WorldWideScience

Sample records for surface stress variability

  1. Study on the essential variables for pipe outer surface irradiated laser stress improvement process (L-SIP). Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Muroya, Itaru; Asada, Seiji; Nakamura, Yasuo

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the essential variables for L-SIP is studied by experimental and FEM analysis. The range of the essential variables for L-SIP, which are defined by thermo-elastic FEM analysis, are Tmax=550 - 650degC, L Q /√rh ≥ 3, W Q /√rh ≥ 1.7, and, 0.04 ≤ F 0 ≤ 0.10 where Tmax is maximum temperature on the monitor point of the outer surface, F 0 is k x τ 0 /h 2 , k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x v, υ is moving velocity, L Q is the uniform temperature length in the axial direction, h is thickness of the pipe, and r is average radius of the pipe. It is showed by thermo-elastic-plastic FEM analysis that the residual stresses near the inner surface of pipes are improved in 4 different size pipes under the same essential variables. L-SIP is actually applied to welding joints of 4B x Sch160 and 2B x Sch80 SUS304 type stainless steel pipes within the defined range of the essential variables. The measured welding residual stresses on the inner surface near the welding joints are tensile. The residual stresses on the inner surface change to compression in all joints by L-SIP. (author)

  2. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  3. Quantitative analysis by X-ray fractography of fatigue fractured surface under variable amplitude loading

    International Nuclear Information System (INIS)

    Akita, Koichi; Kodama, Shotaro; Misawa, Hiroshi

    1994-01-01

    X-ray fractography is a method of analysing the causes of accidental fracture of machine components or structures. Almost all of the previous research on this problem has been carried out using constant amplitude fatigue tests. However, the actual loads on components and structures are usually of variable amplitudes. In this study, X-ray fractography was applied to fatigue fractured surfaces produced by variable amplitude loading. Fatigue tests were carried out on Ni-Cr-Mo steel CT specimens under the conditions of repeated, two-step and multiple-step loading. Residual stresses were measured on the fatigue fractured surface by an X-ray diffraction method. The relationships between residual stress and stress intensity factor or crack propagation rate were studied. They were discussed in terms of the quantitative expressions under constant amplitude loading, proposed by the authors in previous papers. The main results obtained were as follows : (1) It was possible to estimate the crack propagation rate of the fatigue fractured surface under variable amplitude loading by using the relationship between residual stress and stress intensity factor under constant amplitude loading. (2) The compressive residual stress components on the fatigue fractured surface correspond with cyclic softening of the material rather than with compressive plastic deformation at the crack tip. (author)

  4. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  5. Induced surface stress at crystal surfaces

    International Nuclear Information System (INIS)

    Dahmen, K.

    2002-05-01

    Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order

  6. Wind Stress Variability Observed Over Coastal Waters

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  7. Climatic variability and trends in the surface waters of coastal British Columbia

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane

    2014-01-01

    Multi-decadal records of monthly sea surface temperature (SST) and sea surface salinity (SSS) collected at a set of lighthouse stations are used to examine climatic variability and trends in the coastal waters of British Columbia. Particular attention is given to relations between the water property anomalies and variability in coastal freshwater discharge and alongshore wind stress. Within the Strait of Georgia, SSS anomalies are closely related to Fraser River discharge anomalies. Along the Pacific coast, anomalies in alongshore wind stress and freshwater runoff have the characteristics of white noise processes. A cross-correlation analysis demonstrates that SST and SSS variability along the open west coast is consistent with the response of a first-order autoregressive process driven by anomalous alongshore wind stress and coastal freshwater discharge, respectively. Thus climatic variability of SST and SSS along the Pacific coast of British Columbia occurs, in part, through the integration of noisy atmospheric forcing and coastal precipitation. Seasonal correlations show that SST is strongly related to wind stress during winter and fall. Conversely, SSS is relatively weakly related to the alongshore wind during spring, suggesting that variability in upwelling makes only a modest contribution to variability of SSS in the nearshore environment. Consistent with previous studies, secular trends indicate long-term warming and freshening of the coastal ocean at most stations. It is shown that long-term SST trends can be obscured by the pronounced climatic variability of these waters, requiring that time series extend for several decades to be reliably detected.

  8. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  9. Stress-based Variable-inductor for Electronic Ballasts

    DEFF Research Database (Denmark)

    Zhang, Lihui; Xia, Yongming; Lu, Kaiyuan

    2015-01-01

    Current-controlled variable inductors adjust the inductance of an alternating current (ac) coil by applying a controlled dc current to saturate the iron cores of the ac coil. The controlled dc current has to be maintained during operation, which results in increased power losses. This paper prese......-based variable inductor concept is validated using a 3-D finite-element analysis. A prototype was manufactured, and the experimental results are presented. A linear relationship between inductance and applied stress can be achieved.......Current-controlled variable inductors adjust the inductance of an alternating current (ac) coil by applying a controlled dc current to saturate the iron cores of the ac coil. The controlled dc current has to be maintained during operation, which results in increased power losses. This paper...... presents a new stress-based variable inductor to control inductance using the inverse magnetostrictive effect of a magnetostrictive material. The stress can be applied by a piezoelectrical material, and thus a voltage-controlled variable inductor can be realized with zero-power consumption. The new stress...

  10. Surface displacements and pillar stresses associated with nuclear waste disposal in salt

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.

    1977-01-01

    A numerical model for regional analysis of stresses and displacement, resulting from heat generating waste placement in underground salt excavations, is presented. The model, which is an extension of that described by McClain and Starfield (1971), is based upon the displacement discontinuity method of stress analysis. It incorporates an empirical characterization of creep behavior of material on the excavation horizon and accounts for thermally induced stresses and displacements. The versatility of this approach is illustrated by the results of three relatively short simulations of test scale disposal facilities at shallow and greater depths. In addition, a three-dimensional code was used to evaluate the surface displacement history for a full-scale repository. This latter code, a thermoelastic analysis, gives an upper bound for the surface movements. It is concluded that the pillar stresses are the result of a complex non-linear interaction of many variables, and the maximum pillar stress can reach several multiples of the tributory-area pillar stress

  11. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  12. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  14. Stress Intensity Factor for Interface Cracks in Bimaterials Using Complex Variable Meshless Manifold Method

    Directory of Open Access Journals (Sweden)

    Hongfen Gao

    2014-01-01

    Full Text Available This paper describes the application of the complex variable meshless manifold method (CVMMM to stress intensity factor analyses of structures containing interface cracks between dissimilar materials. A discontinuous function and the near-tip asymptotic displacement functions are added to the CVMMM approximation using the framework of complex variable moving least-squares (CVMLS approximation. This enables the domain to be modeled by CVMMM without explicitly meshing the crack surfaces. The enriched crack-tip functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The complex stress intensity factors for bimaterial interfacial cracks were numerically evaluated using the method. Good agreement between the numerical results and the reference solutions for benchmark interfacial crack problems is realized.

  15. Near-surface residual stresses and microstructural changes after turning of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Schlauer, Christian

    2003-07-01

    Nickel-based superalloys are precipitation hardened alloys with complex compositions. They are used in aircraft engines and land-based gas turbines in load bearing structural components that are exposed to high temperatures. Failure mechanisms in this environment are high and low cycle fatigue, creep, and corrosion. During manufacturing, residual stresses are often introduced into the material due to inhomogeneous plastic deformations, both intentionally and unintentionally. One such manufacturing process is metal cutting, which introduces residual stresses in the surface layer. The stress state in the near-surface zone of components is of special interest as the surface often experiences peak loads and cracks have their starting point there. In this thesis, near-surface residual stress distributions and microstructural changes are studied in the nickel-based superalloy Inconel 718 for two different turning operations, face grooving and facing. Process variables are in both cases cutting speed and feed that have been varied between (10 and 1200) m/min and (0.01 and 0.5) mm, respectively. The first turning technique face grooving, which gives cutting conditions similar to orthogonal cutting, showed a clear dependency of the residual stresses on the cutting speed. The tensile stress at the surface, the maximum compressive stress below the surface, and the thickness of the affected layer increase with increasing cutting speed. The tensile stresses are constrained to a thin surface layer and compressive residual stresses below the surface dominate the depth profile of the residual stresses. Only at low cutting speed, residual stresses were largely avoided. The second turning technique facing confirmed the dependency of the residual stresses on the cutting speed and revealed a similar dependency on the feed. Microstructural investigations of near-surface cross-sections by means of transmission electron microscopy showed a zone where the grains had undergone plastic

  16. On the relation of earthquake stress drop and ground motion variability

    Science.gov (United States)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  17. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

    Directory of Open Access Journals (Sweden)

    M. H. El-Axir

    2017-10-01

    Full Text Available The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

  18. The role of stressors and psychosocial variables in the stress process: a study of chronic caregiver stress.

    Science.gov (United States)

    Vedhara, K; Shanks, N; Anderson, S; Lightman, S

    2000-01-01

    An investigation was conducted 1) to examine the relative importance of stressor types (ie, daily hassles, caregiving-specific stressors, and life events) on the stress response, 2) to assess the stability of relationships between psychosocial variables and stress over a 6-month period, and 3) to explore how the nature and magnitude of the contributions made by stressors and psychosocial factors to the stress process varied according to the qualitative characteristics of the stress response (ie, anxiety, depression, and stress). Fifty spousal caregivers of patients with dementia were recruited and asked to participate in a detailed psychosocial evaluation at 3-month intervals; the evaluation involved measurement of stressor frequency, psychosocial variables, and indices of the stress response (ie, anxiety, depression, and stress). The data revealed that the effects of stressors and psychosocial factors on the stress response were considerable (accounting for 49-63% of the variance in stress response measures). Furthermore, there was some evidence of stability in the effects of the stressor and mediator variables on the stress response. Specifically, the contributions of life events and caregiver difficulties were largely consistent at both 3 and 6 months, and the psychosocial factor of "reactive coping and self-appraisal" influenced all three stress response indices at both 3 and 6 months. There is some evidence of stability in the effects of stressors and psychosocial variables on the stress process over a 6-month period. However, it would also seem that the nature of the stress process differs according to the qualitative characteristics of the stress response.

  19. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  20. Study on residual stress across the pipes' thickness using outer surface rapid heating. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression plastic strain generates near the outer surface and the tensile plastic strain generates near the inner surface of pipes. The compression stress occurs near the inner surface of pipes by the plastic deformation. In this paper, the theoretical equation which calculates residual stress distribution from the inherent strain distribution in the thickness of pipes is derived. And, the relation between the distribution of temperature and the residual stress in the thickness is examined for various pipes size. (1) By rapidly heating from the outer surface, the residual stress near the inner surface of the pipe is improved to the compression stress. (2) Pipes size hardly affects the distribution of the residual stress in the stainless steel pipes for piping (JISG3459). (3) The temperature rising area from the outside is smaller, the area of the compression residual stress near the inner surface becomes wider. (author)

  1. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  2. Single lump breast surface stress assessment study

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.

    2017-09-01

    Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.

  3. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...... loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface...

  4. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  5. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

    Directory of Open Access Journals (Sweden)

    W.J.vdM. Steyn

    2015-03-01

    Full Text Available Tire rolling resistance has a major impact on vehicle fuel consumption. Rolling resistance is the loss of energy due to the interaction between the tire and the pavement surface. This interaction is a complicated combination of stresses and strains which depend on both tire and pavement related factors. These include vehicle speed, vehicle weight, tire material and type, road camber, tire inflation pressure, pavement surfacing texture etc. In this paper the relationship between pavement surface texture depth and tire/surfacing contact stress and area is investigated. Texture depth and tire/surfacing contact stress were measured for a range of tire inflation pressures on five different pavement surfaces. In the analysis the relationship between texture and the generated contact stresses as well as the contact stress between the surfacing and base layer are presented and discussed, and the anticipated effect of these relationships on the rolling resistance of vehicles on the surfacings, and subsequent vehicle fuel economy discussed.

  6. Surface stress mediated image force and torque on an edge dislocation

    Science.gov (United States)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  7. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    Science.gov (United States)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  8. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  9. Comment on 'Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies'

    International Nuclear Information System (INIS)

    Gutman, E M

    2010-01-01

    In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity. (comment)

  10. A Family of Invariant Stress Surfaces

    DEFF Research Database (Denmark)

    Krenk, S.

    A family of invariant stress surfaces with a cubic dependence on the deviatoric stress components is expressed as a linear combination of the second and third deviatori stress invariants. A simple geometric derivation demonstrates the convexity of the contours in the deviatoric plane. An explicit...... representation of the deviatoric contours in terms of a size and a shape parameter is given. The shape parameter effects a continuous transition from a triangle to a circle in the deviatoric plane. An explicit format in terms of the triaxial compresson and tension generators is derived, and the plane stress...

  11. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  12. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  13. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  14. Analysis of University Organizational Culture Perceptions and Demographic Variables as Predictors of Perceived Stress

    Directory of Open Access Journals (Sweden)

    Mustafa KESEN

    2015-06-01

    Full Text Available It has been seen that it is inevitable for individuals to be exposed to stress in their student lives as in their work lives. The aim of this study is to measure perceived stress levels of university students in the university organizational culture setting. To this end, it is investigated the relationship between perceived stress levels of university students and university organizational culture perceptions. By using questionnaire method it is measured that the perceptions of organizational culture in different stress levels and it is analyzed that the differences in students' perceived stress levels according to socio-demographic variables. The population of the study is comprised of randomly chosen 286 students who receive training at Bayburt University Faculty of Economics and Administrative Sciences. According to the results, it has been found that there is a significant difference between students' perceived stress and gender. While the students stating that they experience low level of stress give maximum points to the variable of adaptation to change, other students expressing that they are exposed high level of stress give minimum score to the variable of cooperation. Besides, it has been found that different demographic variables by various combinations have different effects on perceived stress and university organizational culture.

  15. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  16. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  17. Adaptation of endothelial cells to physiologically-modeled, variable shear stress.

    Directory of Open Access Journals (Sweden)

    Joseph S Uzarski

    Full Text Available Endothelial cell (EC function is mediated by variable hemodynamic shear stress patterns at the vascular wall, where complex shear stress profiles directly correlate with blood flow conditions that vary temporally based on metabolic demand. The interactions of these more complex and variable shear fields with EC have not been represented in hemodynamic flow models. We hypothesized that EC exposed to pulsatile shear stress that changes in magnitude and duration, modeled directly from real-time physiological variations in heart rate, would elicit phenotypic changes as relevant to their critical roles in thrombosis, hemostasis, and inflammation. Here we designed a physiological flow (PF model based on short-term temporal changes in blood flow observed in vivo and compared it to static culture and steady flow (SF at a fixed pulse frequency of 1.3 Hz. Results show significant changes in gene regulation as a function of temporally variable flow, indicating a reduced wound phenotype more representative of quiescence. EC cultured under PF exhibited significantly higher endothelial nitric oxide synthase (eNOS activity (PF: 176.0±11.9 nmol/10(5 EC; SF: 115.0±12.5 nmol/10(5 EC, p = 0.002 and lower TNF-a-induced HL-60 leukocyte adhesion (PF: 37±6 HL-60 cells/mm(2; SF: 111±18 HL-60/mm(2, p = 0.003 than cells cultured under SF which is consistent with a more quiescent anti-inflammatory and anti-thrombotic phenotype. In vitro models have become increasingly adept at mimicking natural physiology and in doing so have clarified the importance of both chemical and physical cues that drive cell function. These data illustrate that the variability in metabolic demand and subsequent changes in perfusion resulting in constantly variable shear stress plays a key role in EC function that has not previously been described.

  18. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  19. Cantilever-based sensing: the origin of surface stress and optimization strategies

    International Nuclear Information System (INIS)

    Godin, Michel; Tabard-Cossa, Vincent; Miyahara, Yoichi; Grutter, Peter; Monga, Tanya; Bruce Lennox, R; Williams, P J; Beaulieu, L Y

    2010-01-01

    Many interactions drive the adsorption of molecules on surfaces, all of which can result in a measurable change in surface stress. This article compares the contributions of various possible interactions to the overall induced surface stress for cantilever-based sensing applications. The surface stress resulting from adsorption-induced changes in the electronic density of the underlying surface is up to 2-4 orders of magnitude larger than that resulting from intermolecular electrostatic or Lennard-Jones interactions. We reveal that the surface stress associated with the formation of high quality alkanethiol self-assembled monolayers on gold surfaces is independent of the molecular chain length, supporting our theoretical findings. This provides a foundation for the development of new strategies for increasing the sensitivity of cantilever-based sensors for various applications.

  20. On the importance of being bilingual: word stress processing in a context of segmental variability.

    Science.gov (United States)

    Abboub, Nawal; Bijeljac-Babic, Ranka; Serres, Josette; Nazzi, Thierry

    2015-04-01

    French-learning infants have language-specific difficulties in processing lexical stress due to the lack of lexical stress in French. These difficulties in discriminating between words with stress-initial (trochaic) and stress-final (iambic) patterns emerge by 10months of age in the easier context of low variability (using a single item pronounced with a trochaic pattern vs. an iambic pattern) as well as in the more challenging context of high segmental variability (using lists of segmentally different trochaic and iambic items). These findings raise the question of stress pattern perception in simultaneous bilinguals learning French and a second language using stress at the lexical level. Bijeljac-Babic, Serres, Höhle, and Nazzi (2012) established that at 10 months of age, in the simpler context of low variability, such bilinguals have better stress discrimination abilities than French-learning monolinguals. The current study explored whether this advantage extends to the more challenging context of high segmental variability. Results first establish stress pattern discrimination in a group of bilingual 10-month-olds learning French and one language with (variable) lexical stress, but not in French-learning 10-month-old monolinguals. Second, discrimination in bilinguals appeared not to be affected by the language balance of the infants, suggesting that sensitivity to stress patterns might be maintained in these bilingual infants provided that they hear at least 30% of a language with lexical stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  2. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  3. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  4. On machine surface to the unit event causing residual stress

    International Nuclear Information System (INIS)

    Arunachalama, R.M.; Mannanb, M.A.; Spowageca, A.

