahit; Winkelmann, Aimo; Zhao, Jin; Petek, Hrvoje


    We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/Cu(111) chemisorption [Phys. Rev. B 2008, 78, 085419].

  9. Size dependence of the stability, electronic structure, and optical properties of silicon nanocrystals with various surface impurities (United States)

    Kocevski, V.; Eriksson, O.; Rusz, J.


    We present a comprehensive, ground-state density functional theory study of the size dependence of the optical and electronic properties and the stability of spherical silicon nanocrystals (NCs) with different impurities on the surface. We vary the size of the NCs from 1.0 to 3.5 nm, considering single-bonded (CH3 , F, Cl, OH) and double-bonded (O, S) impurities and bridged oxygen. We show that the density of states (DOS) and absorption indices of the NCs with single-bonded impurities are very similar to each other and the fully hydrogenated NCs, except for the 1.0-nm NCs, where a slight difference is present. In the case of the NCs with double-bonded impurities, the DOS and absorption indices exhibit a significant difference, compared to the fully hydrogenated NCs, for sizes up to 2.5 nm. We argue that this difference arises from the difference in the contribution from the impurity to the states around the gap, which can considerably change the character of the states. We demonstrate that the double-bonded impurities contribute significantly to the states around the gap, compared to the single-bonded impurities, causing changes in the symmetry of these states. This observation was further supported by analyzing the changes of the Fourier transform of the charge densities of the highest occupied and lowest unoccupied eigenstate. We also show that the formation energies of NCs with bridged oxygen and fluorine are the lowest, regardless of the size. Furthermore, we show that high hydrogen concentration can be used to suppress the addition of oxygen and fluorine on the surface of the Si NCs.

  10. Structure-Dependent 4-Tert-Butyl Pyridine-Induced Band Bending at TiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Mats Göthelid


    Full Text Available The role of 4-tert butyl pyridine (4TBP adsorption on TiO2 surface band bending has been studied using photoelectron spectroscopy. Surface oxygen vacancies pin the Fermi level near the conduction band edge on rutile (110. 4TBP preferentially adsorbs in those vacancies and shift the Fermi level to lower binding energy in the band gap. This is done by transferring vacancy excess charge into the empty π∗ orbital in the pyridine ring. The anatase (100 surface contains much less oxygen vacancies although the surface is much rougher than the rutile (110. 4TBP adsorption does not have any significant effect on the surface band bending. Thus the positive role associated with 4TBP addition to solar cell electrolytes is suggested to protection against adsorption of other electrolyte components such as Li and I.

  11. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes (United States)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang


    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  12. Brain surface parameterization using Riemann surface structure. (United States)

    Wang, Yalin; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Thompson, Paul M; Yau, Shing-Tung


    We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.

  13. Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: Size, Shape, Crystal Phases, and Surface Coating

    Directory of Open Access Journals (Sweden)

    Jiangxue Wang


    Full Text Available With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2, one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.

  14. Dependency Structures for Statistical Machine Translation (United States)

    Bach, Nguyen


    Dependency structures represent a sentence as a set of dependency relations. Normally the dependency structures from a tree connect all the words in a sentence. One of the most defining characters of dependency structures is the ability to bring long distance dependency between words to local dependency structures. Another the main attraction of…

  15. DSSC anchoring groups: a surface dependent decision. (United States)

    O'Rourke, C; Bowler, D R


    Electrodes in dye sensitised solar cells are typically nanocrystalline anatase TiO2 with a majority (1 0 1) surface exposed. Generally the sensitising dye employs a carboxylic anchoring moiety through which it adheres to the TiO₂ surface. Recent interest in exploiting the properties of differing TiO₂ electrode morphologies, such as rutile nanorods exposing the (1 1 0) surface and anatase electrodes with high percentages of the (0 0 1) surface exposed, begs the question of whether this anchoring strategy is best, irrespective of the majority surface exposed. Here we address this question by presenting density functional theory calculations contrasting the binding properties of two promising anchoring groups, phosphonic acid and boronic acid, to that of carboxylic acid. Anchor-electrode interactions are studied for the prototypical anatase (1 0 1) surface, along with the anatase (0 0 1) and rutile (1 1 0) surfaces. Finally the effect of using these alternative anchoring groups to bind a typical coumarin dye (NKX-2311) to these TiO₂ substrates is examined. Significant differences in the binding properties are found depending on both the anchor and surface, illustrating that the choice of anchor is necessarily dependent upon the surface exposed in the electrode. In particular the boronic acid is found to show the potential to be an excellent anchor choice for electrodes exposing the anatase (0 0 1) surface.

  16. First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces (United States)

    Mun Wong, Kin; Alay-e-Abbas, S. M.; Shaukat, A.; Fang, Yaoguo; Lei, Yong


    In this paper, all electron full-potential linearized augmented plane wave plus local orbitals method has been used to investigate the structural and electronic properties of polar (0001) and non-polar (101¯0) surfaces of ZnO in terms of the defect formation energy (DFE), charge density, and electronic band structure with the supercell-slab (SS) models. Our calculations support the size-dependent structural phase transformation of wurzite lattice to graphite-like structure which is a result of the termination of hexagonal ZnO at the (0001) basal plane, when the stacking of ZnO primitive cell along the hexagonal principle c-axis is less than 16 atomic layers of Zn and O atoms. This structural phase transformation has been studied in terms of Coulomb energy, nature of the bond, energy due to macroscopic electric field in the [0001] direction, and the surface to volume ratio for the smaller SS. We show that the size-dependent phase transformation is completely absent for surfaces with a non-basal plane termination, and the resulting structure is less stable. Similarly, elimination of this size-dependent graphite-like structural phase transformation also occurs on the creation of O-vacancy which is investigated in terms of Coulomb attraction at the surface. Furthermore, the DFE at the (101¯0)/(1¯010) and (0001)/(0001¯) surfaces is correlated with the slab-like structures elongation in the hexagonal a- and c-axis. Electronic structure of the neutral O-vacancy at the (0001)/(0001¯) surfaces has been calculated and the effect of charge transfer between the two sides of the polar surfaces (0001)/(0001¯) on the mixing of conduction band through the 4s orbitals of the surface Zn atoms is elaborated. An insulating band structure profile for the non-polar (101¯0)/(1¯010) surfaces and for the smaller polar (0001)/(0001¯) SS without O-vacancy is also discussed. The results in this paper will be useful for the tuning of the structural and electronic properties of the

  17. Flat surfaces and stability structures



    We identify spaces of half-translation surfaces, equivalently complex curves with quadratic differential, with spaces of stability structures on Fukaya-type categories of punctured surfaces. This is achieved by new methods involving the complete classification of objects in these categories, which are defined in an elementary way. We also introduce a number of tools to deal with surfaces of infinite area, where structures similar to those in cluster algebra appear.

  18. Bioinspired structured surfaces. (United States)

    Bhushan, Bharat


    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. Various natural objects which provide functionality of commercial interest have been characterized to understand how a natural object provides functionality. We have modeled and fabricated structures in the lab using nature's route and developed optimum structures. Once it is understood how nature does it, optimum structures have been fabricated using smart materials and fabrication techniques. This feature article provides an overview of four topics: Lotus effect, rose petal effect, gecko feet, and shark skin.

  19. Structure-Dependent Anchoring of Organic Molecules to Atomically Defined Oxide Surfaces: Phthalic Acid on Co3O4(111), CoO(100), and CoO(111). (United States)

    Xu, Tao; Schwarz, Matthias; Werner, Kristin; Mohr, Susanne; Amende, Max; Libuda, Jörg


    We have performed a model study to explore the influence of surface structure on the anchoring of organic molecules on oxide materials. Specifically, we have investigated the adsorption of phthalic acid (PA) on three different, well-ordered, and atomically defined cobalt oxide surfaces, namely 1) Co3O4(111), 2) CoO(111), and 3) CoO(100) on Ir(100). PA was deposited by physical vapor deposition (PVD). The formation of the PA films and interfacial reactions were monitored in situ during growth by isothermal time-resolved IR reflection absorption spectroscopy (TR-IRAS) under ultrahigh vacuum (UHV) conditions. We observed a pronounced structure dependence on the three surfaces with three distinctively different binding geometries and characteristic differences depending on the temperature and coverage. 1) PA initially binds to Co3O4(111) through the formation of a chelating bis-carboxylate with the molecular plane oriented perpendicularly to the surface. Similar species were observed both at low temperature (130 K) and at room temperature (300 K). With increasing exposure, chelating mono-carboxylates became more abundant and partially replaced the bis-carboxylate. 2) PA binds to CoO(100) in the form of a bridging bis-carboxylate for low coverage. Upon prolonged deposition of PA at low temperature, the bis-carboxylates were converted into mono-carboxylate species. In contrast, the bis-carboxylate layer was very stable at 300 K. 3) For CoO(111) we observed a temperature-dependent change in the adsorption mechanism. Although PA binds as a mono-carboxylate in a bridging bidentate fashion at low temperature (130 K), a strongly distorted bis-carboxylate was formed at 300 K, possibly as a result of temperature-dependent restructuring of the surface. The results show that the adsorption geometry of PA depends on the atomic structure of the oxide surface. The structure dependence can be rationalized by the different arrangements of cobalt ions at the three surfaces.

  20. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)


    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  1. Calculation of Scale-Dependent Curvatures of Geological Surfaces (United States)

    Bergbauer, S.; Mukerji, T.; Pollard, D. D.; Hennings, P. H.


    A comparison between a spectral and a factorial kriging analysis is presented for the calculation of scale -dependent normal surface curvatures. Knowledge of scale -dependent curvatures of geological surfaces plays an important role in quantitative structural geology. Often, curvature analyses of geological surfaces, such as horizon tops, are performed to estimate the strain resulting from deformation. The final shape of the horizon, however, is a superposition of natural structures of different sizes ranging from the grain scale to the basin scale. Performing a curvature analysis on the raw data often leads to patchy, un-interpretable surface curvatures. Separating the surface curvature of the overall structure from the curvature of minor surface undulations can therefore be crucial in any quantitative structural analysis that uses the absolute value of surface curvature. The two methods are applied to a seismically mapped and depth-converted horizon of domal structures from the North Sea to investigate their applicability in a sub-surface context. For the spectral analysis the surface is transformed into a discrete frequency spectrum. When the overall curvature of the horizon is of interest, only the low-frequency components of the spectrum are used for the curvature analysis. The frequency bin width is determined such that only those frequencies that make up the overall surface structure are used, and that aliasing is minimized. The remaining high-frequency spectrum can be added back to address quantitatively the alias introduced by this filtering. In geostatistical factorial kriging analyses, the spatial covariance (variogram) is estimated from the data, and modeled as a sum of independent factors with different ranges. Short range variogram factors correspond to high frequency spectral components of the surface while long range factors contribute low frequency components. Using the modeled variogram, factorial kriging filters out the desired long range

  2. Spin-dependent surface electronic structure of Gd(0001) near the Fermi-level: An angle-resolved (I)PE study

    Energy Technology Data Exchange (ETDEWEB)

    Budke, Michael; Wittkowski, Alexander; Correa, Juliet; Donath, Markus [Physikalisches Institut, WWU Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)


    A widely accepted picture for the surface electronic structure of Gd(0001) comprises a spin-split surface state (SS) with its majority part 0.2 eV below E{sub F} and its minority part 0.5 eV above E{sub F} with a finite exchange splitting of 0.4 eV at T{sub C}. The discussion about this SS remains controversially because spin-resolved inverse photoemission identified a SS with both minority and majority components above E{sub F}. The reason for these conflicting results might be found in different sample conditions since the Gd films are usually grown on W(110), a material with considerably different lattice constant than Gd. To overcome this suspicion, we performed both, spin- and angle-resolved direct (PE) and inverse photoemission (IPE) on the same sample preparation of a 30 ML Gd film grown on Y(0001). We were able to identify two SSs with their minority and majority components well separated from E{sub F}. While the occupied SS shows spin-mixing behaviour as observed in other PE experiments, the unoccupied SS exhibits an exchange splitting of 250 meV that vanishes at T{sub C}. To identify the nature of the unexpected SS, we performed angular-resolved IPE measurements that support the interpretation as d-like SS above E{sub F} and reveal a variety of additional spectral features.

  3. Spin dependent proton structure functions

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D.; Garcia Canal, C.A. [Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata C.C. 67-1900 La Plata (Argentina); Sassot, R. [Departamento de Fisica, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 1 1428 Bs.As. (Argentina)


    We address the issue of gluon contributions to the polarized deep inelastic asymmetries. Particularly, of their effects in the scale dependence induced by the usual leading order Altarelli-Parisi evolution equations and those arising from fixed order {alpha}{sub {ital s}} and {alpha}{sup 2}{sub {ital s}} evolution approximations. {copyright} {ital 1996 American Institute of Physics.}

  4. Structural completeness in propositional logics of dependence

    NARCIS (Netherlands)

    Iemhoff, Rosalie; Yang, Fan


    In this paper we prove that three of the main propositional logics of dependence (including propositional dependence logic and inquisitive logic), none of which is structural, are structurally complete with respect to a class of substitutions under which the logics are closed. We obtain an analogous

  5. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert


    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  6. Surface structure of oriented PET films

    CERN Document Server

    Kirov, K


    crystallinity and the level of molecular orientation of the polymer are highest at the film surface and gradually decrease away from it. The same trend for an increase in structural order nearer the film surface was observed in a series of PET films drawn uniaxially in laboratory conditions. The observed strong dependence of stratification in the oriented films on drawing ratio, lead to the conclusion, that the structural gradients arise as a result of viscous flow. The molecular mechanism of stratification is discussed and leads to the idea of enhanced chain mobility at the PET film surface. The idea is in line with recent studies showing a depression of the glass transition temperature of free polymer surfaces. In addition, the results on structure formation in PET films during drawing, give support to the existing view that polymer crystallisation is assisted by a spinodal-decomposition nucleation process. Polymer films are widely used as substrates in nano-composite materials and therefore have to possess...

  7. Structural and spectroscopic studies of surfaces

    CERN Document Server

    Laitenberger, P


    and on a 10ML thick Ar spacer layer, a remarkable substrate dependence is revealed. A new STM-based technique for fabricating simple metal-structures with dimensions in the 10-100nm regime which are partially electrically isolated from their environment was developed in collaboration with Dr. L. A. Silva. This technique employs the STM tip as a mechanical nanofabrication tool to machine gaps into a thin metallic film deposited on an insulating substrate, which laterally confine and electrically isolate the desired metal regions. Several metal structures, such as nanoscale wires and pads, were successfully created. Finally, the conceptual basis and present stage of construction of a new surface analytical tool, the Scanning Probe Energy Loss Spectrometer (SPELS), is discussed. The SPELS offers the exciting prospect of collecting structural as well as spectroscopic information with a spatial resolution of a few nanometres. Once successfully developed, it will be ideally suited for spectroscopic studies of nanos...

  8. Surface structure of AU3Cu(001)

    DEFF Research Database (Denmark)

    Eckstein, G.A.; Maupai, S.; Dakkouri, A.S.


    The surface morphology, composition, and structure of Au3Cu(001) as determined by scanning tunneling microscopy and surface x-ray diffraction are presented. Atomic resolution STM images reveal distinctive geometric features. The analysis of the surface x-ray diffraction data provides clear evidence...... for the surface structure. [S0163-1829(99)04535-X]....

  9. On real structures on rigid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)


    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.

  10. The Meaning of Surface Structure and Deep Structure to Translation

    Institute of Scientific and Technical Information of China (English)



    Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chinese translation to some degree and its scientific connotation is meaningful to deepen language study and construct related disciplinary both in theory and practice.

  11. Locally homogeneous structures on Hopf surfaces

    CERN Document Server

    McKay, Benjamin


    We study holomorphic locally homogeneous geometric structures modelled on line bundles over the projective line. We classify these structures on primary Hopf surfaces. We write out the developing map and holonomy morphism of each of these structures explicitly on each primary Hopf surface.

  12. Tuning Wettability and Adhesion of Structured Surfaces (United States)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti

  13. Rheological characteristics of soft rock structural surface

    Institute of Scientific and Technical Information of China (English)

    陈沅江; 吴超; 傅衣铭


    There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.

  14. Exotic geometric structures on Kodaira surfaces

    CERN Document Server

    McKay, Benjamin


    On all compact complex surfaces (modulo finite unramified coverings), we classify all of the locally homogeneous geometric structures which are locally isomorphic to the exotic homogeneous surfaces of Lie.

  15. The multiplex dependency structure of financial markets

    CERN Document Server

    Musmeci, Nicoló; Aste, Tomaso; Di Matteo, Tiziana; Latora, Vito


    We propose here a multiplex network approach to investigate simultaneously different types of dependency in complex data sets. In particular, we consider multiplex networks made of four layers corresponding respectively to linear, non-linear, tail, and partial correlations among a set of financial time series. We construct the sparse graph on each layer using a standard network filtering procedure, and we then analyse the structural properties of the obtained multiplex networks. The study of the time evolution of the multiplex constructed from financial data uncovers important changes in intrinsically multiplex properties of the network, and such changes are associated with periods of financial stress. We observe that some features are unique to the multiplex structure and would not be visible otherwise by the separate analysis of the single-layer networks corresponding to each dependency measure.

  16. Surface structure of polymer Gels and emerging functions

    CERN Document Server

    Kobiki, Y


    We report the surface structure of polymer gels on a submicrometer scale during the volume phase transition. Sponge-like domains with a mesoscopic scale were directly observed in water by using at atomic force microscope (AFM). The surface structure characterized by the domains is discussed in terms of the root-mean-square roughness and the auto-correlation function, which were calculated from the AFM images. In order to demonstrate the role of surface structure in determining the macroscopic properties of film-like poly (N-isopropylacrylamide: NIPA) gels. It was found that the temperature dependence, as well as the absolute values of the static contact angle, were strongly dependent on the bulk network inhomogeneities. The relation between the mesoscopic structure and the macroscopic properties is qualitatively discussed in terms of not only the changes in the chemical, but also in the physical, surface properties of the NIPA gels in response to a temperature change.

  17. The effect of surfaces on the domain structure (United States)

    Korneta, W.; Pytel, Z.


    The second-order phase transition from the paramagnetic phase to the ferromagnetic phase with domain structure in a ferromagnetic film with strong uniaxial anisotropy is studied. The easy axis is perpendicular to the surface of the film. It is assumed that the short range interactions depend on the distance to the surface. The phase diagram of the film and the form of the domain structure which occurs at the phase transition temperature are obtained.

  18. Silicon surface structure-controlled oleophobicity. (United States)

    Liu, Yan; Xiu, Yonghao; Hess, Dennis W; Wong, C P


    Superoleophobic surfaces display contact angles >150 degrees with liquids that have lower surface energies than does water. The design of superoleophobic surfaces requires an understanding of the effect of the geometrical shape of etched silicon surfaces on the contact angle and hysteresis observed when different liquids are brought into contact with these surfaces. This study used liquid-based metal-assisted etching and various silane treatments to create superoleophobic surfaces on a Si(111) surface. Etch conditions such as the etch time and etch solution concentration played critical roles in establishing the oleophobicity of Si(111). When compared to Young's contact angle, the apparent contact angle showed a transition from a Cassie to a Wenzel state for low-surface-energy liquids as different silane treatments were applied to the silicon surface. These results demonstrated the relationship between the re-entrant angle of etched surface structures and the contact angle transition between Cassie and Wenzel behavior on etched Si(111) surfaces.

  19. Curvature-dependent surface energy and implications for nanostructures (United States)

    Chhapadia, P.; Mohammadi, P.; Sharma, P.


    At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.

  20. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: bacterial interaction and its dependence on the conserved structural features of the SRCR domain. (United States)

    Qiu, Reng; Sun, Bo-Guang; Li, Jun; Liu, Xiao; Sun, Li


    The scavenger receptor cysteine-rich (SRCR) proteins are secreted or membrane-bound receptors with one or multiple SRCR domains. Members of the SRCR superfamily are known to have diverse functions that include pathogen recognition and immunoregulation. In teleost, although protein sequences with SRCR structure have been identified in some species, very little functional investigation has been carried out. In this study, we identified and characterized a teleost SRCR protein from red drum Sciaenops ocellatus. The protein was named S. ocellatus SRCR1 (SoSRCRP1). SoSRCRP1 is 410-residue in length and was predicted to be a transmembrane protein, with the extracellular region containing a collagen triple helix repeat and a SRCR domain. The SRCR domain has six conserved cysteines, of which, C338 and C399, C351 and C409, and C379 and C389 were predicted to form three disulfide bonds. SoSRCRP1 expression was detected mainly in immune-relevant tissues and upregulated by bacterial and viral infection. In head kidney leukocytes, bacterial infection stimulated the expression of SoSRCRP1, and the expressed SoSRCRP1 was localized on cell surface. Recombinant SoSRCRP1 (rSoSRCRP1) corresponding to the SRCR domain was purified from Escherichia coli and found to be able to bind Gram-negative and Gram-positive bacteria. To examine the structure-function relationship of SoSRCRP1, the mutant proteins SoSRCRP1M1, SoSRCRP1M2, SoSRCRP1M3, and SoSRCRP1M4 were created, which bear C351S and C409S, C338S, C379S, and R325A mutations respectively. Compared to rSoSRCRP1, all mutants were significantly reduced in the ability of bacterial interaction, with the highest reduction observed with SoSRCRP1M4. Taken together, these results indicate that SoSRCRP1 is a cell surface-localized SRCR protein that binds bacterial ligands in a manner that depends on the conserved structural features of the SRCR domain.

  1. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent


    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  2. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health


    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  3. Modeling of laser induced periodic surface structures

    NARCIS (Netherlands)

    Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Mitko, V.S.; Obona, J.V.; Ocelik, V.; Hosson, J.T.M. de


    In surfaces irradiated by short laser pulses, Laser Induced Periodic Surface Structures (LIPSS) have been observed on all kind of materials for over forty years. These LIPSS, also referred to as ripples, consist of wavy surfaces with periodicity equal or smaller than the wavelength of the laser radi


    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Kelley, Michael J. [JLAB, W& amp; M College; Xu, Chen [JLAB, W& amp; M College


    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  5. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik


    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are wellknown examples used for inspiration for such biomimetic research...... of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4...... % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed....

  6. Numerical simulation of condensation on structured surfaces. (United States)

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei


    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  7. [Oligoglycine surface structures: molecular dynamics simulation]. (United States)

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V


    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  8. Structure and functions of fungal cell surfaces (United States)

    Nozawa, Y.


    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  9. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa


    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  10. Structure of the airflow above surface waves (United States)

    Buckley, Marc; Veron, Fabrice


    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  11. Curved hierarchically micro-micro structured polypropylene surfaces by injection molding (United States)

    Mielonen, K.; Suvanto, M.; Pakkanen, T. A.


    Structural hierarchy of polymer surfaces has been of central interest due to its diverse surface functionalities. However, the research on hierarchically structured polymer surfaces has been focused on planar surfaces even though applications may also be variously curved. This study demonstrates the fabrication of curved rigid polymer surfaces with precisely controlled hierarchical microstructures. The surface structuration was made on an aluminum foil with a microworking robot, and polypropylene replicas were produced by injection molding. Depending on the mold structuration procedure, the curved mold can have either radially or vertically oriented structures. Both convex and concave curvatures were here applied to spherically and cylindrically curved surfaces. A simple structure protection technique was applied to support the structures during mechanical bending of the foil. The planar hierarchically microstructured polypropylene surfaces were characterized to exhibit superhydrophobicity, and similar structures were obtained on the curved surfaces. Introducing the curvature to the hierarchically structured surfaces may further widen the applicability of functionalized polymer surfaces.

  12. Concentration Dependent Structure of Block Copolymer Solutions (United States)

    Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.


    Addition of solvent molecules into block copolymer can induce additional interactions between the solvent and both blocks, and therefore expands the range of accessible self-assembled morphologies. In particular, the distribution of solvent molecules plays a key role in determining the microstructure and its characteristic domain spacing. In this study, concentration dependent structures formed by poly(styrene-b-ethylene-alt-propylene) (PS-PEP) solution in squalane are investigated using small-angle X-ray scattering. This reveals that squalane is essentially completely segregated into the PEP domains. In addition, the conformation of the PS block changes from stretched to nearly fully relaxed (i.e., Gaussian conformation) as amounts of squalane increases. NRF

  13. Experimental cross-sections energy dependence and an ab initio electronic structure survey of the ground singlet potential surface for reactive Li(+) + n-C(3)H(7)Cl collisions at low energies. (United States)

    Lucas, José María; de Andrés, Jaime; Albertí, Margarita; Bofill, Josep Maria; Bassi, Davide; Aguilar, Antonio


    Reactive collisions between n-C(3)H(7)Cl molecules and lithium ions both in their ground electronic state have been studied in the 0.05-7.00 eV center of mass energy range using an octopole radio frequency guided-ion beam apparatus developed in our laboratory and recently modified. At low collision energies, dehydrohalogenation reactions leading to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while on increasing energies C(3)H(7)(+) and C(2)H(3)(+) formation become dominant. Cross section energy dependences in arbitrary units for all these reactions have been measured. Also, ab initio electronic structure calculations at the MP2 level have been performed to obtain information about the potential energy surface on which the reactive processes take place. The reactants' entrance channel leads to the formation of a stable [Li-n-C(3)H(7)Cl](+) ion-molecule adduct that, following an intrinsic-reaction-coordinate pathway and surmounting a transition state, isomerizes to [Li-i-C(3)H(7)Cl](+). From this second minimum, dehydrohalogenation reactions for both n-C(3)H(7)Cl and i-C(3)H(7)Cl share a common reaction pathway leading to the same products. All potential barriers explored by reactions always lie below the reactants' energy. The entrance reaction channel [Li-n-C(3)H(7)Cl](+) adduct also leads adiabatically to C(3)H(7)(+) formation which, on increasing collision energy generates C(2)H(3)(+)via a unimolecular decomposition. A qualitative interpretation of the experimental results based on our ab initio calculations is also given.

  14. Coherent flow structures at earth's surface

    National Research Council Canada - National Science Library

    Venditti, J.G; Best, J.L; Church, M; Hardy, R.J


    This book reviews the recent progress in the study of the turbulent flows that sculpt the Earth's surface, focusing in particular on the organized structures that have been identified in recent years...

  15. Temperature dependent spin structures in Hexaferrite crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Lin, J.G., E-mail: [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chun, S.H.; Kim, K.H. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)


    In this work, the Hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state. - Highlights: • For the first time Ferromagnetic Resonance is used to probe the local magnetic structure of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22.} • The multiphases in the single crystal is identified, which provides important information toward its future application for the magnetoelectric devices.

  16. Correlating simulated surface marks with near-surface tornado structure (United States)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  17. Long Range Surface Plasmons in Multilayer Structures

    CERN Document Server

    Delfan, Aida


    We present a new strategy, based on a Fresnel coefficient pole analysis, for designing an asymmetric multilayer structure that supports long range surface plasmons (LRSP). We find that the electric field intensity in the metal layer of a multilayer LRSP structure can be even slightly smaller than in the metal layer of the corresponding symmetric LRSP structure, minimizing absorption losses and resulting in LRSP propagation lengths up to 2mm. With a view towards biosensing applications, we also present semi-analytic expressions for a standard surface sensing parameter in arbitrary planar resonant structures, and in particular show that for an asymmetric structure consisting of a gold film deposited on a multilayer of SiO2 and TiO2 a surface sensing parameter G = 1.28(1/nm) can be achieved.

  18. Imprinted and injection-molded nano-structured optical surfaces (United States)

    Christiansen, Alexander B.; Højlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders


    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

  19. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.


    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  20. Probing surface structures of Shewanella spp. by microelectrophoresis

    NARCIS (Netherlands)

    Dague, E.; Duval, J.F.L.; Jorand, R.; Thomas, F.; Gaboriaud, F.


    Long-range electrostatic forces substantially influence bacterial interactions and bacterial adhesion during the preliminary steps of biofilm formation. The strength of these forces depends strongly on the structure of the bacterium surfaces investigated. The latter may be addressed from appropriate


    NARCIS (Netherlands)



    We have performed a low energy electron diffraction study of the sodium tungsten bronze, NaxWO3, x = 0.8, surface. Temperature dependent changes of both polished and cleaved surfaces indicate structural phase transitions of the surface structure, and reflect the general trend in structural phase tra

  2. The Surface Structure of Relative Clauses (United States)

    Lucas, Michael A.


    This article attempts to show that a more rigorous approach to surface structure analysis can reveal distinctions just as subtle as those discovered through analyzing deep structures or transformations. Relative clauses are examined in relation to nominal constructions, and alternatives to restrictive and non-restrictive classifications are…

  3. Sub-µm structured lotus surfaces manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo


    . Unlike to stochastic methods, patterning with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g., with gradients). In this paper we present the process chain to realize polymer sub-lm structures with minimum lateral feature size of 400 nm...

  4. Sub-µ structured Lotus Surfaces Manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo


    . Unlike to stochastic methods, patternin¬g with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm...

  5. Pressurizable structures comprising different surface sections

    NARCIS (Netherlands)

    Koussios, S.; Bergsma, O.K.; Beukers, A.