    2005-01-01

    Integrity and reduce overall costs. Within the framework of surface integrity investigations, special emphasis is given to the measurement of residual stresses because they contribute directly to premature failure of components. Since the highest residual stresses are to be found in surface layers, these deserve special attention when dealing with dynamically, heavily loaded machine parts such as gas turbine components used in aero engines. Of the many techniques available for the measurement of residual stresses, the most highly developed and widely used non-destructive method is based on X-ray diffraction (XRD). However, it is not possible to use this technique for inspection of all the components, since it is time consuming, complicated as well as expensive. In this paper, a method is being proposed that augments the XRD method but at the same time capable of inspecting all the components. A non-destructive, visual inspection technique has been developed that can correlate the characteristic features on the surface to the unit event causing the residual stress and the type of residual stress generated on the machined surface. Pictures of the machined surfaces have been taken using a digital video microscope at a magnification of 500 and the surface feature correlated to the unit event causing the residual stress. Sharp and well defined long grooves indicate that the plastic deformation is dominated by a mechanical unit event while appearance of streaks and small areas of smeared material indicate that the plastic deformation is dominated by a thermal unit event. These trends have been confirmed by measuring the residual stresses using XRD. The proposed technique is an attempt at establishing a simple methodology that would be useful to industries manufacturing aerospace and other components that require good surface integrity. (Author)

  5. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  6. Stress fields around a crack lying parallel to a free surface

    International Nuclear Information System (INIS)

    Higashida, Yutaka; Kamada, K.

    1980-12-01

    A method of stress analysis for a two dimentional crack, which is subjected to internal gas pressure, and situated parallel to a free surface of a material, is presented. It is based on the concept of continuously distributed edge dislocations of two kinds, i.e. one with Burgers vector normal to the free surface and the other with parallel to it. Stress fields of individual dislocations are chosen so as to satisfy stress free boundary conditions at the free surface, by taking account of image dislocations. Distributions of the both kinds of dislocations in the crack are derived so as to give the internal gas pressure and, at the same time, to satisfy shear stress free boundary condition on the crack surface. Stress fields σsub(xx), σsub(yy) and σsub(xy) in the sub-surface layer are then determined from them. They have square root singularities at the crack-tip. (author)

  7. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  8. Non destructive evaluation of residual stresses in welding and hard-surfacing processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Aragon, B.; Merino, F.

    1995-01-01

    In this paper transversal and longitudinal stress profiles in welding and hard-surfacing by welding processes are presented. The stresses were measured by RMS of Barkhausen signal. In this work it is shown that in each case the level of stresses is strongly dependent on the number of weld beads of surfacing layers deposited. The subsequent deposition of new weld beads or surfacing layers produces a stress-relieving effect

  9. Determination of near surface in-situ stresses

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.

    1983-06-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The techniques, experiences and results of a preliminary rock stress measurement programme conducted at shallow depth in the Carnmenellis Granite, Cornwall, using C.S.I.R.O. triaxial hollow inclusion cells are described. (author)

  10. A constitutive equation for creep fracture under constant, variable or cyclic positive stress

    International Nuclear Information System (INIS)

    Snedden, J.D.

    1977-01-01

    Prediction of creep fracture of metals under variable stress is one of the most difficult problems of applied mechanics. At NEL this problem is under investigation using an approach in which creep is represented by two macroscopic components: an anelastic (reversible) component and a plastic (irreversible) component. Under variable loading conditions, the anelastic component's behaviour will be most important and, if an experimental programme is logically planned, the structural processes responsible will be implicit in the resulting constitutive equation describing the material's behaviour. The present paper deals with the development and application of a constitutive equation for creep fracture of RR58 Aluminium alloy at 180 0 C under variable stress and such a constitutive equation can be extrapolated to cover long-time behaviour just as with conventional constant stress creep fracture equations. Constant stress, in fact, is one of the boundary conditions of the general constitutive equation, representing zero prior damage. The other boundary condition is that of 'cadence loading' in which the stress is completely removed and then re-applied in a cyclic fashion. (Auth.)

  11. Developmental Exposure to Mild Variable Stress: Adult ...

    Science.gov (United States)

    In utero exposure to mild variable stress has been reported to influence learning and memory formation in offspring. Our research aims to examine whether nonchemical environmental stressors will exacerbate effects to chemical exposure. This study utilized a varying stress paradigm to simulate human psychosocial stress incurred during and after pregnancy to identify phenotypic learning changes in adult offspring that are potential stress markers. We additionally wanted to compare these behavioral outcomes to rat performance induced by perinatal exposure to manganese (Mn), a neurotoxic environmental element, at 2 or 5 g/l in drinking water throughout gestation and lactation. Pregnant Long Evans rats were exposed to an unpredictable series of mild stressful events which had previously been shown to increase maternal corticosterone levels. Nonchemical stressors were presented from GD 13 through GD 21 and included varying noise, light, housing, and confinement during both sleep and wake cycles. A subgroup of offspring was also exposed to periods of maternal separation. Starting at PND 97 offspring were trained with a trace fear conditioning protocol whereby rats were exposed to a compound cue (light and tone) followed by 30 seconds (trace period) and a mild foot shock (1mA, 0.5 seconds). Five paired training sessions occurred on the first day. The following day, context and cue learning were assessed by measuring motor activity. Preliminary data suggests adu

  12. Comment on 'Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies'

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, E M, E-mail: gutman@bgu.ac.i [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2010-10-27

    In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity. (comment)

  13. Heart rate variability (HRV): an indicator of stress

    Science.gov (United States)

    Kaur, Balvinder; Durek, Joseph J.; O'Kane, Barbara L.; Tran, Nhien; Moses, Sophia; Luthra, Megha; Ikonomidou, Vasiliki N.

    2014-05-01

    Heart rate variability (HRV) can be an important indicator of several conditions that affect the autonomic nervous system, including traumatic brain injury, post-traumatic stress disorder and peripheral neuropathy [3], [4], [10] & [11]. Recent work has shown that some of the HRV features can potentially be used for distinguishing a subject's normal mental state from a stressed one [4], [13] & [14]. In all of these past works, although processing is done in both frequency and time domains, few classification algorithms have been explored for classifying normal from stressed RRintervals. In this paper we used 30 s intervals from the Electrocardiogram (ECG) time series collected during normal and stressed conditions, produced by means of a modified version of the Trier social stress test, to compute HRV-driven features and subsequently applied a set of classification algorithms to distinguish stressed from normal conditions. To classify RR-intervals, we explored classification algorithms that are commonly used for medical applications, namely 1) logistic regression (LR) [16] and 2) linear discriminant analysis (LDA) [6]. Classification performance for various levels of stress over the entire test was quantified using precision, accuracy, sensitivity and specificity measures. Results from both classifiers were then compared to find an optimal classifier and HRV features for stress detection. This work, performed under an IRB-approved protocol, not only provides a method for developing models and classifiers based on human data, but also provides a foundation for a stress indicator tool based on HRV. Further, these classification tools will not only benefit many civilian applications for detecting stress, but also security and military applications for screening such as: border patrol, stress detection for deception [3],[17], and wounded-warrior triage [12].

  14. Developmental Exposure to Mild Variable Stress: Adult Offspring Performance in Trace Fear Conditioning after Prenatal and Postnatal Stress

    Science.gov (United States)

    In utero exposure to mild variable stress has been reported to influence learning and memory formation in offspring. Our research aims to examine whether nonchemical environmental stressors will exacerbate effects to chemical exposure. This study utilized a varying stress parad...

  15. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  16. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  17. Stress-induced roughening instabilities along surfaces of piezoelectric materials

    International Nuclear Information System (INIS)

    Chien, N.Y.; Gao, H.

    1993-01-01

    The possibility of using electric field to stabilize surfaces of piezoelectric solids against stress-induced morphological roughening is explored in this paper. Two types of idealized boundary conditions are considered: (1) a traction free and electrically insulating surface and (2) a traction free and electrically conducting surface. A perturbation solution for the energy variation associated with surface roughening suggests that the electric field can be used to suppress the roughening instability to various degrees. A completely stable state is possible in the insulating case, and kinetically more stable states can be attained in the conducting case. The stabilization has importance in reducing concentration of stress and electric fields due to microscopic surface roughness which might trigger failure processes involving dislocation, cracks and dielectric breakdown

  18. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  19. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  20. Management Styles, Mediating Variables, and Stress among HRD Professionals.

    Science.gov (United States)

    Lind, Susan L.; Otte, Fred L.

    1994-01-01

    Data from 355 valid responses from 1,000 human resource professionals showed that specific variables predicted stress according to the management style of respondents' managers (authoritative, benevolent, consultative, participative). Self-esteem, locus of control, and Type A behavior were consistent predictors. (SK)

  1. High Compressive Stresses Near the Surface of the Sierra Nevada, California

    Science.gov (United States)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2012-12-01

    Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front

  2. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  3. Effect of surface stress and irregularity of the interface on the ...

    Indian Academy of Sciences (India)

    Surface stress; irregularity of the interface; magneto-elastic crustal ... stress plays a vital role in the propagation of waves due to the fact that the surface of a ...... Mumbai, for his computational help towards the numerical calculations and graphs.

  4. Academic stress in master’s students and its modulatory variables: a between-groups design

    Directory of Open Access Journals (Sweden)

    Arturo Barraza Macías

    2009-10-01

    Full Text Available The present investigation tries to establish the descriptive profile of the academic stress of the students of the masters in education and to identify which sociodemographic and situational variables play a modulator role. This investigation is based on the Person-Surroundings Research Program and the systemical cognitive model of academic stress. The study can be characterized as transectional, correlational and non experimental. The collection of the information was made through the SISCO inventory of Academic Stress which was applied to 152 students. The main results suggest that 95% of the master students report having felt academic stress a few times but with medium-high intensity. Variables gender, civil state, attending masters and institutional support of the attending masters act as modulators in academic stress.

  5. Process variables in organizational stress management intervention evaluation research: a systematic review.

    Science.gov (United States)

    Havermans, Bo M; Schlevis, Roosmarijn Mc; Boot, Cécile Rl; Brouwers, Evelien Pm; Anema, Johannes; van der Beek, Allard J

    2016-09-01

    This systematic review aimed to explore which process variables are used in stress management intervention (SMI) evaluation research. A systematic review was conducted using seven electronic databases. Studies were included if they reported on an SMI aimed at primary or secondary stress prevention, were directed at paid employees, and reported process data. Two independent researchers checked all records and selected the articles for inclusion. Nielsen and Randall's model for process evaluation was used to cluster the process variables. The three main clusters were context, intervention, and mental models. In the 44 articles included, 47 process variables were found, clustered into three main categories: context (two variables), intervention (31 variables), and mental models (14 variables). Half of the articles contained no reference to process evaluation literature. The collection of process evaluation data mostly took place after the intervention and at the level of the employee. The findings suggest that there is great heterogeneity in methods and process variables used in process evaluations of SMI. This, together with the lack of use of a standardized framework for evaluation, hinders the advancement of process evaluation theory development.

  6. Theoretical analysis of surface stress for a microcantilever with varying widths

    International Nuclear Information System (INIS)

    Li Xianfang; Peng Xulong

    2008-01-01

    A theoretical model of surface stress is developed in this paper for a microcantilever with varying widths, and a method for calculating the surface stress via static deflection, slope angle or radius at curvature of the cantilever beam is presented. This model assumes that surface stresses are uniformly distributed on one surface of the cantilever beam. Based on this stressor model and using the small deformation Euler-Bernoulli beam theory, a fourth-order ordinary differential governing equation with varying coefficients or an equivalent second-order integro-differential equation is derived. A simple approach is then proposed to determine the solution of the resulting equation, and a closed-form approximate solution with high accuracy can be obtained. For rectangular and V-shaped microfabricated cantilevers, the dependences of transverse deflection, slope and curvature of the beam on the surface stresses are given explicitly. The obtained results indicate that the zeroth order approximation of the stressor model reduces to the end force model with a linear curvature for a rectangular cantilever. For larger surface stresses, the curvature exhibits a non-linear behaviour. The predictions through the stressor model give higher accuracy than those from the end moment and end force models and satisfactorily agree with experimental data. The derived closed-form solution can serve as a theoretical benchmark for verifying numerically obtained results for microcantilevers as atomic force microscopy and micromechanical sensors

  7. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    Science.gov (United States)

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  8. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  9. The measurement of in-situ stress in near surface environments

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.A.

    1984-04-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The measurement of stress in near surface environments is particularly difficult. The techniques, experience and results of a geostatic stress measurement programme using four commercially available devices at shallow depth in the Carnmenellis Granite are critically discussed and compared. This report also brings together some of the conclusions of two previous reports in the series, Garritty (1983) and Garritty and Irvin (1983), and emphasises the fundamental relationship between the state of stress in the earth's crust and the geohydrology of rock masses. (author)

  10. Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory

    International Nuclear Information System (INIS)

    Song, F.; Huang, G.L.

    2009-01-01

    The surface stress effects on bending behavior of nanowires have recently attracted a lot of attention. In this letter, the incremental deformation theory is first applied to study the surface stress effects upon the bending behavior of the nanowires. Different from other linear continuum approaches, the local geometrical nonlinearity of the Lagrangian strain is considered, therefore, the contribution of the surface stresses is naturally derived by applying the Hamilton's principle, and influence of the surface stresses along all surfaces of the nanowires is captured. It is first shown that the surface stresses along all surfaces have contribution not only on the effective Young's modulus of the nanowires but also on the loading term in the governing equation. The predictions of the effective Young's modulus and the resonance shift of the nanowires from the current method are compared with those from the experimental measurement and other existing approaches. The difference with other models is discussed. Finally, based on the current theory, the resonant shift predictions by using both the modified Euler-Bernoulli beam and the modified Timoshenko beam theories of the nanowires are investigated and compared. It is noticed that the higher vibration modes are less sensitive to the surface stresses than the lower vibration modes.

  11. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  12. Electrocardiographic markers of ischemia during mental stress testing in postinfarction patients. Role of body surface mapping

    International Nuclear Information System (INIS)

    Bosimini, E.; Galli, M.; Guagliumi, G.; Giubbini, R.; Tavazzi, L.

    1991-01-01

    In patients with coronary artery disease, radionuclide investigations have documented a high incidence of mental stress-induced myocardial ischemia in the absence of significant electrocardiographic changes and/or angina. To investigate the causes of the low electrocardiographic sensitivity, we recorded body surface maps during mental arithmetic in 22 normal volunteers and 37 postinfarction patients with residual exercise ischemia. Myocardial perfusion was studied with thallium-201 or technetium-99 (SESTAMIBI) planar scans. In 14 patients, body surface maps were also recorded during atrial pacing at the heart rate values achieved during mental stress. While taking the body surface maps, the area from J point to 80 msec after this point (ST-80) was analyzed by integral maps, difference maps, and departure maps. The body surface mapping criteria for ischemia were a new negative area on the integral maps, a negative potential of more than 2 SD from mean normal values on the difference maps, and a negative departure index of more than 2. Scintigraphy showed asymptomatic myocardial hypoperfusion in 33 patients. Eight patients had significant ST segment depression. The ST-80 integral and difference maps identified 17 ischemic patients. Twenty-four patients presented abnormal departure maps. One patient presented ST depression and abnormal body surface maps without reversible tracer defect. In 14 of 14 patients, atrial pacing did not reproduce the body surface map abnormalities. The analyses of the other electrocardiographic variables showed that in patients with mental stress-induced perfusion defects, only changes of T apex-T offset (aT-eT) interval in Frank leads and changes of maximum negative potential value of aT-eT integral maps significantly differed from those of normal subjects

  13. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  14. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  15. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  16. Mobility of Yield-Stress Fluids on Lubricant-Impregnated Surface

    Science.gov (United States)

    Rapoport, Leonid; Solomon, Brian; Varanasi, Kripa; Varanasi Research Group Team

    2017-11-01

    Assuring the flow of yield-stress fluids is an essential problem for various industries such as consumer products, health care, and energy. Elimination of wall-induced pinning forces can potentially save power and cleaning costs as well as enable the flow of yield-stress fluids in channels previously considered too narrow. Lubricant-Impregnated Surfaces (LIS) have been demonstrated to change the dynamic behavior of yield-stress fluids and enable them to move as bulk without shearing at all. However, despite the wide applicability of this technology and its general appeal, the fundamental principles governing the performance of yield stress fluids on LIS have not yet been fully explained. In this work, we explore the mobility of yield stress fluids on a wide range of LIS, and explain the connection between macroscale behavior and the microscale properties of the LIS. Specifically, we show a striking difference in mobility between an LIS that contains a lubricant which fully spreads on the rough micro-features of the surface, and an LIS that contains a lubricant which only imbibes these features but does spread over them

  17. Mathematical model to determine the surface stress acting on the tooth of gear

    Directory of Open Access Journals (Sweden)

    Hinojosa-Torres J.

    2010-01-01

    Full Text Available Surface stress on the surface contact of gear tooth calculated by the Buckingham equation constitutes the basis for The American Gear Manufacturers Association (AGMA pitting resistance formula, which is based on a normal stress that does not cause failure since the yielding in contact problems is caused by shear stresses. An alternative expression based on the maximum-shear-stress is proposed in this paper. The new expression is obtained by using the maximum-shear-stress distribution and the Tresca failure criteria in order to know the maximum-shear-stress value and its location beneath the contact surface. Remarkable differences between the results using the proposed equation and those when the AGMA equation is applied are found.

  18. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  19. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  20. Stress errors in a case of developmental surface dyslexia in Filipino.

    Science.gov (United States)

    Dulay, Katrina May; Hanley, J Richard

    2015-01-01

    This paper reports the case of a dyslexic boy (L.A.) whose impaired reading of Filipino is consistent with developmental surface dyslexia. Filipino has a transparent alphabetic orthography with stress typically falling on the penultimate syllable of multisyllabic words. However, exceptions to the typical stress pattern are not marked in the Filipino orthography. L.A. read words with typical stress patterns as accurately as controls, but made many more stress errors than controls when reading Filipino words with atypical stress. He regularized the pronunciation of many of these words by incorrectly placing the stress on the penultimate syllable. Since he also read nonwords as accurately and quickly as controls and performed well on tests of phonological awareness, L.A. appears to present a clear case of developmental surface dyslexia in a transparent orthography.

  1. Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Lee, Seong Ho; Park, Chi Yong; Yang, Jun Seok; Lee, Jeong Geun; Park, Jai Hak

    2011-01-01

    Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method

  2. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  3. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  4. Interannual variability of sea surface temperature and circulation in ...

    African Journals Online (AJOL)

    Local surface heat flux exchanges driven by the anomalous shortwave radiation dominated the interannual SST variability in the Tanzanian shelf region, with some contribution by the advection of heat anomalies from the North-East Madagascar Current. Farther offshore, the interannual variability of the SST was dominated ...

  5. Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region

    Science.gov (United States)

    Fontaine, B.; Janicot, Serge; Roucou, P.

    This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical

  6. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  7. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  8. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  9. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  10. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  11. The variable effects of stress on alcohol use from adolescence to early adulthood.

    Science.gov (United States)

    Aseltine, R H; Gore, S L

    2000-04-01

    Despite evidence of a strong association between stress and level of drinking in adolescent populations, the role of stress in accounting for changes in drinking behavior throughout the adolescent years is unclear. This study uses a linear growth curve analysis to examine the determinants of within-individual changes in drinking frequency and binge drinking across five waves of data from a community sample of adolescents who were followed into young adulthood. Predictors of drinking include: stressful life events, parental and peer social support, and parental and peer relationship problems. Findings indicate significant effects of stressful life events and parental support and conflict on both the frequency and intensity of alcohol use. Although age-related changes in these variables coincide with changes in drinking behavior, they do not account for drinking variability over this period. Results from conditional models demonstrate that the impact of the stress is contingent on age, and that the strong associations between drinking and stress evidenced during the high school years weaken considerably as individuals move into their late teens and early twenties. Discussion centers on the complex motivations for and facilitators of drinking as young people mature and change environments over the adolescent years.

  12. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses

    Science.gov (United States)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-12-01

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.

  13. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  14. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  15. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  16. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  17. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Liu, Wei; Chen, Jiwei; Liu, Yongquan; Su, Xianyue

    2012-01-01

    In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers. -- Highlights: ► Multiple scattering theory including the interface/surface stress effect. ► Interface/surface elasticity theory to describe the nonclassical boundary conditions. ► Elastic Mie scattering matrix embodying the interface/surface stress effect. ► Interface/surface stress effect would be significant at the nanoscale.

  18. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  19. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2017-02-01

    Full Text Available The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  20. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  1. Cantilever surface stress sensors with single-crystalline silicon piezoresistors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Andreas; Hansen, Ole; Boisen, Anja

    2005-01-01

    We present a cantilever with piezoresistive readout optimized for measuring the static deflection due to isotropic surface stress on the surface of the cantilever [Sens. Actuators B 79(2-3), 115 (2001)]. To our knowledge nobody has addressed the difference in physical regimes, and its influence o...

  2. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  3. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses

    International Nuclear Information System (INIS)

    Mcdonald, E.J.; Hallam, K.R.; Flewitt, P.E.J.

    2005-01-01

    On many occasions repairs are undertaken to ferritic steel weldments on plant either during construction or to remove service induced defects. These repaired weldments are subsequently put into service with or without a post-weld heat treatment. In either case, but particularly for the latter, there is a need to accommodate the associated residual stresses in structural integrity assessments such as those based upon the R6 failure avoidance procedure. Although in some circumstances the residual macro-stresses developed within weldments of components and structures can be calculated this is not so readily achieved in the case of residual stresses introduced by repair welds. There is a range of physical and mechanical techniques available to undertake the measurement of macro-residual stresses. Of these X-ray diffraction has the advantage that it is essentially non-destructive and offers the potential for evaluating stresses, which exist in the near surface layer. Although for many structural integrity assessments both the magnitude and distribution of residual stresses have to be accommodated it is not practical to make destructive measurements on weld repaired components and structures to establish the through section distribution of stresses. An approach is to derive a description of the appropriate macro-stresses by a combination of measurement and calculation on trial ferritic steel repair weldments. Surface measurements on the plant can then be made to establish the relationship between the repaired component or structure and the trial weld and thereby improve confidence in predicted stresses and their distribution from the near-surface measured values. Hence X-ray diffraction measurements at the near-surface of the plant weldment can be used to underwrite the quality of the repair by confirming the magnitude and distribution of residual stresses used for the integrity assessment to demonstrate continued safe operation

  4. Geometrical Considerations for Piezoresistive Microcantilever Response to Surface Stress during Chemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; Goericke, F; Ratto, T; Lee, J; Hart, B; King, W

    2008-04-25

    We have designed, fabricated, and tested five piezoresistive cantilever configurations to investigate the effect of shape and piezoresistor placement on the sensitivity of microcantilevers under either point loading and surface stress loading. The experimental study reveals that: (1) high aspect ratio cantilevers that are much longer than they are wide are optimal for point-loading applications such as microscopy and force measurements; (2) low aspect ratio cantilevers that are short and wide are optimal for surface stress loading scenarios such as those that occur in biological and chemical sensor applications. The sensitivity data for both point loads and surface stress are consistent with previously developed finite-element models.

  5. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach.

    Science.gov (United States)

    Eldridge, Ronald C; Flanders, W Dana; Bostick, Roberd M; Fedirko, Veronika; Gross, Myron; Thyagarajan, Bharat; Goodman, Michael

    2017-09-01

    Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers. Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F 2 -isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures. FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers. Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.

  6. Influence of Cushioning Variables in the Workplace and in the Family on the Probability of Suffering Stress.

    Science.gov (United States)

    Gonzalo, David Cárdenas

    2016-09-01

    Stress at work and in the family is a very common issue in our society that generates many health-related problems. During recent years, numerous studies have sought to define the term stress, raising many contradictions that various authors have studied. Other authors have attempted to establish some criteria, in subjective and not very quantitative ways, in an attempt to reduce and even to eliminate stressors and their effects at work and in the family context. The purpose of this study was to quantify so-called cushioning variables, such as control, social support, home/work life conciliation, and even sports and leisure activities, with the purpose of, as much as possible, reducing the negative effects of stress, which seriously affects the health of workers. The study employs data from the Fifth European Working Conditions Survey, in which nearly 44,000 interviewees from 34 countries in the European Union participated. We constructed a probabilistic model based on a Bayesian network, using variables from both the workplace and the family, the aforementioned cushioning variables, as well as the variable stress. If action is taken on the above variables, then the probabilities of suffering high levels of stress may be reduced. Such action may improve the quality of life of people at work and in the family.

  7. Residual stress improved by water jet peening using cavitation for small-diameter pipe inner surfaces

    International Nuclear Information System (INIS)

    Yasuo, Nakamura; Toshizo, Ohya; Koji, Okimura

    2001-01-01

    As one of degradation conditions on components used in water, the overlapping effect of environment, material and stress might cause stress corrosion cracking (SCC). Especially, for the tensile residual stress produced by welding, it is particularly effective to reduce the tensile residual stress on the material surface to prevent SCC. In this paper, the residual stress improvement method using cavitation impact generated by a water jet, called Water Jet Peening (WJP), has been developed as the maintenance technology for the inner surfaces of small-diameter Ni-Cr-Fe alloy (Alloy 600) pipes. As the results, by WJP for the inner surface of Alloy 600 pipe (inner diameter; approximately 10-15 mm), we confirmed that the compressive stress generated within the range from the surface to the inner part about 0.5 mm deep and took a maximum value about 350 MPa on the surface. (author)

  8. Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases

    Science.gov (United States)

    Merrifield, A.; Xie, S. P.

    2016-02-01

    This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.

  9. Stress among Student Affairs Administrators: The Relationship of Personal Characteristics and Organizational Variables to Work-Related Stress.

    Science.gov (United States)

    Berwick, Kathleen R.

    1992-01-01

    Examined possible relationships between reported work-related stress and organizational and personal variables, hardiness of personality, exercise activity, and organizational culture of 240 student affairs administrators within Minnesota. Results revealed that job satisfaction and hardiness of personality were greatest predictors of lowered…

  10. Numerical simulation of the double pits stress concentration in a curved casing inner surface

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-12-01

    Full Text Available Sour or sweet oil fields development is common in recent years. Casing and tubing are usually subjected to pitting corrosion because of exposure to the strong corrosion species, such as CO2, H2S, and saline water. When the corrosion pits formed in the casing inner surface, localized stress concentration will occur and the casing strength will be degraded. Thus, it is essential to evaluate the degree of stress concentration factor accurately. This article performed a numerical simulation on double pits stress concentration factor in a curved inner surface using the finite element software ABAQUS. The results show that the stress concentration factor of double pits mainly depends on the ratio of two pits distance to the pit radius (L/R. It should not be only assessed by the absolute distance between the two pits. When the two pits are close and tangent, the maximum stress concentration factor will appear on the inner tangential edges. Stress concentration increased by double pits in a curved casing inner surface is more serious than that in a flat surface. A correction factor of 1.9 was recommended in the curved inner surface double pits stress concentration factor predict model.

  11. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    Science.gov (United States)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  12. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  13. The influence of rail surface irregularities on contact forces and local stresses

    Science.gov (United States)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-01-01

    The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.

  14. Stress intensity factor analyses of surface cracks in three-dimensional structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Shibata, Katsuyuki; Watanabe, Takayuki; Tagata, Kazunori.

    1983-11-01

    The stress intensity factor analyses of surface cracks in various three-dimensional structures were performed using the finite element computer program EPAS-J1. The results obtained by EPAS-J1 were compared with other finite element solutions or results obtained by the simplified estimation methods. Among the simplified estimation methods, the equations proposed by Newman and Raju give the distributions of the stress intensity factor along a crack front, which were compared with the result obtained by EPAS-J1. It was confirmed by comparing the results that EPAS-J1 gives reasonable stress intensity factors of surface cracks in three-dimensional structures. (author)

  15. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    Directory of Open Access Journals (Sweden)

    J. Fyke

    2017-11-01

    Full Text Available Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.

  16. Entropy Analysis of RR and QT Interval Variability during Orthostatic and Mental Stress in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Mathias Baumert

    2014-12-01

    Full Text Available Autonomic activity affects beat-to-beat variability of heart rate and QT interval. The aim of this study was to explore whether entropy measures are suitable to detect changes in neural outflow to the heart elicited by two different stress paradigms. We recorded short-term ECG in 11 normal subjects during an experimental protocol that involved head-up tilt and mental arithmetic stress and computed sample entropy, cross-sample entropy and causal interactions based on conditional entropy from RR and QT interval time series. Head-up tilt resulted in a significant reduction in sample entropy of RR intervals and cross-sample entropy, while mental arithmetic stress resulted in a significant reduction in coupling directed from RR to QT. In conclusion, measures of entropy are suitable to detect changes in neural outflow to the heart and decoupling of repolarisation variability from heart rate variability elicited by orthostatic or mental arithmetic stress.

  17. Influence of Cushioning Variables in the Workplace and in the Family on the Probability of Suffering Stress

    Directory of Open Access Journals (Sweden)

    David Cárdenas Gonzalo

    2016-09-01

    Full Text Available Stress at work and in the family is a very common issue in our society that generates many health-related problems. During recent years, numerous studies have sought to define the term stress, raising many contradictions that various authors have studied. Other authors have attempted to establish some criteria, in subjective and not very quantitative ways, in an attempt to reduce and even to eliminate stressors and their effects at work and in the family context. The purpose of this study was to quantify so-called cushioning variables, such as control, social support, home/work life conciliation, and even sports and leisure activities, with the purpose of, as much as possible, reducing the negative effects of stress, which seriously affects the health of workers. The study employs data from the Fifth European Working Conditions Survey, in which nearly 44,000 interviewees from 34 countries in the European Union participated. We constructed a probabilistic model based on a Bayesian network, using variables from both the workplace and the family, the aforementioned cushioning variables, as well as the variable stress. If action is taken on the above variables, then the probabilities of suffering high levels of stress may be reduced. Such action may improve the quality of life of people at work and in the family.

  18. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    Science.gov (United States)

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-05-01

    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  19. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, Edwin; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and

  20. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  1. Effects of social stress on heart rate and heart rate variability in growing pigs

    NARCIS (Netherlands)

    Jong, de I.C.; Sgoifo, A.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.M.

    2000-01-01

    The effects of social stress on heart rate, heart rate variability and the occurrence of cardiac arrhythmias were studied in 12 growing pigs. Social stress was induced during a good competition test with a pen mate, and subsequently during a resident-intruder test with an unacquainted pig in which

  2. Effects of social stress on heart rate and heart rate variability in growing pigs

    NARCIS (Netherlands)

    de Jong, IC; Sgoifo, A; Lambooij, E; Korte, SM; Blokhuis, HJ; Koolhaas, JM

    The effects of social stress on heart rate, heart rate variability and the occurrence of cardiac arrhythmias were studied in 12 growing pigs. Social stress was induced during a good competition test with a pen mate, and subsequently during a resident-intruder test with an unacquainted pig in which

  3. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  4. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  5. Standard test method for calibration of surface/stress measuring devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Surface quality and topographic inspection of variable compliance part after precise turning

    Science.gov (United States)

    Nieslony, P.; Krolczyk, G. M.; Wojciechowski, S.; Chudy, R.; Zak, K.; Maruda, R. W.

    2018-03-01

    The paper presents the problem of precise turning of the mould parts with variable compliance and demonstrates a topographic inspection of the machined surface quality. The study was conducted for the cutting tools made of cemented carbide with coatings, in a range of variable cutting parameters. The long shaft with special axial hole, made of hardened 55NiCrMoV6 steel was selected as a workpiece. The carried out study included the stiffness measurement of the machining system, as well as the investigation of cutting force components. In this context, the surface topography parameters were evaluated using the stylus profile meter and analysed. The research revealed that the surface topography, alongside the 3D functional parameters, and PSD influences the performance of the machined surface. The lowest surface roughness parameters values, equalled to Sa = 1 μm and Sz = 4.3 μm have been obtained during turning with cutting speed vc = 90 m/min. The stable turning of variable compliance part affects the surface texture formation with a unidirectional perpendicular, anisotropic structure. Nevertheless, in case of unstable turning, the characteristic chatter marks are observed, and process dynamics has greater contribution in formation of surface finish than turning kinematics and elastic plastic deformation of workpiece.

  7. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  8. Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Shim, Do-Jun

    2005-01-01

    To investigate the relevance of the definition of the reference stress to estimate J and C* for surface crack problems, this paper compares finite element (FE) J and C* results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface cracks and finite internal axial cracks are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) a local limit load (ii), a global limit load, (iii) a global limit load determined from the FE limit analysis, and (iv) the optimised reference load. It is found that the reference stress based on a local limit load gives overall excessively conservative estimates of J and C*. Use of a global limit load clearly reduces the conservatism, compared to that of a local limit load, although it can sometimes provide non-conservative estimates of J and C*. The use of the FE global limit load gives overall non-conservative estimates of J and C*. The reference stress based on the optimised reference load gives overall accurate estimates of J and C*, compared to other definitions of the reference stress. Based on the present findings, general guidance on the choice of the reference stress for surface crack problems is given

  9. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates

    NARCIS (Netherlands)

    Sadeghian, H.; Goosen, J.F.L.; Bossche, A.; Van Keulen, F.

    2009-01-01

    In this letter, the dominant role of surface stress and surface elasticity on the overall elastic behavior of ultrathin cantilever plates is studied. A general framework based on two-dimensional plane-stress analysis is presented. Because of either surface reconstruction or molecular adsorption,

  10. Allowing for surface preparation in stress corrosion cracking modelling

    International Nuclear Information System (INIS)

    Berge, P.; Buisine, D.; Gelpi, A.

    1997-01-01

    When a 600 alloy component is significantly deformed during installation, by welding, rolling, bending, its stress corrosion cracking in Pressurized Water Nuclear Reactor's primary coolant, is significantly changed by the initial surface treatment. Therefore, the crack initiated time may be reduced by several orders of magnitude for certain surfaces preparations. Allowing for cold working of the surface, for which modelling is proposed, depends less on the degree of cold work then on the depths of the hardened layers. Honing hardens the metal over depths of about one micron for vessel head penetrations, for example, and has little influence on subsequent behaviour after the part deforms. On the other hand, coarser turning treatment produces cold worked layers which can reach several tens of microns and can very significantly reduce the initiation time compared to fine honing. So evaluation after depths of hardening is vital on test pieces for interpreting laboratory results as well as on service components for estimating their service life. Suppression by mechanical or chemical treatment of these layers, after deformation, seems to be the most appropriate solution for reducing over-stressing connected with surface treatment carried out before deformation. (author)

  11. Do physiological and pathological stresses produce different changes in heart rate variability?

    Directory of Open Access Journals (Sweden)

    Andrea eBravi

    2013-07-01

    Full Text Available Although physiological (e.g. exercise and pathological (e.g. infection stress affecting the cardiovascular system have both been documented to be associated with a reduction in overall heart rate variability (HRV, it remains unclear if loss of HRV is ubiquitously similar across different domains of variability analysis or if distinct patterns of altered HRV exist depending on the stressor. Using Continuous Individualized Multiorgan Variability Analysis (CIMVATM software, heart rate (HR and four selected measures of variability were measured over time (windowed analysis from two datasets, a set (n=13 of patients who developed systemic infection (i.e. sepsis after bone marrow transplant, and a matched set of healthy subjects undergoing physical exercise under controlled conditions. HR and the four HRV measures showed similar trends in both sepsis and exercise. The comparison through Wilcoxon sign-rank test of the levels of variability at baseline and during the stress (i.e. exercise or after days of sepsis development showed similar changes, except for LF/HF, ratio of power at low and high frequencies (associated with sympathovagal modulation, which was affected by exercise but did not show any change during sepsis. Furthermore, HRV measures during sepsis showed a lower level of correlation with each other, as compared to HRV during exercise. In conclusion, this exploratory study highlights similar responses during both exercise and infection, with differences in terms of correlation and inter-subject fluctuations, whose physiologic significance merits further investigation.

  12. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  13. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    Science.gov (United States)

    Vialard, J.; Jayakumar, A.; Gnanaseelan, C.; Lengaigne, M.; Sengupta, D.; Goswami, B. N.

    2012-05-01

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against ~0.25 for wind stress) and in observations (0.8 regression coefficient); ~60% of the heat flux variation is due do shortwave radiation and ~40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our ~100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST

  14. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  15. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    Science.gov (United States)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  16. Effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced on workdays and weekends.

    Science.gov (United States)

    Vahle-Hinz, Tim; Bamberg, Eva; Dettmers, Jan; Friedrich, Niklas; Keller, Monika

    2014-04-01

    The present study reports the lagged effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced during both workdays and weekends. Fifty employees participated in a diary study. Multilevel and regression analyses revealed a significant relationship between work stress measured at the end of a workday, work-related rumination measured during the evening, and restful sleep measured the following morning. Work stress, measured as the mean of 2 consecutive workdays, was substantially but not significantly related to restful sleep on weekends. Work stress was unrelated to nocturnal heart rate variability. Work-related rumination was related to restful sleep on weekends but not on workdays. Additionally, work-related rumination on weekends was positively related to nocturnal heart rate variability during the night between Saturday and Sunday. No mediation effects of work stress on restful sleep or nocturnal heart rate variability via work-related rumination were confirmed.