    The invention relates to composite pressurizable structures which are overwound with fibres or are braided. The pressurizable structures comprise axial sections which in turn comprise both concave and convex surfaces. The shape characteristics are related to geodesic as well as non-geodesic trajecto

  6. Longitudinal surface structures (flowstripes on Antarctic glaciers

    Directory of Open Access Journals (Sweden)

    N. F. Glasser


    Full Text Available Longitudinal surface structures (''flowstripes'' are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems (the Lambert Glacier/Amery Ice Shelf area, outlet glaciers in the Ross Sea sector, ice-shelf tributary glaciers on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1 as relatively wide flow stripes within glacier flow units and (2 as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

  7. In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La 0.8 Sr 0.2 CoO 3−δ Perovskite Thin Films

    KAUST Repository

    Feng, Zhenxing


    Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.8Sr0.2CoO 3-δ (LSC113) and (La0.5Sr 0.5)2CoO4+δ (LSC214)-decorated LSC113 (LSC113/214) thin films as a function of temperature. Heating the (001)-oriented LSC113 surface leads to the formation of surface LSC214-like particles, which is further confirmed by ex situ Auger electron spectroscopy (AES). In contrast, the LSC113/214 surface, with activities much higher than that of LSC 113, is stable upon heating. Combined in situ XRR and APXPS measurements support that Sr enrichment may occur at the LSC113 and LSC214 interface, which can be responsible for its markedly enhanced activities. © 2013 American Chemical Society.

  8. Colloids with high-definition surface structures (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg


    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  9. Colloids with high-definition surface structures. (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg


    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

  10. Electron mean free path dependence of the vortex surface impedance (United States)

    Checchin, M.; Martinello, M.; Grassellino, A.; Romanenko, A.; Zasadzinski, J. F.


    In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning and flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. The dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.

  11. Nature inspired structured surfaces for biomedical applications. (United States)

    Webb, H K; Hasan, J; Truong, V K; Crawford, R J; Ivanova, E P


    Nature has created an array of superhydrophobic surfaces that possess water-repellent, self-cleaning and anti-icing properties. These surfaces have a number of potential applications in the biomedical industry, as they have the potential to control protein adsorption and cell adhesion. Natural superhydrophobic surfaces are typically composed of materials with a low intrinsic surface free-energy (e.g the cuticular waxes of lotus leaves and insect wings) with a hierarchical structural configuration. This hierarchical surface topography acts to decrease the contact area of water droplets in contact with the surface, thereby increasing the extent of the air/water interface, resulting in water contact angles greater than 150º. In order to employ these surfaces in biotechnological applications, fabrication techniques must be developed so that these multi-scale surface roughness characteristics can be reproduced. Additionally, these fabrication techniques must also be able to be applied to the material required for the intended application. An overview of some of the superhydrophobic surfaces that exist in nature is presented, together with an explanation of the theories of their wettability. Also included is a description of some of the biomedical applications of superhydrophobic surfaces and fabrication techniques that can be used to mimic superhydrophobic surfaces found in nature.

  12. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals (United States)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide


    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  13. Protein-induced surface structuring in myelin membrane monolayers. (United States)

    Rosetti, Carla M; Maggio, Bruno


    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  14. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Robert L., E-mail: [Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849 (United States); Crandall, Erika R.; Bozack, Michael J. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)


    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  15. Anthocyanin kinetics are dependent on anthocyanin structure. (United States)

    Novotny, Janet A; Clevidence, Beverly A; Kurilich, Anne C


    The kinetics of anthocyanin metabolism was investigated in a human feeding trial. Volunteers (n 12) consumed purple carrots containing five anthocyanin forms: cyanidin-3-(xylose-glucose-galactoside), cyanidin-3-(xylose-galactoside), cyanidin-3-(xylose-sinapoyl-glucose-galactoside), cyanidin-3-(xylose-feruloyl-glucose-galactoside) and cyanidin-3-(xylose-coumuroyl-glucose-galactoside). The purple carrots were served as three different treatments in a crossover design with a 3-week washout between treatments. Purple carrot treatments were 250 g raw carrots, 250 g cooked carrots and 500 g cooked carrots. Serial blood and urine samples were collected for 8 and 24 h after the dose, respectively, and analysed for anthocyanins. Of the anthocyanin forms ingested, four were detected in plasma and urine: cyanidin-3-(xylose-glucose-galactoside), cyanidin-3-(xylose-galactoside), cyanidin-3-(xylose-sinapoyl-glucose-galactoside) and cyanidin-3-(xylose-feruloyl-glucose-galactoside). The time courses of plasma and urine anthocyanin contents were evaluated with compartmental modelling. Results showed that absorption, gastrointestinal transit and plasma elimination are dependent on anthocyanin structure. Absorption efficiencies of acylated compounds (cyanidin-3-(xylose-sinapoyl-glucose-galactoside) and cyanidin-3-(xylose-feruloyl-glucose-galactoside)) were less than those for non-acylated anthocyanins (cyanidin-3-(xylose-glucose-galactoside) and cyanidin-3-(xylose-galactoside)). The acylated anthocyanins exhibited a shorter half-life for gastrointestinal absorption than the non-acylated anthocyanins. Fractional elimination of non-acylated compounds was slower than that for acylated anthocyanins. These results provide the first information about the kinetics of individual anthocyanins in human beings.

  16. Surface area-dependent second harmonic generation from silver nanorods. (United States)

    Ngo, Hoang Minh; Luong, Thanh Tuyen; Ledoux-Rak, Isabelle


    The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon resonance. We have implemented an original, one-step and seedless synthesis method, based on a spontaneous particle growth technique in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Colloidal solutions of AgNRs with various aspect ratios (5.0; 6.3; 7.5; 8.2 and 9.7) have been obtained and characterized using Harmonic light scattering (HLS) at 1064 nm, in order to investigate their quadratic NLO properties. From HLS experiments, we demonstrate that hyperpolarizability (β) values of AgNRs display a strong dependence on their surface area.

  17. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays

    CERN Document Server

    Guo, R; Törmä, P


    Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting frontier in plasmonics. Compared with the localized surface plasmon resonance (LSPR) in individual particles, these collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths. Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry can be straightforwardly obtained by a simple comparison of the diffractive order (DO) vectors and orientation of the nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that while square, hexagonal, rectangular, honeycomb and Lieb lattice arrays have similar spectra near the $\\Gamma$-point ($k=0$), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on the polarization. Num...

  18. Size dependence of the surface tension of a free surface of an isotropic fluid (United States)

    Burian, Sergii; Isaiev, Mykola; Termentzidis, Konstantinos; Sysoev, Vladimir; Bulavin, Leonid


    We report on the size dependence of the surface tension of a free surface of an isotropic fluid. The size dependence of the surface tension is evaluated based on the Gibbs-Tolman-Koenig-Buff equation for positive and negative values of curvatures and the Tolman lengths. For all combinations of positive and negative signs of curvature and the Tolman length, we succeed to have a continuous function, avoiding the existing discontinuity at zero curvature (flat interfaces). As an example, a water droplet in the thermodynamical equilibrium with the vapor is analyzed in detail. The size dependence of the surface tension and the Tolman length are evaluated with the use of experimental data of the International Association for the Properties of Water and Steam. The evaluated Tolman length of our approach is in good agreement with molecular dynamics and experimental data.

  19. Surface structure and electronic properties of materials (United States)

    Siekhaus, W. J.; Somorjai, G. A.


    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  20. Temperature dependence of crystal structure and digestibility of roasted diaspore

    Institute of Scientific and Technical Information of China (English)

    周秋生; 李小斌; 彭志宏; 刘桂华


    Through X-ray diffraction patterns and scanning electronic micrographs, temperature dependence of the crystal structure of roasted diasporic bauxite at different temperatures and the digestibility of roasting production were investigated systematically. The lattice parameters of unit cell for chemically purified diaspore and unequilibrium alumina-contained oxide obtained from the diaspore roasted at different temperatures were determined. It is found that, with roasting temperature increasing, the roasting production changes from the original dense and perfect diaspore crystal into imperfect corundum with many microcracks and small pores on its surface and then into perfect corundum with low digestibility. The optimum roasting temperature with best digestibility is approximately 525 ℃ when residence time is about 25 min. It is thought that the change of crystal structure, formation of microcracks and small pores in the temperature field are the main essential reasons for improving digestibility of diasporic bauxite and its roasting production.

  1. Surface Appendages of Archaea: Structure, Function, Genetics and Assembly

    Directory of Open Access Journals (Sweden)

    Sarah Siu


    Full Text Available Organisms representing diverse subgroupings of the Domain Archaea are known to possess unusual surface structures. These can include ones unique to Archaea such as cannulae and hami as well as archaella (archaeal flagella and various types of pili that superficially resemble their namesakes in Bacteria, although with significant differences. Major advances have occurred particularly in the study of archaella and pili using model organisms with recently developed advanced genetic tools. There is common use of a type IV pili-model of assembly for several archaeal surface structures including archaella, certain pili and sugar binding structures termed bindosomes. In addition, there are widespread posttranslational modifications of archaellins and pilins with N-linked glycans, with some containing novel sugars. Archaeal surface structures are involved in such diverse functions as swimming, attachment to surfaces, cell to cell contact resulting in genetic transfer, biofilm formation, and possible intercellular communication. Sometimes functions are co-dependent on other surface structures. These structures and the regulation of their assembly are important features that allow various Archaea, including thermoacidophilic, hyperthermophilic, halophilic, and anaerobic ones, to survive and thrive in the extreme environments that are commonly inhabited by members of this domain.

  2. Surface Activity of Humic Acids Depending on Their Origin and Humification Degree

    Directory of Open Access Journals (Sweden)

    Klaviņš Māris


    Full Text Available Humic substances are able to reduce the surface tension of their solutions and thus can act as surface-active substances in the natural environment, which may have industrial application. The ability to influence the surface tension of humic acid solutions depends on the origin of the humic acids. The objective of this study was comparison of the ability of humic acids of different origin (soil, water, peat, lignite etc. to influence the surface tension of their solutions, and identification of the structural characteristics of peat humic acids that determine their surfactant properties. Industrially produced humic materials demonstrated no or insignificant impact on the surface tension of their solutions. However, humic acids isolated from peat had significant impact of the surface tension of their solutions, acting as weak surfactants. The surface tension of humic acid solutions decreased with increasing concentration, and depended on solution pH. Using a well-characterised bog profile, the ability to influence the surface tension of peat humic acids was shown to depend on age and humification degree. With increase of the humification degree and age, molecular complexity of humic acids and their ability to influence surface tension decreased; but nevertheless, the impact of the biological precursor (peat-forming bryophytes and plants could be identified.

  3. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail:; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)


    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  4. Can atom-surface potential measurements test atomic structure models? (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D


    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  5. Melamine structures on the Au(111) surface

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Castell, Martin R.; Briggs, G. A. D.; Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev


    We report on a joint experimental and theoretical study of the ordered structures of melamine molecules formed on the Au(111)-(22 x root 3) surface. Scanning tunneling microscopy (STM) images taken under UHV conditions reveal two distinct monolayers one of which has never been reported before on gol

  6. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian;


    We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design ...

  7. Pool Boiling Heat Transfer on structured Surfaces (United States)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.


    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  8. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence. (United States)

    Hong, Y. S.; And Others


    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  9. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun


    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  10. Coal surface structure and thermodynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.


    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  11. Femtosecond laser-induced surface structures on carbon fibers. (United States)

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan


    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers.

  12. Structurally tuned iridescent surfaces inspired by nature

    Energy Technology Data Exchange (ETDEWEB)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cedric; Welch, Victoria; Vigneron, Jean Pol [Laboratoire de Physique du Solide, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium); Lucas, Stephane [Laboratoire d' Analyses par Reactions Nucleaires, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium)], E-mail:


    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO{sub 2}/SiO{sub 2} multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO{sub 2}/SiO{sub 2} layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions.

  13. Superhydrophobic Behavior on Nano-structured Surfaces (United States)

    Schaeffer, Daniel


    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  14. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions. (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen


    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  15. Crystalline structure-dependent growth of bimetallic nanostructures. (United States)

    Li, Qian; Jiang, Ruibin; Ming, Tian; Fang, Caihong; Wang, Jianfang


    Morphological control of multimetallic nanostructures is crucial for obtaining shape-dependent physical and chemical properties. Up to date, control of the shapes of multimetallic nanostructures has remained largely empirical. Multimetallic nanostructures have been produced mostly through seed-mediated growth. Understanding the role played by starting nanocrystal seeds can help in controlling the shape and in turn the plasmonic and catalytic properties of multimetallic nanostructures. In this work, we have studied the effect of the crystalline structure and shape of Au nanocrystal seeds on the morphology of the resultant bimetallic nanostructures. Single-crystalline Au nanorods, multiply twinned Au nanorods, and multiply twinned Au nanobipyramids were employed as the starting seeds. Both silver and palladium exhibit highly preferential growth on the side surfaces of the single-crystalline Au nanorods, giving rise to bimetallic cuboids, whereas they prefer to grow at the ends of the multiply twinned Au nanorods and nanobipyramids, giving rise to bimetallic nanorods. These results indicate that the morphology of the bimetallic nanostructures is highly dependent on the crystalline structure of the Au nanocrystal seeds. Our results will be useful for guiding the preparation of multimetallic nanostructures with desired shapes and therefore plasmonic properties for various plasmon-based applications.

  16. Ferromagnetism and temperature-dependent electronic structure in metallic films

    CERN Document Server

    Herrmann, T


    reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin-, layer-, and temperature-dependent. The last part of this work is concerned about the temperature-driven reorientation transition in thin metallic films. For the description of the magnetic anisotropy in thin films the dipole interaction as well as the spin-orbit interaction have to be included in the model. By calculating the temperature-dependence of the magnetic anisotropy energy it is found that both types of temperature-driven reorientation transitions, from out-of-plane to in-plane (''Fe-type'') and from in-pla...

  17. Advances on surface structural determination by LEED

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Edmar A; De Carvalho, Vagner E [Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, 31270-090, Belo Horizonte, MG (Brazil); De Castilho, Caio M C, E-mail: [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica and Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente (CIENAM)INCT-E and A, Universidade Federal da Bahia, Campus Universitario da Federacao, 40170-115, Salvador, BA (Brazil)


    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  18. Advances on surface structural determination by LEED. (United States)

    Soares, Edmar A; de Castilho, Caio M C; de Carvalho, Vagner E


    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail.

  19. Structured light for focusing surface plasmon polaritons. (United States)

    Hu, Z J; Tan, P S; Zhu, S W; Yuan, X-C


    We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

  20. Structural Response Analysis under Dependent Variables Based on Probability Boxes

    National Research Council Canada - National Science Library

    Xiao, Z; Yang, G


      This paper considers structural response analysis when structural uncertainty parameters distribution cannot be specified precisely due to lack of information and there are complex dependencies in the variables...

  1. Bacterial cell surface structures in Yersinia enterocolitica. (United States)

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael


    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  2. Enzyme surface rigidity tunes the temperature dependence of catalytic rates. (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav


    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  3. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens


    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...... synchrotron X-rays, and of very accurate angular settings in the ultrahigh-vacuum environment of the sample. We present the technique and discuss examples of experimental results....

  4. Structure and reactivity of water at biomaterial surfaces. (United States)

    Vogler, E A


    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  5. Silylation of montmorillonite surfaces: dependence on solvent nature. (United States)

    Su, Linna; Tao, Qi; He, Hongping; Zhu, Jianxi; Yuan, Peng; Zhu, Runliang


    Silylation of clay mineral surfaces has attracted much attention due to their extensive applications in materials science and environmental engineering. Silylation of montmorillonite surfaces with 3-aminopropyltriethoxysilane was carried out in polar-protic and nonpolar solvents. The swelling property of the silylated montmorillonites was investigated by intercalating with cetyltrimethylammonium bromide. Silylated montmorillonites prepared in nonpolar solvents showed a larger amount of loaded silane and a higher extent of condensation among different silane molecules, comparing with those prepared in polar-protic solvents with high dielectric constant. Meanwhile, the silylated montmorillonites prepared in nonpolar solvents displayed poor swelling property due to the linkage between silane oligomers and clay layers, that is, the neighboring clay layers were locked by the silane oligomers. The present study demonstrated that the polarity of the solvents used had an important influence on the extent of grafting, interlayer structure, and swelling property of the silylated products. This is of high importance for synthesis and application of silylated clay minerals.

  6. Oppor tunistic maintenance for multi-component systems considering structural dependence and economic dependence

    Institute of Scientific and Technical Information of China (English)

    Junbao Geng; Michael Azarian; Michael Pecht


    Although opportunistic maintenance strategies are widely used for multi-component systems, al opportunistic mainte-nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main-tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor-tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.

  7. Random Time Dependent Resistance Analysis on Reinforced Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    GUAN Chang-sheng; WU Ling


    The analysis method on random time dependence of reinforced concrete material is introduced,the effect mechanism on reinforced concrete are discussed, and the random time dependence resistance of reinforced concrete is studied. Furthermore, the corrosion of steel bar in reinforced concrete structures is analyzed. A practical statistical method of evaluating the random time dependent resistance, which includes material, structural size and calculation influence, is also established. In addition, an example of predicting random time dependent resistance of reinforced concrete structural element is given.

  8. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling


    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  9. Termination dependence of surface stacking at 4H-SiC(0001)-1×1 : Density functional theory calculations (United States)

    Hara, Hideyuki; Morikawa, Yoshitada; Sano, Yasuhisa; Yamauchi, Kazuto


    We study the effect of adsorbates on the relative stability of hexagonal and cubic stacking sequences at the topmost SiC bilayers of 4H-SiC(0001)-1×1 surfaces using first-principles calculations. We investigate F-terminated, OH-terminated, H-terminated, and clean surfaces, and in all cases, the cubic structure is more stable than the hexagonal structure. The energy difference between the two structures, however, significantly depends on adsorbates and is largest on the clean surface while it is smallest on the H-terminated surface. Stabilization of the cubic structure at F-terminated and OH-terminated surfaces is in contradiction to a simple argument based on the electrostatic interaction and we attribute it to orbital hybridization between occupied states of adsorbates and unoccupied states of the substrate surface. The present results suggest a possible means of controlling step bunching and the SiC stacking sequence by surface adsorbates.

  10. View-Dependent Tessellation and Simulation of Ocean Surfaces

    Directory of Open Access Journals (Sweden)

    Anna Puig-Centelles


    Full Text Available Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh.

  11. Neisserial surface lipoproteins: structure, function and biogenesis. (United States)

    Hooda, Yogesh; Shin, Hyejin E; Bateman, Thomas J; Moraes, Trevor F


    The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria. © FEMS 2017. All rights reserved. For permissions, please e-mail:

  12. Dependence of Softness on Fabric Surface Quality and Compressibility

    Institute of Scientific and Technical Information of China (English)

    HU Ji-yong; DING Xin; WANG Ru-bin


    The term "softness" is loosely used to describe the physical as well as sensory attributes of fabric and other textiles, and several psychophysical evaluation methods as well as its predicting equations exist. However, the information for physiological mechanism of fabric softness is lack. To explain the biomechanical and the potential neurophysiological phenomenon for exploring fabric softness,accompanying to the procedures in manual exploration for softness and the anatomical multilayer structures of human finger, a contact finite element (FE) model between finger and fabric is made to conduct an active contact analysis. In present FE model, the effect of surface friction index,compression modulus, Poisson's ratio of fabric on softness discrimination is investigated. The interests are in the contributions of these fabric property variables to contact area, interfacial friction shear stress and contact pressure distributions, which are significant cognitive variables or stimulus parameters in peripheral neural levels. The mechanistic data for fabric specimens indicates that the basis for the perception of softness of flexible and bulk fabric is likely on the spatial variation of pressure on the skin (or,equivalently the skin displacement and its derivatives)resulting from surface friction phenomenon and compression property of fabric. In present model, however, the effect of Poisson's ratio on the total force exerted by fingertip is not significant statistically. Therefore, compression modulus of fabric is, not the only underlying physical variable accounting for peripheral neural response, and also the surface friction phenomenon plays an important role in feeltouch softness of fabric, i.e. the compressibility and surface properties of fabric are the necessary physical variables involved for the haptic rendering of its softness.

  13. Electronic Structure and Catalysis on Metal Surfaces (United States)

    Greeley, Jeff; Norskov, Jens K.; Mavrikakis, Manos


    The powerful computational resources available to scientists today, together with recent improvements in electronic structure calculation algorithms, are providing important new tools for researchers in the fields of surface science and catalysis. In this review, we discuss first principles calculations that are now capable of providing qualitative and, in many cases, quantitative insights into surface chemistry. The calculations can aid in the establishment of chemisorption trends across the transition metals, in the characterization of reaction pathways on individual metals, and in the design of novel catalysts. First principles studies provide an excellent fundamental complement to experimental investigations of the above phenomena and can often allow the elucidation of important mechanistic details that would be difficult, if not impossible, to determine from experiments alone.

  14. Structure and thermodynamics of surface recognition

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.


    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Interactions of the surface glycoprotein, gp120, with the receptors of host cells define the pathogenesis of HIV-1, the virus that causes AIDS. gp120 is made of several disulfide-bridged loops--the amino acid sequences of some of these loops are fairly conserved whereas the rest are variable. The third variable (V3) loop has been the target of vaccine design for quite some time since this loop is involved in various steps of viral pathogenesis. However, this loop also happens to be the most variable one. The authors have carried out structural and immunological studies to determine the sequence-structure-antigenicity correlations of the HIV-1 V3 loops. This resulted in the identification of a secondary structure at the tip of the V3 loop that remains invariant in spite of the sequence variation. The authors designed a multi-valent V3-based antigen that presents multiple copies of the same tip element several times in the same structure. During the course of this project, they realized that the protective epitopes of gp120 should be judged in the context of the native structure. Therefore, the authors developed a method to obtain a model of gp120 that is consistent with all the immunology and virology data. This model is useful in choosing or designing gp120 subdomains for vaccine development.

  15. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G


    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  16. Electronic structure tuning via surface modification in semimetallic nanowires (United States)

    Sanchez-Soares, Alfonso; O'Donnell, Conor; Greer, James C.


    Electronic structure properties of nanowires (NWs) with diameters of 1.5 and 3 nm based on semimetallic α -Sn are investigated by employing density functional theory and perturbative GW methods. We explore the dependence of electron affinity, band structure, and band-gap values with crystallographic orientation, NW cross-sectional size, and surface passivants of varying electronegativity. We consider four chemical terminations in our study: methyl (CH3), hydrogen (H ), hydroxyl (OH ), and fluorine (F ). Results suggest a high degree of elasticity of Sn-Sn bonds within the Sn NWs' cores with no significant structural variations for nanowires with different surface passivants. Direct band gaps at Brillouin-zone centers are found for most studied structures with quasiparticle corrected band-gap magnitudes ranging from 0.25 to 3.54 eV in 1.5-nm-diameter structures, indicating an exceptional range of properties for semimetal NWs below the semimetal-to-semiconductor transition. Band-gap variations induced by changes in surface passivants indicate the possibility of realizing semimetal-semiconductor interfaces in NWs with constant cross-section and crystallographic orientation, allowing the design of novel dopant-free NW-based electronic devices.

  17. Conformation of repaglinide: A solvent dependent structure (United States)

    Chashmniam, Saeed; Tafazzoli, Mohsen


    Experimental and theoretical conformational study of repaglinide in chloroform and dimethyl sulfoxide was investigated. By applying potential energy scanning (PES) at B3LYP/6-311++g** and B3LYP-D3/6-311++g** level of theory on rotatable single bonds, four stable conformers (R1-R4) were identified. Spin-spin coupling constant values were obtained from a set of 2D NMR spectra (Hsbnd H COSY, Hsbnd C HMQC and Hsbnd C HMBC) and compared to its calculated values. Interestingly, from 1HNMR and 2D-NOESY NMR, it has been found that repaglinide structure is folded in CDCl3 and cause all single bonds to rotate at an extremely slow rate. On the other hand, in DMSO-d6, with strong solvent-solute intermolecular interactions, the single bonds rotate freely. Also, energy barrier and thermodynamic parameters for chair to chair interconversion was measured (13.04 kcal mol-1) in CDCl3 solvent by using temperature dynamic NMR.


    Institute of Scientific and Technical Information of China (English)

    HanJinyan; YuZhiwei


    A surface spline function is used to fit a coal seam surface in structural analysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recognition of the concealed structures. The detection of structures related to faulting is emphasized.

  19. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number...... of materials in a given plastic part. Also, the reduction of process steps and materials leads to a reduction of the fabrication costs. In the thesis only surfaces, which may be fabricated using replication based methods, such as injection molding, are considered. Nanostructures with sizes comparable......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters...

  20. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.;


    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  1. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. (United States)

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A


    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface.

  2. Language learners privilege structured meaning over surface frequency. (United States)

    Culbertson, Jennifer; Adger, David


    Although it is widely agreed that learning the syntax of natural languages involves acquiring structure-dependent rules, recent work on acquisition has nevertheless attempted to characterize the outcome of learning primarily in terms of statistical generalizations about surface distributional information. In this paper we investigate whether surface statistical knowledge or structural knowledge of English is used to infer properties of a novel language under conditions of impoverished input. We expose learners to artificial-language patterns that are equally consistent with two possible underlying grammars--one more similar to English in terms of the linear ordering of words, the other more similar on abstract structural grounds. We show that learners' grammatical inferences overwhelmingly favor structural similarity over preservation of superficial order. Importantly, the relevant shared structure can be characterized in terms of a universal preference for isomorphism in the mapping from meanings to utterances. Whereas previous empirical support for this universal has been based entirely on data from cross-linguistic language samples, our results suggest it may reflect a deep property of the human cognitive system--a property that, together with other structure-sensitive principles, constrains the acquisition of linguistic knowledge.

  3. Biomimetic surface structuring using cylindrical vector femtosecond laser beams (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel


    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  4. The Complete Solution of Fick's Second Law of Diffusion with Time-dependent Diffusion Coefficient and Surface Concentration

    DEFF Research Database (Denmark)

    Mejlbro, Leif


    Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...

  5. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging (United States)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart


    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength-to-target depth ratio of 0.1.

  6. Learning surface molecular structures via machine vision (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.


    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  7. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.


    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present chara

  8. Design of a lunar surface structure (United States)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the

  9. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki


    An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5-4.2 km/s and 2-7 × 1017 m-3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from -900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  10. Copula-based measures of dependence structure in assets returns (United States)

    Fernandez, Viviana


    Copula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, copulas enable us to extract the dependence structure from the joint distribution function of a set of random variables and, at the same time, to isolate such dependence structure from the univariate marginal behavior. In this study, based on US stock data, we illustrate how tail-dependency tests may be misleading as a tool to select a copula that closely mimics the dependency structure of the data. This problem becomes more severe when the data is scaled by conditional volatility and/or filtered out for serial correlation. The discussion is complemented, under more general settings, with Monte Carlo simulations and portfolio management implications.

  11. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting (United States)

    Vorobyev, A. Y.; Guo, Chunlei


    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  12. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik;


    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...

  13. Modeling the Dependency Structure of Integrated Intensity Processes.

    Directory of Open Access Journals (Sweden)

    Yong-Ki Ma

    Full Text Available This paper studies an important issue of dependence structure. To model this structure, the intensities within the Cox processes are driven by dependent shot noise processes, where jumps occur simultaneously and their sizes are correlated. The joint survival probability of the integrated intensities is explicitly obtained from the copula with exponential marginal distributions. Subsequently, this result can provide a very useful guide for credit risk management.

  14. A time-dependent vector field topology based on streak surfaces. (United States)

    Uffinger, Markus; Sadlo, Filip; Ertl, Thomas


    It was shown recently how the 2D vector field topology concept, directly applicable to stationary vector fields only, can be generalized to time-dependent vector fields by replacing the role of stream lines by streak lines. The present paper extends this concept to 3D vector fields. In traditional 3D vector field topology separatrices can be obtained by integrating stream lines from 0D seeds corresponding to critical points. We show that in our new concept, in contrast, 1D seeding constructs are required for computing streak-based separatrices. In analogy to the 2D generalization we show that invariant manifolds can be obtained by seeding streak surfaces along distinguished path surfaces emanating from intersection curves between codimension-1 ridges in the forward and reverse finite-time Lyapunov exponent (FTLE) fields. These path surfaces represent a time-dependent generalization of critical points and convey further structure in time-dependent topology of vector fields. Compared to the traditional approach based on FTLE ridges, the resulting streak manifolds ease the analysis of Lagrangian coherent structures (LCS) with respect to visual quality and computational cost, especially when time series of LCS are computed. We exemplify validity and utility of the new approach using both synthetic examples and computational fluid dynamics results.

  15. Resistance given by tiling grain surface with micro surface structures in polycrystalline metal oxide (United States)

    Moriyama, T.; Yamasaki, T.; Ohno, T.; Kishida, S.; Kinoshita, K.


    Practical use of Resistive Random Access Memory (ReRAM) depends on thorough understanding of the resistive switching (RS) mechanism in transition metal oxides. Although most of ReRAM samples have polycrystalline structures, both experimental studies and theoretical calculations do not often consider the effects that grain boundaries have on the RS mechanism. This paper discusses what determines resistance values in a Pt/polycrystalline NiO/Pt ReRAM structures by using both experiments and first-principles calculations. Electrical measurements suggest that the RS is caused in the grain boundaries of NiO films. First-principles calculations indicate that slight displacements of atoms with a small energy change of 0.04 eV per atom on the surfaces exposed in the grain boundaries can drastically change conductivities. We propose the tiling model, in which grain surfaces are composed by insulating and conductive micro surface structures, and the surface resistances are determined by the tiling patterns.

  16. Thermal Tomography of Asteroid Surface Structure

    CERN Document Server

    Harris, Alan


    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Eviden...

  17. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.


    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  18. Thermal Tomography of Asteroid Surface Structure (United States)

    Harris, Alan W.; Drube, Line


    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  19. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. (United States)

    Formosa-Dague, Cécile; Speziale, Pietro; Foster, Timothy J; Geoghegan, Joan A; Dufrêne, Yves F


    Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.