  17. The intraseasonal variability of winter semester surface air temperature in Antarctica

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-02-01

    Full Text Available This study investigates systematically the intraseasonal variability of surface air temperature over Antarctica by applying empirical orthogonal function (EOF analysis to the National Centers for Environmental Prediction, US Department of Energy, Reanalysis 2 data set for the period of 1979 through 2007. The results reveal the existence of two major intraseasonal oscillations of surface temperature with periods of 26–30 days and 14 days during the Antarctic winter season in the region south of 60°S. The first EOF mode shows a nearly uniform spatial pattern in Antarctica and the Southern Ocean associated with the Antarctic Oscillation. The mode-1 intraseasonal variability of the surface temperature leads that of upper atmosphere by one day with the largest correlation at 300-hPa level geopotential heights. The intraseasonal variability of the mode-1 EOF is closely related to the variations of surface net longwave radiation the total cloud cover over Antarctica. The other major EOF modes reveal the existence of eastward propagating phases over the Southern Ocean and marginal region in Antarctica. The leading two propagating modes respond to Pacific–South American modes. Meridional winds induced by the wave train from the tropics have a direct influence on the surface air temperature over the Southern Ocean and the marginal region of the Antarctic continent.

  18. Spatio-temporal Variability in Surface Ocean pCO2 Inferred from Observations

    OpenAIRE

    Jones, Steve

    2012-01-01

    The variability of surface ocean pCO2 is examined on multiple spatial and temporal scales. Temporal autocorrelation analysis is used to examine pCO2 variability over multiple years. Spatial autocorrelation analysis describes pCO2 variability over multiple spatial scales. Spatial autocorrelation lengths range between

  19. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  20. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    International Nuclear Information System (INIS)

    Ghorbanpour Arani, A.; Roudbari, M.A.

    2014-01-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics

  1. Process variables in organizational stress management intervention evaluation research: a systematic review

    NARCIS (Netherlands)

    Havermans, B.M.; Schelvis, R.M.C.; Boot, C.R.L.; Brouwers, E.P.M.; Anema, J.R.; Beek, A.J. van der

    2016-01-01

    Objectives This systematic review aimed to explore which process variables are used in stress management intervention (SMI) evaluation research. Methods A systematic review was conducted using seven electronic databases. Studies were included if they reported on an SMI aimed at primary or secondary

  2. Process variables in organizational stress management intervention evaluation research : A systematic review

    NARCIS (Netherlands)

    Havermans, B.M.; Schlevis, Roosmarijn Mc; Boot, Cécile Rl; Brouwers, E.P.M.; Anema, Johannes R; van der Beek, Allard J

    2016-01-01

    OBJECTIVES: This systematic review aimed to explore which process variables are used in stress management intervention (SMI) evaluation research. METHODS: A systematic review was conducted using seven electronic databases. Studies were included if they reported on an SMI aimed at primary or

  3. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  4. Future climate warming increases Greenland ice sheet surface mass balance variability

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  5. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    Science.gov (United States)

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  6. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  7. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    Science.gov (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  8. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    OpenAIRE

    Li, Xiaofan; Nie, Qing

    2009-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...

  9. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  10. Towards quantifying horizontal stresses of free-polling pneumatic rubber tyres on road surfaces

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available out in which the horizontal stresses on a relatively rough-textured (RT) test surface were compared with those on a relatively smooth (S) test surface, representing nominal positive textured road surfaces and nominal smooth (zero texture) road surfaces...

  11. The effects of shear and normal stress paths on rock friction

    International Nuclear Information System (INIS)

    Olsson, W.A.

    1990-01-01

    The effect of variable normal stress on the coefficient of friction of smooth artificial surfaces in welded tuff was studied. The shear stress response to changes in normal stress during constant-velocity sliding suggests that friction depends on the history of the normal stress; or, more generally, the path in shear/normal stress space. 6 refs., 5 figs

  12. Heart rate variability is associated with psychosocial stress in distinct social domains.

    Science.gov (United States)

    Lischke, Alexander; Jacksteit, Robert; Mau-Moeller, Anett; Pahnke, Rike; Hamm, Alfons O; Weippert, Matthias

    2018-03-01

    Psychosocial stress is associated with substantial morbidity and mortality. Accordingly, there is a growing interest in biomarkers that indicate whether individuals show adaptive (i.e., stress-buffering and health-promoting) or maladaptive (i.e., stress-escalating and health-impairing) stress reactions in social contexts. As heart rate variability (HRV) has been suggested to be a biomarker of adaptive behavior during social encounters, it may be possible that inter-individual differences in HRV are associated with inter-individual differences regarding stress in distinct social domains. To test this hypothesis, resting state HRV and psychosocial stress was assessed in 83 healthy community-dwelling individuals (age: 18-35years). HRV was derived from heart rate recordings during spontaneous and instructed breathing to assess the robustness of possible associations between inter-individual differences in HRV and inter-individual differences in psychosocial stress. Psychosocial stress was determined with a self-report questionnaire assessing stress in distinct social domains. A series of categorical and dimensional analyses revealed an association between inter-individual differences in HRV and inter-individual differences in psychosocial stress: Individuals with high HRV reported less stress in social life, but not in family life, work life or everyday life, than individuals with low HRV. On basis of these findings, it may be assumed that individuals with high HRV experience less psychosocial stress than individuals with low HRV. Although such an assumption needs to be corroborated by further findings, it seems to be consistent with previous findings showing that individuals with high HRV suffer less from stress and stress-related disorders than individuals with low HRV. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Using dual response surfaces to reduce variability in launch vehicle design: A case study

    International Nuclear Information System (INIS)

    Yeniay, Ozgur; Unal, Resit; Lepsch, Roger A.

    2006-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Uncertainties from one engineering discipline may propagate to another through linking parameters and the final system output may have an accumulation of risk. This may lead to significant deviations from expected performance. An estimate of variability or design risk therefore becomes essential for a robust design. This study utilizes the dual response surface approach to quantify variability in critical performance characteristics during conceptual design phase of a launch vehicle. Using design of experiments methods and disciplinary design analysis codes, dual response surfaces are constructed for the mean and standard deviation to quantify variability in vehicle weight and sizing analysis. Next, an optimum solution is sought to minimize variability subject to a constraint on mean weight. In this application, the dual response surface approach lead to quantifying and minimizing variability without much increase in design effort

  14. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  15. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial

    NARCIS (Netherlands)

    van der Zwan, J.E.; de Vente, W.; Huizink, A.C.; Bögels, S.M.; de Bruin, E.I.

    2015-01-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing

  16. Sectoral contributions to surface water stress in the coterminous United States

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Caldwell, P; Sun, G; McNulty, S; Huber-Lee, A; Madden, N

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast. (letter)

  17. Electromagnetic Detection of Stress Gradients at the Surfaces of Metals

    International Nuclear Information System (INIS)

    Schmidt, William F.; Zinke, Otto H.

    2004-01-01

    A general, integral expression is developed which relates measurements of the variations of the imaginary component of complex- reluctance with frequency to stress profiles near the surfaces of metals. The technique should yield either applied or residual stress profiles produced, for example, by heat-treating, metal-working, fatigue, or peening. It may even be applicable to carburizing. The technique of measurement cancels out the effects of any pre-treatment residual-stress profile (subject to the assumption of superposition). The general, integral expression is induced from the results of measurements on a steel bar which is subjected to both tensile tests and bending tests

  18. Minimizing stress in large-area surface micromachined perforated membranes with slits

    International Nuclear Information System (INIS)

    Ghaderi, M; Ayerden, N P; De Graaf, G; Wolffenbuttel, R F

    2015-01-01

    This paper presents the effectiveness of both design and fabrication techniques for avoiding the rupturing or excessive bending of perforated membranes after release in surface micromachining. Special lateral designs of arrays of slits in the membrane were investigated for a maximum yield at a given level of residual stress. Process parameters were investigated and optimized for minimum residual stress in multilayer thin-film membranes. A 2 µm thick sacrificial TEOS layer and a structural membrane that is composed of silicon nitride and polysilicon layers in the stack is the basis of this study. The effect of sharp corners on the local stress in membranes was investigated, and structures are proposed that reduce these effects, maximizing the yield at a given level of residual stress. The effects of perforation and slits were studied both theoretically and using finite element analysis. While the overall effect of perforation is negligible in typical MEMS structures, an optimum design for the slits reduces the von Mises stress considerably as compared to sharp corners. The fabrication process was also investigated and optimized for the minimum residual stress of both the layers within the stack and the complete layer stack. The main emphasis of this work is on placing a stress-compensating layer on the wafer backside and simultaneously removing it during the surface micromachining, as this has been found to be the most effective method to reduce the overall stress in a stack of layers after sacrificial etching. Implementation of a stress compensating layer reduced the total residual stress from 200 MPa compressive into almost 60 MPa, tensile. Even though a particular structure was studied here, the employed methods are expected to be applicable to similar MEMS design problems. (paper)

  19. Effects of autogenic training on stress response and heart rate variability in nursing students.

    Science.gov (United States)

    Lim, Seung-Joo; Kim, Chunmi

    2014-12-01

    This study was undertaken to confirm the effects of autogenic training (AT) on stress response and heart rate variability in nursing school students experiencing stress related to clinical training. The study was carried out from September 2012 to April 2013 in a quasi-experimental nonequivalent control group using a pretest-posttest design. The participants were 40 nursing students in their third year at either of two nursing colleges. All consented to participate. Nineteen nursing students at one college were assigned to the experimental group and underwent the 8-week AT program, and the other 21 were assigned to the control group and did not undergo any training. Stress response was assessed by questionnaire and HRV was measured three times, that is, before the program, at the end of the program, and 6 months after the end of the AT program. A significant time/group interaction was found for stress response (F = 4.68, p = .012), a subjective indicator. However, no significant interaction was found for the objective indicators of heart rate variability, normalized low frequency (F = 2.59, p = .090), normalized high frequency (F = 2.59, p = .090), or low frequency to high frequency ratio (F = 1.38, p = .257). The results suggest that AT provides an acceptable approach to stress reduction in nursing students. Copyright © 2014. Published by Elsevier B.V.

  20. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ... and their relations to atmospheric forcing. First, we found an asymmetry in the correlation coefficients between SST and wind stress curl, which implies that the SST variability at the scales of the order of one month is largely due to atmospheric forcing...

  1. INTERFACE DEVICE FOR NONDESTRUCTIVE TESTING OF RESIDUAL SURFACE STRESSES

    Directory of Open Access Journals (Sweden)

    Gennady A. Perepelkin

    2016-01-01

    Full Text Available The paper considers the organization of connection of a personal computer with a device for nondestructive testing of residual surface stresses. The device works is based on the phenomenon of diffraction of ionizing radiation from the crystal lattice near the surface of the crystallites. Proposed software interface to the organization for each type of user: the device developers, administrators, users. Some aspects of the organization of communication microcontroller to a PC via USB-port

  2. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  3. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey; Cohen, Anne L.; Oppo, Delia W.; Halley, Robert B.; Carilli, Jessica E.

    2009-01-01

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  4. Measurement of stress in vocal folds during phonation using spatiotemporal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Chao [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States)]. E-mail: jiang@surgery.wisc.edu; Zhang, Yu [Department of Surgery, Division of Otolaryngology Head and Neck Surgery, University of Wisconsin Medical School, Madison, WI 53792-7375 (United States)

    2007-02-19

    A method based on spatiotemporal synchronization is proposed to measure stress distribution in the vocal folds. It is theoretically proved that a measurement system can be synchronized with a vocal fold vibration system by coupling their surface dynamic variables. Therefore, the stress in the vocal folds is predicted by the synchronized continuous model. Numerical experiments are employed to verify this method. The influences of the different coupling variables and the parameter mismatches on stress measurement are also investigated.

  5. Measurement of stress in vocal folds during phonation using spatiotemporal synchronization

    International Nuclear Information System (INIS)

    Tao, Chao; Jiang, Jack J.; Zhang, Yu

    2007-01-01

    A method based on spatiotemporal synchronization is proposed to measure stress distribution in the vocal folds. It is theoretically proved that a measurement system can be synchronized with a vocal fold vibration system by coupling their surface dynamic variables. Therefore, the stress in the vocal folds is predicted by the synchronized continuous model. Numerical experiments are employed to verify this method. The influences of the different coupling variables and the parameter mismatches on stress measurement are also investigated

  6. Cortisol Variability and Self-reports in the Measurement of Work-related Stress

    DEFF Research Database (Denmark)

    Karlson, Björn; Eek, Frida; Hansen, Åse Marie

    2011-01-01

    We examined whether a high cortisol awakening response (CAR) and low cortisol decline over the day (CDD) are related to self-reported work stress and well-being, and whether there are gender differences in these relationships. Three hundred eighty-three working men and women responded to a survey...... measuring job stress factors, mastery at work, symptoms and well-being. Salivary cortisol was sampled at awakening, after 45 min and at 21:00, from which the variables CAR and CDD were defi ned. A high CAR was associated with lower perceived job control and work mastery, and poorer well-being. Low CDD...... men, a similar comparison showed those with low CDD to have poorer scores on job stress factors and symptom load. We conclude that individuals displaying high CAR or low CDD differ from those not displaying these cortisol profi les in self-report of work stress and well-being, and that gender...

  7. Prognostic utility of sestamibi lung uptake does not require adjustment for stress-related variables: A retrospective cohort study

    International Nuclear Information System (INIS)

    Leslie, William D; Yogendran, Marina S; Ward, Linda M; Nour, Khaled A; Metge, Colleen J

    2006-01-01

    Increased 99m Tc-sestamibi stress lung-to-heart ratio (sLHR) has been shown to predict cardiac outcomes similar to pulmonary uptake of thallium. Peak heart rate and use of pharmacologic stress affect the interpretation of lung thallium uptake. The current study was performed to determine whether 99m Tc-sestamibi sLHR measurements are affected by stress-related variables, and whether this in turn affects prognostic utility. sLHR was determined in 718 patients undergoing 99m Tc-sestamibi SPECT stress imaging. sLHR was assessed in relation to demographics, hemodynamic variables and outcomes (mean follow up 5.6 ± 1.1 years). Mean sLHR was slightly greater in males than in females (P < 0.01) and also showed a weak negative correlation with age (P < 0.01) and systolic blood pressure (P < 0.01), but was unrelated to stress method or heart rate at the time of injection. In patients undergoing treadmill exercise, sLHR was also positively correlated with peak workload (P < 0.05) but inversely with double product (P < 0.05). The combined explanatory effect of sex, age and hemodynamic variables on sLHR was less than 10%. The risk of acute myocardial infarction (AMI) or death increased by a factor of 1.7–1.8 for each SD increase in unadjusted sLHR, and was unaffected by adjustment for sex, age and hemodynamic variables (hazard ratios 1.6–1.7). The area under the ROC curve for the unadjusted sLHR was 0.65 (95% CI 0.59–0.71, P < 0.0001) and was unchanged for the adjusted sLHR (0.65, 95% CI 0.61–0.72, P < 0.0001). Stress-related variables have only a weak effect on measured sLHR. Unadjusted and adjusted sLHR provide equivalent prognostic information for prediction of AMI or death

  8. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  9. Mechanics of deformations in terms of scalar variables

    Science.gov (United States)

    Ryabov, Valeriy A.

    2017-05-01

    Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.

  10. Analysis of stress intensity factors for surface cracks in pre/post penetration

    International Nuclear Information System (INIS)

    Miyoshi, Toshiro; Yoshida, Yuichiro

    1988-01-01

    It is important to evaluate the penetration of surface cracks in a Leak-Before-Break analysis. Because the stress intensity factors for surface cracks in pre/post penetration had not yet been analyzed, the authors carried three-dimensional boundary element analyses in order to obtain them. First, the authors developed the technique of nodal breakdown appropriate for cracks with short ligament length in a two-dimensional boundary element analysis. Next, analyses of stress intensity factor for surface cracks in pre/post penetration were carried out using the technique of nodal breakdown for cracks with short ligament length and the three-dimensional boundary element code BEM 3 D which was designed for a supercomputer. (author)

  11. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  12. The influence of environmental variables and irradiation on iodine stress corrosion crack initiation and growth in Zircaloy

    International Nuclear Information System (INIS)

    Lunde, L.; Videm, K.

    1980-01-01

    Variables in the SCC testing technique and the effect of the fast neutron dose appear to explain most of the controversy about the effect of irradiation damage on the SCC behaviour of Zircaloy. On the basis of extensive laboratory testing functions expressing the time for stress corrosion crack (SCC) initiation and the rate of crack propagation at different stresses and temperatures have been worked out. The environmental variables in the SCC test can have a much larger influence on the life-time for autoclaved material than for pickled and sandblasted metal. For irradiated (oxidized) material a ten times increase in the iodine concentration reduced the failure stress from 500 to 250 MPa. By comparing our results with published data it is concluded that the failure stress (after 1-3 hours) is very dependent upon the neutron dose. Neutron damage will raise the stress threshold for doses up to 10 20 n/cm 2 and thereafter the failure stress is gradually decreased to low values with increasing neutron doses up to 5.10 21 n/cm 2 . (author)

  13. Monitoring the variability of sea level and surface circulation with satellite altimetry

    NARCIS (Netherlands)

    Volkov, Denis L. "Jr"

    2004-01-01

    Variability in the ocean plays an important role in determining global weather and climate conditions. The advent of satellite altimetry has significantly facilitated the study of the variability of sea level and surface circulation. Satellites provide high-quality regular and nearly global

  14. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  15. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  16. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  17. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  18. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    Energy Technology Data Exchange (ETDEWEB)

    Vialard, J. [Univerite P. et M. Curie, Laboratoire d' Oceanographie Experimentation et Approches Numeriques (LOCEAN), Case 100, CNRS, IRD, Paris Cedex 05 (France); Jayakumar, A.; Gnanaseelan, C.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Pune (India); Lengaigne, M. [Univerite P. et M. Curie, Laboratoire d' Oceanographie Experimentation et Approches Numeriques (LOCEAN), Case 100, CNRS, IRD, Paris Cedex 05 (France); CSIR, National Institute of Oceanography, Goa (India); Sengupta, D. [Indian Institute of Sciences, Centre of Atmospheric and Oceanic Sciences, Bangalore (India)

    2012-05-15

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against {proportional_to}0.25 for wind stress) and in observations (0.8 regression coefficient); {proportional_to}60% of the heat flux variation is due do shortwave radiation and {proportional_to}40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our {proportional_to}100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region

  19. Effect of input variability on the quality of laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2009-10-15

    Laser shock processing (LSP) involves high-energy laser radiation combined with suitable overlays to generate highpressure pulses on the surface of the metal. The stress wave generated due to high pressure pulses propagates into the material causing the surface layer to yield and plastically deform, and thereby, develop a significant residual compressive stress in the surface region of the substrate material. The developed compressive stress field is beneficial to improve surface properties such as fatigue, wear, and corrosion. To improve the understanding of the shock hardening process, investigation into the physical processes involved is necessary. In the first part of this paper, the temporal variation in the pressure intensity and spot size is calculated by using a two-dimensional recoil pressure prediction model. Using an explicit non-linear FEA code, ANSYS LS-DYNA, the deformation behavior and residual stresses in the substrate material are predicted. In the second part, a probabilistic approach to the modeling and analysis of LSP is presented in this paper. Various factors that affect the probabilistic performance of the LSP are grouped into categories and a select number of factors known to be significant, for which the variability could be assessed, are modeled as random variables (such as recoil pressure, laser beam spot size, substrate material properties and others). The potential of the probabilistic approach in predicting the structural integrity of the laser-shocked components is addressed

  20. Effect of input variability on the quality of laser shock processing

    International Nuclear Information System (INIS)

    Arif, Abul Fazal M.