  20. From density to interface fluctuations: the origin of wavelength dependence in surface tension. (United States)

    Hiester, Thorsten


    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension gamma(q) can be defined and expressed in terms of the direct correlation function c(r,r;{'}) , the equilibrium density profile rho_{0}(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or gamma(q) , respectively. This result generalizes the Mecke-Dietrich surface tension gamma_{MD}(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning gamma_{MD}(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  1. Effects of Zr doping on the surface energy and surface structure of UO{sub 2}: Atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu (China); Long, Chongsheng; Chen, Hongsheng [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu (China); Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Wei, Tianguo; Zhao, Yi; Gao, Wen [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu (China)


    A shell-core model is applied to investigate the effects of Zr doping on the surface energies and surface structures of the three low Miller index surfaces in UO{sub 2} using the molecular dynamics (MD) technique. The surface energies and atomic structures of the Zr-doped and undoped UO{sub 2} (1 0 0), (1 1 0) and (1 1 1) surfaces are compared. Simulation results indicate that (i) the surface energy of (U{sub 1−y}Zr{sub y})O{sub 2} depend on the crystallographic orientation, as well as of undoped UO{sub 2}. The (1 0 0) surface exhibits the highest surface energy, followed by the (1 1 0) surface, and the (1 1 1) surface; (ii) Zr doping will significantly increase the surface energy of UO{sub 2} by approximately 20% on (1 0 0) surface, 10% on (1 1 0) surface and 15% on (1 1 1) surface with the ZrO{sub 2} contents ranging from 0 to 12.5 mol%, respectively; (iii) the surface energies of the three low Miller index surfaces decrease with increasing temperature both in undoped UO{sub 2} and in (U{sub 1−y}Zr{sub y})O{sub 2}; (iv) the addition of Zr induces a severe distortion of the (U{sub 1−y}Zr{sub y})O{sub 2} surface structure, and the outermost top layer exhibits the strongest rumpling; (v) the considerable reconstructions can be observed in the two top layers of Zr-doped and undoped UO{sub 2} surfaces when the temperature is elevated to 900–1500 K.

  2. [Function of surface membrane structures in Thiobacillus thiooxidans]. (United States)

    Pivovarova, T A; Karavaĭko, G I


    The function of the surface membrane structures was studied with cytochemical techniques on ultrathin sections of Thiobacillus thiooxidans. The transport of elementary sulphur inside the cell involves the surface membrane structures, while oxidation of the sulphur to sulphuric acid takes place on the outer surface of the cytoplasmic membrane. The surface membrane structures are supposed also to participate in the primary dissolution of elementary sulphur at the site of contact of the cells with the mineral.

  3. Surface simulation synthesis: a new strategy to spy alpha-helix structure. (United States)

    Dong, Xiao-Nan; Chen, Yu; Chen, Ying-Hua


    In key proteins, there are always some alpha-helix structures, which play important role in the structure and functions. Many epitopes lie on the surface of alpha-helix. These epitopes are not easy to be recruited into the vaccine development, because they are conformation dependent epitopes. Can such epitopes on alpha-helix be mimicked synthetically? Our findings undoubtedly validate the feasibility of surface simulation synthesis with short linear peptide to mimic the antigenic side of alpha-helix structure.

  4. Extracting molecular Hamiltonian structure from time-dependent fluorescence intensity data


    Brif, Constantin; Rabitz, Herschel


    We propose a formalism for extracting molecular Hamiltonian structure from inversion of time-dependent fluorescence intensity data. The proposed method requires a minimum of \\emph{a priori} knowledge about the system and allows for extracting a complete set of information about the Hamiltonian for a pair of molecular electronic surfaces.

  5. Temperature-dependence on the structural, optical, andparamagnetic properties of ZnO nanostructures

    CSIR Research Space (South Africa)

    Mhlongo, GH


    Full Text Available Surface Science 293 (2014) 62– 70 Temperature-dependence on the structural, optical, andparamagnetic properties of ZnO nanostructures Gugu H. Mhlongoa,∗, David E. Motaunga,∗∗, Steven S. Nkosib, H.C. Swartc,Gerald F. Malgasd, Kenneth T. Hilliea...

  6. Influence of etching and annealing on evolution of surface structure of metallic glass (United States)

    Ushakov, Ivan V.; Feodorov, Victor A.; Permyakova, Inga J.


    Evolution of surface structure of metallic glass subjected to etching was investigated. The changes of surface structure of metallic glass 82K3XCP after chemical etching and different modes of annealing were studied. Samples of metallic glass were etched in solutions of sulphurous acid with different concentration. Corrosion-resistance was determined. The dependence of corrosion rate on acid concentration was found. Characteristic concentric circumferences on the etching surface were investigated. Their formation mechanism is discussed. Crystallization on surface stimulated by both acid and annealing was examined. The formation of first dendrites on surface of annealed metallic glass and their evolution were investigated.

  7. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail:, E-mail: [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)


    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.


    NARCIS (Netherlands)



    An efficient way of drawing parametric curves and surfaces is to approximate the curve or surface by a sequence of straight-line segments or a mesh of polygons, respectively. In such an approximation, many small line segments or polygons are needed in regions of high curvature, and fewer and larger

  9. On the structure of Si(100) surface

    DEFF Research Database (Denmark)

    Back, Seoin; Schmidt, Johan Albrecht; Ji, Hyunjun;


    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing...

  10. Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping (United States)

    Balci, Sinan; Kocabas, Coskun; Ates, Simge; Karademir, Ertugrul; Salihoglu, Omer; Aydinli, Atilla


    In this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations.

  11. Structure of aqueous electrolyte solutions near a hydrophobic surface

    Directory of Open Access Journals (Sweden)



    Full Text Available The structure of aqueous solutions of 1:1 salts (KCl, NaCl, KF,and CsI near a hydrophobic surface is analysed using the angle-dependent integral equation theory. Water molecules are taken to be hard spheres imbedded with multipolar moments including terms up to octupole order, and hard spherical ions are immersed in this model water. The many-body interactions associated with molecular polarizability are treated at the self-consistent mean field level. The effects of cationic and anionic sizes and salt concentration in the bulk are discussed in detail. As the salt concentration increases, the layer of water molecules next to the surface becomes denser but its orientational order remains almost unchanged. The concentration of each ion at the surface can be drastically different from that in the bulk. Asa striking example, at sufficiently low salt concentrations, the concentration of I- is about 500 times higher than that of F- at the surface.

  12. Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence (United States)

    Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg


    Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

  13. Cell surface expression level variation between two common Human Leukocyte Antigen alleles, HLA-A2 and HLA-B8, is dependent on the structure of the C terminal part of the alpha 2 and the alpha 3 domains

    DEFF Research Database (Denmark)

    Dellgren, Christoffer; Nehlin, Jan O; Barington, Torben


    Constitutive cell surface expression of Human Leukocyte Antigen (HLA) class I antigens vary extremely from tissue to tissue and individual antigens may differ widely in expression levels. Down-regulation of class I expression is a known immune evasive mechanism used by cancer cells and viruses....... Moreover, recent observations suggest that even minor differences in expression levels may influence the course of viral infections and the frequency of complications to stem cell transplantation. We have shown that some human multipotent stem cells have high expression of HLA-A while HLA-B is only weakly...... expressed, and demonstrate here that this is also the case for the human embryonic kidney cell line HEK293T. Using quantitative flow cytometry and quantitative polymerase chain reaction we found expression levels of endogenous HLA-A3 (median 71,204 molecules per cell) 9.2-fold higher than the expression of...

  14. Time Variation in Asset Return Dependence: Strength or Structure?

    NARCIS (Netherlands)

    T.D. Markwat (Thijs); H.J.W.G. Kole (Erik); D.J.C. van Dijk (Dick)


    textabstractThe dependence between asset returns varies. Its strength can become stronger or weaker. Also, its structure can change, for example, when asymmetries related to bull and bear markets become more or less pronounced. To analyze these different types of variations, we develop a model that

  15. Dynamic structure evolution of time-dependent network (United States)

    Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong


    In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.

  16. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.


    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it poss

  17. A structural equation approach to models with spatial dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.


    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it poss

  18. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions

    NARCIS (Netherlands)

    Oubrie, Arthur; Dijkstra, Bauke W.


    On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for

  19. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)


    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  20. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters (United States)

    Cantrell, John H.


    A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.

  1. Surface structure and hole localization in bismuth vanadate: A first principles study (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.


    The monoclinic and tetragonal phases of bismuth vanadate (BiVO4) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO4 (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO4 are discussed.

  2. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)


    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  3. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)


    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  4. High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition (United States)


    range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will...calculations. Based on our results, we anticipate that the long-range distance dependence of SERS should enable detection of chemisorbed species located as far...structural information provided by operando SERS , especially the detection of low frequency metal−oxygen vibrations, will lead to an improved mechanistic

  5. Sensitive dependence of network dynamics on network structure

    CERN Document Server

    Nishikawa, Takashi; Motter, Adilson E


    The relation between network structure and dynamics is determinant for the behavior of complex systems in numerous domains. An important longstanding problem concerns the properties of the networks that optimize the dynamics with respect to a given performance measure. Here we show that such optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically, we demonstrate that the stability of the dynamical state, as determined by the maximum Lyapunov exponent, can exhibit a cusp-like dependence on the number of nodes and links as well as on the size of perturbations applied to the network structure. As mechanisms underlying this sensitivity, we identify discontinuous transitions occurring in the complement of optimal networks and the prevalence of eigenvector degeneracy in these networks. These findings establish a unified characterization of networks optimized for dynamical stability in diffusively coupled systems, which we illustrate using Turing instability in act...

  6. Time-dependent reliability analysis and condition assessment of structures

    Energy Technology Data Exchange (ETDEWEB)

    Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)


    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  7. Mesoscale Phenomena Associated with Mineral Surfaces and Pathway-Dependent Chemical Processes (United States)

    Brown, G. E.; Johnson, N. C.; Garcia Del Real, P.; Maher, K.; Bird, D. K.; Rosenbauer, R. J.; Thomas, B.; Levard, C.


    Multiphase physicochemical transport and interfacial processes in natural and synthetic permeable media are pervasive in energy and Earth systems, where interfacial chemical reactions play an enormous role. These coupled reactions control the composition of our environment, including the atmosphere, oceans, and groundwaters, and the soils derived from interactions of atmospheric gases and natural waters with solid phases. Aqueous fluids, liquid hydrocarbons, and gases flow through permeable geological media along pathways that can be exceedingly complex at the nano- to microscales. Adding to this complexity are the chemical reactions occurring along these pathways that can irreversibly alter permeability and porosity as well as the compositions of fluid, gas, and solid phases, depending on physicochemical conditions. This talk will discuss the role of chemical reactions on mineral surfaces in several areas, including the structure of the electrical double layer at mineral/water interfaces and how it changes as a function of solution conditions, sequestration and transformation of environmental contaminants on mineral surfaces, mineral carbonation reactions and CO2 sequestration, and nanoparticle stability and transformations in natural systems. It will also include examples of pathway-dependent mesoscale chemical processes in the synthetic world involving energy materials. Examples in this area will include a synchrotron-based high-resolution 3D tomography study of Li-NiO battery electrodes under in operando conditions and metal-organic framework structures that can be used for hydrogen storage, separation, catalysis, and sequestration.

  8. Photon energy dependence of circular dichroism of the Au(111) surface state (United States)

    Ärrälä, M.; Nieminen, J.; Braun, J.; Ebert, H.; Lindroos, M.


    Through relativistic photoemission calculations for the Au(111) surface state at the Fermi level, we study the photon energy dependence of circular dichroism. The dichromatic signal (DS) pattern changes 23 times with photon energies between 7 and 100 eV, and we have found 13 different patterns in the k∥ map at the Fermi level for the DS from the Au(111) surface state with normal incidence light. We show that the photon energy dependence of DS is very complex even in the simplest case. The sign change in the circular dichroism as a function of photon energy is related to the relative phases of the complex expansion coefficients of different outgoing partial waves in a time-reversed low-energy electron diffraction state. With off-normal incidence, the z component of the incoming photon field is dominant, and the fine structure seen in the DS in the normal incidence case is lost very rapidly, moving from a normal to an off-normal incidence. We also report that the Rashba split surface state of Au(111) has a significant component of d-type orbital due to relativistic effects and the computational setup used.

  9. Immunity to intracellular Salmonella depends on surface-associated antigens.

    Directory of Open Access Journals (Sweden)

    Somedutta Barat

    Full Text Available Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.

  10. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;


    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  11. Phonons on the clean metal surfaces and in adsorption structures (United States)

    Rusina, Galina G.; Chulkov, Evgenii V.


    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  12. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)


    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  13. Multiscale approach to the electronic structure of doped semiconductor surfaces (United States)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor


    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising "pseudoatoms" possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic "clean-cleaved" Si(111) surface and its semiconducting (2 ×1 ) reconstructions.

  14. Surface, structural and tensile properties of proton beam irradiated zirconium (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo


    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  15. Dissipative surface solitons in periodic structures

    CERN Document Server

    Kartashov, Yaroslav V; Vysloukh, Victor A


    We report dissipative surface solitons forming at the interface between a semi-infinite lattice and a homogeneous Kerr medium. The solitons exist due to balance between amplification in the near-surface lattice channel and two-photon absorption. The stable dissipative surface solitons exist in both focusing and defocusing media, when propagation constants of corresponding states fall into a total semi-infinite and or into one of total finite gaps of the spectrum (i.e. in a domain where propagation of linear waves is inhibited for the both media). In a general situation, the surface solitons form when amplification coefficient exceeds threshold value. When a soliton is formed in a total finite gap there exists also the upper limit for the linear gain.

  16. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (United States)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.


    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  17. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe (United States)

    Fanfarillo, Laura; Mansart, Joseph; Toulemonde, Pierre; Cercellier, Hervé; Le Fèvre, Patrick; Bertran, François; Valenzuela, Belen; Benfatto, Lara; Brouet, Véronique


    A large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting tremendous interest, since electronic nematicity develops over a wide range of temperatures, allowing accurate experimental investigation. Here we combine angle-resolved photoemission spectroscopy and theoretical calculations based on a realistic multiorbital model to unveil the microscopic mechanism responsible for the evolution of the electronic structure of FeSe across the nematic transition. We show that the self-energy corrections due to the exchange of spin fluctuations between hole and electron pockets are responsible for an orbital-dependent shrinking of the Fermi surface that affects mainly the x z /y z parts of the Fermi surface. This result is consistent with our experimental observation of the Fermi surface in the high-temperature tetragonal phase, which includes the x y electron sheet that was not clearly resolved before. In the low-temperature nematic phase, we experimentally confirm the appearance of a large (˜50 meV) x z /y z splitting. It can be well reproduced in our model by assuming a moderate splitting between spin fluctuations along the x and y crystallographic directions. Our mechanism shows how the full entanglement between orbital and spin degrees of freedom can make a spin-driven nematic transition equivalent to an effective orbital order.

  18. Temperature dependent surface electrochemistry on Pt singlecrystals in alkaline electrolyte: Part 3: The oxygen reductionreaction

    Energy Technology Data Exchange (ETDEWEB)


    The kinetics of the oxygen reduction reaction (ORR) was studied in alkaline electrolyte at 293-333K on Pt(hkl) surfaces by means of the rotating ring-disk electrode technique with solution phase peroxide detected at the ring electrode. The ORR on Pt(hkl) was found to be highly structure sensitive with activities increasing in the sequence (111) > (100) > (110)(1x2). Very similar apparent activation energies (37-45 {+-} 5 kJmol-1, {eta} = 0.35 V) were found on all three surfaces. Furthermore, at elevated temperature, significantly smaller amounts of peroxide are formed in agreement with enhanced peroxide reduction rates by increasing temperature. We found that the Tafel slopes on all three single crystal surfaces decrease with increasing temperature, indicating that the logi-E relationship is not represented by a classical Butler-Volmer expression. Based on the kinetic analysis of the polarization curves and from simulations of logi-E curves, we propose that the rate of the ORR on Pt(hkl) in alkaline solution is mainly determined by the potential/temperature dependent surface coverage by OH{sub ad}. We propose two modes of action of the OH{sub ad}: (i) OH{sub ad} blocks the adsorption of O{sub 2} on active platinum sites; and (ii) OH{sub ad} alters the adsorption energy of intermediates which are formed during the ORR on Pt sites.

  19. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli


    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  20. Microscopic Investigation of Reversible Nanoscale Surface Size Dependent Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Michael A. Carpenter


    Full Text Available Aβ1-40 coated 20 nm gold colloidal nanoparticles exhibit a reversible color change as pH is externally altered between pH 4 and 10. This reversible process may contain important information on the initial reversible step reported for the fibrillogenesis of Aβ (a hallmark of Alzheimer’s disease. We examined this reversible color change by microscopic investigations. AFM images on graphite surfaces revealed the morphology of Aβ aggregates with gold colloids. TEM images clearly demonstrate the correspondence between spectroscopic features and conformational changes of the gold colloid.

  1. Nucleon effective mass and the A dependence of structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Canal, C.A.; Santangelo, E.M.; Vucetich, H.


    The nucleon effective mass was successfully used, as the only free parameter, to adjust the ratio R(A) of structure functions measured in a nucleus of mass number A and in the deuteron, for each A value in the SLAC set of experimental data. The resulting A dependence of the effective mass, being linear in A/sup -1/3/, is consistent with the behavior expected from nuclear structure considerations. The extrapolated value of the effective mass for nuclear matter agrees with previous estimations.

  2. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,


    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but

  3. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,


    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but ref

  4. Structures of surface and interface of amorphous ice (United States)

    Kumagai, Yu; Ikeda-Fukazawa, Tomoko


    To investigate the surface structure, we performed molecular dynamics calculations of amorphous ice. The result shows that a low density layer, which forms a few hydrogen bonds with weaker strength, exists in the surface. Furthermore, the sintering processes were simulated to investigate the structure of grain boundary formed from the adsorption of two surfaces. The result indicates that a low density region exists in a boundary between amorphous ice grains. The structures of surface and interface of amorphous ice have important implications for adsorption, diffusion, and chemical reaction in ice grains of interstellar molecular clouds.

  5. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. (United States)

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish


    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  6. Metrology of sub-micron structured polymer surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Salaga, J.

    surface replication of the tool insert component when moulding the polymer melt [1]. This aspect is particularly critical when dealing with increasingly small dimensional scales in micro- and nano-structured surfaces [2, 3].In this context, a metrological investigation of polymer replicated surfaces using...

  7. Surface Nano-Structuring by Adsorption and Chemical Reactions


    Ken-ichi Tanaka


    Nano-structuring of the surface caused by adsorption of molecules or atoms and by the reaction of surface atoms with adsorbed species are reviewed from a chemistry viewpoint. Self-assembly of adsorbed species is markedly influenced by weak mutual interactions and the local strain of the surface induced by the adsorption. Nano-structuring taking place on the surface is well explained by the notion of a quasi-molecule provided by the reaction of surface atoms with adsorbed species. Self-assembl...

  8. Measuring spin-dependent structure functions at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Universitaet Frankfurt (Germany)


    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  9. Cosmological parameter dependence in local string theories of structure formation

    CERN Document Server

    Copeland, E J; Steer, D A; Magueijo, Joao


    We perform the most accurate study to date of the dependence on cosmological parameters of structure formation with local cosmic strings. The crucial new ingredients are the inclusion of the effects of gravitational backreaction on the evolution of the network, and the accurate evolution of the network through the radiation to matter transition. Our work re-iterates the fact that expanding Universe numerical simulations only probe a transient regime, and we incorporate our results into the unequal time correlators recently measured. We then compute the CMB and CDM fluctuations' power spectra for various values of the Hubble constant $H_0$ and baryon fraction $\\Omega_b$. We find that, whereas the dependence on $\\Omega_b$ is negligible, there is still a strong dependence on $H_0$.

  10. Field dependent surface resistance of niobium on copper cavities

    Directory of Open Access Journals (Sweden)

    T. Junginger


    Full Text Available The surface resistance R_{S} of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher R_{S}. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when R_{S} increases with E_{acc} by 100  nΩ. This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered R_{S}.

  11. Nonlinear Structure Formation with the Environmentally Dependent Dilaton

    CERN Document Server

    Brax, Phil; Davis, Anne-C; Li, Baojiu; Shaw, Douglas J


    We have studied the nonlinear structure formation of the environmentally dependent dilaton model using $N$-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their $\\Lambda$CDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.

  12. Precision measurement of the neutron spin dependent structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Kolomensky, Y.G.


    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  13. Dependence of thermal conductivity on structural parameters in porous samples


    L. Miettinen; Kekäläinen, P; T. Turpeinen; Hyväluoma, J; Merikoski, J.; J. Timonen


    The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-ray microtomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions o...

  14. Surface topology and electronic structure of layered strontium ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, Robert; Klinke, Melanie; Waelsch, Michael; Mietke, Sebastian; Matzdorf, Rene [Experimentalphysik II, Universitaet Kassel (Germany); Peng, Jin; Mao, Zhiqiang [Department of Physics, Tulane University, New Orleans (United States)


    In complex materials the interplay of properties like crystal structure, electronic structure and magnetism results in very interesting physical phenomena. The Ruddlesden-Popper series of layered Strontium Ruthenates Sr{sub n+1}Ru{sub n}O{sub 3n+1} describes one class of these materials. The double and triple layer systems behave like a Fermi liquid up to the transition temperature of 15 K and 24 K, respectively. In both compounds the local density of states (LDOS) shows a peak within the dip-like feature around the Fermi energy E{sub F}. Using low-temperature (LT) STM and STS we studied the temperature dependence of the LDOS in the range from 4.7 to 35 K. By increasing the temperature the peak within the dip in the LDOS at E{sub F} is only affected by thermal broadening. The surface unit cell of the Strontium Ruthenates exhibits a c(2 x 2) super structure, which is stable from 4.7 K up to room temperature as shown by our atomically resolved LT STM images and room temperature LEED experiments.

  15. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)


    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  16. Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism. (United States)

    Suzuki, Ryuichiro; Katayama, Takane; Kim, Byung-Jun; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya


    Thiamine diphosphate (ThDP)-dependent enzymes are ubiquitously present in all organisms and catalyze essential reactions in various metabolic pathways. ThDP-dependent phosphoketolase plays key roles in the central metabolism of heterofermentative bacteria and in the pentose catabolism of various microbes. In particular, bifidobacteria, representatives of beneficial commensal bacteria, have an effective glycolytic pathway called bifid shunt in which 2.5 mol of ATP are produced per glucose. Phosphoketolase catalyzes two steps in the bifid shunt because of its dual-substrate specificity; they are phosphorolytic cleavage of fructose 6-phosphate or xylulose 5-phosphate to produce aldose phosphate, acetyl phosphate, and H(2)O. The phosphoketolase reaction is different from other well studied ThDP-dependent enzymes because it involves a dehydration step. Although phosphoketolase was discovered more than 50 years ago, its three-dimensional structure remains unclear. In this study we report the crystal structures of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase from Bifidobacterium breve. The structures of the two intermediates before and after dehydration (α,β-dihydroxyethyl ThDP and 2-acetyl-ThDP) and complex with inorganic phosphate give an insight into the mechanism of each step of the enzymatic reaction.

  17. Fragmentation pathways of nanofractal structures on surfaces

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.


    We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface. For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We demonstrate that the detachment of particles from the fractal and their diff......We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface. For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We demonstrate that the detachment of particles from the fractal...... and their diffusion within the fractal and over the surface determines the shape of the islands remaining on a surface after the fractal fragmentation. We consider different scenarios of fractal post-growth relaxation and analyze the time evolution of the island's morphology. The results of our calculations...... are compared with available experimental observations, and experiments in which the post-growth relaxation of deposited nanostructures can be tested are suggested....

  18. Structural optimization of super-repellent surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin


    Micro-patterning is an effective way to achieve surfaces with extreme liquid repellency. This technique does not rely on chemical coatings and is therefore a promising concept for application in food processing and bio-compatibile coatings. This super-repellent behaviour is obtained by suspending...

  19. Fragmentation pathways of nanofractal structures on surfaces

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.


    We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface. For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We demonstrate that the detachment of particles from the fractal and their diff...

  20. Adhesion and Atomic Structures of Gold on Ceria Nanostructures: The Role of Surface Structure and Oxidation State of Ceria Supports. (United States)

    Lin, Yuyuan; Wu, Zili; Wen, Jianguo; Ding, Kunlun; Yang, Xiaoyun; Poeppelmeier, Kenneth R; Marks, Laurence D


    We report an aberration-corrected electron microscopy analysis of the adhesion and atomic structures of gold nanoparticle catalysts supported on ceria nanocubes and nanorods. Under oxidative conditions, the as-prepared gold nanoparticles on the ceria nanocubes have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod supports. Under the reducing conditions of water-gas shift reaction, the extended gold atom layers and rafts vanish. In addition, the gold particles on the nanocubes change in morphology and increase in size while those on the nanorods are almost unchanged. The size, morphology, and atomic interface structures of gold strongly depend on the surface structures of ceria supports ((100) surface versus (111) surface) and the reaction environment (reductive versus oxidative). These findings provide insights into the deactivation mechanisms and the shape-dependent catalysis of oxide supported metal catalysts.

  1. Laser Surface Preparation and Bonding of Aerospace Structural Composites (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.


    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  2. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.


    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  3. Carbon Nanomaterials: Surface Structure and Morphology (United States)

    Mansurov, Z. A.; Shabanova, T. A.; Mofa, N. N.; Glagolev, V. A.


    We propose a classification of individual nanoparticles on the basis of the form of the surface and the internal architectural packing for investigations carried out with the help of transmission electron microscopy. The investigated samples contain individual nanoparticles of seven kinds in different ratios: rounded, tubular, fibrous, fi lm, "veil," "active" particles and "particles with regular geometric contours." The classification was made on the basis of an analysis of the results of investigations of the surfaces and internal architectural packing of carbon particles obtained in different physiochemical processes (carbonization, carburizing, arc discharge, mechanochemical treatment, plasma chemistry, and in carbon-containing fl ames). For the source materials, we used waste of farming products and widely distributed mineral raw materials.

  4. Dyeing of Snow Surfaces to Observe Structure (United States)


    of freezeup problems important to obtain a clear visual perspective and with water. We found that both coloring agents to obtain good photographic...a dye of methanol coloring in with floodlights, whereas Figure 7b is a view of the water. Freezeup at the sprayer nozzle was one same area lighted...from behind, problem and the snow surface had a blemished appearance because of the addition of the water, which then froze. Freezeup may not be a

  5. Surface Structure Enhanced Microchannel Flow Boiling


    Zhu, Yangying; Antao, Dion Savio; Chu, Kuang-Han; Chen, Siyu; Hendricks, Terry J.; Zhang, Tiejun; Wang, Evelyn N.


    We investigated the role of surface microstructures in two-phase microchannels on suppressing flow instabilities and enhancing heat transfer. We designed and fabricated microchannels with well-defined silicon micropillar arrays on the bottom heated microchannel wall to promote capillary flow for thin film evaporation while facilitating nucleation only from the sidewalls. Our experimental results show significantly reduced temperature and pressure drop fluctuation especially at high heat fluxe...

  6. Significance tests for functional data with complex dependence structure

    KAUST Repository

    Staicu, Ana-Maria


    We propose an L (2)-norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  7. Uniaxial Stress Dependence of the Fermi Surface of Copper. (United States)

    Ruesink, Derk Willem

    Form a comprehensive experimental study of quantum oscillations in magnetostriction and torque, values have been deduced for all non-vanishing tetragonal and angular shear strain derivatives for the five principal extremal cross sections of the Fermi surface of copper, viz., the neck and belly normal to {111}, the dogsbone normal to {110} and the rosette and belly normal to {001}. It is found that the neck is most sensitive to angular shear strain, whereas the bellies are most affected by uniform dilation. For the other orbits the magnitudes of shear and dilation derivatives are comparable. The results are self consistent and agree with experimental tensile stress results of Shoenberg and Watts. Earlier magnetostriction results for the neck obtained by Aron and by Slavin can be brought into agreement with the present data by recalculating the former using the presently accepted value of the neck effective mass. The present experimental values are in reasonable agreement with theoretical values calculated by Lee, except for the tetragonal shear derivative of the {001} belly; the theoretical value is about 50% higher than the experimentally determined derivative.

  8. Highly charged ions interacting with carbon surfaces : An influence of surface structure?

    NARCIS (Netherlands)

    Morgenstern, R; Winters, D; Schlatholter, T; Hoekstra, R

    Auger electron spectroscopy has been used to investigate the reaction of various carbon surfaces - including fullerene covered metal surfaces - on the impact of highly charged ions. An influence of the electronic surface structure on the interaction is clearly observed. However, the goal of

  9. Thick-Film Carbon Dioxide Sensor via Anodic Adsorbate Stripping Technique and Its Structural Dependence. (United States)

    Photinon, Kanokorn; Wang, Shih-Han; Liu, Chung-Chiun


    A three-electrode based CO(2) sensor was fabricated using thick-film technology. The performance of this sensor was further enhanced by incorporating platinum nanoparticles onto the working electrode surface. An eight-fold increase in the signal output was obtained from the electrode with the platinum nanoparticles. The sensing output was linearly related to the CO(2) presented. Stability measurements demonstrated that the decline of the active surface area and the sensitivity of the sensor were 8% and 13%, respectively, over a two week period of time. The sensor response appeared to be a structural dependence of the crystallographic orientation of platinum electrode.

  10. Thick-Film Carbon Dioxide Sensor via Anodic Adsorbate Stripping Technique and Its Structural Dependence

    Directory of Open Access Journals (Sweden)

    Chung-Chiun Liu


    Full Text Available A three-electrode based CO2 sensor was fabricated using thick-film technology. The performance of this sensor was further enhanced by incorporating platinum nanoparticles onto the working electrode surface. An eight-fold increase in the signal output was obtained from the electrode with the platinum nanoparticles. The sensing output was linearly related to the CO2 presented. Stability measurements demonstrated that the decline of the active surface area and the sensitivity of the sensor were 8% and 13%, respectively, over a two week period of time. The sensor response appeared to be a structural dependence of the crystallographic orientation of platinum electrode.

  11. Nanoparticle charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona

    CERN Document Server

    Raghavendra, Achyut J; Brown, Jared M; Podilaa, Ramakrishna


    Upon introduction into a biological system, engineered nanomaterials (ENMs) rapidly associate with a variety of biomolecules such as proteins and lipids to form a biocorona. The presence of biocorona influences nano-bio interactions considerably, and could ultimately result in altered biological responses. Apolipoprotein A-I (ApoA-I), the major constituent of high-density lipoprotein (HDL), is one of the most prevalent proteins found in ENM-biocorona irrespective of ENM nature, size, and shape. Given the importance of ApoA-I in HDL and cholesterol transport, it is necessary to understand the mechanisms of ApoA-I adsorption and the associated structural changes for assessing consequences of ENM exposure. Here, we used a comprehensive array of microscopic and spectroscopic tools to elucidate the interactions between ApoA-I and 100 nm Ag nanoparticles (AgNPs) with four different surface functional groups. We found that the protein adsorption and secondary structural changes are highly dependent on the surface fu...

  12. Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico (United States)

    Balwada, Dhruv; LaCasce, Joseph H.; Speer, Kevin G.


    The scale-dependent distribution of kinetic energy is probed at the surface in the Gulf of Mexico using surface drifters from the Grand Lagrangian Deployment (GLAD) experiment. The second-order velocity structure function and its decomposition into rotational and divergent components are examined. The results reveal that the divergent component, compared to the rotational component, dominates at scales below 5 km, and the pattern is reversed at larger scales. The divergent component has a slope near 2/3 below 5 km, similar to an energy cascade range (k-5/3). The third-order velocity structure function at scales below 5 km is negative and implies a forward cascade of energy to smaller scales. The rotational component has a steeper slope, roughly 1.5, from scales of 5 km up to the deformation radius. This is similar to a 2-D enstrophy cascade, although the slope is shallower than the predicted 2. There is a brief 2/3 range from the deformation radius to 200 km, suggestive of a 2-D inverse cascade.

  13. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.


    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace...... of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...

  14. Dynamics of transportan in bicelles is surface charge dependent

    Energy Technology Data Exchange (ETDEWEB)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena [Stockholm University, Department of Biochemistry and Biophysics, Arrhenius Laboratories (Sweden)], E-mail:


    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide {sup 15}N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S{sup 2} is on average 0.11 {+-} 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of {sup 1}H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

  15. Structure and surface properties of supported oxides

    Energy Technology Data Exchange (ETDEWEB)

    Leyrer, J.; Vielhaber, B.; Zaki, M.I.; Zhuang Shuxian; Weitkamp, J.; Knoezinger, H.


    Supported molybdate catalysts have been prepared on Al/sub 2/O/sub 3/,TiO/sub 2/, CeO/sub 2/, ZrO/sub 2/ and SiO/sub 2/ by impregnation from aqueous solution. The isoelectric point (IEPS) of the support surfaces determines the primary adsorption interaction of the molybdate species with the surface at a given pH. Raman spectroscopy shows monolayer formation on Al/sub 2/O/sub 3/, TiO/sub 2/ and CeO/sub 2/, while high proportions of MoO/sub 3/ are detected on SiO/sub 2/ and ZrO/sub 2/. Strong support effects influence the reducibility of the supported molybdate, which decreases in the sequence Mo/TiO/sub 2/ > Mo/ > CeO/sub 2/ > Mo/Al/sub 2/O/sub 3/ > Mo/ZrO/sub 2/. The dispersion of the monolayer on TiO/sub 2/, CeO/sub 2/ and Al/sub 2/O/sub 3/ seems to be fairly stable under reduction conditions, indicating strong chemical interaction with the supports.

  16. Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure (United States)

    Jenkins, Stephen J.; Pratt, Stephanie J.


    Throughout the development of single-crystal surface science, interest has predominantly focussed on the high-symmetry planes of crystalline materials, which typically present simple stable structures with small primitive unit cells. This concentration of effort has rapidly and substantially advanced our understanding of fundamental surface phenomena, and provides a sound basis for detailed study of more complex planes. The intense current interest in these is partly motivated by their regular arrays of steps, kinks or other low-coordination structural features, whose properties are little understood and may mimic specific highly-reactive sites on dispersed nanoparticles. Furthermore, the lower symmetry of these planes may give rise to other equally interesting properties such as intrinsic chirality, with exciting potential applications in enantioselective heterogeneous catalysis, biosensors and surface magnetism. To aid exploration of this new territory for surface science requires a depth of understanding that goes beyond the character of individual surfaces to encompass the global relationships between all possible surfaces of a given material, both in their structure and in their symmetry. In this report we present a rigorous conceptual framework for ideal crystalline surfaces within which the symmetry and structure of all possible surface orientations are described. We illustrate the versatility of our generally-applicable approach by comparing fcc, bcc and hcp materials. The entire scheme naturally derives from the very simple basis that the fundamental distinction between symmetry and structure is paramount. Where symmetry is concerned, our approach recognises that the surface is not a two-dimensional (2D) object but actually a truncated three-dimensional (3D) one. We therefore derive a symmetry scheme specifically formulated for surfaces and naturally encompassing their chirality where necessary. Our treatment of surface structure, on the other hand

  17. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaël


    Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.

  18. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail


    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  19. Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen-terminated silicon surfaces (United States)

    Kaiser, W. J.; Bell, L. D.; Hecht, M. H.; Grunthaner, F. J.


    Scanning tunneling microscopy (STM) methods are used to characterize hydrogen-terminated Si surfaces prepared by a novel method. The surface preparation method is used to expose the Si-SiO2 interface. STM images directly reveal the topographic structure of the Si-SiO2 interface. The dependence of interface topography on oxide preparation conditions observed by STM is compared to the results of conventional surface characterization methods. Also, the electronic structure of the hydrogen-terminated surface is studied by STM spectroscopy. The near-ideal electronic structure of this surface enables direct tunnel spectroscopy measurements of Schottky barrier phenomena. In addition, this method enables probing of semiconductor subsurface properties by STM.

  20. Nematic films at chemically structured surfaces (United States)

    Silvestre, N. M.; Telo da Gama, M. M.; Tasinkevych, M.


    We investigate theoretically the morphology of a thin nematic film adsorbed at flat substrate patterned by stripes with alternating aligning properties, normal and tangential respectively. We construct a simple ‘exactly-solvable’ effective interfacial model where the liquid crystal distortions are accounted for via an effective interface potential. We find that chemically patterned substrates can strongly deform the nematic-air interface. The amplitude of this substrate-induced undulations increases with decreasing average film thickness and with increasing surface pattern pitch. We find a regime where the interfacial deformation may be described in terms of a material-independent universal scaling function. Surprisingly, the predictions of the effective interfacial model agree semi-quantitatively with the results of the numerical solution of a full model based on the Landau-de Gennes theory coupled to a square-gradient phase field free energy functional for a two phase system.

  1. Temperature dependent surface modification of molybdenum due to low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Novakowski, T.J.; Joseph, G. [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Hassanein, A. [Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)


    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He{sup +} ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10{sup 24} ions m{sup −2} (with a flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1}). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO{sub 3} 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.

  2. Structure sensitivity of CO dissociation on Rh surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Baumer, M.; Freund, H.J.;


    Using periodic self-consistent density functional calculations it is shown that the barrier for CO dissociation is similar to120 kJ/mol lower on the stepped Rh(211) surface than on the close-packed Rh(111) surface. The stepped surface binds molecular CO and the dissociation products more strongly...... than the flat surface, but the effect is considerably weaker than the effect of surface structure on the dissociation barrier. Our findings are compared with available experimental data, and the consequences for CO activation in methanation and Fischer-Tropsch reactions are discussed....

  3. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M


    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  4. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows (United States)

    Manikantan, Harishankar; Squires, Todd M.


    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  5. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores


    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  6. Dependence of thermal conductivity on structural parameters in porous samples (United States)

    Miettinen, L.; Kekäläinen, P.; Turpeinen, T.; Hyväluoma, J.; Merikoski, J.; Timonen, J.


    The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-ray microtomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions of the samples were used to correct the contact area between bronze particles as determined by image analysis from the tomographic reconstructions. Small openings in the apparent contacts could not be detected with the imaging resolution used, and they caused an apparent thermal contact resistance between particles. With this correction included, the behavior of the measured thermal conductivity was successfully explained by an analytical expression, originally derived for regular structures, which involves three structural parameters of the porous structures. There was no simple relationship between heat conductivity and porosity.

  7. Dependence of thermal conductivity on structural parameters in porous samples

    Directory of Open Access Journals (Sweden)

    L. Miettinen


    Full Text Available The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-ray microtomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions of the samples were used to correct the contact area between bronze particles as determined by image analysis from the tomographic reconstructions. Small openings in the apparent contacts could not be detected with the imaging resolution used, and they caused an apparent thermal contact resistance between particles. With this correction included, the behavior of the measured thermal conductivity was successfully explained by an analytical expression, originally derived for regular structures, which involves three structural parameters of the porous structures. There was no simple relationship between heat conductivity and porosity.

  8. Surface structure of thin pseudomorphous GeSi layers (United States)

    Nikiforov, A. I.; Timofeev, V. F.; Pchelyakov, O. P.


    Reflection high-energy electron diffraction (RHEED) was used to study the evolution of thin GexSi1-x film surface superstructures s in the course of molecular beam epitaxy. The (2 × N) superstructure of the epitaxial film surface at periodicity N from 14 to 8, the latter being characteristic of pure germanium at the Si(1 0 0) surface. The epitaxial film thickness that is required for the formation of the (2 × 8) superstructure depends on the deposition temperature and germanium content in the solid solution. The germanium segregation on the growing film surface is shown to be responsible for the observed superstructural changes.

  9. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter


    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  10. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)


    @@ The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.

  11. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov


    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  12. Surface diffusion of molecular glasses: Material dependence and impact on physical stability (United States)

    Ruan, Shigang; Zhang, Wei; Yu, Lian

    Surface diffusion coefficients have been measured for molecular glasses tris-naphthylbenzene (TNB) and PMMA oligomers by surface grating decay. Surface diffusion on TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg, while the process is very slow on PMMA. Along with the previous results on o - terphenyl, nifedipine, indomethacin, and polystyrene oligomers, we find that surface diffusion slows down with increasing molecular size and intermolecular forces, whereas bulk diffusion has a weaker material dependence. The molecular glasses studied show fast crystal growth on the free surface. A general correlation is observed between the coefficient of surface diffusion and the velocity of surface crystal growth, indicating surface crystallization is supported by surface mobility. (Zhu, L., et al. Phys. Rev. Lett. 106 (2011): 256103; Zhang, W., et al. J. Phys. Chem. B 119 (2015): 5071-5078) Nsf.

  13. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo


    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  14. Underwater 3D Surface Scanning using Structured Light


    Törnblom, Nils


    In this thesis project, an underwater 3D scanner based on structured light has been constructed and developed. Two other scanners, based on stereoscopy and a line-swept laser, were also tested. The target application is to examine objects inside the water filled reactor vessel of nuclear power plants. Structured light systems (SLS) use a projector to illuminate the surface of the scanned object, and a camera to capture the surfaces' reflection. By projecting a series of specific line-patterns...

  15. Dimers on Surface Graphs and Spin Structures. I

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai


    Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures.......Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures....

  16. TonB-dependent transporters: regulation, structure, and function. (United States)

    Noinaj, Nicholas; Guillier, Maude; Barnard, Travis J; Buchanan, Susan K


    TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates, called siderophores, as well as vitamin B(12), nickel complexes, and carbohydrates. The transport process requires energy in the form of proton motive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins such as serum transferrin and hemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years, many new structures of TBDTs have been solved in various states, resulting in a more complete understanding of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with the TonB-ExbB-ExbD complex. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure, and function in TBDTs and questions remaining to be answered.

  17. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  18. Synthesis, Structure and Reactivity of Molecules Attached to Electrode Surfaces. (United States)


    Structure and Reactivity of Molecules Attached to Electrode Surfaces", AFOSR #81-0149 III. REPORTING PERIOD: April 15, 1981 through April 14, 1985 IV...Adsorption .... ............... 17 9. Effect of Surface Roughness on Adsorbate Orientation and Reactivity . 20 10. Ordered/ Disordered Packing in Chemisorbed... reactivity only when present in the edge-pendant orientation. Clearly, molecular orientation (i.e., mode of +. .4 o,, -12- attachment to the surface) is a

  19. Electron-Hole Counting Approach to Surface Atomic Structure (United States)

    Chadi, D. J.

    The observed reconstructions of III-V semiconductor surfaces are shown to be consistent with constraints imposed by a simple "electron-hole" counting rule proposed by Pashley. The rule ensures that the predicted surfaces are nonmetallic, nonpolar, and at least, metastable since the compensation of the "donor" electrons leaves no occupied states in the upper part of the band gap which can easily induce other reconstructions. Applications of the method to the problem of surface structure and passivation are examined.

  20. Effective Quantification of the Paper Surface 3D Structure


    Fidjestøl, Svein


    This thesis covers the topic of image processing in relation to the segmentation and analysis of pores protruding the surface in the three dimensional surface structure of paper. The successful analysis of pores is related to a greater goal of relating such an analysis to the perceived quality of the surface of a paper sample. The first part of the thesis gives an introduction to the context of image processing in relation to paper research. Also, an overview of the image processing framewor...

  1. Processing Structures on Human Fingernail Surfaces Using a Focused Near-Infrared Femtosecond Laser Pulse (United States)

    Hayasaki, Yoshio; Takagi, Hayato; Takita, Akihiro; Yamamoto, Hirotsugu; Nishida, Nobuo; Misawa, Hiroaki


    We investigated the processing of a human fingernail surface using a tightly focused femtosecond laser pulse. The processed structure in the fingernail surface is strongly dependent on the focus position and irradiation energy of the single laser pulse. We observed a ring, a simple pit, a small pit with a surrounding uplift, an irregular jagged surface, and a swell containing a void, depending on the focus position. We also observed a sudden change in the size of the processed structure according to the irradiation pulse energy. From a linear theoretical estimation based on the diffraction of the laser beam, we found that the sudden change is primarily due to the diffraction pattern generated by the circular aperture of the objective lens. We also describe the processing features by comparing the structures processed in a fingernail with those processed in glass.

  2. Surface structure of coherently strained ceria ultrathin films (United States)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan; Monti, Matteo; Cao, Chuntian; El Gabaly, Farid; Chueh, William C.; Toney, Michael F.


    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained Ce O2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a "stacks and islands" model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different Ce O2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. The successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.

  3. Improved protein structure selection using decoy-dependent discriminatory functions

    Directory of Open Access Journals (Sweden)

    Levitt Michael


    Full Text Available Abstract Background A key component in protein structure prediction is a scoring or discriminatory function that can distinguish near-native conformations from misfolded ones. Various types of scoring functions have been developed to accomplish this goal, but their performance is not adequate to solve the structure selection problem. In addition, there is poor correlation between the scores and the accuracy of the generated conformations. Results We present a simple and nonparametric formula to estimate the accuracy of predicted conformations (or decoys. This scoring function, called the density score function, evaluates decoy conformations by performing an all-against-all Cα RMSD (Root Mean Square Deviation calculation in a given decoy set. We tested the density score function on 83 decoy sets grouped by their generation methods (4state_reduced, fisa, fisa_casp3, lmds, lattice_ssfit, semfold and Rosetta. The density scores have correlations as high as 0.9 with the Cα RMSDs of the decoy conformations, measured relative to the experimental conformation for each decoy. We previously developed a residue-specific all-atom probability discriminatory function (RAPDF, which compiles statistics from a database of experimentally determined conformations, to aid in structure selection. Here, we present a decoy-dependent discriminatory function called self-RAPDF, where we compiled the atom-atom contact probabilities from all the conformations in a decoy set instead of using an ensemble of native conformations, with a weighting scheme based on the density scores. The self-RAPDF has a higher correlation with Cα RMSD than RAPDF for 76/83 decoy sets, and selects better near-native conformations for 62/83 decoy sets. Self-RAPDF may be useful not only for selecting near-native conformations from decoy sets, but also for fold simulations and protein structure refinement. Conclusions Both the density score and the self-RAPDF functions are decoy-dependent

  4. Time Dependent Coupled Cluster Approach to Resonance Raman Excitation Profiles from General Anharmonic Surfaces

    Directory of Open Access Journals (Sweden)

    M. Durga Prasad


    Full Text Available Abstract: A time dependent coupled cluster approach to the calculation of Resonance Raman excitation profiles on general anharmonic surfaces is presented. The vibrational wave functions on the ground electronic surface are obtained by the coupled cluster method (CCM. It is shown that the propagation of the vibrational ground state on the upper surface is equivalent to propagation of the vacuum state by an effective hamiltonian generated by the similarity transformation of the vibrational hamiltonian of that surface by the CCM wave operator of the lower surface up to a normalization constant. This time propagation is carried out by the time-dependent coupled cluster method in a time dependent frame. Numerical studies are presented to asses the validity of the approach.

  5. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness (United States)

    Gurevich, E. L.; Gurevich, S. V.


    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  6. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, E.L., E-mail: [Chair of Applied Laser Technology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Gurevich, S.V., E-mail: [Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Straße 9, 48149 Münster (Germany)


    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  7. Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface

    Institute of Scientific and Technical Information of China (English)

    Weiyan Meng; Yanmin Zhou; Yanjing Zhang; Qing Cai; Liming Yang; Jinghui Zhao; Chnnyan Li


    In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hierarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SLA) as well as Machined (M) surfaces respectively. The results show significant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.

  8. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces. (United States)

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J


    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  9. Observations of orientation dependence of surface morphology in tungsten implanted by low energy and high flux D plasma

    DEFF Research Database (Denmark)

    Xu, H.Y.; Zhang, Yubin; Yuan, Y.


    Surface modification by formation of blistering and nanostructures with pronounced orientation dependence has been observed on surfaces of rolled tungsten and recrystallized tungsten after exposure to a low energy (38 eV) deuterium (D) plasma with a high flux of 1024 m-2 s -1. The correlation...... between blisters and nanostructures with grain orientation was examined on recrystallized tungsten to exclude the influence of defects introduced during plastic deformation on the pattern of surface modification. The amount of blistering changed from the most in grains oriented close to 〈1 1 1...... near the 〈0 1 1〉 corner, and spongy structures for grains near the 〈0 0 1〉 corner. Possible reasons for the orientation dependence of both the blisters and nanostructures are discussed. © 2013 Elsevier B.V. All rights reserved....

  10. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.


    feature of the structure is accompanied by linear arrays of atoms on nonbulklike sites at the surface which, depending on the compounds, exhibit a certain degree of disorder. A tendency to group-III-dimer formation within these chains increases when descending the periodic table. We propose that all the c...

  11. Temperature dependence of the slip length in polymer melts at attractive surfaces. (United States)

    Servantie, J; Müller, M


    Using Couette and Poiseuille flows, we extract the temperature dependence of the slip length, delta, from molecular dynamics simulations of a coarse-grained polymer model in contact with an attractive surface. delta is dictated by the ratio of bulk viscosity and surface mobility. At weakly attractive surfaces, lubrication layers form; delta is large and increases upon cooling. Close to the glass transition temperature Tg, very large slip lengths are observed. At a more attractive surface, a sticky surface layer is built up, giving rise to small slip lengths. Upon cooling, delta decreases at high temperatures, passes through a minimum, and grows for T-->Tg. At strongly attractive surfaces, the Navier-slip condition fails to describe Couette and Poiseuille flows simultaneously. The simulations are corroborated by a schematic, two-layer model suggesting that the observations do not depend on details of the computational model.

  12. Color effects from scattering on random surface structures in dielectrics

    DEFF Research Database (Denmark)

    Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen;


    We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized....... The angle resolved scattering has been measured and compared to predictions based on the measured surface topography and by the use of non-paraxial scalar diffraction theory. From this it is shown that the color of the transmitted light can be predicted from the topography of the randomly textured surfaces....

  13. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    Directory of Open Access Journals (Sweden)

    Bing Qu


    Full Text Available Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B model was performed to explain the relationship between structure and hydrophobicity.

  14. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction

    NARCIS (Netherlands)

    Muntendam-Bos, A.G.; Kroon, I.C.; Fokker, P.A.


    We introduce a novel, time-dependent inversion scheme for resolving temporal reservoir pressure drop from surface subsidence observations (from leveling or GPS data, InSAR, tiltmeter monitoring) in a single procedure. The theory is able to accommodate both the absence of surface subsidence estimates

  15. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul


    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  16. Size dependence of surface thermodynamic properties of nanoparticles and its determination method by reaction rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjiao; Xue, Yongqiang, E-mail:; Cui, Zixiang


    Surface thermodynamic properties are the fundamental properties of nanomaterials, and these properties depend on the size of nanoparticles. In this paper, relations of molar surface thermodynamic properties and surface heat capacity at constant pressure of nanoparticles with particle size were derived theoretically, and the method of obtaining the surface thermodynamic properties by reaction rate constant was put forward. The reaction of nano-MgO with sodium bisulfate solution was taken as a research system. The influence regularities of the particle size on the surface thermodynamic properties were discussed theoretically and experimentally, which show that the experimental regularities are in accordance with the corresponding theoretical relations. With the decreasing of nanoparticle size, the molar surface thermodynamic properties increase, while the surface heat capacity decreases (the absolute value increases). In addition, the surface thermodynamic properties are linearly related to the reciprocal of nanoparticle diameter, respectively.

  17. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)


    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  18. Riblet Sensor -- Light Scattering on Micro Structured Surface Coatings

    CERN Document Server

    Imlau, Mirco; Voit, Kay-Michael; Tschentscher, Juliane; Dieckmann, Volker


    With the application of appropriate surface structuring on aircrafts, up to 8\\% fuel may be saved in regular air traffic. Before these techniques can be introduced into productive environments, a controlling method for the quality of surface structuring is needed to be used during fabrication and service, ensuring persistent quality of the structured coatings and a justified decision for surface renewal. In this project, these important requirements for achieving the improvements defined above are fulfilled. We have shown that fast sampling is possible using noncontacting laser probing, and we have presented a working preliminary configuration for the sensor. In the theoretical part, a model for the interaction between a probing laser beam and the surface is developed and the resulting wavefront is derived. This is done using a combination of Huygens-Fresnel diffraction theory and geometrical optics. The model is then used to counsel the design of the experimental setup, to interpret the emerging data and to ...

  19. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall (United States)

    Misyura, S. Y.


    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  20. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.


    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  1. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)


    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  2. Angle-dependent discoloration structures in wing scales of Morpho menelaus butterfly

    Institute of Scientific and Technical Information of China (English)

    NIU ShiChao; LI Bo; YE JunFeng; MU ZhengZhi; ZHANG JunQiu; LIU Yan; HAN ZhiWu


    The Morpho butterfly is famous for its typical structural color and has increasingly attracted the interest of scholars in a wide variety of research fields.Herein,it was found that the color of Morpho menelaus butterfly wings is not only structure-based but also viewing-angle-dependent.Firstly,the discoloration effect of this typical butterfly was confirmed by a series of experiments.Then,the general form,arrangements,and geometrical dimensions of the scales were observed using a stereomicroscope.Scanning electron microscopy was also used to examine the two-dimensional morphologies and structures of a single scale.Afterwards,one model with the optimized three-dimensional profile of the structure was described using Pro-engineer software.The associate model was then analyzed to reconstruct the process between the incident light and the model surface.Finally,the mechanism of the angle-dependent discoloration effect was analyzed by theoretical calculation and optical simulation.Different light propagation paths and the length of the incident light at different angles caused destructive or constructive interference between the light reflected from the different layers.The different spectra of the reflected light make the wings appear with different structural colors,thereby endowing the angle-dependent discoloration effect.The consistency of the calculation and simulation results confirms that these structures possess an excellent angle-dependent discoloration effect.This functional "biomimetic structure" would not only be of great scientific interest but could also have a great impact in a wide range of applications such as reflective displays,credit card security,and military stealth technology.

  3. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel. (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr


    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  4. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential (United States)

    Kwon, Kideok D.; Newton, Aric G.


    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  5. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao


    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  6. Sliding surface searching method for slopes containing a potential weak structural surface

    Institute of Scientific and Technical Information of China (English)

    Aijun Yao; Zhizhou Tian; Yongjun Jin


    Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu-lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  7. Femtosecond laser-induced periodic surface structures on silica

    Energy Technology Data Exchange (ETDEWEB)

    Hoehm, S.; Rosenfeld, A. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Krueger, J.; Bonse, J. [BAM Bundesanstalt fuer Materialforschung und-pruefung, Unter den Eichen 87, D-12205 Berlin (Germany)


    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  8. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition. (United States)

    Sobel, Nicolas; Hess, Christian


    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  9. Ran-dependent nuclear export mediators: a structural perspective. (United States)

    Güttler, Thomas; Görlich, Dirk


    Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.


    Directory of Open Access Journals (Sweden)



    Full Text Available Organizations offer efficient services to their customers through cloud. These services can either be a batch or transactional workloads. To offer a real-time service, there comes a need to schedule these workloads in an efficient way. An idea to consolidate these workloads enables us to cut down the energy consumption and infrastructure cost. It will be harder to consolidate both these workloads due to the difference in their nature, performance goals and control mechanisms. The proposed work implements the concept of Dependency Structure Prioritization (DSP to assign priority to the job. This work tends to make effective resource utilization through reducing the number of job migration and missed deadline jobs by considering the deadline and the priority of the job as the most important evaluation factor.

  11. Structural insight into the sequence dependence of nucleosome positioning. (United States)

    Wu, Bin; Mohideen, Kareem; Vasudevan, Dileep; Davey, Curt A


    Nucleosome positioning displays sequence dependency and contributes to genomic regulation in a site-specific manner. We solved the structures of nucleosome core particle composed of strong positioning TTTAA elements flanking the nucleosome center. The positioning strength of the super flexible TA dinucleotide is consistent with its observed central location within minor groove inward regions, where it can contribute maximally to energetically challenging minor groove bending, kinking and compression. The marked preference for TTTAA and positioning power of the site 1.5 double helix turns from the nucleosome center relates to a unique histone protein motif at this location, which enforces a sustained, extremely narrow minor groove via a hydrophobic "sugar clamp." Our analysis sheds light on the basis of nucleosome positioning and indicates that the histone octamer has evolved not to fully minimize sequence discrimination in DNA binding.

  12. Facile fabrication of dendritic silver structures and their surface enhanced Raman spectroscopic properties

    Indian Academy of Sciences (India)

    Jisheng Yang; Zhengdong Jiang


    A simple and efficient approach was developed to fabricate silver dendrites by Cu reducing Ag+ in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure is face-centered cubic. Rhodamine 6G was used as probe molecule to show that the silver dendrites have high sensitivity to surface enhanced Raman spectroscopy response.

  13. Sorting of droplets by migration on structured surfaces

    Directory of Open Access Journals (Sweden)

    Wilfried Konrad


    Full Text Available Background: Controlled transport of microdroplets is a topic of interest for various applications. It is well known that liquid droplets move towards areas of minimum contact angle if placed on a flat solid surface exhibiting a gradient of contact angle. This effect can be utilised for droplet manipulation. In this contribution we describe how controlled droplet movement can be achieved by a surface pattern consisting of cones and funnels whose length scales are comparable to the droplet diameter.Results: The surface energy of a droplet attached to a cone in a symmetry-preserving way can be smaller than the surface energy of a freely floating droplet. If the value of the contact angle is fixed and lies within a certain interval, then droplets sitting initially on a cone can gain energy by moving to adjacent cones.Conclusion: Surfaces covered with cone-shaped protrusions or cavities may be devised for constructing “band-conveyors” for droplets. In our approach, it is essentially the surface structure which is varied, not the contact angle. It may be speculated that suitably patterned surfaces are also utilised in biological surfaces where a large variety of ornamentations and surface structuring are often observed.

  14. Simulation of radar sounder echo from lunar surface and subsurface structure

    Institute of Scientific and Technical Information of China (English)


    Space-borne high frequency (HF) radar sounder is an effective tool for investigation of lunar subsurface structure in lunar exploration. The primary strategy of radar sounder technology for subsurface structure detection is utilization of the nadir echoes time delay and intensity difference from the lunar surface and subsurface. It is important to fully understand electromagnetic wave propagation, scattering, and attenuation through the lunar media in order to retrieve information of lunar layering structure from weak nadir echoes of the subsurface, which is simultaneously interfered by strong off-nadir surface clutters. Based on the Kirchhoff approximation (KA) of rough surface scattering and the ray tracing of geometric optics, a numerical simulation of radar echoes from lunar layering structures is developed. According to the lunar surface feature, the topography of mare and highland surfaces is numerically generated, and the triangulated network is employed to make digital elevations of the whole lunar surface. Scattering from the lunar surface and subsurface is numerically calculated using KA approach. Radar echoes and its range images are numerically simulated, and their dependence on the parameters of lunar layering interfaces is discussed. The approach of this paper can also be utilized to investigate subsurface structures in Mars and other planetary exploration.