    2009-01-01

    Laser shock processing (LSP) involves high-energy laser radiation combined with suitable overlays to generate highpressure pulses on the surface of the metal. The stress wave generated due to high pressure pulses propagates into the material causing the surface layer to yield and plastically deform, and thereby, develop a significant residual compressive stress in the surface region of the substrate material. The developed compressive stress field is beneficial to improve surface properties such as fatigue, wear, and corrosion. To improve the understanding of the shock hardening process, investigation into the physical processes involved is necessary. In the first part of this paper, the temporal variation in the pressure intensity and spot size is calculated by using a two-dimensional recoil pressure prediction model. Using an explicit non-linear FEA code, ANSYS LS-DYNA, the deformation behavior and residual stresses in the substrate material are predicted. In the second part, a probabilistic approach to the modeling and analysis of LSP is presented in this paper. Various factors that affect the probabilistic performance of the LSP are grouped into categories and a select number of factors known to be significant, for which the variability could be assessed, are modeled as random variables (such as recoil pressure, laser beam spot size, substrate material properties and others). The potential of the probabilistic approach in predicting the structural integrity of the laser-shocked components is addressed

  1. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    Science.gov (United States)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  2. Heart Rate Variability Frequency Domain Alterations among Healthy Nurses Exposed to Prolonged Work Stress.

    Science.gov (United States)

    Borchini, Rossana; Veronesi, Giovanni; Bonzini, Matteo; Gianfagna, Francesco; Dashi, Oriana; Ferrario, Marco Mario

    2018-01-11

    The deregulation of the autonomic nervous system assessed through the heart rate variability (HRV) analysis is a promising pathway linking work stress and cardiovascular diseases. We aim to investigate the associations between HRV High Frequency (HF) and Low Frequency (LF) powers and work stress in a sample of 36 healthy nurses. Perceived work stress was assessed twice one year apart, using the Job Content and Effort Reward Imbalance questionnaires. This allows to classify nurses in three exposure groups: "prolonged high stress" (PHS), "recent high stress" (RHS) and "stable low stress" (SLS). A 24-h ECG monitoring was later performed during a working day (WD) and a subsequent resting day (RD). Statistically significantly lower ( p working periods. In the subsequent resting periods, HF means showed increases over time in the RHS (beta = +0.41, p working and resting periods. Our study evidences that both prolonged and recent perceived high work stress were associated with a reduction of HF and LF powers during work. In addition, prolonged stress was associated with a lack of recovery during not-working and resting periods.

  3. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Science.gov (United States)

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  4. Sex and family history of cardiovascular disease influence heart rate variability during stress among healthy adults.

    Science.gov (United States)

    Emery, Charles F; Stoney, Catherine M; Thayer, Julian F; Williams, DeWayne; Bodine, Andrew

    2018-07-01

    Studies of sex differences in heart rate variability (HRV) typically have not accounted for the influence of family history (FH) of cardiovascular disease (CVD). This study evaluated sex differences in HRV response to speech stress among men and women (age range 30-49 years) with and without a documented FH of CVD. Participants were 77 adults (mean age = 39.8 ± 6.2 years; range: 30-49 years; 52% female) with positive FH (FH+, n = 32) and negative FH (FH-, n = 45) of CVD, verified with relatives of participants. Cardiac activity for all participants was recorded via electrocardiogram during a standardized speech stress task with three phases: 5-minute rest, 5-minute speech, and 5-minute recovery. Outcomes included time domain and frequency domain indicators of HRV and heart rate (HR) at rest and during stress. Data were analyzed with repeated measures analysis of variance, with sex and FH as between subject variables and time/phase as a within subject variable. Women exhibited higher HR than did men and greater HR reactivity in response to the speech stress. However, women also exhibited greater HRV in both the time and frequency domains. FH+ women generally exhibited elevated HRV, despite the elevated risk of CVD associated with FH+. Although women participants exhibited higher HR at rest and during stress, women (both FH+ and FH-) also exhibited elevated HRV reactivity, reflecting greater autonomic control. Thus, enhanced autonomic function observed in prior studies of HRV among women is also evident among FH+ women during a standardized stress task. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Comparison of residual stress measurement in thin films using surface micromachining method

    International Nuclear Information System (INIS)

    He, Q.; Luo, Z.X.; Chen, X.Y.

    2008-01-01

    Conductive, dielectric, semiconducting, piezoelectric and ferroelectric thin films are extensively used for MEMS/NEMS applications. One of the important parameters of thin films is residual stress. The residual stress can seriously affect the properties, performance and long-term stability of the films. Excessive compressive or tensile stress results in buckling, cracking, splintering and sticking problems. Stress measurement techniques are therefore essential for both process development and process monitoring. Many suggestions for stress measurement in thin films have been made over the past several decades. This paper is concentrated on the in situ stress measurement using surface micromachining techniques to determine the residual stress. The authors review and compare several types of stress measurement methods including buckling technique, rotating technique, micro strain gauge and long-short beam strain sensor

  6. Automatic stress-relieving music recommendation system based on photoplethysmography-derived heart rate variability analysis.

    Science.gov (United States)

    Shin, Il-Hyung; Cha, Jaepyeong; Cheon, Gyeong Woo; Lee, Choonghee; Lee, Seung Yup; Yoon, Hyung-Jin; Kim, Hee Chan

    2014-01-01

    This paper presents an automatic stress-relieving music recommendation system (ASMRS) for individual music listeners. The ASMRS uses a portable, wireless photoplethysmography module with a finger-type sensor, and a program that translates heartbeat signals from the sensor to the stress index. The sympathovagal balance index (SVI) was calculated from heart rate variability to assess the user's stress levels while listening to music. Twenty-two healthy volunteers participated in the experiment. The results have shown that the participants' SVI values are highly correlated with their prespecified music preferences. The sensitivity and specificity of the favorable music classification also improved as the number of music repetitions increased to 20 times. Based on the SVI values, the system automatically recommends favorable music lists to relieve stress for individuals.

  7. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  8. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress

    OpenAIRE

    Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.-B.; Dimsdale, J.E.

    2008-01-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (p < .001), thi...

  9. Stress intensity evaluation for surface crack with use of boundary element method and influence function method and the surface crack extension analysis

    International Nuclear Information System (INIS)

    Yuuki, R.; Ejima, K.

    1991-01-01

    In this study, three-dimensional boundary element elastostatic analysis is carried out on various surface crack problems. The present BEM uses a Mindlin's solution as well as a Kelvin's solution as a fundamental solution. So we can obtain accurate solutions for a surface crack just before or after a penetration. The obtained solutions for various shapes of surface cracks are stored as the data base, based on the influence function method. We develop the surface crack extension analysis system using the stress intensity factor data base and also the fatigue crack growth law. Our system seems to be useful especially for the analysis of the surface crack just before or after the penetration and also under the residual stresses

  10. Effect of Surface Roughness on MHD Couple Stress Squeeze-Film Characteristics between a Sphere and a Porous Plane Surface

    Directory of Open Access Journals (Sweden)

    M. Rajashekar

    2012-01-01

    Full Text Available The combined effects of couple stress and surface roughness on the MHD squeeze-film lubrication between a sphere and a porous plane surface are analyzed, based upon the thin-film magnetohydrodynamic (MHD theory. Using Stoke’s theory to account for the couple stresses due to the microstructure additives and the Christensen’s stochastic method developed for hydrodynamic lubrication of rough surfaces derives the stochastic MHD Reynolds-type equation. The expressions for the mean MHD squeeze-film pressure, mean load-carrying capacity, and mean squeeze-film time are obtained. The results indicate that the couple stress fluid in the film region enhances the mean MHD squeeze-film pressure, load-carrying capacity, and squeeze-film time. The effect of roughness parameter is to increase (decrease the load-carrying capacity and lengthen the response time for azimuthal (radial roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and increase the squeeze-film time as compared to the solid case.

  11. Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge.

    Science.gov (United States)

    Rassias, Athos J; Guyre, Paul M; Yeager, Mark P

    2011-12-01

    We evaluated the differential impact of stress-associated vs high pharmacologic concentrations of hydrocortisone pretreatment on heart rate variability (HRV) during a subsequent systemic inflammatory stimulus. Healthy volunteers were randomized to receive placebo (Control) and hydrocortisone at 1.5 μg/kg per minute (STRESS) or at 3.0 μg/kg per minute (PHARM) as a 6-hour infusion. The STRESS dose was chosen to replicate the condition of physiologic adrenal cortical output during acute systemic stress. The PHARM dose was chosen to induce a supraphysiologic concentration of cortisol. The next day, all subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide). Heart rate variability was analyzed with the statistic approximate entropy (ApEn). A lower ApEn correlates with decreased HRV. At the 3-hour nadir, the decrease in ApEn in the STRESS group was significantly less compared to placebo (P statistically different. We also found that the maximal decrease in ApEn preceded maximal increase in heart rate in all groups. The decrease in R-R interval was maximal at 4 hours, whereas the ApEn nadir was 1 hour earlier at 3 hours. Pretreatment with a stress dose of hydrocortisone but not a higher pharmacologic dose maintained a significantly higher ApEn after endotoxin exposure when compared to a placebo. In addition, decreases in ApEn preceded increases in heart rate. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  13. Mechanical stress-controlled tunable active frequency-selective surface

    Science.gov (United States)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  14. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2014-01-01

    large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a

  15. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  16. The spinning minimal surfaces without the Grassmann variables

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1988-01-01

    Generalizing the model of the spinning Dirac electron with Zitterbewegung we give a theory of spinning strings, membranes and p-branes in curved background spaces of arbitrary dimensions. The dynamical variables are surface co-ordinates x μ (ξ α ) and a single c-number spinor z(ξ α ). We use a phase space action which reduces in the limit to that of spinless membranes. A Hamiltonian formulation is also given. (author). 8 refs

  17. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination.

    Science.gov (United States)

    Melillo, Paolo; Bracale, Marcello; Pecchia, Leandro

    2011-11-07

    This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination.

  18. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  19. Effects of Yoga on Stress, Stress Adaption, and Heart Rate Variability Among Mental Health Professionals--A Randomized Controlled Trial.

    Science.gov (United States)

    Lin, Shu-Ling; Huang, Ching-Ya; Shiu, Shau-Ping; Yeh, Shu-Hui

    2015-08-01

    Mental health professionals experiencing work-related stress may experience burn out, leading to a negative impact on their organization and patients. The aim of this study was to examine the effects of yoga classes on work-related stress, stress adaptation, and autonomic nerve activity among mental health professionals. A randomized controlled trial was used, which compared the outcomes between the experimental (e.g., yoga program) and the control groups (e.g., no yoga exercise) for 12 weeks. Work-related stress and stress adaptation were assessed before and after the program. Heart rate variability (HRV) was measured at baseline, midpoint through the weekly yoga classes (6 weeks), and postintervention (after 12 weeks of yoga classes). The results showed that the mental health professionals in the yoga group experienced a significant reduction in work-related stress (t = -6.225, p control group revealed no significant changes. Comparing the mean differences in pre- and posttest scores between yoga and control groups, we found the yoga group significantly decreased work-related stress (t = -3.216, p = .002), but there was no significant change in stress adaptation (p = .084). While controlling for the pretest scores of work-related stress, participants in yoga, but not the control group, revealed a significant increase in autonomic nerve activity at midpoint (6 weeks) test (t = -2.799, p = .007), and at posttest (12 weeks; t = -2.099, p = .040). Because mental health professionals experienced a reduction in work-related stress and an increase in autonomic nerve activity in a weekly yoga program for 12 weeks, clinicians, administrators, and educators should offer yoga classes as a strategy to help health professionals reduce their work-related stress and balance autonomic nerve activities. © 2015 The Authors. Worldviews on Evidence-Based Nursing published by Wiley Periodicals, Inc. on behalf of Society for Worldviews on Evidence-Based Nursing.

  20. Combined role of heat and water stresses on wheat, maize and rice inter-annual variability and trend from 1980 to 2010.

    Science.gov (United States)

    Zampieri, M.; Ceglar, A., , Dr; Dentener, F., , Dr; van den Berg, M., , Dr; Toreti, A., , Dr

    2017-12-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat and maize. In this study, based on data derived from observations, we characterize and attribute the effects of these climate extremes on wheat and maize yield anomalies (at global and national scales) with respect to the mean trend from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (i.e. the Heat Magnitude Day, HMD, and the Standardized Precipitation Evapotranspiration Index, SPEI), we have developed a composite indicator (i.e. the Combined Stress Index, CSI) that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains the 42% and the 50% of the inter-annual wheat and maize production variabilities, respectively. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Compared to maize, and in contrast to common perception, water excess affects wheat production more than drought in several countries. The index definition can be modified in order to quantify the role of combined heat and water stress events occurrence in determining the recorded yield trends as well. Climate change is increasingly limiting maize yields in several countries, especially in Europe and China. A comparable opposite signal, albeit less statistically significant, is found for the USA, which is the main world producer. As for rice, we provide a statistical evidence pointing out to the importance of considering the interactions with the horizontal surface waters fluxes carried out by the rivers. In fact, compared to wheat and maize, the CSI statistical skills in explaining rice production variability are quite reduced. This issue is particularly relevant in paddy fields and flooded lowlands where rice is mainly grown. Therefore, we have modified the procedure including a proxy for the

  1. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  2. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response.

    Science.gov (United States)

    Pulopulos, Matias M; Vanderhasselt, Marie-Anne; De Raedt, Rudi

    2018-08-01

    Vagal activity - reflecting the activation of stress regulatory mechanisms and prefrontal cortex activation - is thought to play an inhibitory role in the regulation of the hypothalamus-pituitary-adrenal axis. However, most studies investigating the association between stress-induced changes in heart rate variability (HRV, an index of cardiac vagal tone) and cortisol have shown a non-significant relationship. It has been proposed that physiological changes observed during anticipation of a stressor allow individuals to make behavioral, cognitive, and physiological adjustments that are necessary to deal with the upcoming actual stressor. In this study, in a large sample of 171 healthy adults (96 men and 75 women; mean age = 29.98, SD = 11.07), we investigated whether the cortisol response to a laboratory-based stress task was related to anticipation-induced or stress task-induced changes in HRV. As expected, regression analyses showed that a larger decrease in HRV during the anticipation of a stress task was related to higher stress task-induced cortisol increase, but not cortisol recovery. In line with prior research, the stress task-induced change in HRV was not significantly related to cortisol increase or recovery. Our results show for the first time that anticipatory HRV (reflecting differences in stress regulation and prefrontal activity before the encounter with the stressor) is important to understand the stress-induced cortisol increase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  4. Consideration of microstructure evolution and residual stress measurement near severe worked surface using high energy x-ray

    International Nuclear Information System (INIS)

    Hashimoto, Tadafumi; Mochizuki, Masahito; Shobu, Takahisa

    2012-01-01

    It is necessary to establish a measurement method that can evaluate accurate stress on the surface. However, the microstructure evolution takes place near the surface due to severe plastic deformation, since structural members have been superpositioned a lot of working processes to complete. As well known, a plane stress can't be assumed on the severe worked surface. Therefore we have been proposed the measurement method that can be measured the in-depth distribution of residual stress components by using high energy X-ray from a synchrotron radiation source. There is the combination of the constant penetration depth method and tri-axial stress analysis. Measurements were performed by diffraction planes for the orientation parameter Γ=0.25 of which elastic constants are nearly equal to the mechanical one. The stress components obtained must be converted to the stress components in real space by using optimization technique, since it corresponds to the weighted average stress components associated with the attenuation of X-ray in materials. The predicted stress components distribution agrees very well with the corrected one which was measured by the conventional removal method. To verify the availability of the proposed method, thermal aging variation of residual stress components on the severe worked surface under elevated temperature was investigated using specimen superpositioned working processes (i.e., welding, machining, peening). It is clarified that the residual stress components increase with thermal aging, using the diffraction planes in hard elastic constants to the bulk. This result suggests that the thermal stability of residual stress has the dependence of the diffraction plane. (author)

  5. Stress distribution in mechanically surface treated Ti-2.5Cu determined by combining energy-dispersive synchrotron and neutron diffraction

    International Nuclear Information System (INIS)

    Maawad, E.; Brokmeier, H.-G.; Hofmann, M.; Genzel, Ch.; Wagner, L.

    2010-01-01

    Mechanical surface treatments such as shot peening (SP) or ball-burnishing (BB) induce plastic deformation close to the surface resulting in work-hardening and compressive residual stresses. It enhances the fatigue performance by retarding or even suppressing micro-crack growth from the surface into the interior. SP and BB were carried out on a solution heat treated (SHT) Ti-2.5Cu. The investigations of compressive and balancing tensile residual stresses need a combination of energy-dispersive synchrotron (ED) and neutron diffraction. Essential for the stress distribution is the stress state before surface treatments which was determined by neutron diffraction. Results show that the maximum compressive stress and its depth play an important role to improve the fatigue performance.