  15. Structural models of vanadate-dependent haloperoxidases and their reactivity

    Indian Academy of Sciences (India)

    Mannar R Maurya


    Vanadium(V) complexes with hydrazone-based ONO and ONN donor ligands that partly model active-site structures of vanadate-dependent haloperoxidases have been reported. On reaction with [VO(acac)2] (Hacac = acetylacetone) under nitrogen, these ligands generally provide oxovanadium(IV) complexes [VO(ONO)X] (X = solvent or nothing) and [VO(acac)(ONN)], respectively. Under aerobic conditions, these oxovanadium(IV) species undergo oxidation to give oxovanadium(V), dioxovanadium (V) or -oxobis{oxovanadium(V)} species depending upon the nature of the ligand. Anionic and neutral dioxovanadium(V) complexes slowly deoxygenate in methanol to give monooxo complexes [VO(OMe)(MeOH)(ONO)]. The anionic complexes [VO2(ONO)]- can also be converted in situ on acidification to oxohydroxo complexes [VO(OH)(HONO)]+ and to peroxo complexes [VO(O2)(ONO)]-, and thus to the species assumed to be intermediates in the haloperoxidases activity of the enzymes. In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species [VO2(ONN)] as observed by 51V NMR and electronic absorption spectroscopic studies.


    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.


    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  17. Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces. (United States)

    Kim, Hyun-Joon; Kim, Dae-Eun


    Surface morphology is one of the critical parameters that affect the frictional behavior of two contacting bodies in relative motion. It is important because the real contact area as well as the contact stiffness is dictated by the micro- and nano-scale geometry of the surface. In this regard, the frictional behavior may be controlled by varying the surface morphology through nano-structuring. In this study, molecular dynamics simulations were conducted to investigate the effects of contact area and structural stiffness of corrugated nano-structures on the fundamental frictional behavior at the atomic-scale. The nano-structured surface was modeled as an array of corrugated carbon atoms with a given periodicity. It was found that the friction coefficient of the nano-structured surface was lower than that of a smooth surface under specific contact conditions. The effect of applied load on the friction coefficient was dependent on the size of the corrugation. Furthermore, stiffness of the nano-structure was identified to be an important variable in dictating the frictional behavior.

  18. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.


    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  19. Optimal pinning controllability of complex networks: dependence on network structure. (United States)

    Jalili, Mahdi; Askari Sichani, Omid; Yu, Xinghuo


    Controlling networked structures has many applications in science and engineering. In this paper, we consider the problem of pinning control (pinning the dynamics into the reference state), and optimally placing the driver nodes, i.e., the nodes to which the control signal is fed. Considering the local controllability concept, a metric based on the eigenvalues of the Laplacian matrix is taken into account as a measure of controllability. We show that the proposed optimal placement strategy considerably outperforms heuristic methods including choosing hub nodes with high degree or betweenness centrality as drivers. We also study properties of optimal drivers in terms of various centrality measures including degree, betweenness, closeness, and clustering coefficient. The profile of these centrality values depends on the network structure. For homogeneous networks such as random small-world networks, the optimal driver nodes have almost the mean centrality value of the population (much lower than the centrality value of hub nodes), whereas the centrality value of optimal drivers in heterogeneous networks such as scale-free ones is much higher than the average and close to that of hub nodes. However, as the degree of heterogeneity decreases in such networks, the profile of centrality approaches the population mean.

  20. Structural Basis of pH Dependence of Neoculin, a Sweet Taste-Modifying Protein. (United States)

    Ohkubo, Takayuki; Tamiya, Minoru; Abe, Keiko; Ishiguro, Masaji


    Among proteins utilized as sweeteners, neoculin and miraculin are taste-modifying proteins that exhibit pH-dependent sweetness. Several experiments on neoculin have shown that His11 of neoculin is responsible for pH dependence. We investigated the molecular mechanism of the pH dependence of neoculin by molecular dynamics (MD) calculations. The MD calculations for the dimeric structures of neoculin and His11 mutants showed no significant structural changes for each monomer at neutral and acidic pH levels. The dimeric structure of neoculin dissociated to form isolated monomers under acidic conditions but was maintained at neutral pH. The dimeric structure of the His11Ala mutant, which is sweet at both neutral and acidic pH, showed dissociation at both pH 3 and 7. The His11 residue is located at the interface of the dimer in close proximity to the Asp91 residue of the other monomer. The MD calculations for His11Phe and His11Tyr mutants demonstrated the stability of the dimeric structures at neutral pH and the dissociation of the dimers to isolated monomers. The dissociation of the dimer caused a flexible backbone at the surface that was different from the dimeric interface at the point where the other monomer interacts to form an oligomeric structure. Further MD calculations on the tetrameric structure of neoculin suggested that the flexible backbone contributed to further dissociation of other monomers under acidic conditions. These results suggest that His11 plays a role in the formation of oligomeric structures at pH 7 and that the isolated monomer of neoculin at acidic pH is responsible for sweetness.

  1. Surface dependent behaviour of CdS LO-phonon mode

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Contreras, J R [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Medina-Gutierrez, C [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique DIaz de Leon s/n, Fracc. Paseos de la Montana, CP 47460, Lagos de Moreno, Jal. (Mexico); Frausto-Reyes, C [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico); Trejo-Vazquez, R [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Villalobos-Pina, F J [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Romo-Luevano, G [Intel TecnologIa de Mexico, SA de CV, Systems Research Center-Mexico, Parque Industrial Tecnologico II, Periferico Sur 7980, edificio 4-E, 45600 Tlaquepaque, Jalisco (Mexico); Calixto, S [Centro de Investigaciones en Optica, AC, Loma del Bosque 115, Colonia Lomas del Campestre, CP 37150 Leon, Guanajuato (Mexico)


    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E{sub 0} transition.

  2. Effects of Surface Chemistry on the Porous Structure of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Ljubisa R; Hatcher, Patrick G


    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  3. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface (United States)

    Sedao, Xxx; Maurice, Claire; Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie; Quey, Romain; Blanc, Gilles; Pigeon, Florent


    We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1-3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  4. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus


    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  5. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  6. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama


    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  7. Properties and structure of peat humic acids depending on humification and precursor biota in bogs (United States)

    Klavins, Maris; Purmalis, Oskars


    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  8. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    B�chter A.


    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblastlike cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  9. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.


    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  10. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)


    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)


    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  12. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)


    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  13. Electric arc surfacing on low carbon steel: Structure and properties (United States)

    Ivanov, Yurii; Gromov, Victor; Kormyshev, Vasilii; Konovalov, Sergey; Kapralov, Evgenii; Semin, Alexander


    By the methods of modern materials science, the structure-phase state and microhardness distribution along the cross-section of single and double coatings surfaced on martensite low carbon steel by alloy powder-cored wire were studied. It was established that the increased mechanical properties of surfaced layer are determined by the sub-micro and nanodispersed martensite structure formation, containing iron borides forming the eutectic of lamellar form. The plates of Fe2B are formed mainly in the eutectic of a single-surfaced layer, while FeB is formed in a double-surfaced layer. The existence of bend extinction contours indicating the internal stress fields formation at the boundaries of Fe borides-α-Fe phases were revealed.

  14. Controlled crystalline structure and surface stability of cobalt nanocrystals. (United States)

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M


    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles.

  15. Robust biomimetic-structural superhydrophobic surface on aluminum alloy. (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng


    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  16. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Eldose, Nirosh M.; Mishra, Monu [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India)


    Highlights: • Evolution of In induced superstructures on Si(5 5 7) surface during RT and HT adsorption/desorption process. • Kinetics is governed by substrate temperature which exhibits various growth modes (FM, SK, VB) under different conditions. • Strain relaxation play significant role in the commencement of desorption/rearrangement of atoms. • A consolidated phase diagram of In/Si(5 5 7) interface has been reported with new √3 × √3-R30° and 4 × 1 phases. - Abstract: This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature <500°C, growth of In follows Stranski–Krastanov growth mode while for temperature >500°C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250–340°C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520°C), (√3 × √3-R30°) at 0.3 ML (560°C) and (7 × 7) at 0.1 ML (580°C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  17. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.


    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.

  18. Dimers on surface graphs and spin structures. II

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai


    In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the di......In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function...... of the dimer model on Γ. In the present article, we generalize these results to the case of compact oriented surfaces with boundary. We also show how the operations of cutting and gluing act on discrete spin structures and how they change the partition function. These operations allow to reformulate the dimer...

  19. Persistent Near-Surface Flow Structures from Local Helioseismology

    CERN Document Server

    Howe, R; Baker, D; Harra, L; van Driel-Gesztelyi, L; Bogart, R S


    Near-surface flows measured by the ring-diagram technique of local helioseismology show structures that persist over multiple rotations. We examine these phenomena using data from the {\\em Global Oscillation Network Group} (GONG) and the {\\em Helioseismic and Magnetic Imager} (HMI) and show that a correlation analysis of the structures can be used to estimate the rotation rate as a function of latitude, giving a result consistent with the near-surface rate from global helioseismology and slightly slower than that obtained from a similar analysis of the surface magnetic field strength. At latitudes of 60$^{\\circ}$ and above the HMI flow data reveal a strong signature of a two-sided zonal flow structure. This signature may be related to recent reports of "giant cells" in solar convection.

  20. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jianwu; Zhang Chengyun; Liu Haiying; Dai Qiaofeng; Wu Lijun [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Gopal, Achanta Venu [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Trofimov, Vyacheslav A.; Lysak, Tatiana M. [Department of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)


    Ripples with a subwavelength period were induced on the surface of a stainless steel (301 L) foil by femtosecond laser pulses. By optimizing the irradiation fluence of the laser pulses and the scanning speed of the laser beam, ripples with large amplitude ({approx}150 nm) and uniform period could be obtained, rendering vivid structural colors when illuminating the surface with white light. It indicates that these ripples act as a surface grating that diffracts light efficiently. The strong dependence of the ripple orientation on the polarization of laser light offers us the opportunity of decorating different regions of the surface with different types of ripples. As a result, different patterns can be selectively displayed with structural color when white light is irradiated on the surface from different directions. More interestingly, we demonstrated the possibility of decorating the same region with two or more types of ripples with different orientations. In this way, different patterns with spatial overlapping can be selectively displayed with structural color. This technique may find applications in the fields of anti-counterfeiting, color display, decoration, encryption and optical data storage.

  1. Surface plasmon polariton amplification in metal-semiconductor structures. (United States)

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V


    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  2. Fractal analysis of the hierarchic structure of fossil coal surface

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K. [National Academy of Sciences, Donetsk (Ukraine)


    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  3. Structure and properties of GMA surfaced armour plates


    A. Klimpel; K. Luksa; M. Burda


    Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented.Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to ex...

  4. Positron studies of surfaces, structure and electronic properties of nanocrystals


    Eijt, S. W. H.; Barbiellini, B.; Houtepen, A.J.; Vanmaekelbergh, D.; Mijnarends, P. E.; Bansil, A.


    A brief review is given of recent positron studies of metal and semiconductor nanocrystals. The prospects offered by positron annihilation as a sensitive method to access nanocrystal (NC) properties are described and compared with other experimental methods. The tunability of the electronic structure of nanocrystals underlies their great potential for application in many areas. Owing to their large surface-to-volume ratio, the surfaces and interfaces of NCs play a crucial role in determining ...

  5. Modeling liquid crystal bilayer structures with minimal surfaces. (United States)

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W


    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  6. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface (United States)

    Chauhan, Amit Kumar Singh; Eldose, Nirosh M.; Mishra, Monu; Niazi, Asad; Nair, Lekha; Gupta, Govind


    This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature 500 °C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250-340 °C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520 °C), (√3 × √3-R30°) at 0.3 ML (560 °C) and (7 × 7) at 0.1 ML (580 °C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  7. Surface structure and hole localization in bismuth vanadate: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Kyoung E.; Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States)


    The monoclinic and tetragonal phases of bismuth vanadate (BiVO{sub 4}) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO{sub 4} (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO{sub 4} are discussed.

  8. Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. (United States)

    Conrady, Deborah G; Wilson, Jeffrey J; Herr, Andrew B


    Staphylococcal bacteria, including Staphylococcus epidermidis and Staphylococcus aureus, cause chronic biofilm-related infections. The homologous proteins Aap and SasG mediate biofilm formation in S. epidermidis and S. aureus, respectively. The self-association of these proteins in the presence of Zn(2+) leads to the formation of extensive adhesive contacts between cells. This study reports the crystal structure of a Zn(2+) -bound construct from the self-associating region of Aap. Several unusual structural features include elongated β-sheets that are solvent-exposed on both faces and the lack of a canonical hydrophobic core. Zn(2+)-dependent dimers are observed in three distinct crystal forms, formed via pleomorphic coordination of Zn(2+) in trans across the dimer interface. These structures illustrate how a long, flexible surface protein is able to form tight intercellular adhesion sites under adverse environmental conditions.

  9. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail:; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)


    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  10. Light-dependent structural change of chicken retinal Cryptochrome4. (United States)

    Watari, Ryuji; Yamaguchi, Chiaki; Zemba, Wataru; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki


    Animals have several classes of cryptochromes (CRYs), some of which function as core elements of circadian clockwork, circadian photoreceptors, and/or light-dependent magnetoreceptors. In addition to the circadian clock genes Cry1 and Cry2, nonmammalian vertebrates have the Cry4 gene, the molecular function of which remains unknown. Here we analyzed chicken CRY4 (cCRY4) expression in the retina with in situ hybridization and found that cCRY4 was likely transcribed in the visual pigment cells, cells in the inner nuclear layer, and retinal ganglion cells. We further developed several monoclonal antibodies to the carboxyl-terminal extension of cCRY4 and localized cCRY4 protein with immunohistochemistry. Consistent with the results of in situ hybridization, cCRY4 immunoreactivity was found in visual pigment cells and cells located at the inner nuclear layer and the retinal ganglion cell layer. Among the antibodies, one termed C1-mAb had its epitope within the carboxyl-terminal 14-amino acid sequence (QLTRDDADDPMEMK) and associated with cCRY4 in the retinal soluble fraction more strongly in the dark than under blue light conditions. Immunoprecipitation experiments under various light conditions indicated that cCRY4 from the immunocomplex formed in the dark dissociated from C1-mAb during blue light illumination as weak as 25 μW/cm(2) and that the release occurred with not only blue but also near UV light. These results suggest that cCRY4 reversibly changes its structure within the carboxyl-terminal region in a light-dependent manner and operates as a photoreceptor or magnetoreceptor with short wavelength sensitivity in the retina.

  11. Determination of surface structure and the depth profile of silica glass by infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)



    The surface structure and properties are different from those of the bulk, depending on the substrate materials and deposition condition, and playing an important role in precise optical components. The conventional spectroscopic methods to monitor the surface structure are restricted only in several layers of molecules. It is known that the penetration depth of the incident light increases with its wavelength and decreases with the angle of incidence. Thus infrared spectroscopy provides a powerful means for determination of surface structure and the depth profile up to micrometers. By recording the reflection spectra at different angles of incidence, the surface structure and its depth profile can be monitored successively. Further, the incident field has the subcomponents parallel and perpendicular to the surface, which excite the transverse and longitudinal optic modes, respectively. Change of the polarization direction of the incident light provides a practical function to study anisotropic property of the surface and the interaction between the transverse and longitudinal optic modes. In this work, infrared spectrophotometer was applied to investigate the depth profile in microstructure of silica glass. Combining with the glass fiber system, this technique can be used for in-situ control of the deposition process. In comparing with ellipsometry, this method reveals both structural and constitutional information.

  12. Optimal Design of Surface Structure of a Magnetic Head

    Institute of Scientific and Technical Information of China (English)

    WANG Yazhen; NIU Rongjun; HUANG Ping


    Currently, the surface structure of a magnetic head has been transferred from a positive to a negative model. In order to increase magnetic storage density and to decrease the flight height, the surface structure of a head needs to be optimized continually. In the present paper, the influence of surface structure of a negative magnetic head on its flight attitude is analyzed in brief by both theoretical analysis and numerical simulation. Firstly, based on theoretical analysis, one-dimensional model of optimal design is built whose results play an important role in guiding for the two-dimensional model. Secondly, to analyze the impacts of different structures of negative pressure heads, the original head structure is divided into five zones;the impacts of different zones on both pressure distribution and load carrying capacity were detailed analyzed by numerical analysis. Thirdly, remain the leading-head structure of the negative head, and optimized tail-end structure can be gained by the regional planning strategy to control the gas film pressure distribution. With layout strategy, three kinds of structures of the head were designed. The results show that the tail-end structure impacts on the flight performances significantly and the middle boss plays a major role on positive pressure, while the bilateral bosses lying in either side play assistant regulating role. The structures of bilateral bosses have slightly impact on pressure distribution. The results also show that an optimum tail structure can meet the needs of a lower flight height and a larger magnetic storage density.

  13. Investigation of surface magnetostatic wave propagation in ferrite superconductor structure

    CERN Document Server

    Semenov, A A; Melkov, A A; Bobyl', A V; Suris, R A; Gal'perin, Y M; Iokhansen, T K


    Electrodynamic model describing dispersion properties of surface magnetostatic wave in ferrite/superconductor structure was suggested. On the basis of the model a new method of ascertaining superhigh frequency surface resistance R sub s of superconducting films in magnetic fields was developed. The calculated values agree with the results obtained by the Tauber method, making up R sub s =0.20-1.96 m Ohm. A regulated incursion of wave phase amounting to about 1.5 pi with the change in penetration depth 2.0-0.8 mu m for YBCO film was attained for YIG/YBCO structures

  14. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)


    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Waveguiding in surface plasmon polariton band gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Østergaard, John Erland; Leosson, Kristjan


    Using near-held optical microscopy, we investigate propagation and scattering of surface plasmon polaritons (SPP's) excited in the wavelength range of 780-820 nm at nanostructured gold-film surfaces with areas of 200-nm-wide scatterers arranged in a 400-nm-period triangular lattice containing line...... defects. We observe the SPP reflection by such an area and SPP guiding along line defects at 782 nm, as well as significant deterioration of these effects is 815 nm, thereby directly demonstrating the SPP band gap effect and showing first examples of SPP channel waveguides in surface band gap structures....

  16. Continuous Estimation of Wrist Torque from Surface EMG Signals Using Path-dependent Model

    Institute of Scientific and Technical Information of China (English)

    PAN Li-zhi; ZHANG Ding-guo; SHENG Xin-jun; ZHU Xiang-yang


    Continuous estimation of wrist torque from surface electromyography (EMG) signals has been studied by some research institutes. Hysteresis effect is a phenomenon in EMG force relationship. In this work, a path-dependent model based on hysteresis effect was used for continuously estimating wrist torque from surface EMG signals. The surface EMG signals of the flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR) were collected along with wrist torque of flexion/extension degree-of-freedom. EMG signal of FCU was used to estimate the torque of wrist flexion and EMG signal of ECR to estimate the torque of wrist extension. The existence of hysteresis effect has been proven either during wrist flexion or extension on all subjects. And the estimation performance of path-dependent model is much better than the overall model. Thus, the path-dependent model is suitable to improve the wrist torque's estimation accuracy.

  17. Surface Structure and Growth Mode of Pd Deposited on Mo(110) Surface (United States)

    Maehara, Y.; Kawanowa, H.; Gotoh, Y.

    The surface structure and growth mode of Pd/Mo(110) have been studied using reflection high energy electron diffraction (RHEED). The surface diagram of Pd on the Mo(110) substrate for deposition thickness versus substrate temperature was obtained. Four kinds of surface structures, namely α1, α2, β and γ, were observed. At less than 1 ML, α2 appeared in temperatures ranging from 400 to 1050°C and α1 appeared from RT to 400°C. α2 has a structure intermediate between those of Pd(111) and Mo(110), in which the dense direction of the layer is parallel to the [111]Mo orientation and their atomic row distances are coincident, resulting in formation of a long-period structure with a Mo surface, namely a coincident site lattice. The α1 structure is similar to the 1 × 1 structure. At more than 1.0 ML, β and γ structures appeared simultaneously in the temperature region from 500 to 950°C. However, at a high temperature region from 950 to 1050°C, the α2 structure was observed. β shows a one-dimensional ordered structure, in which Pd atoms line along [111]Mo. γ exhibits a 3 × 1 structure with the same atomic arrangement as the Mo(110) plane rotated at 70.5°. At greater than 2.0 ML, the Pd film grows in the Frank van der Merwe growth mode at a low temperature with accumulation of a Pd(111) layer, and in the Stranski Krastanov growth mode at a high temperature with two-dimensional growth of the γ structure followed by formation of flat crystallites.

  18. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K


    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  19. A temperature-dependent surface free energy model for solid single crystals (United States)

    Cheng, Tianbao; Fang, Daining; Yang, Yazheng


    A temperature-dependent theoretical model for the surface free energy of the solid single crystals is established. This model relates the surface free energy at the elevated temperatures to that at the reference temperature, the temperature-dependent specific heat at constant pressure and coefficient of the linear thermal expansion, the heat of phase transition, the melting heat, and the vapor heat. As examples, the surface free energies of Fe, Cu, Al, Ni, and Pb from 0 K to melting points are calculated and are in reasonable agreement with these from Tyson's theories and the experimental results. This model has obvious advantages compared to Tyson's semi-empirical equations from the aspect of physical meaning, applicable condition, and accuracy. The study shows that the surface free energy of the solid single crystals firstly remains approximately constant and then decreases linearly as temperature increases from 0 K to melting point.

  20. Lattice effects of surface cell: Multilayer multiconfiguration time-dependent Hartree study on surface scattering of CO/Cu(100) (United States)

    Meng, Qingyong; Meyer, Hans-Dieter


    To study the scattering of CO off a movable Cu(100) surface, extensive multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations are performed based on the SAP [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] potential energy surface in conjunction with a recently developed expansion model [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)] for including lattice motion. The surface vibration potential is constructed by a sum of Morse potentials where the parameters are determined by simulating the vibrational energies of a clean Cu(100) surface. Having constructed the total Hamiltonian, extensive dynamical calculations in both time-independent and time-dependent schemes are performed. Two-layer MCTDH (i.e., normal MCTDH) block-improved-relaxations (time-independent scheme) show that increasing the number of included surface vibrational dimensions lets the vibrational energies of CO/Cu(100) decrease for the frustrated translation (T mode), which is of low energy but increase those of the frustrated rotation (R mode) and the CO-Cu stretch (S mode), whose vibrational energies are larger than the energies of the in-plane surface vibrations (˜79 cm-1). This energy-shifting behavior was predicted and discussed by a simple model in our previous publication [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)]. By the flux analysis of the MCTDH/ML-MCTDH propagated wave packets, we calculated the sticking probabilities for the X + 0D, X + 1D, X + 3D, X + 5D, and X + 15D systems, where "X" stands for the used dimensionality of the CO/rigid-surface system and the second entry denotes the number of surface degrees of freedom included. From these sticking probabilities, the X + 5D/15D calculations predict a slower decrease of sticking with increasing energy as compared to the sticking of the X + 0D/1D/3D calculations. This is because the translational energy of CO is more easily transferred to surface vibrations, when the vibrational

  1. Structural Integrity Assessment Using Laser Measured Surface Vibration (United States)


    structures. Figure 2. (Left) Experimental arrangement for plaster wall assessments at the U.S. Capitol Building showing the SLDV monitoring system, a... termite -like damage to the wood. Broadband SLDV scans were obtained across the available surface of the structure providing dynamic displacement...Figure 2. (Left) Experimental arrangement for plaster wall assessments at the U.S. Capitol Building showing the SLDV monitoring system, a shaker

  2. An investigation into design of fair surfaces over irregular domains using data-dependent triangulation

    Indian Academy of Sciences (India)

    R Sharma; O P Sha


    Design of fair surfaces over irregular domains is a fundamental problem in computer-aided geometric design (CAGD), and has applications in engineering sciences (in aircraft, automobile, ship science etc.). In the design of fair surfaces over irregular domains defined over scattered data, it was widely accepted till recently that the classical Delaunay triangulation be used because of its global optimum property. However, in recent times it has been shown that for continuous piecewise linear surfaces, improvements in the quality of fit can be achieved if the triangulation pattern is made dependent upon some topological or geometric property of the data set or is simply data dependent. The fair surface is desired because it ensures smooth and continuous surface planar cuts, and these in turn ensure smooth and easy production of the surface in CAD/CAM, and favourable resistance properties. In this paper, we discuss a method for construction of $C^1$ piecewise polynomial parametric fair surfaces which interpolate prescribed $\\mathfrak{R}^3$ scattered data using spaces of parametric splines defined on $\\mathfrak{R}^3$ triangulation. We show that our method is more specific to the cases when the projection on a 2-D plane may consist of triangles of zero area, numerically stable and robust, and computationally inexpensive and fast. Numerical examples dealing with surfaces approximated on plates, and on ships have been presented.

  3. Nucleus-Dependent Valence-Space Approach to Nuclear Structure (United States)

    Stroberg, S. R.; Calci, A.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Roth, R.; Schwenk, A.


    We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3 N ) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and s d shells. Finally, we address the 1+/3+ inversion problem in 22Na and 46V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

  4. Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures (United States)

    Chen, Z.; Peng, R. Lin; Moverare, J.; Avdovic, P.; Zhou, J. M.; Johansson, S.


    The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

  5. Detection of a periodic structure embedded in surface roughness, for various correlation functions

    Indian Academy of Sciences (India)

    V C Vani; S Chatterjee


    This paper deals with surface profilometry, where we try to detect a periodic structure, hidden in randomness using the matched filter method of analysing the intensity of light, scattered from the surface. From the direct problem of light scattering from a composite rough surface of the above type, we find that the detectability of the periodic structure can be hindered by the randomness, being dependent on the correlation function of the random part. In our earlier works, we had concentrated mainly on the Cauchy-type correlation function for the rough part. In the present work, we show that this technique can determine the periodic structure of different kinds of correlation functions of the roughness, including Cauchy, Gaussian etc. We study the detection by the matched filter method as the nature of the correlation function is varied.

  6. Nucleate boiling heat transfer from a structured surface - Effect of liquid intake

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.K.; Das, P.K.; Bhattacharyya, S.; Saha, P. [Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)


    A model of the suction evaporation mode in nucleate boiling from tunnel and pore structures is presented. The model is based on the analysis by Nakayama et al. [W. Nakayama, T. Daikoku, H. Kuwahara, T. Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces - Part II. Analytical model, ASME J. Heat Transfer 102 (3) (1980) 451-456] and L.H. Chein and R.L. Webb [A nucleate boiling model for structured enhanced surfaces, Int. J. Heat Mass Transfer 41 (14) (1998) 2183-2195]. Additionally, a detailed phenomenological model of liquid refill has been developed. It has been shown that the process of liquid refill and the time needed for it is strongly dependent on pool height. Effect of liquid pool height on bubble frequency has also been discussed. Finally, a generalized methodology is given for the prediction of boiling data from a structured surface. (author)

  7. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. (United States)

    Martin, Christopher H


    The adaptive landscape provides the foundational bridge between micro- and macroevolution. One well-known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context-dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory-reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large-scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one-, two-, and three-peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. The pressure and temperature dependence of vertical cavity surface emitting semiconductor lasers

    CERN Document Server

    Knowles, G


    The factors affecting the performance of GalnP/AIGalnP vertical-cavity surface-emitting lasers (VCSELs) emitting at an attenuation minimum of PMMA plastic optical fibres (650nm) have been investigated. Using wide temperature-range and high pressure measurement techniques on equivalent (i.e the same active region) edge emitting lasers (EELs), emitting at 672nm, the temperature sensitive leakage current into the indirect X-minima is shown to be approx 20% of the total threshold current at room temperature. This is then estimated to rise to approx 70% for 655nm emission, but may be reduced to approx 50% by using a graded-index separate confinement heterostructure (GRINSCH). By making the same measurements on the full VCSEL structures and using a combination of thermal and gain spectrum models the performance modifying effect of the Bragg stacks have then been evaluated. It is found that temperature dependent tuning/detuning of the gain-peak and the cavity mode is significant at low temperature due to the relativ...

  9. Refining femtosecond laser induced periodical surface structures with liquid assist

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, L.S. [School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Ng, E.Y.K., E-mail: [School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Zheng, H.Y. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 Singapore (Singapore)


    Highlights: Black-Right-Pointing-Pointer LIPSS on silicon wafer was made in air and in ethanol environment. Black-Right-Pointing-Pointer Ethanol environment produce cleaner surface ripples. Black-Right-Pointing-Pointer Ethanol environment decrease spatial wavelength of the LIPSS by 30%. Black-Right-Pointing-Pointer More number of pulses produce smaller spatial wavelength in air. Black-Right-Pointing-Pointer Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  10. Microphase separated structure and surface properties of fluorinated polyurethane resin

    Energy Technology Data Exchange (ETDEWEB)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K. [Dept. Chem. Sci. and Eng., Faculty of Engineering, Kobe University, Kobe (Japan)


    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  11. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.


    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, ma...

  12. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)

    Rudnev; V.; S.; Yarovaya; T.; P.; Boguta; D.; L.; Lukiyanchuk; I.; V.; Tyrina; L.; M.; Morozova; V.; P.; Nedozorov; P.; M.; Vasilyeva; M.; S.; Kondrikov; N.; B.


    The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.……

  13. Towards Friction Control using laser-induced periodic Surface Structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, G.R.B.E.; Huis in 't Veld, A.J.


    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two D

  14. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures


    Müller, Frank A.; Clemens Kunz; Stephan Gräf


    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical princip...

  15. Structural and surface changes of copper modified manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Wojciech, E-mail:; Słowik, Grzegorz; Zawadzki, Witold


    Highlights: • Formation of MnO with regular rippled-like surface patterns. • Synthesis of copper nanorods supported on MnO nanoparticles. • Hydrogen production in steam methanol reforming over supported copper nanorods. - Abstract: The structural and surface properties of manganese and copper–manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  16. Temperature dependence of the structure of protein hydration water and the liquid-liquid transition. (United States)

    Accordino, S R; Malaspina, D C; Rodriguez Fris, J A; Alarcón, L M; Appignanesi, G A


    We study the temperature dependence of the structure and orientation of the first hydration layers of the protein lysozyme and compare it with the situation for a model homogeneous hydrophobic surface, a graphene sheet. We show that in both cases these layers are significantly better structured than bulk water. The geometrical constraint of the interface makes the water molecules adjacent to the surface lose one water-water hydrogen bond and expel the fourth neighbors away from the surface, lowering local density. We show that a decrease in temperature improves the ordering of the hydration water molecules, preserving such a geometrical effect. For the case of graphene, this favors an ice Ih-like local structuring, similar to the water-air interface but in the opposite way along the c axis of the basal plane (while the vicinal water molecules of the air interface orient a hydrogen atom toward the surface, the oxygens of the water molecules close to the graphene plane orient a lone pair in such a direction). In turn, the case of the first hydration layers of the lysozyme molecule is shown to be more complicated, but still displaying signs of both kinds of behavior, together with a tendency of the proximal water molecules to hydrogen bond to the protein both as donors and as acceptors. Additionally, we make evident the existence of signatures of a liquid-liquid transition (Widom line crossing) in different structural parameters at the temperature corresponding to the dynamic transition incorrectly referred to as "the protein glass transition."

  17. Dependence of Y sub 2 O sub 3 film growth on the state of the Si surface

    CERN Document Server

    Cho, M H; Jeong, K H; Whang, C N Y; Ko, D H; Choi, S C; Cho, S J


    Y sub 2 O sub 3 films were grown on Si substrates with various surface conditions by using ionized cluster beam deposition. The interface and the surface characteristics was investigated by reflection high energy electron diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The dependence of the crystallinities of the films on the surface conditions was investigated using X-ray diffraction. The investigation showed that control of the silicide layer played a crucial role in the growth of Y sub 2 O sub 3 films during the initial stage of growth. The Y sub 2 O sub 3 film grown on a silicide layer formed on a clean Si surface was a polycrystal with a monoclinic structure. However, the film grown on a silicide layer formed on a SiO sub 2 -terminated surface turned out to be a single crystalline Y sub 2 O sub 3 with a cubic structure. A high-quality film in terms of crystallinity and stochiometry was obtained when the growth of the silicide layer was controlled by a SiO sub 2 layer which had...

  18. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;


    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  19. Surface Morphology Dependent Copper Sulphide Ammonia Gas Sensor Working at Room Temperature: Effect of SHI Irradiation

    Directory of Open Access Journals (Sweden)

    Ramphal Sharma


    Full Text Available We report the synthesis of copper sulphide (CuS nano-pillars on copper sulphide thin film surface by using swift heavy ion (SHI irradiation. Thin films of CuS are irradiated with 100 MeV gold ions at fluence varying from 1011 to 5 ´ 1012 ions/cm2. These nanostructures grown on the surface of copper sulphide has been used for the detection of ammonia gas at room temperature. The time dependent surface conductance measurements show the utility of copper sulphide for the detection of ammonia. It is observed that the response of the material is highly influenced by the irradiation fluence.

  20. Surface Morphology Dependent Copper Sulphide Ammonia Gas Sensor Working at Room Temperature: Effect of SHI Irradiation


    Ramphal Sharma; Sagade, Abhay A.; J. C. Vyas; P. K. Nema; Anil Ghule; Sung-Hwan Han


    We report the synthesis of copper sulphide (CuS) nano-pillars on copper sulphide thin film surface by using swift heavy ion (SHI) irradiation. Thin films of CuS are irradiated with 100 MeV gold ions at fluence varying from 1011 to 5 ´ 1012 ions/cm2. These nanostructures grown on the surface of copper sulphide has been used for the detection of ammonia gas at room temperature. The time dependent surface conductance measurements show the utility of copper sulphide for the detection of ammonia. ...

  1. Influence of the surface structure and vibration mode on the resistivity of Cu films (United States)

    Zhao, Ya-Ni; Qu, Shi-Xian; Xia, Ke


    The influence of the surface structure and vibration mode on the resistivity of Cu films and the corresponding size effect are investigated. The temperature dependent conductivities of the films with different surface morphologies are calculated by the algorithm based upon the tight-binding linear muffin-tin orbital method and the Green's function technique. The thermal effect is introduced by setting the atomic displacements according to the Gaussian distribution with the mean-square amplitude estimated by the Debye model. The result shows that the surface atomic vibration contributes significantly to the resistivity of the system. Comparing the conductivities for three different vibration modes, we suggest that freezing the surface vibration is necessary for practical applications to reduce the resistivity induced by the surface electron-phonon scattering.

  2. Dynamic behavior of polymer surface and the time dependence of contact angle

    Institute of Scientific and Technical Information of China (English)

    WANG Xinping; CHEN Zhifang; SHEN Zhiquan


    Time-dependent contact angles were measured by depositing sessile drops of water on the polymer surfaces and monitoring the drop shape as a function of time. It was found that contact angles decreased sharply with contact time and the equilibrium contact angle was finally attained after a certain time. Values of starting (θs) and equilibrium contact angles (θe) obtained by the sessile drop method depend on polymer properties. The Wilhelmy plate technique was used to measure advancing and receding contact angles. The variations of starting (θs) and equilibrium contact angles (θe), advancing (θa) and receding contact angles (θr) have been studied on the oxidized surface of polymers containing polybutadiene block to explore the cause of time-dependence in contact angle measurement and the meaning of θs and θe. The results showed the linear relationships between starting (θs) and advancing contact angles (θa), the equilibrium (θe) and receding contact angles (θr). The similar relationship was also established between the contact angle hysteresis (θa-θr) and differences (θs-θe) in starting contact angles and equilibrium contact angles. Therefore, time-dependence in contact angle measurement was mainly attributed to the surface reconstruction when water drops were deposited on polymer surfaces. The starting contact angle was contributed by the hydrophobic component on polymer surface and the equilibrium contact angle mainly by the hydrophilic component of polymer. These results not only demonstrated the interdependency between two contact angle measurements, the sessile drop method and the Wilhelmy plate technique, but also provided the experimental evidence to explain the cause of time-dependent contact angle. This may also provide a new method to study dynamic behavior of polymer surface.

  3. Osteogenic activity of titanium surfaces with nanonetwork structures

    Directory of Open Access Journals (Sweden)

    Xing H


    Full Text Available Helin Xing,1,2 Satoshi Komasa,3 Yoichiro Taguchi,4 Tohru Sekino,5 Joji Okazaki3 1Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 2Graduate School of Dentistry (Removable Prosthodontics and Occlusion, 3Department of Removable Prosthodontics and Occlusion, 4Department of Periodontology, Osaka Dental University, Hirakata, Osaka, Japan; 5Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan Background: Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. Methods: In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs, were evaluated. Results: The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M. Conclusion: The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed

  4. Surface structure and relaxation during the oxidation of carbon monoxide on Pt Pd bimetallic surfaces (United States)

    Lucas, C. A.; Markovic, N. M.; Ball, M.; Stamenkovic, V.; Climent, V.; Ross, P. N.


    The atomic structure and surface relaxation of Pd monolayer on Pt(1 1 1) has been studied by surface X-ray scattering, in an aqueous environment under electrostatic potential control, during the adsorption and oxidation of carbon monoxide. The results show that the Pd-Pt layer spacing contracts at the onset of CO oxidation before the Pd adlayer forms an oxide structure that is incommensurate with the Pt lattice. Both the oxide formation and the lattice contraction are fully reversible over many cycles of the applied electrode potential.

  5. Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature (United States)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.


    The orientation dependence of blister formation induced by D plasma exposure at low temperature (about 523 K) on rolled tungsten and chemical vapor deposition (CVD) W samples was studied by scanning electron microscopy and electron backscatter diffraction. Severe blistering was observed on grains with surface normal directions close to [111], while the [001] surfaces are the most resistant to blister formation. Cavities induced by D2 gas were observed beneath [111], [110] and [001] surfaces, independently on whether blisters were observed on the surface or not. The [111] surface is more prone to blister formation, because it is easily plastically deformed by the D2 gas pressure. Some blister edges and steps were perpendicular to [110] directions, which may be induced by the slipping of dislocations on {110} planes. The blister morphology induced by D plasma can be well explained by the blister model based on plastic deformation mechanism.

  6. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller


    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  7. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan


    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  8. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan


    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  9. On Surface Structure and Friction Regulation in Reptilian Limbless Locomotion

    CERN Document Server

    Abdel-Aal, Hisham A


    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakesk...

  10. Electrical mapping of microtubular structures by surface potential microscopy (United States)

    Zhang, Peng; Cantiello, Horacio F.


    Microtubules (MTs) are important cytoskeletal polymers that play an essential role in cell division and transport in all eukaryotes and information processing in neurons. MTs are highly charged polyelectrolytes, composed of hollow cylindrical arrangements of αβ-tubulin dimers. To date, there is little information about electrical properties of MTs. Here, we deposited and dried MTs onto a gold-plated surface to image their topology by atomic force microscopy (AFM), and determined their electrical mapping with surface potential microscopy (SPM). We found a strong linear correlation between the magnitude of relative surface potential and MT parameters, including diameter and height. AFM images confirmed the cylindrical topology of microtubular structures, and the presence of topological discontinuities along their surface, which may contribute to their unique electrical properties.

  11. Fabrication of laser induced periodic surface structure for geometrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Naoto [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan)], E-mail:; Fujihara, Arata; Nagata, Kazuya [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan)


    The paper presents the highly ordered geometrical structures of laser induced periodic surface structure (LIPSS) in azobenzene urethane polymer (DR19 polymer) from 4-(N,N-dihydroxyethylamino)-4'-nitroazobenzene (Disperse red 19) with tolylene-2,4-diisocyanate (TDI). One or two regulated striped LIPSS was formed in confined spaces between surface relief gratings (SRG) induced by the s-polarized interfered beams. The pitch of LIPSS was one-half or one-third of SRG pitch. Standing wave with some selected mode between SRG in the surface waveguide is responsible for the formation of the regulated striped LIPSS. The crossed illumination of the interfered beams showed the waffle-like structure for s-polarization beam and the egg crate-like (ECL) structure for p-polarized beam. Photoinduced microscopic molecular ordering was also investigated. The linear polarized beam gave the large optical anisotropy in the polymer and the circularly polarized beam produced the chiral structure. The circular dichroism spectra showed the sharp peak due to the circular Bragg reflection from which the chiral pitch was evaluated.

  12. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin


    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  13. Frequency selective surface structure optimized by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Lu Jun; Wang Jian-Bo; Sun Guan-Cheng


    Frequency selective surface(FSS)is a two-dimensional periodic structure which has prominent characteristics of bandpass or bandblock when interacting with electromagnetic waves.In this paper,the thickness,the dielectric constant,the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm(GA)when an electromagnetic wave is incident on the FSS at a wide angle,and an optimized FSS structure and transmission characteristics are obtained.The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°,thereby laying the foundation for the application of FSS to curved surfaces at wide angles.

  14. Electronic structure of graphene on Ni surfaces with different orientation

    Energy Technology Data Exchange (ETDEWEB)

    Pudikov, D.A., E-mail:; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.


    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  15. UV spectral filtering by surface structured multilayer mirrors. (United States)

    Huang, Qiushi; Paardekooper, Daniel Mathijs; Zoethout, Erwin; Medvedev, V V; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; Bijkerk, Fred


    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400  nm) and simultaneously a high reflectance of EUV light (λ=13.5  nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well.

  16. Local structural ordering in surface-confined liquid crystals (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.


    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  17. Experimental Study on Surface Reactions of Heavy Metal Ions With Quartz—Aqueous Ion Concentration Dependence

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 吴大清; 等


    Adsorption of divalent metal ions,including Cu2+,Pb2+,Zn2+,Cd2+ and Ni2+,on quartz surface was measured as a function of metal ion concentration at 30℃under condi tions of solution pH=6.5 and ion strength I=0.1mol/L.Results of the experimental measuements can be described very well by adsorption isoterm dquations of Freudlich.The correlation coefficients(r)of adsorption isotherm lines are>0.96.Moreover,the exprimental data were interpreted on the basis of surface complexation model.Te experimental results showed that the monodentate-coordinated metal ion surface complex species(SOM+)are predominant over the bidentate-coordinated metal ion surface complex species[(SO)2M]formed only by the ions Cu2+,Zn2+ and Ni2+,And the relevant apparent surface complexation constants are lgKM=2.2-3.3 in order of KCd≥KPb>KZn>KNi≥KCu,and lgβM=5.8-6.8 in oder of βNi>βZn>βCu.Therefore,the reactive ability of the ions onto mineral surface of quartz follows the order of Cd>Pb>Zn>Ni>Cu under the above-mentioned solution conditions.The apparent surface complexation constants,influenced by the surface potential,surface species and hydrolysis of metal ions,depend mainly on the Born solvation coefficeient of the metal ions.

  18. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration. (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D


    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs.

  19. Sound power radiation from a vibrating structure in terms of structure-dependent radiation modes (United States)

    Ji, Lin; Bolton, J. Stuart


    As a good supplement of conventional acoustic radiation modes (a-modes), a set of so-called "structure-dependent radiation modes" (s-modes) is introduced to describe the sound power radiation from a vibrating structure. Differing from a-modes, s-modes are determined by not only the acoustic resistance matrix of the structure but also the frequency-independent normal modes of the structure. Such a new definition has the following main advantages over the conventional one: (1) it can reflect directly the influences of dynamic properties (e.g., boundary conditions) of the structures on its sound power radiation; (2) the number of s-modes generated is generally less than that of a-modes since the former depends on the number of structural modes involved in the vibration while the latter depends on the number of segmented elemental radiators of the structure, and consequently, the demand for large data storage can be greatly alleviated, especially for large structures and/or higher frequency vibrations; (3) the set of s-modes possesses a better convergence than that of a-modes because the higher ordered s-modes can decay more rapidly than the same ordered a-modes. Two baffled, finite, models, i.e., a simple beam and a thin plate, are employed to investigate numerically the acoustic properties of s-modes, and then compared with those of a-modes. It has been shown that the two sets of radiation modes share a very similar frequency-dependent behavior in that the radiation efficiency falls off very rapidly with increasing mode order at low frequency range (typically with kl<1). Meanwhile, the number of s-modes required to describe the total sound power radiation is found to be the same as that of a-modes. Consequently, an appropriate truncation of a-modes can be achieved by using the number of vibrational modes involved. Nevertheless, the odd-ordered (even-ordered) s-modes are found only associated with the odd-numbered (even-ordered) structural modes. In case of only few

  20. Plant Surfaces: Structures and Functions for Biomimetic Innovations (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin


    An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology

  1. The Energy Dependence of Neutron Star Surface Modes and X-ray Burst Oscillations

    CERN Document Server

    Piro, A L; Piro, Anthony L.; Bildsten, Lars


    We calculate the photon energy dependence of the pulsed amplitude of neutron star (NS) surface modes. Simple approximations demonstrate that it depends most strongly on the bursting NS surface temperature. This result compares well with full integrations that include Doppler shifts from rotation and general relativistic corrections to photon propagation. We show that the energy dependence of type I X-ray burst oscillations agrees with that of a surface mode, lending further support to the hypothesis that they originate from surface waves. The energy dependence of the pulsed emission is rather insensitive to the NS inclination, mass and radius, or type of mode, thus hindering constraints on these parameters. We also show that, for this energy-amplitude relation, the majority of the signal (relative to the noise) comes in the 2-25 keV band, so that the current burst oscillation searches with the Rossi X-Ray Timing Explorer are close to optimal. The critical test of the mode hypothesis for X-ray burst oscillatio...

  2. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris


    We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields. T...

  3. Novel genetic algorithm search procedure for LEED surface structure determination. (United States)

    Viana, M L; dos Reis, D D; Soares, E A; Van Hove, M A; Moritz, W; de Carvalho, V E


    Low Energy Electron Diffraction (LEED) is one of the most powerful experimental techniques for surface structure analysis but until now only a trial-and-error approach has been successful. So far, fitting procedures developed to optimize structural and nonstructural parameters-by minimization of the R-factor-have had a fairly small convergence radius, suitable only for local optimization. However, the identification of the global minimum among the several local minima is essential for complex surface structures. Global optimization methods have been applied to LEED structure determination, but they still require starting from structures that are relatively close to the correct one, in order to find the final structure. For complex systems, the number of trial structures and the resulting computation time increase so rapidly that the task of finding the correct model becomes impractical using the present methodologies. In this work we propose a new search method, based on Genetic Algorithms, which is able to determine the correct structural model starting from completely random structures. This method-called here NGA-LEED for Novel Genetic Algorithm for LEED-utilizes bond lengths and symmetry criteria to select reasonable trial structures before performing LEED calculations. This allows a reduction of the parameter space and, consequently of the calculation time, by several orders of magnitude. A refinement of the parameters by least squares fit of simulated annealing is performed only at some intermediate stages and in the final step. The method was successfully tested for two systems, Ag(1 1 1)(4 × 4)-O and Au(1 1 0)-(1 × 2), both in theory versus theory and in theory versus experiment comparisons. Details of the implementation as well as the results for these two systems are presented.

  4. Oxygen partial pressure dependence of surface space charge formation in donor-doped SrTiO3 (United States)

    Andrä, Michael; Dvořák, Filip; Vorokhta, Mykhailo; Nemšák, Slavomír; Matolín, Vladimír; Schneider, Claus M.; Dittmann, Regina; Gunkel, Felix; Mueller, David N.; Waser, Rainer


    In this study, we investigated the electronic surface structure of donor-doped strontium titanate. Homoepitaxial 0.5 wt. % donor-doped SrTiO3 thin films were analyzed by in situ near ambient pressure X-ray photoelectron spectroscopy at a temperature of 770 K and oxygen pressures up to 5 mbar. Upon exposure to an oxygen atmosphere at elevated temperatures, we observed a rigid binding energy shift of up to 0.6 eV towards lower binding energies with respect to vacuum conditions for all SrTiO3 core level peaks and the valence band maximum with increasing oxygen pressure. The rigid shift is attributed to a relative shift of the Fermi energy towards the valence band concomitant with a negative charge accumulation at the surface, resulting in a compensating electron depletion layer in the near surface region. Charge trapping effects solely based on carbon contaminants are unlikely due to their irreversible desorption under the given experimental conditions. In addition, simple reoxygenation of oxygen vacancies can be ruled out as the high niobium dopant concentration dominates the electronic properties of the material. Instead, the negative surface charge may be provided by the formation of cation vacancies or the formation of charged oxygen adsorbates at the surface. Our results clearly indicate a pO2-dependent surface space charge formation in donor-doped SrTiO3 in oxidizing conditions.

  5. Potential-dependent water orientation on Pt(1 1 1) stepped surfaces from laser-pulsed experiments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Araez, Nuria [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Climent, Victor [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)], E-mail:; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)


    Coulostatic potential transients induced by nanosecond pulsed laser irradiation on Pt(1 1 1) stepped surfaces in perchloric acid solutions are analyzed here. The results provide unique information on the effect of the structure of the metal surface on the potential-dependent water reorientation at the electrified interphase. The most significant information is obtained from the sign and shape of the laser-induced transients. The existence of two potentials where the transient is zero can be related to the local properties of the surface, i.e. the existence of two local potentials of zero free charge, corresponding to the step and terrace sites. The dependency of these quantities with the step density is studied in detail. In addition, it is found that the presence of steps significantly slows down the coulostatic response at potentials in the double-layer region, which has been interpreted as a decrease in the velocity of water reorganization. The corresponding relaxation time is estimated and its dependency with the step density is also analyzed.

  6. Surface and Structure: Transcribing Intonation within and across Languages

    Directory of Open Access Journals (Sweden)

    Sónia Frota


    Full Text Available Intonation is the phonologically structured variation in phonetic features, primarily pitch, to express phrase-level meanings. As in other speech sound domains, analyzing intonation involves mapping continuously variable physical parameters to categories. The categories of intonation are organized in a set of relations and rule-governed distributions that define the intonation system of a language. From physical realizations, as shown by pitch tracks, surface or phonetic tonal patterns can be identified in terms of tonal targets. Whether surface patterns correspond or not to categories within a given intonation system requires looking at their distributions and contrastiveness. In this paper, I assume the view that a transcription is an analysis of the intonation system, which ultimately aims to identify the contrastive intonation categories of a given language and establish how they signal meaning. Under this view, it is crucial to discuss the ways surface pitch patterns and structural pitch patterns (or phonological categories are related. Given that intonational analysis is driven by system-internal considerations and that cues to a given category can vary across languages, it is also important to address the issue of how a language-specific transcription can be reconciled with the need and ability to do cross-language comparison of intonation. Bearing on these two issues, I discuss surface and structure in intonational analysis, drawing on mismatches between (dissimilarities in the phonetics and phonology of pitch contours, across languages and language varieties.

  7. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence. (United States)

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute


    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.

  8. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, V. E., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Ivanov, Yu. F., E-mail: [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mohovikov, A. A., E-mail: [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Baohai, Yu, E-mail:, E-mail:; Zhao, Yanhui, E-mail:, E-mail: [Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 (China)


    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.

  9. Surface Structure of Thin Films of Multifunctional Ionizable Copolymers (United States)

    Wickramasinghe, Anuradhi; Perahia, Dvora

    Phase segregation results in a rich variety of structures in co-polymers where interfacial forces often dominate the structure of thin films. Introduction of ionizable segments often drives the formation of compounded structures with multiple blocks residing at the interfaces. Here we probe thin films, 40-50nm, of an A-B-C-B-A co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions of 0, 26 and 52 mole %, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene) as the sulfonation level and temperature are varied using Neutron Reflectivity AFM, and surface tension measurements. As cast films form layers with both hydrophobic blocks dominating the solid and air interfaces and the ionizable block segregating to the center. Following annealing at 1700C, above Tg of styrene sulfonate, the films coarsen, with surface aggregation dominating the structure, though interfacial regions remain dominated by the hydrophobic segments. We show that in contrast to non-ionic co-polymers, formation of micelles dominated the structure of these ionic structured films. Supported in part by DOE Grant No. DE-SC007908.

  10. The Dependency Structure of Coordinate Phrases: A Corpus Approach (United States)

    Temperley, David


    Hudson (1990) proposes that each conjunct in a coordinate phrase forms dependency relations with heads or dependents outside the coordinate phrase (the "multi-head" view). This proposal is tested through corpus analysis of Wall Street Journal text. For right-branching constituents (such as direct-object NPs), a short-long preference for conjunct…

  11. Surface-plasmons lasing in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A. A. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Aleshkin, V. Ya. [Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Shur, M. S. [Department of Electrical, Electronics, and System Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)


    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  12. Enhancing the chroma of pigmented polymers using antireflective surface structures

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Christiansen, Alexander Bruun; Kristensen, Anders;


    In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air-polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically...... it is found that the color change is manifested as an increase in chroma, leading to a clearer color experience. The experimental implementation is done using random tapered surface structures replicated in polymer from silicon masters using hot embossing....

  13. Surface Monitoring of CFRP Structures for Adhesive Bonding (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.


    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  14. The dependence of the measured surface energy of graphene on nanosheet size (United States)

    Ferguson, Auren; Harvey, Andrew; Godwin, Ian J.; Bergin, Shane D.; Coleman, Jonathan N.


    The surface energy of graphene nanosheets is surprisingly poorly known, probably due to size effects and energetic heterogeneities. Here we use finite-dilution inverse gas chromatography to measure the surface energy of liquid-exfoliated, few-layer graphene nanosheets of different sizes as a function of probe coverage. In all cases, the surface energy falls with probe coverage from a defect-controlled, low-coverage value to a value that approaches the basal plane surface energy at high coverage. We find an intrinsic basal plane dispersive surface energy of 61 ± 4 mJ m-2, close to the value of 63 mJ m-2 found for graphite. By comparison with similar data measured on graphite and using simple models, we can use the length dependence of the low coverage surface energy to differentiate between the effects of edge and basal plane defects, finding these to contribute ˜130 and 180 mJ m-2 to the surface energy respectively. From this data, we estimate a basal plane defect content of ˜6 × 1014 defects m-2 for both graphite and graphene in reasonable agreement with Raman data. This work shows that, in terms of surface energetics, few-layer graphene nanosheets behave exactly like graphite with the only differences associated with platelet dimensions.

  15. Molecular weight dependence of surface flow near the bulk glass transition temperature (United States)

    Chai, Yu; Salez, Thomas; Benzaquen, Michael; Raphael, Elie; Forrest, James A.


    We present the study on molecular weight dependent sub-Tg surface dynamics of polymer thin films by using the Nano-step experiment [McGraw et al. Soft Matter 7, 7832 (2011)]. By varying the molecular weight, we are able to probe the surface dynamics of the free surface below Tg with the polymer size comparable to the surface depth. In particular, we define and use a correlation function to compare measured and calculated profiles to analyze the transition from the bulk flow to flow restricted to the surface region. Surprisingly, even for the polymers with Mw = 22,000 surface flow is still observed below the bulk Tg value. A numerical simulation of random walk is used to find the fraction of polymer of which all of the polymer segments are located in the free surface region. The simulation results indicate that there are still a significant fraction of polymer molecules where all segments are in the near free surface region. These molecules can undergo flow consistent with the experimental results.

  16. The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer (United States)


    bacteria such as Shewanella putrefaciens sp200, Geobacter metallireducens, and G. sulfurreducens [14 – 17]. In several of these bacteria, target- ing of c...Full Paper The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer Rachida A. Bouhenni,a, f Gary J. Vora,b...metal reducer Shewanella oneidensis MR-1 to generate electricity in microbial fuel cells (MFCs) depends on the activity of a predicted type IV prepilin

  17. Molecular Dynamics of Carbon Nanotubes Deposited on a Silicon Surface via Collision: Temperature Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Leton C.; Mian, Shabeer A.; Kim, Hyo Jeong; Saha, Joyanta K.; Matin, Mohammad A.; Jang, Joon Kyung [Pusan National University, Miryang (Korea, Republic of)


    We investigated how temperature influences the structural and energetic dynamics of carbon nanotubes (CNTs) undergoing a high-speed impact with a Si (110) surface. By performing molecular dynamics simulations in the temperature range of 100 - 300 K, we found that a low temperature CNT ends up with a higher vibrational energy after collision than a high temperature CNT. The vibrational temperature of CNT increases by increasing the surface temperature. Overall, the structural and energy relaxation of low temperature CNTs are faster than those of high temperature CNTs.

  18. Effect of temperature-dependent surface heat transfer coefficient on the maximum surface stress in ceramics during quenching (United States)

    Shao, Y. F.; Song, F.; Jiang, C. P.; Xu, X. H.; Wei, J. C.; Zhou, Z. L.


    We study the difference in the maximum stress on a cylinder surface σmax using the measured surface heat transfer coefficient hm instead of its average value ha during quenching. In the quenching temperatures of 200, 300, 400, 500, 600 and 800°C, the maximum surface stress σmmax calculated by hm is always smaller than σamax calculated by ha, except in the case of 800°C; while the time to reach σmax calculated by hm (fmmax) is always earlier than that by ha (famax). It is inconsistent with the traditional view that σmax increases with increasing Biot number and the time to reach σmax decreases with increasing Biot number. Other temperature-dependent properties also have a small effect on the trend of their mutual ratios with quenching temperatures. Such a difference between the two maximum surface stresses is caused by the dramatic variation of hm with temperature, which needs to be considered in engineering analysis.

  19. Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy (United States)

    Wang, De-Lai; Cui, Ming-Qi; Yang, Dong-Liang; Dong, Jun-Cai; Xu, Wei


    In this work, the magnetocrystalline anisotropy energy (MAE) on the surface of Fe33Co67 alloy film is extracted from x-ray magnetic linear dichroism (XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin-orbit interaction anisotropies. Project supported by the National Natural Science Foundation of China (Grant Nos. 11075176 and 11375131).

  20. Fitting C² continuous parametric surfaces to frontiers delimiting physiologic structures. (United States)

    Bayer, Jason D; Epstein, Matthew; Beaumont, Jacques


    We present a technique to fit C(2) continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C(2) continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C(2) continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C(2) continuous.

  1. Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Qu, S.L. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Morgan, T.W. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, 5612AJ Eindhoven (Netherlands); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon-CS90 046, 13067 St Paul Lez Durance Cedex (France)


    The orientation dependence of blister formation induced by D plasma exposure at low temperature (about 523 K) on rolled tungsten and chemical vapor deposition (CVD) W samples was studied by scanning electron microscopy and electron backscatter diffraction. Severe blistering was observed on grains with surface normal directions close to [111], while the [001] surfaces are the most resistant to blister formation. Cavities induced by D{sub 2} gas were observed beneath [111], [110] and [001] surfaces, independently on whether blisters were observed on the surface or not. The [111] surface is more prone to blister formation, because it is easily plastically deformed by the D{sub 2} gas pressure. Some blister edges and steps were perpendicular to [110] directions, which may be induced by the slipping of dislocations on {110} planes. The blister morphology induced by D plasma can be well explained by the blister model based on plastic deformation mechanism. - Highlights: • The blistering behavior was severe on the [111] surface, while the [001] surfaces are the most resistant to blister formation. The CVD samples with [001] texture showed good resistance to blister formation, so it is suggested that it may be effective to alleviate blisters by texturing of W. • The blister formation model based on the plastic deformation of W can well explain the heterogeneity of blister formation and the different shapes of blisters on surfaces with different normal directions. The [111] surface is more prone to blister formation, because the surface layer is easily deformed by the D{sub 2} gas pressure beneath the surface. The blister edges and steps were speculated to be induced by the slipping of dislocations.