  6. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  7. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chou, C.L.; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China)

    2015-11-01

    Highlights: • We demonstrate crystallographic structure, (0 0 1) texture, surface roughness, and residual stress in the single-layered FePt thin films annealed at various heating rates (10–110 K/s). • Texture coefficient of (0 0 1)-plane of the samples increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress. • Dewetting phenomenon due to stress relaxation leads to the broadening of [0 0 1] easy axis and degradation of perpendicular magnetic anisotropy. • A strong dependence of surface roughness on in-plane residual stress was revealed. • When the samples are RTA at 40 K/s, the enhanced perpendicular magnetic anisotropy and atomically surface roughness are achieved. - Abstract: Single-layered Fe{sub 52}Pt{sub 48} films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10–110 K/s) was applied to transform as-deposited fcc phase into L1{sub 0} phase and meanwhile to align [0 0 1]-axis of L1{sub 0} crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin{sup 2} ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface

  8. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  9. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    Science.gov (United States)

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  10. Sex-Specific Effects of Unpredictable Variable Prenatal Stress: Implications for Mammalian Developmental Programming During Spaceflight

    Science.gov (United States)

    Talyansky, Y.; Moyer, E. L.; Oijala, E.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.

  11. Correlations of the glycemic variability with oxidative stress and erythrocytes membrane stability in patients with type 1 diabetes under intensive treatment.

    Science.gov (United States)

    Rodrigues, Ricardo; Alves de Medeiros, Luciana; Moreira Cunha, Lucas; da Silva Garrote-Filho, Mario; Bernardino Neto, Morun; Tannus Jorge, Paulo; Santos Resende, Elmiro; Penha-Silva, Nilson

    2018-02-07

    This study aimed to evaluate the correlations of glycemic variability with erythrocyte membrane stability parameters and oxidative stress markers in patients with DM1 under intensive treatment. 90 patients with DM1 and under intensive treatment of the disease were evaluated in relation to anthropometric indices, records of glycemic averages and parameters of glycemic variability, biochemical dosages (glucose, uric acid, lipidogram, glycated hemoglobin, microalbuminuria, creatinine and iron) reticulocyte count, erythrocyte membrane stability parameters and oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and glutathione reductase, GR). Indicators of glycemic variability in the short and long term showed correlations with parameters of membrane stability and markers of oxidative stress (GR). In addition, the comparison of these same parameters between the subgroups consisting of quartiles of GV or glycemic control also showed significant differences. In the DM1 patients studied here, glycemic variability showed correlations with oxidative stress and erythrocyte membrane stability variables. This corroborates the hypothesis that glycemic fluctuations interfere with lipid peroxidation and cell membrane behavior, emphasizing its participation in mechanisms related to the development of chronic complications of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of reference loads on fracture mechanics analysis of surface cracked pipe based on reference stress method

    International Nuclear Information System (INIS)

    Shim, Do Jun; Son, Beom Goo; Kim, Young Jin; Kim, Yun Jae

    2004-01-01

    To investigate relevance of the definition of the reference stress to estimate J and C * for surface crack problems, this paper compares FE J and C * results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (I) the local limit load, (II) the global limit load, (III) the global limit load determined from the FE limit analysis, and (IV) the optimised reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and C * . Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and C * . The use of the FE global limit load gives overall non-conservative estimates of J and C * . The reference stress based on the optimised reference load gives overall accurate estimates of J and C * , compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given

  13. Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure

    Science.gov (United States)

    Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.

  14. Intraindividual change and variability in daily stress processes: Findings from two measurement-burst diary studies

    Science.gov (United States)

    Sliwinski, Martin J.; Almeida, David M.; Smyth, Joshua; Stawski, Robert S.

    2010-01-01

    There is little longitudinal information on aging-related changes in emotional responses to negative events. The present manuscript examined intraindividual change and variability in the within-person coupling of daily stress and negative affect (NA) using data from two-measurement burst daily diary studies. Three main findings emerged. First, average reactivity to daily stress increased longitudinally, and this increase was evident across most the adult lifespan. Second, individual differences in emotional reactivity to daily stress exhibited long-term temporal stability, but this stability was greatest in midlife and decreased in old age. And third, reactivity to daily stress varied reliably within-persons (across-time), with individual exhibiting higher levels of reactivity during times when reporting high levels of global subject stress in previous month. Taken together, the present results emphasize the importance of modeling dynamic psychosocial and aging processes that operate across different time scales for understanding age-related changes in daily stress processes. PMID:20025399

  15. Interaction of stress and phase transformations during thermochemical surface engineering

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard

    and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding of austenitic stainless steel. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range ordering (trapping) of nitrogen atoms......Low temperature nitriding of austenitic stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume...... expansion that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding, is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen...

  16. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  17. Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.

    Science.gov (United States)

    Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E

    2009-03-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (pshort-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (pshort-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.

  18. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  19. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Ra, Myoung Soo; Lee, Kyoung Soo

    2015-01-01

    This study investigated the effects of various geometric variables on the residual stresses and PWSCC growth of RPV BMI penetration nozzles. An FE residual stress analysis procedure was developed and validated from the viewpoint of FFS assessment. The validated FE residual stress analysis procedure and the PWSCC growth assessment procedure in the ASME B and PV Code, Sec.XI were applied to the BMI penetration nozzles with specified ranges of the geometric variables. The total stresses at steady state during normal operation including welding residual stresses increase with increasing inclination angle of the BMI nozzles, and with tilt angle, depth, and root width of the J-groove weld. The lifetime from the assumed initial crack to the acceptance criteria according to the ASME B and PV Code, Sec.XI also decreases under these conditions. The total stresses decrease and the lifetime increases with increasing nozzle thickness, but outer radius of the BMI nozzles has an insignificant effect on both of these factors.

  20. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus

    Directory of Open Access Journals (Sweden)

    Mickleborough Timothy D

    2008-09-01

    Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.

  1. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    International Nuclear Information System (INIS)

    Arregui-Mena, José David; Margetts, Lee; Griffiths, D.V.; Lever, Louise; Hall, Graham; Mummery, Paul M.

    2015-01-01

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  2. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    Energy Technology Data Exchange (ETDEWEB)

    Arregui-Mena, José David, E-mail: jose.arreguimena@postgrad.manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Margetts, Lee, E-mail: lee.margetts@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Griffiths, D.V., E-mail: d.v.griffiths@mines.edu [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Lever, Louise, E-mail: louise.lever@manchester.ac.uk [Research Computing, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Hall, Graham, E-mail: graham.n.hall@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2015-10-15

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  3. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    Science.gov (United States)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the

  4. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  5. The relevance of socio-demographic and occupational variables for the assessment of work-related stress risk.

    Science.gov (United States)

    Marinaccio, Alessandro; Ferrante, Pierpaolo; Corfiati, Marisa; Di Tecco, Cristina; Rondinone, Bruna M; Bonafede, Michela; Ronchetti, Matteo; Persechino, Benedetta; Iavicoli, Sergio

    2013-12-10

    Work-related stress is widely recognized as one of the major challenges to occupational health and safety. The correlation between work-related stress risk factors and physical health outcomes is widely acknowledged. This study investigated socio-demographic and occupational variables involved in perceived risk of work-related stress. The Italian version of the Health and Safety Executive Management Standards Indicator Tool was used in a large survey to examine the relationship between work-related stress risks and workers' demographic and occupational characteristics. Out of 8,527 questionnaires distributed among workers (from 75 organizations) 6,378 were returned compiled (74.8%); a set of mixed effects models were adopted to test single and combined effects of the variables on work-related stress risk. Female workers reported lower scores on control and peer support and more negative perceptions of relationships and change at work than male workers, most of them with full-time contracts. Age, job seniority, and educational level appeared positively correlated with control at work, but negatively with job demands. Fixed-term workers had positive perceptions regarding job demands and relationships, but more difficulties about their role at work than permanent workers. A commuting time longer than one hour and shift work appeared to be associated with higher levels of risk factors for work-related stress (except for role), the latter having more negative effects, increasing with age. The findings suggest that the assessment and management of work-related stress risk should consider specific socio-demographic and occupational risk factors such as gender, age, educational level, job status, shift work, commuting time, job contracts.

  6. Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress.

    Science.gov (United States)

    McGuire, Jennifer; Herman, James P; Horn, Paul S; Sallee, Floyd R; Sah, Renu

    2010-11-02

    Emergence of posttraumatic-like behaviors following chronic trauma is of interest given the rising prevalence of combat-related posttraumatic stress disorder (PTSD). Stress associated with combat usually involves chronic traumatization, composed of multiple, single episode events occurring in an unpredictable fashion. In this study, we investigated whether rats recovering from repeated trauma in the form of chronic variable stress (CVS) express posttraumatic stress-like behaviors and dysregulated neuroendocrine responses. Cohorts of Long-Evans rats underwent a 7 day CVS paradigm followed by behavioral and neuroendocrine testing during early (16 h post CVS) and delayed (7 day) recovery time points. A fear conditioning-extinction-reminder shock paradigm revealed that CVS induces exaggerated fear recall to reminder shock, suggestive of potentiated fear memory. Rats with CVS experience also expressed a delayed expression of fearful arousal under aversive context, however, social anxiety was not affected during post-CVS recovery. Persistent sensitization of the hypothalamic-pituitary-adrenocorticotropic response to a novel acute stressor was observed in CVS exposed rats. Collectively, our data are consistent with the constellation of symptoms associated with posttraumatic stress syndrome, such as re-experiencing, and arousal to fearful contexts. The CVS-recovery paradigm may be useful to simulate trauma outcomes following chronic traumatization that is often associated with repeated combat stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    Science.gov (United States)

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  8. The heterogeneity of surfaces of magnetic Ap stars

    International Nuclear Information System (INIS)

    Hack, M.

    1977-01-01

    The observations of spectrum-variability and light-variability of Ap stars are reviewed. It is shown that these variations are interpretable as due to the changing aspect of the spotted surface as the star rotates. It is stressed that the geometry of the phenomenon is understood fairly well but the physics is very far from being understood. (Auth.)

  9. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  10. Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests

    International Nuclear Information System (INIS)

    Nishikawa, Masaaki; Soyama, Hitoshi

    2011-01-01

    Highlights: → The sensitivity to residual stress was improved by selecting the depth parameter. → Residual stress could be obtained while determining the effect of unknown parameters. → The estimated residual stress agreed well with those of X-ray diffraction. -- Abstract: The present study proposed a method to evaluate the equibiaxial compressive residual stress of a metal surface by means of a depth-sensing indentation method using a spherical indenter. Inverse analysis using the elastic-plastic finite-element model for an indentation test was established to evaluate residual stress from the indentation load-depth curve. The proposed inverse analysis utilizes two indentation test results for a reference specimen whose residual stress is already known and for a target specimen whose residual stress is unknown, in order to exclude the effect of other unknown mechanical properties, such as Young's modulus and yield stress. Residual stress estimated by using the indentation method is almost identical to that measured by X-ray diffraction for indentation loads of 0.49-0.98 N. Therefore, it can be concluded that the proposed method can effectively evaluate residual stress on metal surface.

  11. [Variability of hemodynamic parameters and resistance to stress damage in rats of different strains].

    Science.gov (United States)

    Belkina, L M; Popkova, E V; Lakomkin, V L; Kirillina, T N; Zhukova, A G; Sazontova, T G; Usacheva, M A; Kapel'ko, V I

    2006-02-01

    Total power of heart rate variability and baroreflex sensitivity were significantly smaller in the August rats than in the Wistar rats, but adrenal and plasma catecholamine contents were considerably higher in the former ones. 1 hour after stress (30 min in cold water), plasma catecholamine was increased 2-fold in Wistar rats, while in August rats the adrenaline concentration increased only by 58% and the were no changes in noradrenaline content. At the same time, activation of catecholamine metabolism in the adrenal glands was similar in both groups. The oxidative stress induced by hydrogen peroxide depressed the contractile function of isolated heart in the August rats to a smaller extent as compared to Wistar rats, control ones and after the cold-water stress. This effect correlated with more pronounced stability ofantioxidant enzymes in the August rats. It seems that the greater resistance to stress damage in the August rats is mediated by enhanced power of defense mechanisms both at systemic and cellular levels.

  12. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Risurface-characteristics.

  13. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  14. [Effect of the use of echoenhancers on interobserver variability in dobutamine stress echocardiography].

    Science.gov (United States)

    Zamorano, J L; Sánchez, V; Almería, C; Serra, V; Rodrigo, J L; Sánchez-Harguindey, L

    2000-10-01

    Dobutamine stress echocardiography is an accurate technique for the noninvasive diagnosis of coronary artery disease. However, interobserver variability is an important limitation of stress echocardiography. Image quality and echocardiographer experience have been described to influence interobserver agreement. The aim of this study was to determine whether use of contrast agents during dobutamine stress echocardiography improves the agreement between an experienced and a unexperienced observer, and if learning period would be influenced by the use of contrast. Two blind observers interpreted all the studies: one experienced echocardiographer (A) and one unexperienced observer (B) in this technique. The contrast agent Levovist/Levograf 2.5 g was administered by two bolus (at rest and at peak stress). In all cases, second harmonic imaging and stress digitalisation packs were used. The kappa test was used to determine interobserver agreement. Fifty-two unselected consecutive studies in 51 patients were analyzed. Twenty-two studies were performed with contrast. The agreement between the experienced and the unexperienced observer was Kappa 0.58 and 0.52, with and without the use of contrast, with no statistically significant difference being archived. The routine use of contrast provides better although not significant, interobserver agreement. However, this improvement is not sufficient to substitute specific training.

  15. The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis.

    Science.gov (United States)

    Goessl, V C; Curtiss, J E; Hofmann, S G

    2017-11-01

    Some evidence suggests that heart rate variability (HRV) biofeedback might be an effective way to treat anxiety and stress symptoms. To examine the effect of HRV biofeedback on symptoms of anxiety and stress, we conducted a meta-analysis of studies extracted from PubMed, PsycINFO and the Cochrane Library. The search identified 24 studies totaling 484 participants who received HRV biofeedback training for stress and anxiety. We conducted a random-effects meta-analysis. The pre-post within-group effect size (Hedges' g) was 0.81. The between-groups analysis comparing biofeedback to a control condition yielded Hedges' g = 0.83. Moderator analyses revealed that treatment efficacy was not moderated by study year, risk of study bias, percentage of females, number of sessions, or presence of an anxiety disorder. HRV biofeedback training is associated with a large reduction in self-reported stress and anxiety. Although more well-controlled studies are needed, this intervention offers a promising approach for treating stress and anxiety with wearable devices.

  16. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  17. Stress field determination in an alloy 600 stress corrosion crack specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends

  18. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  19. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  20. Surface mechanical property and residual stress of peened nickel-aluminum bronze determined by in-situ X-ray diffraction

    Science.gov (United States)

    Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent

    2017-10-01

    As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.

  1. Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces

    OpenAIRE

    Matias,Sammy S. R.; Marques Júnior,José; Siqueira,Diego S.; Pereira,Gener T.

    2014-01-01

    There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, po...

  2. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  3. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability.

    Science.gov (United States)

    Mehta, R K

    2015-02-01

    Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5obese (30⩽BMI) adults performed repetitive handgrip exertions at 30% of their maximum strength until exhaustion in the absence and presence of a mental arithmetic stressor. Dependent measures included gold standard fatigue indicators (endurance time and rate of strength loss), perceived effort and mental demand, heart rate and temporal (RMSSD: root mean square of successive differences between N-N intervals) and spectral (LF/HF: ratio of low to high frequency) indices of HRV. Stress negatively affected endurance time (Pobesity × stress interactions were found on endurance time (P=0.0073), rate of strength loss (P=0.027) and perceived effort (P=0.026), indicating that stress increased fatigability, particularly in the obese group. Both obesity (P=0.001) and stress (P=0.033) independently lowered RMSSD. Finally, stress increased LF/HF ratio (P=0.028) and the interaction of stress and obesity (P=0.008) indicated that this was augmented in the obese group. The present study provides the first evidence that stress-related neuromuscular fatigue development is accelerated in obese individuals. In addition, the stress condition resulted in poorer HRV indices, which is indicative of autonomic dysfunction, particularly in the obese group. These findings indicate that workers are more susceptible to fatigue in high-stress work environments, particularly those with higher BMI, which can increase the risk of musculoskeletal injuries as well as cardiovascular diseases in this population.

  4. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  5. The residual stress distribution in welded pipe inner surface of stainless steel from the nuclear power plant in Ringhals

    International Nuclear Information System (INIS)

    Larsson, L.E.

    1984-06-01

    The axial residual stress distribution on the inner surface of welded pipes of stainless steel SS 2333 (AISI 304) have been measured using the X-ray diffraction technique. Four halves of two pipes with the outer diameter of 114 mm and wall thickness of 10 mm were investigated. The result on the pipe inner surface shows compressive stresses in the weld metal and tensile stresses within a region between 8-23 mm with a maximum of 180MPa at a distance of 17 mm from the weld centerline. The maximum axial and circumferential residual stresses on the pipe outer surface are of the magnitude of 100 MPa. By cutting the pipes into two halves these stresses are relaxed by about 35 MPa. (author)

  6. On to what extent stresses resulting from the earth's surface trigger earthquakes

    Science.gov (United States)

    Klose, C. D.

    2009-12-01

    The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.

  7. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  8. The role of physical activity and heart rate variability for the control of work related stress.

    Science.gov (United States)

    Tonello, Laís; Rodrigues, Fábio B; Souza, Jeniffer W S; Campbell, Carmen S G; Leicht, Anthony S; Boullosa, Daniel A

    2014-01-01

    Physical activity (PA) and exercise are often used as tools to reduce stress and therefore the risk for developing cardiovascular diseases (CVD). Meanwhile, heart rate variability (HRV) has been utilized to assess both stress and PA or exercise influences. The objective of the present review was to examine the current literature in regards to workplace stress, PA/exercise and HRV to encourage further studies. We considered original articles from known databases (PubMed, ISI Web of Knowledge) over the last 10 years that examined these important factors. A total of seven studies were identified with workplace stress strongly associated with reduced HRV in workers. Longitudinal workplace PA interventions may provide a means to improve worker stress levels and potentially cardiovascular risk with mechanisms still to be clarified. Future studies are recommended to identify the impact of PA, exercise, and fitness on stress levels and HRV in workers and their subsequent influence on cardiovascular health.