  2. Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Fantong Meng; Jie Hu; Weina Han; Penjun Liu; Qingsong Wang


    An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of nickel is revealed by changing the scanning speed and the laser fluence.The experimental results show the proportion of HSFL area in the overall LIPSS (i.e.,K) presents a quasi-parabola function trend with the polarization orientation under a femtosecond (fs) laser single-pulse train.Moreover,an obvious fluctuation dependence of K on the pulse delay is observed under a fs laser dual-pulse train.The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train.

  3. Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys

    CERN Document Server

    Dianat, Arezoo; Ciacchi, Lucio Colombi; Pompe, Wolfgang; Cuniberti, Gianaurelio; Bobeth, Manfred; 10.1021/jp905689t


    The dissociative adsorption of methane on variously oxidized Pd, Pt and Pd-Pt surfaces is investigated using density-functional theory, as a step towards understanding the combustion of methane on these materials. For Pd-Pt alloys, models of surface oxide structures are built on the basis of known oxides on Pd and Pt. The methane adsorption energy presents large variations depending on the oxide structure and composition. Adsorption is endothermic on the bare Pd(111) metal surface as well as on stable thin layer oxide structures such as the ($\\sqrt{5}\\times\\sqrt{5}$) surface oxide on Pd(100) and the PtO$_2$-like oxide on Pt(111). Instead, large adsorption energies are obtained for the (100) surface of bulk PdO, for metastable mixed Pd$_{1-x}$Pt$_x$O$_{4/3}$ oxide layers on Pt(100), and for Pd-Pt(111) surfaces covered with one oxygen monolayer. In the latter case, we find a net thermodynamic preference for a direct conversion of methane to methanol, which remains adsorbed on the oxidized metal substrates via w...

  4. Functional annotation by identification of local surface similarities: a novel tool for structural genomics

    Directory of Open Access Journals (Sweden)

    Zanzoni Andreas


    Full Text Available Abstract Background Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases. Results We describe a method for the function-related annotation of protein structures by means of the detection of local structural similarity with a library of annotated functional sites. An automatic procedure was used to annotate the function of local surface regions. Next, we employed a sequence-independent algorithm to compare exhaustively these functional patches with a larger collection of protein surface cavities. After tuning and validating the algorithm on a dataset of well annotated structures, we applied it to a list of protein structures that are classified as being of unknown function in the Protein Data Bank. By this strategy, we were able to provide functional clues to proteins that do not show any significant sequence or global structural similarity with proteins in the current databases. Conclusion This method is able to spot structural similarities associated to function-related similarities, independently on sequence or fold resemblance, therefore is a valuable tool for the functional analysis of uncharacterized proteins. Results are available at

  5. Turbulent structures dependent on tidal currents in the bottom boundary layer of the Venice Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Cavazzoni, S.; Crosera, F.

    The time series of horizontal and vertical turbulent velocity fluctuations u', w' have been recorded by means of an electromagnetic currentmeter in proximity of the bottom of a channel feeding the Venetian Lagoon. Simultaneous surface gradients have been recorded at two tide gauge stations, one upstream and the other downstream of the chosen test site. The time series of u', w' and u'w' values have been analysed using standard digital methods and, for each record, spectra, cross-spectra, co-spectra, quadrature spectra, phase and coherence of u' and w' have been computed. This analysis allows us to determine temporal and spatial dimensions of turbulent structures that give the greatest contribution to Reynolds stress (- rhoanti u'anti w', where rho is the water density). These structures that seem to be dependent on longitudinal surface gradients are primarily responsible for vertical momentum transport and, consequently, for the lift-up and transport of sediments. Statistic distributions of u', w' and u'w' values indicate that the greatest turbulent structures are those with u'w'<0 and with u'<0 predominating.

  6. Polymerization or Cyclic Dimerization: Solvent Dependent Homo-Coupling of Terminal Alkynes at HOPG Surface (United States)

    Zhang, Xuemei; Liao, Lingyan; Wang, Shuai; Hu, Fangyun; Wang, Chen; Zeng, Qingdao


    Surface reactivity has become one of the most important issues in surface chemistry over the past few years. In this work, we, for the first time, have investigated the homo-coupling of a special terminal alkyne derivative on the highly oriented pyrolitic graphite (HOPG) surface. Using scanning tunneling microscopy (STM) technique, we have found that such coupling reaction seriously depends on the supramolecular assembly of the monomer on the studied substrate, whereas the latter appears an obvious solvent effect. As a result, the reaction in our system undergoes polymerization and cyclic dimerization process in 1-phenyloctane and 1,2,4-trichlorobenzene, respectively. That is to say, the solvent effect can be extended from the two-dimensional (2D) supramolecular self-assembly to surface chemical reactions, and the selective homo-coupling has been successfully achieved at the solid/liquid interface.

  7. Time and Temperature Dependent Surface Stiffness of Poly(alpha-methylstyrene)(PAMS) through Particle Embedment (United States)

    Karim, Taskin; McKenna, Gregory


    In the present work, we have used the particle embedment technique with sub-micron particles to study the time dependence surface modulus of poly(alpha-methylstyrene)(PAMS) at different temperature ranging from room temperature to 1.1Tg of PAMS. The surface was found softer at room temperature and at 1.02Tg compared to the bulk film while at 1.1Tg the surface was found stiffer compared to the macroscopic modulus measured for the same PAMS. The embedment of the particle is determined from atomic force microscope measurements and the modulus was determined using the elastic analysis of Johnson, Kendall and Roberts (JKR) with surface energy estimates of the work of adhesion as the driving force for embedment. REFERENCES 1. K. L. Johnson, K. Kendall and A. D. Roberts, P. Royal Society of Lonodon A, 324, 301-313 (1971). 2. J. H. Teichroeb and J. A. Forrest, Physical Review Letter, 91, 016104 (2003).

  8. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments (United States)

    Sibener, S. J.; Lee, Y. T.


    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  9. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn


    Full Text Available We investigated the relative roles of volume and surface nucleation in the freezing of water droplets. Nucleation experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled liquid water aerosols with radii between about 1 and 3 μ m. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rate between 234.8 and 236.2 K are derived with help of a microphysical model from aerosol compositions and size distributions based on infrared extinction measurements in the aerosol flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process and has implications for the parameterization of homogeneous ice nucleation in numerical models.

  10. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions (United States)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze


    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  11. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Brookhaven National Laboratory, Upton, New York (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)


    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.

  12. Effect of surface attractive strength on structural transitions of a confined HP lattice protein

    Energy Technology Data Exchange (ETDEWEB)

    Pattanasiri, Busara [University of Georgia, Athens, GA; Li, Ying Wai [ORNL; Wuest, Thomas [ETH Zurich, Switzerland; Landau, David P [University of Georgia, Athens, GA


    We investigate the influence of surface attractive strength on structural transitions of a hydrophobic-polar (HP) lattice protein confined in a slit formed by two parallel, attractive walls. We apply Wang-Landau sampling together with efficient Monte Carlo updates to estimate the density of states of the system. The conformational transitions, namely, the debridging process and hydrophobic core formation, can be identified by analyzing the specific heat together with several structural observables, such as the numbers of surface contacts, the number of hydrophobic pairs, and radii of gyration in different directions. As temperature decreases, we find that the occurrence of the debridging process is conditional depending on the surface attractive strength. This, in turn, affects the nature of the hydrophobic core formation that takes place at a lower temperature. We illustrate these observations with the aid of a HP protein chain with 48 monomers.

  13. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. (United States)

    Willis, Lisa M; Whitfield, Chris


    Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.

  14. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny


    this method, known as magnetotellurics, to oceanic regions is challenging since only vector instruments placed at the sea bottom can provide such data. Here, we discuss a concept of marine induction surveying which is based on sea-surface scalar magnetic field measurements from a modern position...... to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  15. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre


    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  16. Wireless structural sensor made with frequency selective surface antenna (United States)

    Jang, Sang-Dong; Kim, Jaehwan


    Nondestructive Structural health monitoring (SHM) system using wireless sensor network is the one of important issue for aerospace and civil engineering. Chipless passive wireless sensor system is one of novel methods for SHM which uses the electromagnetic wave characteristic change by geometrical change of electromagnetic resonators or impedance change of functional material sensing part without RFID chip. In this paper, the chipless passive wireless SHM sensor using frequency selective surface (FSS) is investigated. Electromagnetic characteristic change of FSS by mechanical strain or structural damage is investigated by simulation and experiment.

  17. Structural phases of adsorption for flexible polymers on nanocylinder surfaces. (United States)

    Gross, Jonathan; Vogel, Thomas; Bachmann, Michael


    By means of generalized-ensemble Monte Carlo simulations, we investigate the thermodynamic behavior of a flexible, elastic polymer model in the presence of an attractive nanocylinder. We systematically identify the structural phases that are formed by competing monomer-monomer and monomer-substrate interactions. The influence of the relative surface attraction strength on the structural phases in the hyperphase diagram, parameterized by cylinder radius and temperature, is discussed as well. In the limiting case of the infinitely large cylinder radius, our results coincide with previous outcomes of studies of polymer adsorption on planar substrates.

  18. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi


    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  19. Laser-induced periodic surface structuring of biopolymers (United States)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta


    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  20. Atomic and electronic structure of surfaces theoretical foundations

    CERN Document Server

    Lannoo, Michel


    Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

  1. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi


    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  2. Towards Friction Control using laser-induced periodic Surface Structures


    Eichstädt, J.; Römer, G.R.B.E.; Huis in 't Veld, A.J.


    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two D2-Experiments. For the transfer of results from static experiments to areas of LIPSS we propose the discrete accumulation of fluences. Areas covered by homogeneously distributed LIPSS were machined...

  3. Antireflective surface structures on infrared optics (Conference Presentation) (United States)

    Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Bayya, Shyam; Villalobos, Guillermo; Aggarwal, Ishwar D.; Sanghera, Jas S.


    Infrared-transmitting optics used in imaging systems have high refractive indices (n=1.4 to n > 3) that require antireflective (AR) coatings. These coatings have limitations in that they can delaminate in operational environments, which is a problem particularly for broadband coatings that consist of multiple layers of dissimilar materials. In addition, residual reflections within an imaging system can cause ghost reflections, degrading performance. Recently, new methods have been developed for fabrication of anti-reflective surface structures (ARSS) on optics that significantly reduce reflection losses at the surface. The ARSS approach provides a more robust solution by using surface structures built directly into the actual surface of the optics, without the need for a coating with extraneous materials. We present recent results that demonstrate superior ARSS performance on a variety of optics for use in the infrared spectral region. These materials have been successfully patterned with ARSS using reactive ion etching (RIE) or using photolithography and etching. We report on reflection losses as low as 0.02% for fused silica at 1.06 microns, and have also demonstrated low reflection losses for ARSS on germanium, spinel ceramic, and sapphire, all of which are important for mid- to long-wave infrared imaging applications.

  4. Intelligent sampling for the measurement of structured surfaces (United States)

    Wang, J.; Jiang, X.; Blunt, L. A.; Leach, R. K.; Scott, P. J.


    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed.

  5. Mapping cardiac surface mechanics with structured light imaging. (United States)

    Laughner, Jacob I; Zhang, Song; Li, Hao; Shao, Connie C; Efimov, Igor R


    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.

  6. Coherence in ultrafast laser-induced periodic surface structures (United States)

    Zhang, Hao; Colombier, Jean-Philippe; Li, Chen; Faure, Nicolas; Cheng, Guanghua; Stoian, Razvan


    Ultrafast laser irradiation can trigger anisotropically structured nanoscaled gratinglike arrangements of matter, the laser-induced periodic surface structures (LIPSSs). We demonstrate here that the formation of LIPSS is intrinsically related to the coherence of the laser field. Employing several test materials that allow large optical excursions, we observe the effect of randomizing spatial phase in generating finite domains of ripples. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface and show that modulated pattern, i.e., a spatially ordered electromagnetic solution, results from the coherent superposition of waves. By separating the field scattered from a surface rough topography from the total field, the inhomogeneous energy absorption problem is reduced to a simple interference equation. We further distinguish the contribution of the scattered near field and scattered far field on various types of inhomogeneous energy absorption features. It is found that the inhomogeneous energy absorption which could trigger the low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) of periodicity Λ >λ /Re(n ˜) are due to coherent superposition between the scattered far field (propagation) and the refracted field, while HSFLs of Λ λ ) related to a feedback-driven topography evolution. Those results strongly suggest the electromagnetic interpretation of LIPSSs in interplay with an evolving surface topography.

  7. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.


    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  8. Dependence of optical structure of coke from black coal on petrologic peculiarities of the coal

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, A.E.; Stankevich, A.S.; Podchishchaeva, N.I.; Shkoller, M.B.


    Analyzes factors that influence optical structure of coke from Kuzbass black coal. An optical microscope (magnification 800-2,000 times) was used. On the basis of investigations 8 types of optical structures in coke were determined: an isotropic structure, fine grain structure, medium grain structure, large grain structure, fibre-like structure, inertinite structure and a relict structure. The following criteria for determining optical structures are used: optical character of coke matter, grain size, grain geometry, microlites and primary structure. Using regression analysis, dependence of the optical structures on the following indices were derived: vitrinite reflectivity, vitrinite content and reduction degree. 12 refs.

  9. Surface Energy in Nanocrystalline Carbon Thin Films: Effect of Size Dependence and Atmospheric Exposure. (United States)

    Kumar, Manish; Javid, Amjed; Han, Jeon Geon


    Surface energy (SE) is the most sensitive and fundamental parameter for governing the interfacial interactions in nanoscale carbon materials. However, on account of the complexities involved of hybridization states and surface bonds, achieved SE values are often less in comparison with their theoretical counterparts and strongly influenced by stability aspects. Here, an advanced facing-target pulsed dc unbalanced magnetron-sputtering process is presented for the synthesis of undoped and H/N-doped nanocrystalline carbon thin films. The time-dependent surface properties of the undoped and H/N-doped nanocrystalline carbon thin films are systematically studied. The advanced plasma process induced the dominant deposition of high-energy neutral carbon species, consequently controlling the intercolumnar spacing of nanodomain morphology and surface anisotropy of electron density. As a result, significantly higher SE values (maximum = 79.24 mJ/m(2)) are achieved, with a possible window of 79.24-66.5 mJ/m(2) by controlling the experimental conditions. The intrinsic (size effects and functionality) and extrinsic factors (atmospheric exposure) are resolved and explained on the basis of size-dependent cohesive energy model and long-range van der Waals interactions between hydrocarbon molecules and the carbon surface. The findings anticipate the enhanced functionality of nanocrystalline carbon thin films in terms of selectivity, sensitivity, and stability.

  10. Spot--like Structures of Neutron Star Surface Magnetic Fields

    CERN Document Server

    Geppert, U; Gil, J


    There is growing evidence, based on both X-ray and radio observations of isolated neutron stars, that besides the large--scale (dipolar) magnetic field, which determines the pulsar spin--down behaviour, small--scale poloidal field components are present, which have surface strengths one to two orders of magnitude larger than the dipolar component. We argue in this paper that the Hall--effect can be an efficient process in producing such small--scale field structures just above the neutron star surface. It is shown that due to a Hall--drift induced instability, poloidal magnetic field structures can be generated from strong subsurface toroidal fields, which are the result of either a dynamo or a thermoelectric instability acting at early times of a neutron star's life. The geometrical structure of these small--scale surface anomalies of the magnetic field resembles that of some types of ``star--spots''. The magnetic field strength and the length--scales are comparable with values that can be derived from vario...

  11. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)


    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  12. Prediction of Fermi-Surface Pressure Dependence in Rb and Cs

    DEFF Research Database (Denmark)

    Jan, J. P.; MacDonald, A. H.; Skriver, Hans Lomholt


    The linear muffin-tin orbitals method of band-structure calculation, combined with a Gaussian integration technique using special directions in the Brillouin zone, has been used to calculate Fermi radii and extremal cross-sectional areas of the Fermi surface in rubidium and cesium. Band shifts were...

  13. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients. (United States)

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua


    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  14. Structures and surface tensions of fluids near solid surfaces: an integral equation theory study. (United States)

    Xu, Mengjin; Zhang, Chen; Du, Zhongjie; Mi, Jianguo


    In this work, integral equation theory is extended to describe the structures and surface tensions of confined fluids. To improve the accuracy of the equation, a bridge function based on the fundamental measure theory is introduced. The density profiles of the confined Lennard-Jones fluids and water are calculated, which are in good agreement with simulation data. On the basis of these density profiles, the grand potentials are then calculated using the density functional approach, and the corresponding surface tensions are predicted, which reproduce the simulation data well. In particular, the contact angles of water in contact with both hydrophilic and hydrophobic walls are evaluated.

  15. TEM investigation of laser-induced periodic surface structures on polymer surfaces (United States)

    Prendergast, Úna; Kudzma, Sylwester; Sherlock, Richard; O'Connell, Claire; Glynn, Thomas


    Laser Induced Periodic Surface Structures (LIPSS) may have numerous applications, ranging from biomaterial applications to LCDs, microelectronic fabrication and photonics. However, in order to control the development of these structures for their particular application, it is necessary to understand how they are generated. We report our work on investigating the melting that occurs during LIPSS formation. LIPSS were generated on three polymer surfaces - polyethylene terephthalate (PET), amorphous polycarbonate (APC) and oriented crystalline polycarbonate (OPC) - which were irradiated with a polarized ArF excimer laser (193 nm) beam with fluences between 3 and 5 mJ/cm2. The structures were imaged using a Transmission Electron Microscope (TEM), which facilitated investigation of changes in the polymer structures and consequently the depth of the melt zone that accompanies LIPSS generation. We also present theoretical calculations of the temperature-depth profile due to the interaction of the low fluence 193 nm laser beam with the polymer surfaces and compare these calculations with our experimental results.

  16. On the value of frequency-dependent traveltime tomography for surface-seismic data (United States)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart


    Frequency-dependent traveltime tomography does not rely on the high-frequency assumption made in classical (asymptotic ray-theory based) tomography. By incorporating the influence of velocity structures in a nearby region (called the first Fresnel volume) around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, improved imaging of the subsurface is expected. Improvements in seismic imaging include the recovery of additional information on the subsurface model, enhanced (model) resolution and better detection and delineation of low velocity zones. It has been argued that finite-frequency effects on traveltimes may be more pronounced in near-surface imaging considering the typical seismic wavelengths and dimensions of heterogeneities compared to global-scale traveltime tomography. To account for the finite frequency characteristics of seismic data, a so-called fat-ray tomography algorithm was developed. The algorithm forms the sum of source and receiver (adjoint) traveltime fields, calculated by finite-difference modeling of the eikonal equation, to determine the necessary Fresnel volumes and sensitivity kernels for the tomographic inversion. Using different scale surface-seismic synthetic data examples, the imaging capabilities of the fat-ray tomography algorithm were investigated and compared to the results of classical ray tomography. The velocity fields used to generate the synthetic data were chosen to emulate two real field data sets, to which the fat-ray tomography was also applied. The first real data example is a large-scale data set (profile length > 10 km) acquired for hydrocarbon search; the second data set was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length < 1 km). Resolution of the tomograms was assessed on the basis of checkerboard tests and a column sum of the sensitivity matrix. For the synthetic data examples as well as for the

  17. Size-dependent reactivity of self-organized nanostructured O/Cu(110) surfaces towards H2S (United States)

    Poulain, Clément; Budinská, Zuzana; Wiame, Frédéric; Maurice, Vincent; Marcus, Philippe


    Scanning tunneling microscopy was used to study the reactivity of self-organized nanostructured O/Cu(110) surfaces towards H2S. We took advantage of the fast and easy nanostructuring process of the O/Cu(110) system to study in detail the reaction mechanisms on three structures having different width of CuO stripes. Detachment of Cu-O chains from CuO stripes occurred in all cases but the formation of S-c(2 ×2) islands was observed only on wider (>10 nm) CuO stripes. At low exposure, structures were observed at the CuO stripe edge. Linear structures, aligned along the [ 1 1 bar 0 ] direction and showing 2 × periodicity, were also observed on copper stripes. The competition between detachment and c(2 × 2) island growth mechanism depends on the H2S adsorption rate. At higher pressure, it is shown that the sulfidation only proceeds by sulfur islands growth in wider CuO stripes. These results show that self-organized nanostructures on metal surfaces are powerful tools to study reactions at the nanometer scale and the relationship between local structure and reactivity.

  18. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris


    We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields....... Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies...... between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations...

  19. Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage

    Institute of Scientific and Technical Information of China (English)

    Qin Zhi-Hui; Shi Dong-Xia; Gao Hong-Jun


    Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ge islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the vacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.

  20. On the dynamics of the age structure, dependency, and consumption (United States)

    Hock, Heinrich


    We examine the effects of population aging due to declining fertility and rising elderly life expectancy on consumption possibilities in the presence of intergenerational transfers. Our analysis is based on a highly tractable continuous-time overlapping generations model in which the population is divided into three groups (youth dependents, workers, and elderly dependents) and lifecourse transitions take place in a probabilistic fashion. We show that the consumption-maximizing response to greater longevity in highly developed countries is an increase in fertility. However, with larger transfer payments, the actual fertility response will likely be the opposite, leading to further population aging. PMID:24353374

  1. Concentration dependent structural parameters of liquid Al-Fe alloys (United States)

    Lalnuntluanga, C.; Mishra, Raj Kumar


    Square well potential is perturbed over Lebowtiz solution of hard sphere mixtures to determine direct correlation function,C(0) ij(r) in repulsive and attractive regions under Mean Spherical Model Approximation [1]. Obtained direct correlation functions were employed to derive partial structure factors and then total structure factor, S(k) in liquid Al-Fe alloy at different atomic percent of Al. Fourier transform of partial and total structure factors gives partial and total radial distribution functions, g(r) from which partial and total coordination numbers and the partial nearest-neighbor distances were computed.

  2. Surface and Internal Structure of Pristine Presolar Silicon Carbide (United States)

    Stroud, Rhonda, M.; Bernatowicz, Thomas J.


    Silicon carbide is the most well-studied type of presolar grain. Isotope measurements of thousands [1,2] and structural data from over 500 individual grains have been reported [3]. The isotope data indicate that approximately 98% originated in asymptotic giant branch stars and 2% in supernovae. Although tens of different polytypes of SiC are known to form synthetically, only two polytypes have been reported for presolar grains. Daulton et al. [3] found that for SiC grains isolated from Murchison by acid treatments, 79.4% are 3C cubic beta-SiC, 2.7% are 2H hexagonal alpha-SiC, 17.1% are intergrowths of and , and 0.9% are heavily disordered. They report that the occurrence of only the and polytypes is consistent with the observed range of condensation temperatures of circumstellar dust for carbon stars. Further constraint on the formation and subsequent alteration of the grains can be obtained from studies of the surfaces and interior structure of grains in pristine form, i.e., prepared without acid treatments [4,5]. The acid treatments remove surface coatings, produce etch pits around defect sites and could remove some subgrains. Surface oxides have been predicted by theoretical modeling as a survival mechanism for SiC grains exposed to the hot oxidizing solar nebula [6]. Scanning electron microscopy studies of pristine SiC shows some evidence for the existence of oxide and organic coatings [4]. We report herein on transmission electron microscopy studies of the surface and internal structure of two pristine SiC grains, including definitive evidence of an oxide rim on one grain, and the presence of internal TiC and AlN grains.

  3. Size dependence of thermoelectric power of Au, Pd, Pt nanoclusters deposited onto HOPG surface


    Borisyuk, P. V.; V. I. Troyan; Lebedinskii, Yu Yu; Vasilyev, O S


    The paper presents the study of tunnel current-voltage characteristics of Au, Pd and Pt nanoclusters deposited onto the highly oriented pyrolytic graphite (HOPG) surface by pulsed laser deposition. The analysis of tunnel current-voltage characteristics obtained by scanning tunneling spectroscopy (STS) allowed to recover the thermoelectric power value of nanoclusters. It was found that the value of thermoelectric power of pulsed laser deposited nanoclusters depends on nanocluster material and ...

  4. Structure of Ge(100) surfaces for high-efficiency photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.M.; McMahon, W.E. [National Renewable Energy Lab., Golden, CO (United States)


    While much is known about the Ge(100) surface in a UHV/MBE environment, little has been published about this surface in an MOCVD environment. The main objective of this study is to determine the structure of the surface of Ge substrates in the typical MOCVD reactor immediately prior to and following the heteronucleation of GaAs and other lattice-matched III-V alloys, and to determine the conditions necessary for the growth of device-quality epilayers. In this paper the authors present the first STM images of the MOCVD-prepared Ge surfaces. Although many of the observed features are very similar to UHV- or MBE-prepared surfaces, there are distinct and important differences. For example, while the As-terminated surfaces for MBE-Ge and MOCVD-Ge are virtually identical, the AsH{sub 3}-treated surfaces in an MOCVD reactor are quite different. The terrace reconstruction is rotated by {pi}/2, and significant step bunching or faceting is also observed. Time-dependent RD kinetic studies also reveal, for the first time, several interesting features: the transition rate from an As-terminated (1 x 2) terrace reconstruction to a stable AsH{sub 3}-annealed surface is a function of the substrate temperature, substrate miscut from (100) and AsH{sub 3} partial pressure, and, for typical prenucleation conditions, is relatively slow. These results explain many of the empirically derived nucleation conditions that have been devised by numerous groups.

  5. Continuous compliance compensation of position-dependent flexible structures

    NARCIS (Netherlands)

    Kontaras, Nikolaos; Heertjes, Marcel; Zwart, Hans


    The implementation of lightweight high-performance motion systems in lithography and other applications imposes lower requirements on actuators, amplifiers, and cooling. However, the decreased stiffness of lightweight designs increases the effect of structural flexibilities especially when the point

  6. Polymer-Dependent Layer Structures in Montmorillonite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Justyna Strankowska


    Full Text Available We have studied structural differences among tetrahedral and octahedral sodium Montmorillonite layer arrangements in naturally occurring and synthetic montmorillonite clay minerals, as well as their poly(ethylene oxide and poly(ε-coprolatone polymer nanocomposites.

  7. Paraboloid Structured Silicon Surface for Enhanced Light Absorption: Experimental and Simulative Investigations. (United States)

    Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun


    In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/D ratio of 3.75. The simulation results showed that the reflectance value for the h/D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.

  8. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films. (United States)

    Rouha, Michael; Cummings, Peter T


    A fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that within this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. This work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.

  9. Scanning probe microscopy investigation of self-organized perylenetetracarboxdiimide nanostructures at surfaces: structural and electronic properties. (United States)

    Palermo, Vincenzo; Liscio, Andrea; Gentilini, Desirée; Nolde, Fabian; Müllen, Klaus; Samorì, Paolo


    A scanning probe microscopy investigation of the self-organization and local electronic properties of spin-coated ultrathin films of N-alkyl substituted perylenetetracarboxdiimide (PDI) is described. By carefully balancing the interplay between molecule-molecule and molecule-substrate interactions, PDI is able to form highly ordered supramolecular architectures on flat surfaces from solution. On an electrically insulating yet highly polar surface (mica) PDI forms strongly anisotropic architectures with needlelike structures with lengths of up to a few micrometers. On a conductive yet apolar surface (highly oriented pyrolytic graphite), the competition between the strong molecule-substrate interactions and the intermolecular forces leads to the generation of more disordered structures. The local electronic properties of these architectures are studied by Kelvin probe force microscopy by estimating their surface potential (SP). Quantitative measurements of the SP are obtained by analyzing the experimentally estimated SP data with a computational model, which discriminates between the intrinsic SP and the effect of long-range tip-surface interactions. The SP of PDI aggregates depends on the structural order at the supramolecular level. Narrow needles of constant width reveal identical SPs independent of length. Wider needles with a polydisperse width distribution exhibit a greater SP.

  10. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard


    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  11. Enveloping Spectral Surfaces: Covariate Dependent Spectral Analysis of Categorical Time Series. (United States)

    Krafty, Robert T; Xiong, Shuangyan; Stoffer, David S; Buysse, Daniel J; Hall, Martica


    Motivated by problems in Sleep Medicine and Circadian Biology, we present a method for the analysis of cross-sectional categorical time series collected from multiple subjects where the effect of static continuous-valued covariates is of interest. Toward this goal, we extend the spectral envelope methodology for the frequency domain analysis of a single categorical process to cross-sectional categorical processes that are possibly covariate dependent. The analysis introduces an enveloping spectral surface for describing the association between the frequency domain properties of qualitative time series and covariates. The resulting surface offers an intuitively interpretable measure of association between covariates and a qualitative time series by finding the maximum possible conditional power at a given frequency from scalings of the qualitative time series conditional on the covariates. The optimal scalings that maximize the power provide scientific insight by identifying the aspects of the qualitative series which have the most pronounced periodic features at a given frequency conditional on the value of the covariates. To facilitate the assessment of the dependence of the enveloping spectral surface on the covariates, we include a theory for analyzing the partial derivatives of the surface. Our approach is entirely nonparametric, and we present estimation and asymptotics in the setting of local polynomial smoothing.

  12. Surface chemistry dependent "switch" regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. (United States)

    Das, Manasmita; Singh, Raman Preet; Datir, Satyajit R; Jain, Sanyog


    The present study explores the possibility of exploiting surface functionality as one of the key regulators for modulating the intracellular trafficking and therapeutic performance of drug loaded carbon nanotubes (CNTs). In line with that approach, a series of biofunctionalized multiwalled carbon nanotubes (f-CNTs 1-6) decorated with various functional molecules including antifouling polymer (PEG), tumor recognition modules (folic acid/hyaluronic acid/estradiol), and fluorophores (rhodamine B isothiocyanate/Alexa Fluor) were synthesized. By loading different anticancer agents (methotrexate (MTX), doxorubicin (DOX), and paclitaxel (PTX)) onto each functionalized CNT preparation, we tried to elucidate how the surface functional molecules associated with each f-CNT influence their therapeutic potential. We observed that antiproliferative or apoptotic activity of drug-loaded CNTs critically depends on their mechanistic pathway of cellular internalization and intracellular trafficking, which in turn had an intimate rapport with their surface chemistry. To our knowledge, for the first time, we have embarked on the possibility of using a surface chemistry dependent "switch" to remote-control the second and third order targeting of chemotherapeutic agents supramolecularly complexed/adsorbed on CNTs, which in turn is expected to benefit the development of futuristic nanobots for cancer theranostics.

  13. Structure of a bacterial cell surface decaheme electron conduit. (United States)

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J


    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  14. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.


    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  15. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian


    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  16. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure. (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela


    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  17. Polymer masks for structured surface and plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène, E-mail: [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Sinturel, Christophe [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Tillocher, Thomas; Lefaucheux, Philippe; Dussart, Rémi [Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France)


    Graphical abstract: - Highlights: • Sub-micrometric silicon structures were prepared by cryogenic plasma etching. • Polymer templates based on phase-separated films of PS/PLA were used. • Silica structured masks were prepared by filling the polymer templates. • Etching of underlying silicon through silica templates gave original structures. - Abstract: Silica and silicon structures have been prepared at the sub-micrometer length-scale, using laterally phase-separated thin films of poly(styrene) (PS) and poly(lactic acid) (PLA) homopolymer blends. The selective removal of one polymer and the filling of the released space by silica precursor solution led, after calcination, to silica structures on silicon such as arrays of bowl-shape features or pillars, layers with through or non-through cylindrical holes, which has not been observed for some of them. The control of the morphology of the initial polymer film was a key point to achieve such type of structures. Particularly relevant was the use of solvent vapor annealing (vs thermal annealing) of the initial spin-coated films that favored and stabilized laterally phase-separated morphologies. Characteristic dimension of the domains were shown to be coupled with the thickness of the film, thinner films giving smaller domain sizes. Despite a relatively high incompatibility of the two polymers, a macro-phase separation was prevented in all the studied conditions. Sub-micrometric domains were formed, and for the thinner films, nanometric domains as small as 74 nm in size can be obtained. The silica structures formed by the infiltration of the polymer templates were used as hard masks for the cryogenic etching of underlying silicon. New structured surfaces, arrays of silicon pillars which can be plain or hollow at the upper part or arrays of cylindrical holes were formed. A selectivity as high as 21 was obtained using this type of mask for 1.5 μm deep holes having a typical diameter of 200 nm.

  18. Molecular and structural advances in tissue factor-dependent coagulation. (United States)

    Kirchhofer, D; Banner, D W


    The tissue factor:factor VIIa (TF-F.VIIa) complex is considered the physiological initiator of blood coagulation. Besides its role in normal hemostasis, this enzyme complex has been found to play an important role in various thrombotic disorders and thus has become an attractive target for the development of new anticoagulants. Recently, significant progress has been made in regard to structural and molecular aspects of TF-VIIa-initiated coagulation. A rather complete picture on how tissue factor binds to factor VIIa has emerged and is discussed in detail in this review. Also, the combined data of the TF-F.VIIa crystal structure, of naturally occurring F.VII variants, and of mutagenesis studies provide a framework to discuss molecular aspects of the tissue factor-mediated enhancement of F.VIIa catalytic efficiency and the recognition of macromolecular substrates. F.VIIa as a member of the serine protease family has an active site homologous to other coagulation factors. The release of the coordinates of the crystal structures of F.X and F.IX, together with the earlier determined thrombin structure, now allows a detailed comparison of these active centers with respect to the development of specific and potent active site inhibitors. This structural and molecular information about the TF-F.VIIa complex and other coagulation enzymes adds to our understanding of blood coagulation and should further the development of new classes of anticoagulants. (Trends Cardiovasc Med 1997;7:316-324). © 1997, Elsevier Science Inc.

  19. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.


    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  20. Structural phase-dependent hole localization and transport in bismuth vanadate (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.


    We present theoretical evidence for the phase dependence of hole localization and transport in bismuth vanadate (BiVO4). Our hybrid density-functional theory calculations predict that, in the tetragonal phase [tetragonal scheelite BiVO4 (ts-BiVO4)], an excess hole tends to localize around a BiO8 polyhedron with strong lattice distortion, whereas, in the monoclinic phase [monoclinic scheelite BiVO4 (ms-BiVO4)], it spreads over many lattice sites. The phase-dependent behavior is likely related to the higher structural stability of ms-BiVO4 than ts-BiVO4, which may suppress hole-induced lattice distortions. Our study also demonstrates that the relatively weakly localized hole in ms-BiVO4 undergoes faster diffusion compared to the case of ts-BiVO4, irrespective of the fact that the degrees of localization and mobility vary depending on the choice of exchange-correlation functional. The mobility difference may provide an explanation for the enhanced photocatalytic activity of ms-BiVO4 over ts-BiVO4 for water oxidation, considering that the increased mobility would lead to an increase in the hole current to the catalyst surface.

  1. Preservation of Archaeal Surface Layer Structure During Mineralization. (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François


    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  2. Preservation of Archaeal Surface Layer Structure During Mineralization (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François


    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  3. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang


    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  4. Community structure in time-dependent, multiscale, and multiplex networks. (United States)

    Mucha, Peter J; Richardson, Thomas; Macon, Kevin; Porter, Mason A; Onnela, Jukka-Pekka


    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows studies of community structure in a general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.

  5. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping


    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  6. Using Pattern Search Methods for Surface Structure Determinationof Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhengji; Meza, Juan; Van Hove, Michel


    Atomic scale surface structure plays an important roleindescribing many properties of materials, especially in the case ofnanomaterials. One of the most effective techniques for surface structuredetermination is low-energy electron diffraction (LEED), which can beused in conjunction with optimization to fit simulated LEED intensitiesto experimental data. This optimization problem has a number ofcharacteristics that make it challenging: it has many local minima, theoptimization variables can be either continuous or categorical, theobjective function can be discontinuous, there are no exact analyticderivatives (and no derivatives at all for categorical variables), andfunction evaluations are expensive. In this study, we show how to apply aparticular class of optimization methods known as pattern search methodsto address these challenges. These methods donot explicitly usederivatives, and are particularly appropriate when categorical variablesare present, an important feature that has not been addressed in previousLEED studies. We have found that pattern search methods can produceexcellent results, compared to previously used methods, both in terms ofperformance and locating optimal results.

  7. Surface structure and stability of MoSx model clusters. (United States)

    Wen, Xiao-Dong; Zeng, Tao; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun


    Density functional theory (DFT) computations have been carried out to study the structure and stability of MoSx clusters with the change of sulfur coverage at both Mo and S edges. DFT shows that adding sulfur to the Mo edge is always exothermic. However, deleting corner sulfur from the S edge is exothermic for 67 and 50% sulfur coverages, while deleting edge sulfur from the S edge is endothermic for 33 and 0% sulfur coverages. On the basis of the computed free energies along a wide range of H2S/H2 ratios, it is found that there are two stable structures with 33 and 50% sulfur coverages on the Mo edge by having 100% sulfur coverage on the S edge and one stable structure with 67% sulfur coverage on the S edge by having 0% sulfur coverage on the Mo edge. Under fully sulfiding atmosphere or at a very high H2S/H2 ratio, triangle MoSx structures with 100% sulfur coverage on the Mo edge are computed to be more stable than those with 100% sulfur coverage on the S edge, in agreement with the observation of scanning tunneling microscopy. In addition, the effects of cluster sizes on the surface structures are discussed.

  8. Response surface reconciliation method of bolted joints structure

    Directory of Open Access Journals (Sweden)

    Yunus Mohd Azmi


    Full Text Available Structural joining methods such as bolted joints are commonly used for the assembly of structural components due to their simplicity and easy maintenance. Understandably, the dynamic characteristic of bolted joined structure is mainly influenced by the properties of their joints such as preload on the bolts and joints stiffness which alter the measured dynamics response of the structure. Therefore, the need to include the local effect of the bolted joints into the numerical model of the bolted joined structure is vitally important in order to represent the model accurately. In this paper, a few types of connector elements that can be used to represent the bolted joints such as CBAR, CBEAM and CELAS have been investigated numerically and experimentally. The initial numerical results of these element connectors are compared with the experimental results in term of natural frequencies and mode shapes. The comparative evaluation of numerical and the experimental data are performed in order to provide some insights of inaccuracies in the numerical model due to invalid assumption in the numerical modelling such as geometry, material properties, and boundary conditions. The discrepancies between both results (numerical and experimental data are then corrected using the response surface reconciliation method (RSRM through which the finite element model is altered in order to provide closer agreement with the measured data so that it can be used for subsequence analysis.

  9. Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

    Directory of Open Access Journals (Sweden)

    Morteza karimi


    Full Text Available In this article, finite difference method (FDM is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. To include the surface effects in the equations, Gurtin-Murdoch continuum elasticity approach has been employed. The effects of surface properties including the surface elasticity, surface residual stress and surface mass density are considered to be the main causes for size-dependent behaviors that arise from the increase in surface-to-volume ratios at smaller scales. Numerical results are presented to demonstrate the difference between the natural frequency obtained by considering the surface effects and that obtained without considering surface properties. It is observed that the effects of surface properties tend to diminish in thicker nanoplates, and vice versa.

  10. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. (United States)

    Nathala, Chandra S R; Ajami, Ali; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Ganz, Thomas; Assion, Andreas; Husinsky, Wolfgang


    In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL. It was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different. Therefore, the HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation.

  11. Doping-dependent quasiparticle band structure in cuprate superconductors

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.; Sawatzky, G.A


    We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the quasi

  12. Semantic illusion depends on information structure: ERP evidence

    NARCIS (Netherlands)

    Wang, L.; Hagoort, P.; Yang, Y.


    Next to propositional content, speakers distribute information in their utterances in such a way that listeners can make a distinction between new (focused) and given (non-focused) information. This is referred to as information structure. We measured event-related potentials (ERPs) to explore the r

  13. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies (United States)

    Smith, Carrie E.; Cribbie, Robert A.


    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  14. The structure of frontoparallel haptic space is task dependent

    NARCIS (Netherlands)

    Hermens, Frouke; Kappers, A.M.L.; Gielen, Stan C.A.M.


    In three experiments, we investigated the structure of frontoparallel haptic space. In the first experiment, we asked blindfolded participants to rotate a matching bar so that it felt parallel to the reference bar; the bars could be at various positions in the frontoparallel plane. Large systematic

  15. The structure of frontoparallel haptic space is task dependent.

    NARCIS (Netherlands)

    Hermens, F.; Kappers, A.M.L.; Gielen, S.C.A.M.


    In three experiments, we investigated the structure of frontoparallel haptic space. In the first experiment, we asked blindfolded participants to rotate a matching bar so that it felt parallel to the reference bar, the bars could be at various positions in the frontoparallel plane. Large systematic

  16. Item Dependency in an Objective Structured Clinical Examination (United States)

    Iramaneerat, Cherdsak; Myford, Carol M.; Yudkowsky, Rachel


    An Objective Structured Clinical Examination (OSCE) is an assessment approach employed in medical education, in which residents rotate through multiple stations of standardized clinical tasks to evaluate their clinical competence. Because items used to evaluate residents' performance in each OSCE station are linked to the same task and are rated…

  17. Dependence of the deposition conditions on ZnO surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemoeller, Viola; Luekermann, Florian; Sacher, Marc; Brechling, Armin; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Kurz, Henning; Hamelmann, Frank; Stiebig, Helmut [Malibu GmbH, Bielefeld (Germany)


    Boron doped ZnO films deposited by Low Pressure Chemical Vapour Deposition are used as transparent conductive oxide (TCO) for thin film solar cells. The films show an interesting surface morphology composed of pyramidal grains, which are formed due to a pronounced orientation of the [11 anti 20] crystallographic axis perpendicular to the surface. We performed AFM measurements on ZnO films to investigate the change in surface morphology with respect to the depostion conditions such as deposition time, temperature and the boron doping concentration. We found that the thicker the films, the larger the pyramids and in contrast the higher the boron doping, the smaller the pyramids. For a varied depostion temperature we observed a change in crystallographic orientation by XRD measurements around 160 C from a pronounced [0002] to a [11 anti 20] axis growth. This change was also detected by AFM measurements due to a drastic change in surface morphology. Films below 160 C show a nearly flat surface whereas films above that temperature show a rough surface of pyramidal structures.

  18. Three-dimensional reconstruction of specular reflecting technical surfaces using structured light microscopy (United States)

    Kettel, Johannes; Müller, Claas; Reinecke, Holger


    In computer assisted quality control the three-dimensional reconstruction of technical surfaces is playing an ever more important role. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution for the three-dimensional measurement of technical surfaces with high vertical and lateral resolution. However, the three-dimensional reconstruction of specular reflecting technical surfaces with very low surface-roughness and local slopes still remains a challenge to optical measurement principles. Furthermore the high data acquisition rates of current optical measurement systems depend on highly complex and expensive scanning-techniques making them impractical for inline quality control. In this paper we present a novel measurement principle based on a multi-pinhole structured light solution without moving parts which enables the threedimensional reconstruction of specular and diffuse reflecting technical surfaces. This measurement principle is based on multiple and parallel processed point-measurements. These point measurements are realized by spatially locating and analyzing the resulting Point Spread Function (PSF) in parallel for each point measurement. Analysis of the PSF is realized by pattern recognition and model-fitting algorithms accelerated by current Graphics-Processing-Unit (GPU) hardware to reach suitable measurement rates. Using the example of optical surfaces with very low surface-roughness we demonstrate the three-dimensional reconstruction of these surfaces by applying our measurement principle. Thereby we show that the resulting high measurement accuracy enables cost-efficient three-dimensional surface reconstruction suitable for inline quality control.

  19. Thermal calculation of ground contact structures: Correction factors of environment- and structure-dependent effects on the heat transfer coefficient


    Nagy, Balázs


    The heat loss at ground contact structures is taken into consideration in building heat loss calculations. However, the heat loss through the ground depends not only the soil and the building structure, but the environment as well. New calculation methods based on parametrized transient finite element thermal modelling are introduced in the preceding research article [3]. This paper is the further demonstration of the methods’ environment- or structure-depending correction factors which descr...

  20. Low-loss waveguiding and detecting structure for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail:; Aihara, T. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan); JSPS Research Fellow, Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda, Tokyo 102-8472 (Japan); Ota, M.; Sakai, H.; Ishii, Y.; Fukuda, M. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan)


    A simple and low-loss metal/semiconductor surface plasmon polariton (SPP) device consisting of a SPP waveguide and a detector is studied theoretically and experimentally. We demonstrate a simple diffraction structure (a metal grating) where the SPP couples from the waveguide to the detector. The SPP can propagate without large losses at the air/Au interface, and this interface was used for SPP waveguiding. To convert the SPP into an electric signal using internal photoemission, the propagating SPP is coupled into the Au/Si interface by the diffraction structure. The propagation direction of the coupled SPP at the Au/Si interface depends on the slit pitch of the diffraction structure, and the direction can be controlled by adjusting the pitch. The slit pitch is also modeled using a diffraction grating equation, and the results show good agreement with those of simulations using the finite-difference time-domain method. When diffraction structures consisting of a multi-slit structure and a disk array are placed at the end of the waveguide, SPP coupling into the Au/Si interface is also observed. The photocurrents detected at the Au/Si interface are much larger when compared with that detected for the device without the diffraction structure (26 times for the multi-slit structure and 10 times for the disk array). From the polarization angle dependence of the detected photocurrent, we also confirmed that the photocurrent was caused by the SPP propagating at the air/Au interface.

  1. Structural basis for λN-dependent processive transcription antitermination. (United States)

    Said, Nelly; Krupp, Ferdinand; Anedchenko, Ekaterina; Santos, Karine F; Dybkov, Olexandr; Huang, Yong-Heng; Lee, Chung-Tien; Loll, Bernhard; Behrmann, Elmar; Bürger, Jörg; Mielke, Thorsten; Loerke, Justus; Urlaub, Henning; Spahn, Christian M T; Weber, Gert; Wahl, Markus C


    λN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein λN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a λN-NusA-NusB-NusE-nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and λN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, λN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the λN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that λN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the λN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor ρ and/or obstructing ρ translocation on the transcript.

  2. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn


    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  3. Crystal Structure of Human Cyclin K, A Positive Regulator of Cyclin-Dependent Kinase 9

    Energy Technology Data Exchange (ETDEWEB)

    Baek,K.; Brown, R.; Birrane, G.; Ladias, J.


    K and the closely related cyclins T1, T2a, and T2b interact with cyclin-dependent kinase 9 (CDK9) forming multiple nuclear complexes, referred to collectively as positive transcription elongation factor b (P-TEFb). Through phosphorylation of the C-terminal domain of the RNA polymerase II largest subunit, distinct P-TEFb species regulate the transcriptional elongation of specific genes that play central roles in human physiology and disease development, including cardiac hypertrophy and human immunodeficiency virus-1 pathogenesis. We have determined the crystal structure of human cyclin K (residues 11-267) at 1.5 {angstrom} resolution, which represents the first atomic structure of a P-TEFb subunit. The cyclin K fold comprises two typical cyclin boxes with two short helices preceding the N-terminal box. A prominent feature of cyclin K is an additional helix (H4a) in the first cyclin box that obstructs the binding pocket for the cell-cycle inhibitor p27{sup Kip1}. Modeling of CDK9 bound to cyclin K provides insights into the structural determinants underlying the formation and regulation of this complex. A homology model of human cyclin T1 generated using the cyclin K structure as a template reveals that the two proteins have similar structures, as expected from their high level of sequence identity. Nevertheless, their CDK9-interacting surfaces display significant structural differences, which could potentially be exploited for the design of cyclin-targeted inhibitors of the CDK9-cyclin K and CDK9-cyclin T1 complexes.

  4. Frequency-dependent optical steering from subwavelength plasmonic structures. (United States)

    Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J


    We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

  5. Is the methanation reaction over Ru single crystals structure dependent?

    DEFF Research Database (Denmark)

    Vendelbo, Søren Bastholm; Johansson, Martin; Nielsen, Jane Hvolbæk;


    The influence of monoatomic steps and defects on the methanation reaction over ruthenium has been investigated. The experiments are performed on a Ru(0 1 54) ruthenium single crystal, which contains one monoatomic step atom for each 27 terrace atoms. The methanation activity is measured at one ba...... front-side of the crystal is poisoned faster than the entire crystal containing more defects. We also observe that additional sputtering of the well-defined front-side increases the reactivity measured on the surface. Based on this, we conclude that the methanation reaction takes place...

  6. Evaluation of multilayered pavement structures from measurements of surface waves (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.


    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  7. Variable structure guidance law for attacking surface maneuver targets

    Institute of Scientific and Technical Information of China (English)

    Han Yanhua; Xu Bo


    The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of targets. In the guidance law, the distance between missiles and targets as well as the missile-target relative velocity are all substituted by estimation values. The estimation errors, the target's velocity, and the maneuver acceleration are all treated as bounded disturbance. The guidance law proposed can be implemented conveniently in engineering with little target information. The performance of the guidance system is analyzed theoretically and the numerical simulation result shows the effectiveness of the guidance law.

  8. Surface flaw detection in structural ceramics by scanning photoacoustic spectroscopy (United States)

    Khandelwal, P. K.; Heitman, P. W.; Wakefield, T. D.; Silversmith, A. J.


    Laser-scanned photoacoustic spectroscopy has been used to detect tightly closed surface cracks in three structural ceramic materials: sintered silicon nitride, reaction-bonded silicon nitride, and sintered silicon carbide. It is found that the amplitude of the photoacoustic signal from the flaws is greater for the silicon nitrides than for silicon carbide, which is attributed to the lower thermal diffusivity of silicon nitride as well as differences in the grain size distribution and chemical composition. Signal amplitude, reproducibility, and signal-to-noise ratio are acceptable for effective flaw detection

  9. The Structure of High Polarization Surface of the Antiferromagnet Cr2O3 (United States)

    Wu, Ning; Zhang, Xin; Fukutani, Keisuke; He, Xi; Binek, Christian; Dowben, Peter; Mei, Wai-Ning; Yu, Zhaoxian


    Manipulation of magnetically ordered states by electrical means is among the most promising approaches towards novel spintronic devices. Electric control of the exchange bias can be realized when the passive antiferromagnetic pinning layer is replaced by a magneto-electric antiferromagnet, like the prototypical magneto-electric Cr2O3(0001), so long as there is also a finite remanent magnetization at the surface or boundary. We have demonstrated that a very unusual high polarization surface magnetic order exists at the surface of the Cr2O3 (0001) surface and is robust against surface roughness from spin polarized inverse photoemission, and X-ray magnetic circular dichroism. We have also performed LEED (low energy electron diffraction) I(V) analysis to explore the surface structure above and below Neel Temperature (308 K). Temperature dependent LEED was also carried out at several different electron kinetic energies and Debye temperature was extracted. The surface and bulk Debye temperatures were obtained by fitting Debye temperature as a function of electron kinetic energy.

  10. Improvement in the surface quality of structural components produced by the RTM-process

    Energy Technology Data Exchange (ETDEWEB)

    Michaeli, W.; Dyckhoff, J. [Institute of Plastics Processing, Aachen (Germany)


    During the production of long or continuous fiber reinforced structural components in Resin Transfer Moulding (RTM), surface defects like voids, pinholes or unevenness frequently occur. These have to be repaired by manual labor before final painting. The conditions for the formation of voids in the laminate as well as surface defects are investigated by model experiments, making use of a window mould. Generally the resin is assumed to flow through the fiber reinforcement in a plug flow. The investigations indicate that advance either in the nonwovens of the surface or in the center of the laminate depends on the flow front velocity. This can be attributed to a superposition of capillary and flow effects. In order to obtain a high surface quality, the flow front velocity has to be kept within a material-related band width. Otherwise, areas of air enclosure in the laminate or surface defects like pinholes will result. With the aid of a steel mould with a large area, procedural variants are investigated to reduce surface faults and to decrease the air content in the laminate. The analysis indicates that the air content can be significantly reduced by injecting the resin into a cavity filled with gaseous acetone and increasing the cavity pressure during the time of curing. Furthermore the long and short-term waviness of the surface is improved by these process modifications.

  11. Structures and construction of nuclear power plants on lunar surface (United States)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji


    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  12. Structure of a passivated Ge surface prepared from aqueous solution.

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, P. F.; Sakata, O.; Marasco, D, L.; Lee, T.-L.; Breneman, K. D.; Keane, D. T.; Bedzyk, M. J.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee


    The structure of a passivating sulfide layer on Ge(001) was studied using X-ray standing waves and X-ray fluorescence. The sulfide layer was formed by reacting clean Ge substrates in (NH{sub 4}){sub 2}S solutions of various concentrations at 80{sup o}C. For each treatment, a sulfide layer containing approximately two to three monolayers (ML) of S was formed on the surface, and an ordered structure was found at the interface that contained approximately 0.4 ML of S. Our results suggest the rapid formation of a glassy GeS{sub x} layer containing 1.5-2.5 ML S residing atop a partially ordered interfacial layer of bridge-bonded S. The passivating reaction appears to be self-limited to 2-3 ML at this reaction temperature.

  13. Structure of Callisto and Ice Holes on Its Surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Hui; CHEN Chu-Xin


    The discovery of the induced magnetic field of Callisto that is a satellite of Jupiter has been interpreted as evidence for a subsurface salty liquid-water ocean, so we consider a layered structure of Callisto, i.e., a rock-metal core, an outer layer of ice and a middle layer of ocean. For the rock-metal core we try to indicate how the temperature, pressure and mass density depend on the depth. Due to motion across the magnetic Geld of Jupiter in a plasma environment, the ice sheJI of Callisto must be broken down by electric current.

  14. A-dependence of weak nuclear structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Haider, H.; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Dipartimento di Fisica, Universitá degli studi di Trento Via Sommarive 14, Povo (Trento) I-38123 (Italy)


    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  15. Structure-Dependent Immune Modulatory Activity of Protegrin-1 Analogs

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier


    Full Text Available Protegrins are porcine antimicrobial peptides (AMPs that belong to the cathelicidin family of host defense peptides. Protegrin-1 (PG-1, the most investigated member of the protegrin family, is an arginine-rich peptide consisting of 18 amino acid residues, its main chain adopting a β-hairpin structure that is linked by two disulfide bridges. We report on the immune modulatory activity of PG-1 and its analogs in neutralizing bacterial endotoxin and capsular polysaccharides, consequently inhibiting inflammatory mediators’ release from macrophages. We demonstrate that the β-hairpin structure motif stabilized with at least one disulfide bridge is a prerequisite for the immune modulatory activity of this type of AMP.

  16. Microwave dependence of subharmonic gap structure in superconducting junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffman; Kofoed, Bent; Pedersen, Niels Falsig


    with the superconducting energy gap itself. The location in voltage of all these structures is given by eV=(2Δ±nh ν) / m, where 2Δ is the superconducting energy gap, ν is the applied frequency, h is Planck's constant, e is the magnitude of the electronic charge, V is the dc voltage drop across the junction, and m and n...

  17. Chromatin structure-dependent conformations of the H1 CTD. (United States)

    Fang, He; Wei, Sijie; Lee, Tae-Hee; Hayes, Jeffrey J


    Linker histones are an integral component of chromatin but how these proteins promote assembly of chromatin fibers and higher order structures and regulate gene expression remains an open question. Using Förster resonance energy transfer (FRET) approaches we find that association of a linker histone with oligonucleosomal arrays induces condensation of the intrinsically disordered H1 CTD in a manner consistent with adoption of a defined fold or ensemble of folds in the bound state. However, H1 CTD structure when bound to nucleosomes in arrays is distinct from that induced upon H1 association with mononucleosomes or bare double stranded DNA. Moreover, the H1 CTD becomes more condensed upon condensation of extended nucleosome arrays to the contacting zig-zag form found in moderate salts, but does not detectably change during folding to fully compacted chromatin fibers. We provide evidence that linker DNA conformation is a key determinant of H1 CTD structure and that constraints imposed by neighboring nucleosomes cause linker DNAs to adopt distinct trajectories in oligonucleosomes compared to H1-bound mononucleosomes. Finally, inter-molecular FRET between H1s within fully condensed nucleosome arrays suggests a regular spatial arrangement for the H1 CTD within the 30 nm chromatin fiber. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Mesorhizobium loti Produces nodPQ-Dependent Sulfated Cell Surface Polysaccharides▿


    Townsend, Guy E.; Forsberg, Lennart S.; Keating, David H.


    Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a β-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of s...

  19. Chemical effects on vibrational properties of adsorbed molecules on metal surfaces: Coverage dependence (United States)

    Ueba, H.


    Vibrational properties of chemisorbed molecules on metal surfaces are studied with a focus on the coverage dependent chemical shift of the frequencies. Available experimental data of a CO adsorption on transition metal and noble metal surfaces are analyzed in the light of the coverage dependent back-donation into the 2 π* orbitals of chemisorbed CO molecules. The vibrational frequency ωCO of the intramolecular stretching mode exhibits a downward shift of varying magnitude, depending on the amount of back-donation into the 2 π* orbitals of the chemisorbed CO. On increasing the coverage θ, ωCO usually increases due to the dipole-dipole interaction. On Cu surfaces, however, the shifts are relatively small, or in some cases, negative. So far, this anomalous frequency shift with θ is understood as a result of competitive effect between the upward dipole Ωdip and the downward chemical shift Ωchem associated with back-donation. The purpose of this paper is to establish the possible origin of the downward frequency shift through the electronic properties of an incomplete monolayer of adsorbates. The adsorbate density of states ρa is calculated by means of the coherent potential approximation, in which the electron hopping between the adsorbates (band formation effect) and the depolarization effect due to the proximity of ionized adsorbed molecules are taken into account. The change of the occupied portion of ρa and ρa ( ɛF) at the Fermi level ɛF with increasing θ then manifests itself in the coverage dependent Ωchem not only due to the static back-donation, but also due to the dynamical charge fluctuation during vibrational excitation. It is found that in a weakly chemisorbed system, such as CO/Cu, the negative Ωchem amounts to Ωdip at low θ. Consequently the apparent total frequency shift remains almost constant. As the coverage increases, Ωchem becomes larger than Ωdip due to the band effect. It is also shown that the variation of the back

  20. A structural study of porphyrins interacting with a metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Brede, Jens; Hoffmann, Germar; Wiesendanger, Roland [Institut of Applied Physics, University of Hamburg (Germany)


    A porphyrin is a heterocyclic macrocycle derived from pyrrolic subunits interconnected via methine bridges. Porphyrins are an ubiquitous class of naturally occurring compounds with important biological representatives including hemes and chlorophylls. We prepared various tetra phenyl prophyrins (TPP) with different central metal (M) ions on metallic substrates. The molecular systems were investigated by scanning tunnelling microscopy and spectroscopy. The experiments were performed in a home-built low temperature STM working at 6 K in ultra-high vacuum conditions. Upon deposition of porphyrins on metal substrates the aromatic core of the molecule may undergo a structural deformation depending on the details of the molecule-substrate interaction. We will discuss the structural conformation of TPPs and their electronic properties.