  9. The role of physical activity and heart rate variability for the control of work related stress

    Directory of Open Access Journals (Sweden)

    Laís eTonello

    2014-02-01

    Full Text Available Physical activity (PA and exercise are often used as tools to reduce stress and therefore the risk for developing cardiovascular diseases. Meanwhile, heart rate variability (HRV has been utilised to assess both stress and PA or exercise influences. The objective of the present mini review was to examine the current literature in regards to workplace stress, PA/exercise and HRV to encourage further studies. We considered original articles from known databases (PubMed, ISI Web of Knowledge over the last 10 years that examined these important factors. A total of 7 studies were identified with workplace stress strongly associated with reduced HRV in workers. Longitudinal workplace PA interventions may provide a means to improve worker stress levels and potentially cardiovascular risk with mechanisms still to be clarified. Future studies are recommended to identify the impact of PA, exercise and fitness on stress levels and HRV in workers and their subsequent influence on cardiovascular health.

  10. Transient thermal stresses in a transversely isotropic finite hollow circular cylinder due to arbitrary surface heat generations

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori.

    1980-01-01

    The materials macroscopically regarded as anisotropic materials such as fiber-reinforced composite materials have become to be used for the structural elements at elevated temperature, and the studies on the problem of thermal stress in anisotropic bodies are carried out actively. The unsteady thermal stress in anisotropic finite circular cylinders has not been analyzed so far. In this study, the problem of unsteady thermal stress in an anisotropic finite circular cylinder having arbitrary surface heat generation in axial direction on the internal and external surfaces, and emitting heat from both ends and the internal and external surfaces, was analyzed. For the analysis of temperature distribution, generalized finite Fourier transformation and finite Hankel transformation were used, and thermal stress and thermal displacement were analyzed by the use of the stress function of Singh. By adopting the function used for the transformation nucleus in generalized finite Fourier transformation as the stress function, the analysis was made without separating symmetric and opposite symmetric problems. Numerical calculation was carried out on the basis of the analytical results, and the effects of the anisotropy in thermal conductivity, Young's modulus and linear expansion on unsteady temperature distribution, thermal stress and thermal displacement were quantitatively examined. (Kako, I.)

  11. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  12. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  13. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  14. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    International Nuclear Information System (INIS)

    Jonkkari, I; Syrjala, S; Kostamo, E; Kostamo, J; Pietola, M

    2012-01-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate–plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ∼ 0.3 μm) and rough (Ra ∼ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights. (paper)

  15. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    Science.gov (United States)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  16. Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Saji, N.H.; Goswami, B.N. [Indian Inst. of Sci., Bangalore (India). Centre for Atmos. and Oceanic Sci.

    1997-08-01

    The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the atmospheric model intercomparison project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979-1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. 44 refs.

  17. Stress relieving procedure and facility by shot-peening the inside surface of NPP steam generators tubes

    International Nuclear Information System (INIS)

    Banica, I.; Maioru, H.

    1994-01-01

    Residual stress relieving of the transition zones between the deformed part and the non deformed part of the heat exchanger tubes expanded in tube sheets of the NPP equipment, is a technological problem attacked on international level as well as on national level through the continuing programme initiated by ICEMENERG. The most recent statistical data point out that over 75% of tube failures are taking place in the tube-to-tubesheet connection zone, a great number of them being produced in this area by intergranular attack and stress corrosion cracking. The increased occurrence of these incidents is explained first by the existence of residual stresses inside tube surfaces, induced by expanding the tubes. Relieving these residual stresses is the purpose of the outlined procedure and it is achieved by overlapping effects (compression stresses added over tensile stresses). In this paper aspects of the procedure are presented and also a facility is described for stress relieving by introducing compressive stresses from uniform and generalized collisions of the inside surface with micro balls of great kinetic energy carried by a pressurized gas. The stress relieving facility can be acted by remote control, the whole process being completely automatic. The procedure aims to the operation maintenance of the NPP steam generators. (Author)

  18. Observed metre scale horizontal variability of elemental carbon in surface snow

    International Nuclear Information System (INIS)

    Svensson, J; Lihavainen, H; Ström, J; Hansson, M; Kerminen, V-M

    2013-01-01

    Surface snow investigated for its elemental carbon (EC) concentration, based on a thermal–optical method, at two different sites during winter and spring of 2010 demonstrates metre scale horizontal variability in concentration. Based on the two sites sampled, a clean and a polluted site, the clean site (Arctic Finland) presents the greatest variability. In side-by-side ratios between neighbouring samples, 5 m apart, a ratio of around two was observed for the clean site. The median for the polluted site had a ratio of 1.2 between neighbouring samples. The results suggest that regions exposed to snowdrift may be more sensitive to horizontal variability in EC concentration. Furthermore, these results highlight the importance of carefully choosing sampling sites and timing, as each parameter will have some effect on EC variability. They also emphasize the importance of gathering multiple samples from a site to obtain a representative value for the area. (letter)

  19. Changes of the rats’ heart rate variability caused by chlorpromazine modulation of central noradrenergic neurotransmission during prolonged stress

    Directory of Open Access Journals (Sweden)

    O. Z. Мelnikova

    2012-03-01

    Full Text Available It’s established that under the prolonged stress there were changes of geometric and spectral indices of the rats’ heart rate variability (HRV, manifestations of which depended on duration of stressful factors acting and represented the stress reaction development from the stage of anxiety to the exhaustion phase. Application of chlorpromazine at the beginning and against the background of stress blocked the central alpha adrenoceptors and contributed to renewal of the most HRV indices into the limits of control values at the end of experiment. The results of research show that the modulation of functional state of central noradrenergic system plays a great role in the changes of HRV during prolonged stress.

  20. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  1. GENETIC VARIABILITY OF CULTURED PLANT TISSUES UNDER NORMAL CONDITIONS AND UNDER STRESS

    Directory of Open Access Journals (Sweden)

    Dolgikh Yu.I.

    2012-08-01

    , the same mechanisms determine both in vitro and in vivo variability. Stress during tissue culture can induce somaclonal variation. For example during cryopreservation the callus cells experience stress caused by exposure to a complex of various factors, which may induce free radical formation and provide conditions for the appearance of genetic changes. ISSR and retrotransposon-microsatellite amplified polymorphism (REMAP markers were applied to study the influence of individual steps of dehydration cryopreservation technique on DNA in calli and regenerated plants of bread wheat. The precultivation with sucrose and freezing had no influence on the genetic stability of plant material. After the dehydration step, a new fragment appeared in the REMAP profiles for one DNA sample in calli of one line. The most likely cause of the this change is triggered by the stress experienced by cells during dehydration, insertion of a new copy of retrotransposon close to the microsatellite sequence complementary to the ISSR primer.

  2. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Otoguro, Saori; Miura, Takahiro; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2014-01-01

    A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems.

  3. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  4. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  5. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    Science.gov (United States)

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  6. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-01-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea

  7. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus.

    Science.gov (United States)

    Padilla, Jaume; Johnson, Blair D; Newcomer, Sean C; Wilhite, Daniel P; Mickleborough, Timothy D; Fly, Alyce D; Mather, Kieren J; Wallace, Janet P

    2008-09-04

    Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 +/- 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p index of endothelial function.

  8. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  9. Humeral stress remodelling locations differ in Thoroughbred racehorses training and racing on dirt compared to synthetic racetrack surfaces.

    Science.gov (United States)

    Dimock, A N; Hoffman, K D; Puchalski, S M; Stover, S M

    2013-03-01

    Veterinarians have observed a putative change in the location of humeral stress remodelling in Thoroughbred racehorses with change from dirt to synthetic racetrack surfaces. To determine whether the location and severity of humeral stress remodelling differs between Thoroughbred racehorses exercising on dirt and synthetic racetrack surfaces, the potential significance of different locations of stress remodelling, and the potential usefulness of scintigraphy for prevention of complete humeral fracture. Scintigraphic images of humeri from 841 Thoroughbred racehorses at 3 racetracks during 2 years before and after conversion from dirt to synthetic surfaces were evaluated for location and severity of lesions. The effects of surface on lesion distributions were examined using Chi-square or Fisher's exact tests. Archived fractured humeri were examined to determine the location and severity of stress remodelling associated with complete fracture. Databases were queried to determine whether racehorses with scintigraphic lesions suffered humeral fracture and whether racehorses with a complete humeral fracture had had a scintigraphic examination. Horses at synthetic racetracks had a greater proportion of distal humeral lesions, whereas horses at dirt racetracks had a greater proportion of caudoproximal lesions (Pdirt surfaces, and, by inference, for horses examined using scintigraphy. © 2012 EVJ Ltd.

  10. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  11. Regional impacts of ocean color on tropical Pacific variability

    Science.gov (United States)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  12. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  13. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Ihara, Ryohei; Kanamaru, Daisuke; Mochizuki, Masahito

    2015-01-01

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  14. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  15. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  16. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  17. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  18. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  19. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  20. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  1. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  2. Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field

    Science.gov (United States)

    Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.

    2014-12-01

    Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.

  3. Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre

    Science.gov (United States)

    Hogg, A. M.; Gayen, B.

    2017-12-01

    Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.

  4. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Tiina Föhr

    2016-08-01

    Full Text Available Abstract Background Physical inactivity, overweight, and work-related stress are major concerns today. Psychological stress causes physiological responses such as reduced heart rate variability (HRV, owing to attenuated parasympathetic and/or increased sympathetic activity in cardiac autonomic control. This study’s purpose was to investigate the relationships between physical activity (PA, body mass index (BMI, and HRV-based stress and recovery on workdays, among Finnish employees. Methods The participants in this cross-sectional study were 16 275 individuals (6863 men and 9412 women; age 18–65 years; BMI 18.5–40.0 kg/m2. Assessments of stress, recovery and PA were based on HRV data from beat-to-beat R-R interval recording (mainly over 3 days. The validated HRV-derived variables took into account the dynamics and individuality of HRV. Stress percentage (the proportion of stress reactions, workday and working hours, and stress balance (ratio between recovery and stress reactions, sleep describe the amount of physiological stress and recovery, respectively. Variables describing the intensity (i.e. magnitude of recognized reactions of physiological stress and recovery were stress index (workday and recovery index (sleep, respectively. Moderate to vigorous PA was measured and participants divided into the following groups, based on calculated weekly PA: inactive (0 min, low (0 300 min. BMI was calculated from self-reported weight and height. Linear models were employed in the main analyses. Results High PA was associated with lower stress percentages (during workdays and working hours and stress balance. Higher BMI was associated with higher stress index, and lower stress balance and recovery index. These results were similar for men and women (P < 0.001 for all. Conclusion Independent of age and sex, high PA was associated with a lower amount of stress on workdays. Additionally, lower BMI was associated with better recovery during

  5. Changes in surface morphology and microcrack initiation in polymers under simultaneous exposure to stress and fast atom bombardment

    International Nuclear Information System (INIS)

    Michael, R.S.; Frank, S.; Stulik, D.; Dickinson, J.T.

    1987-01-01

    The authors present studies of the changes in surface morphology due to simultaneous exposure of polymers to stress and fast atom bombardment. The polymers examined were Teflon, Kapton, Nylon, and Kevlar-49. The incident particles were 6 keV xenon atoms. The authors show that in the presence of mechanical stress these polymers show topographical changes at particle doses considerably lower than similar changes produced on unstressed material. Applied stress also promotes the formation of surface microcracks which could greatly reduce mechanical strength of the material

  6. A longitudinal study in youth of heart rate variability at rest and in response to stress

    NARCIS (Netherlands)

    Li, Zhibin; Snieder, Harold; Su, Shaoyong; Ding, Xiuhua; Thayer, Julian F.; Treiber, Frank A.; Wang, Xiaoling

    Background: Few longitudinal studies have examined ethnic and sex differences, predictors and tracking stabilities of heart rate variability (HRV) at rest and in response to stress in youths and young adults. Methods: Two evaluations were performed approximately 1.5 years apart on 399 youths and

  7. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  8. Increased Adhesion of Listeria monocytogenes Strains to Abiotic Surfaces under Cold Stress

    Directory of Open Access Journals (Sweden)

    Bo-Hyung Lee

    2017-11-01

    Full Text Available Food contamination by Listeria monocytogenes remains a major concern for some food processing chains, particularly for ready-to-eat foods, including processed foods. Bacterial adhesion on both biotic and abiotic surfaces is a source of contamination by pathogens that have become more tolerant or even persistent in food processing environments, including in the presence of adverse conditions such as cold and dehydration. The most distinct challenge that bacteria confront upon entry into food processing environments is the sudden downshift in temperature, and the resulting phenotypic effects are of interest. Crystal violet staining and the BioFilm Ring Test® were applied to assess the adhesion and biofilm formation of 22 listerial strains from different serogroups and origins under cold-stressed and cold-adapted conditions. The physicochemical properties of the bacterial surface were studied using the microbial adhesion to solvent technique. Scanning electron microscopy was performed to visualize cell morphology and biofilm structure. The results showed that adhesion to stainless-steel and polystyrene was increased by cold stress, whereas cold-adapted cells remained primarily in planktonic form. Bacterial cell surfaces exhibited electron-donating properties regardless of incubation temperature and became more hydrophilic as temperature decreased from 37 to 4°C. Moreover, the adhesion of cells grown at 4°C correlated with affinity for ethyl acetate, indicating the role of cell surface properties in adhesion.

  9. The influence of the weld toe grinding and wig remelting weld toe rehabilitation techniques, on variable stresses, in case of cross fillet welds, reinforced with additional welding rows

    Directory of Open Access Journals (Sweden)

    Babis Claudiu

    2017-01-01

    Full Text Available Variable stresses where the load value varies between a maximum and a minimum value, or varies the position in time, cause after accumulating a large number of load cycles in those structures, the emergence of drug fatigue. Fatigue is characterized by failure on values of the applied stress from the load cycles, below the material flow, values which in case of static stress would not have caused problems. Knowing that the variable stressed structures are sensitive to stress concentrators, the paper aims to highlight the influence of two techniques to reduce stress concentrator weld toe grinding and WIG remelting weld toe, on the behavior of variable tensile test of cross corner welded specimens, reinforced with additional welding rows.

  10. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  11. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  12. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  13. The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front

    Directory of Open Access Journals (Sweden)

    Oplt Tomáš

    2017-11-01

    Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.

  14. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  15. The role of metacognitive beliefs in stress sensitisation, self-esteem variability, and the generation of paranoia.

    Science.gov (United States)

    Palmier-Claus, J E; Dunn, G; Morrison, A P; Lewis, S W

    2011-11-01

    INTRODUCTION. Stress sensitisation may play a key role in the formation of psychosis. The authors examined whether metacognitive beliefs and self-esteem moderate affective response to stress, and whether subtle fluctuations in self-esteem act as a mediator between stress and attenuated psychotic phenomena. METHOD. 70 healthy volunteers completed two conditions of the same experimental tasks, which were designed to be either neutral or stress inducing. Ambulant assessments of negative affect, self-esteem, and suspicious thoughts were taken before and after each task, and standardised questionnaires were completed at the beginning or end of each session. RESULTS. Metacognitive belief subscales, but not self-esteem, moderated the association between stress and resultant negative affect, and negative affect and suspicious thinking. Individuals who placed greater emphasis on controlling their thoughts had greater variability in their self-esteem during the stress condition, which in turn predicted the severity of their attenuated psychotic phenomena. DISCUSSION. Metacognitive beliefs may sensitise an individual to minor stressors, by increasing affective reactivity and causing subtle shifts in appraisals of self-worth. Psychosocial intervention may wish to target these beliefs in order to desensitise an individual to negative events.

  16. Social group dynamics predict stress variability among children in a New Zealand classroom.

    Science.gov (United States)

    Spray, Julie; Floyd, Bruce; Littleton, Judith; Trnka, Susanna; Mattison, Siobhan

    2018-03-27

    Previous research proposes stress as a mechanism for linking social environments and biological bodies. In particular, non-human primate studies investigate relationships between cortisol as a measure of stress response and social hierarchies. Because human social structures often include hierarchies of dominance and social status, humans may exhibit similar patterns. Studies of non-human primates, however, have not reached consistent conclusions with respect to relationships between social position and levels of cortisol. While human studies report associations between cortisol and various aspects of social environments, studies that consider social status as a predictor of stress response also report mixed results. Others have argued that perceptions of social status may have different implications for stress response depending upon social context. We propose here that characteristics of children's social networks may be a better predictor of central tendencies and variability of stress response than their perceptions of social status. This is evaluated among 24 children from 9.4 to 11.3 years of age in one upper middle-class New Zealand primary school classroom, assessed through observation within the classroom, self-reports during semi-structured interviews and 221 serial saliva samples provided daily over 10 consecutive school days. A synthetic assessment of the children's networks and peer-relationships was developed prior to saliva-cortisol analysis. We found that greater stability of peer-relationships within groups significantly predicts lower within-group variation in mid-morning cortisol over the two-week period, but not overall within-group differences in mean cortisol. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life

    NARCIS (Netherlands)

    Verkuil, B.; Brosschot, J.F.; Tollenaar, M.S.; Lane, R.D.; Thayer, J.F.

    2016-01-01

    BACKGROUND Prolonged cardiac activity that exceeds metabolic needs can be detrimental for somatic health. Psychological stress could result in such "additional cardiac activity." PURPOSE In this study, we examined whether prolonged additional reductions in heart rate variability (AddHRVr) can be

  18. The effect of ammonium partial pressure on residual stresses in surface layer of SW7M HSS steel after vacuum nitriding 'NITROVAC'79'

    International Nuclear Information System (INIS)

    Gawronski, Z.

    1997-01-01

    The effect of the nitriding atmosphere on the residual stresses in the surface layer of the SW7M HSS steel has been investigated in the work. It has been proved that the pressure influences the distribution of those stresses to a great extent. At lower pressures (20 hPa and 40 hPa) at which only one zone is being created - the one of internal nitriding, without that of ε type nitrides on the surface - the highest residual stresses are operating on the HSS steel surface itself or eventually in the subsurface region very close to the surface. In the difference, in case of higher pressure (120 hPa and 240 hPa), the highest stresses are operating at great depth 8-12 μm from the steel surface - depending on the thickness of the ε type nitride layer created on the steel surface at those pressure. All the relevant stresses are compressive one. (author). 6 refs, 4 figs, 1 tab

  19. During stress, heart rate variability moderates the impact of childhood adversity in women with breast cancer.

    Science.gov (United States)

    Tell, Dina; Mathews, Herbert L; Burr, Robert L; Witek Janusek, Linda

    2018-03-01

    Childhood adversity has long-lasting neuro-biological effects that can manifest as exaggerated stress responsivity to environmental challenge. These manifestations include a dysregulated hypothalamic-pituitary-adrenocortical (HPA) axis as well as increased levels of inflammatory mediators in response to stress. In this investigation, vagal parasympathetic activity was assessed for its capacity to moderate the relationship between childhood adversity and stress responsivity (cortisol and inflammation) during an acute laboratory challenge (Trier Social Stress Test-TSST). Thirty women recently diagnosed with breast cancer underwent the TSST during which their heart rate was recorded and saliva samples collected for measurement of cortisol and the proinflammatory cytokine, IL-6. Vagal activity during the TSST was calculated as the high-frequency (HF) component of heart rate variability (HRV). Vagal activity during the TSST moderated the effect of childhood adversity on both the cortisol and the IL-6 response. Women who had lower vagal stress-reactivity during the TSST and reported greater childhood adversity showed a larger rise in cortisol and IL-6 when compared to women with lower childhood adversity. The findings demonstrate that women with exposure to childhood adversity and low vagal stress-reactivity (reduced parasympathetic activity) exhibit an elevated stress response characterized by greater cortisol and proinflammatory cytokine release. Inflammatory burden and HPA dysregulation subsequent to stress may impair cancer control.

  20. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  1. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

    Directory of Open Access Journals (Sweden)

    N. Ghilain

    2012-08-01

    Full Text Available Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I, showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI and Fractional Vegetation Cover (FVC products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land

  2. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  3. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  4. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain

    International Nuclear Information System (INIS)

    Canestrari, Francesco; Stimilli, Arianna; Bahia, Hussain U.; Virgili, Amedeo

    2015-01-01

    Highlights: • Proposal of a new method to analyze low-temperature cracking of bituminous mixtures. • Reliability of the relaxation modulus master curve modeling through Prony series. • Suitability of the pseudo-variables approach for a close form solution. - Abstract: Thermal cracking is a critical failure mode for asphalt pavements. Relaxation modulus is the major viscoelastic property that controls the development of thermally induced tensile stresses. Therefore, accurate determination of the relaxation modulus is fundamental for designing long lasting pavements. This paper proposes a reliable analytical solution for constructing the relaxation modulus master curve by measuring stress and strain thermally induced in asphalt mixtures. The solution, based on Boltzmann’s Superposition Principle and pseudo-variables concepts, accounts for time and temperature dependency of bituminous materials modulus, avoiding complex integral transformations. The applicability of the solution is demonstrated by testing a reference mixture using the Asphalt Thermal Cracking Analyzer (ATCA) device. By applying thermal loadings on restrained and unrestrained asphalt beams, ATCA allows the determination of several parameters, but is still unable to provide reliable estimations of relaxation properties. Without them the measurements from ATCA cannot be used in modeling of pavement behavior. Thus, the proposed solution successfully integrates ATCA experimental data. The same methodology can be applied to all test methods that concurrently measure stress and strain. The statistical parameters used to evaluate the goodness of fit show optimum correlation between theoretical and experimental results, demonstrating the accuracy of this mathematical approach

  5. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects

    Directory of Open Access Journals (Sweden)

    Sami Ullah Khan

    2018-03-01

    Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation

  6. Regional impacts of ocean color on tropical Pacific variability

    Directory of Open Access Journals (Sweden)

    W. Anderson

    2009-08-01

    Full Text Available The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  7. Airborne Optical Remote Sensing of Ocean Surface Current Variability

    Science.gov (United States)

    Anderson, S. P.; Zuckerman, S.; Stuart, G.

    2016-02-01

    Accurate and timely knowledge of open ocean surface currents are needed for a variety of engineering and emergency missions, as well as for improving scientific understanding of ocean dynamics. This paper presents surface current observations from a new airborne current measurement capability called the Remote Ocean Current Imaging System (ROCIS). ROCIS exploits space-time processing of airborne ocean wave imagery to produce real-time maps of surface currents every 1 km along the flight track. Post-processing of the data allows for more in depth sensitivity studies than can be undertaken with the real-time measurements alone, providing swaths of current retrievals at higher spatial resolutions. Currents can be calculated on scales down to 100 m, across swaths 3 km wide, along the entire flight path. Here, we report on results for multiple ROCIS data collection flights over the Gulf of Mexico conducted in 2012, 2014 and 2015. We show comparisons to in situ current measurements, explore performance as a function of altitude, dwell, wind speed, and wave height, and discuss sources of error. We present examples of current retrievals revealing mesoscale and submesoscale variability. Lastly, we present horizontal kinetic energy spectra from select flights covering a range of spatial scales from hundreds of meters to hundreds of kilometers.

  8. Physiological-metabolic variables of heat stress in cows grazing in silvopastoral systems and in one treeless prairie.

    Directory of Open Access Journals (Sweden)

    Wilson Andrés Berragán-Hernández

    2015-06-01

    Full Text Available The aim of this work was to analyze changes of physiological and metabolic parameters as indicators of heat stress of cows in pasture systems. The research was carried out from 2011 to 2012 at the Turipaná Agricultural Research Center of Corpoica located in the Caribbean region in Cereté–Colombia. Environmental temperature (T and relative humidity (H were determined, as well as and rectal temperature (RT, skin temperature (ST, respiratory frequency (RF and the acid-basic status of animals. The variables were measured in the morning (6:00 h and in the afternoon (13:00 h. Significant Statistical differences were observed (p<0.05 in environmental temperature treatments (T with 7% and 6% less temperature in p-Arbus-Arbor y p-Arbor, respectively, compared with grass treatment. There was a significant hour effect on T and H (p<0.05 and a significant treatment-hour interaction on T (p<0.05. TP and FR showed a significant treatment-hour interaction per hour (6:00/13:00 h. The results show a positive effect of shadow from trees on the physiological variables. The negative effects observed on the physiological variables of unshaded treatments impacted in a minimal way the metabolic variables suggesting homeostatic responses in the animals under the evaluated stressful environmental conditions.

  9. Surface preparation for XRD residual stress measurements; Preparacao de superficie para medicao de tensoes residuais em soldagem por DRX

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Andrii; Oliveira, Bruno Jose de; Scotti, Americo, E-mail: asmwelder@gmail.com, E-mail: brunojoliveira7@gmail.com, E-mail: ascotti@mecanica.ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil)

    2016-10-15

    A characteristic feature of the X Ray Diffraction (XRD) method for stress determination is that measurements occur at a thin surface layer. Steel sheets come with surfaces modified by lamination, cleaning (sandblasting, grinding) and even corrosion, which induce residual stresses or roughness inherent to the material. Therefore, surface preparation prior to the residual stress measurement is essential, although no standard procedure seems to be available. A general recommendation is to remove a thin layer so that only residual stresses related to the welding process will be measured. In this study, the use of portable electrolytic equipment was evaluated for mechanized surface material removal. Chemical compositions of electrolytic solutions and the influence of current on the removed material, removal time and temperature during the process were studied. As a result, a suitable chemical solution for electro etching of low carbon steel was developed and a set of “soft” parameters that allowed the removal of about 300 um in a reasonable time was found. Higher currents reduce the removal time, yet increasing the consumption of the solution and plate temperature (which could adversely alter the microstructure or generate thermal stresses). Furthermore, the influence of these parameters on the operability of the process was demonstrated. (author)

  10. Efficient computer program EPAS-J1 for calculating stress intensity factors of three-dimensional surface cracks

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Watanabe, Takayuki; Yagawa, Genki.

    1982-03-01

    A finite element computer program EPAS-J1 was developed to calculate the stress intensity factors of three-dimensional cracks. In the program, the stress intensity factor is determined by the virtual crack extension method together with the distorted elements allocated along the crack front. This program also includes the connection elements based on the Lagrange multiplier concept to connect such different kinds of elements as the solid and shell elements, or the shell and beam elements. For the structure including three-dimensional surface cracks, the solid elements are employed only at the neighborhood of a surface crack, while the remainder of the structure is modeled by the shell or beam elements due to the reason that the crack singularity is very local. Computer storage and computational time can be highly reduced with the application of the above modeling technique for the calculation of the stress intensity factors of the three-dimensional surface cracks, because the three-dimensional solid elements are required only around the crack front. Several numerical analyses were performed by the EPAS-J1 program. At first, the accuracies of the connection element and the virtual crack extension method were confirmed using the simple structures. Compared with other techniques of connecting different kinds of elements such as the tying method or the method using anisotropic plate element, the present connection element is found to provide better results than the others. It is also found that the virtual crack extension method provides the accurate stress intensity factor. Furthermore, the results are also presented for the stress intensity factor analyses of cylinders with longitudinal or circumferential surface cracks using the combination of the various kinds of elements together with the connection elements. (author)

  11. Forces, surface finish and friction characteristics in surface engineered single- and multiple-point cutting edges

    International Nuclear Information System (INIS)

    Sarwar, M.; Gillibrand, D.; Bradbury, S.R.

    1991-01-01

    Advanced surface engineering technologies (physical and chemical vapour deposition) have been successfully applied to high speed steel and carbide cutting tools, and the potential benefits in terms of both performance and longer tool life, are now well established. Although major achievements have been reported by many manufacturers and users, there are a number of applications where surface engineering has been unsuccessful. Considerable attention has been given to the film characteristics and the variables associated with its properties; however, very little attention has been directed towards the benefits to the tool user. In order to apply surface engineering technology effectively to cutting tools, the coater needs to have accurate information relating to cutting conditions, i.e. cutting forces, stress and temperature etc. The present paper describes results obtained with single- and multiple-point cutting tools with examples of failures, which should help the surface coater to appreciate the significance of the cutting conditions, and in particular the magnitude of the forces and stresses present during cutting processes. These results will assist the development of a systems approach to cutting tool technology and surface engineering with a view to developing an improved product. (orig.)

  12. The role of SST variability in the simulation of the MJO

    Science.gov (United States)

    Stan, Cristiana

    2017-12-01

    The sensitivity of the Madden-Julian Oscillation to high-frequency variability (period 1-5 days) of sea surface temperature (SST) is investigated using numerical experiments with the super-parameterized Community Climate System Model. The findings of this study emphasize the importance of air-sea interactions in the simulation of the MJO, and stress the necessity of an accurate representation of ocean variability on short time scales. Eliminating 1-5-day variability of surface boundary forcing reduces the intraseasonal variability (ISV) of the tropics during the boreal winter. The ISV spectrum becomes close to the red noise background spectrum. The variability of atmospheric circulation shifts to longer time scales. In the absence of high-frequency variability of SST the MJO power gets confined to wavenumbers 1-2 and the magnitude of westward power associated with Rossby waves increases. The MJO convective activity propagating eastward from the Indian Ocean does not cross the Maritime Continent, and convection in the western Pacific Ocean is locally generated. In the Indian Ocean convection tends to follow the meridional propagation of SST anomalies. The response of the MJO to 1-5-day variability in the SST is through the charging and discharging mechanisms contributing to the atmospheric column moist static energy before and after peak MJO convection. Horizontal advection and surface fluxes show the largest sensitivity to SST perturbations.

  13. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  14. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  15. An examination of psychosocial variables moderating the relationship between life stress and injury time-loss among athletes of a high standard.

    Science.gov (United States)

    Ford, I W; Eklund, R C; Gordon, S

    2000-05-01

    Based on Williams and Andersen's model of stress and athletic injury, six psychosocial variables were assessed as possible moderators of the relationship between life stress and injury among 121 athletes (65 males, 56 females) competing in a variety of sports at state, national or international level. No significant effects of the sex of the participants were evident. Correlational analyses revealed moderator effects of several variables. Specifically, dispositional optimism and hardiness were related to decreased injury time-loss in athletes when positive life change increased, and global self-esteem was associated with decreased injury time-loss when both negative life change and total life change increased. The results indicate that athletes with more optimism, hardiness or global self-esteem may cope more effectively with life change stress, resulting in reduced injury vulnerability and recovery rates.

  16. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  17. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    Science.gov (United States)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully

  18. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  20. The application of white radiation to residual stress analysis in the intermediate zone between surface and volume

    CERN Document Server

    Genzel, C; Wallis, B; Reimers, W

    2001-01-01

    Mechanical surface processing is known to give rise to complex residual stress fields in the near surface region of polycrystalline materials. Consequently, their analysis by means of non-destructive X-ray and neutron diffraction methods has become an important topic in materials science. However, there remains a gap with respect to the accessible near surface zone, which concerns a range between about 10 mu m and 1 mm, where the conventional X-ray methods are no longer and the neutron methods are not yet sensitive. In order to achieve the necessary penetration depth tau to perform residual stress analysis (RSA) in this region, advantageous use can be made of energy dispersive X-ray diffraction of synchrotron radiation (15-60 keV) in the reflection mode. Besides an example concerning the adaptation of methods applied so far in the angle dispersive RSA to the energy dispersive case, the concept of a new materials science beamline at BESSY II for residual stress and texture analysis is presented.

  1. The application of white radiation to residual stress analysis in the intermediate zone between surface and volume

    International Nuclear Information System (INIS)

    Genzel, Ch.; Stock, C.; Wallis, B.; Reimers, W.

    2001-01-01

    Mechanical surface processing is known to give rise to complex residual stress fields in the near surface region of polycrystalline materials. Consequently, their analysis by means of non-destructive X-ray and neutron diffraction methods has become an important topic in materials science. However, there remains a gap with respect to the accessible near surface zone, which concerns a range between about 10 μm and 1 mm, where the conventional X-ray methods are no longer and the neutron methods are not yet sensitive. In order to achieve the necessary penetration depth τ to perform residual stress analysis (RSA) in this region, advantageous use can be made of energy dispersive X-ray diffraction of synchrotron radiation (15-60 keV) in the reflection mode. Besides an example concerning the adaptation of methods applied so far in the angle dispersive RSA to the energy dispersive case, the concept of a new materials science beamline at BESSY II for residual stress and texture analysis is presented

  2. Heart Rate Variability Frequency Domain Alterations among Healthy Nurses Exposed to Prolonged Work Stress

    Directory of Open Access Journals (Sweden)

    Rossana Borchini

    2018-01-01

    Full Text Available The deregulation of the autonomic nervous system assessed through the heart rate variability (HRV analysis is a promising pathway linking work stress and cardiovascular diseases. We aim to investigate the associations between HRV High Frequency (HF and Low Frequency (LF powers and work stress in a sample of 36 healthy nurses. Perceived work stress was assessed twice one year apart, using the Job Content and Effort Reward Imbalance questionnaires. This allows to classify nurses in three exposure groups: “prolonged high stress” (PHS, “recent high stress” (RHS and “stable low stress” (SLS. A 24-h ECG monitoring was later performed during a working day (WD and a subsequent resting day (RD. Statistically significantly lower (p < 0.02 HF and LF means were found in PHS and RHS nurses during the working periods. In the subsequent resting periods, HF means showed increases over time in the RHS (beta = +0.41, p < 0.05, but not in PHS nurses. LF means did not show any substantial increases in the resting periods, in the PHS group with geometric means lower when compared to SLS, in the non-working and resting periods. Our study evidences that both prolonged and recent perceived high work stress were associated with a reduction of HF and LF powers during work. In addition, prolonged stress was associated with a lack of recovery during not-working and resting periods.

  3. Variability in surface infrared reflectance of thirteen nitrile rubber gloves at key wavelengths for analysis of captan.

    Science.gov (United States)

    Phalen, R N; Que Hee, Shane S

    2007-02-01

    The aim of this study was to investigate the surface variability of 13 powder-free, unlined, and unsupported nitrile rubber gloves using attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrophotometry at key wavelengths for analysis of captan contamination. The within-glove, within-lot, and between-lot variability was measured at 740, 1124, 1252, and 1735 cm(-1), the characteristic captan reflectance minima wavelengths. Three glove brands were assessed after conditioning overnight at relative humidity (RH) values ranging from 2 +/- 1 to 87 +/- 4% and temperatures ranging from -8.6 +/- 0.7 to 59.2 +/- 0.9 degrees C. For all gloves, 1735 cm(-1) provided the lowest background absorbance and greatest potential sensitivity for captan analysis on the outer glove surface: absorbances ranged from 0.0074 +/- 0.0005 (Microflex) to 0.0195 +/- 0.0024 (SafeSkin); average within-glove coefficients of variation (CV) ranged from 2.7% (Best, range 0.9-5.3%) to 10% (SafeSkin, 1.2-17%); within-glove CVs greater than 10% were for one brand (SafeSkin); within-lot CVs ranged from 2.8% (Best N-Dex) to 28% (SafeSkin Blue); and between-lot variation was statistically significant (p < or = 0.05) for all but two SafeSkin lots. The RH had variable effects dependent on wavelength, being minimal at 1735, 1252, and 1124 cm(-1) and highest at 3430 cm(-1) (O-H stretch region). There was no significant effect of temperature conditioning. Substantial within-glove, within-lot, and between-lot variability was observed. Thus, surface analysis using ATR-FT-IR must treat glove brands and lots as different. ATR-FT-IR proved to be a useful real-time analytical tool for measuring glove variability, detecting surface humidity effects, and choosing selective and sensitive wavelengths for analysis of nonvolatile surface contaminants.

  4. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  5. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  6. Determination of the plastic deformation and residual stress tensor distribution using surface and bulk intrinsic magnetic properties

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2015-01-01

    We have developed an unique method to provide the stress calibration curve in steels: performing flaw-less welding in the under examination steel, we obtained to determine the level of the local plastic deformation and the residual stress tensors. These properties where measured using both the X-ray and the neutron diffraction techniques, concerning their surface and bulk stresses type II (intra-grain stresses) respectively, as well as the stress tensor type III by using the electron diffraction technique. Measuring the distribution of these residual stresses along the length of a welded sample or structure, resulted in determining the local stresses from the compressive to tensile yield point. Local measurement of the intrinsic surface and bulk magnetic property tensors allowed for the un-hysteretic correlation. The dependence of these local magnetic tensors with the above mentioned local stress tensors, resulting in a unique and almost un-hysteretic stress calibration curve of each grade of steel. This calibration integrated the steel's mechanical and thermal history, as well as the phase transformations and the presence of precipitations occurring during the welding process.Additionally to that, preliminary results in different grade of steels reveal the existence of a universal law concerning the dependence of magnetic and magnetostrictive properties of steels on their plastic deformation and residual stress state, as they have been accumulated due to their mechanical and thermal fatigue and history. This universality is based on the unique dependence of the intrinsic magnetic properties of steels normalized with a certain magnetoelastic factor, upon the plastic deformation or residual stress state, which, in terms, is normalized with their yield point of stress. (authors)

  7. Numerical evaluation of state boundary surface through rotation of principal stress axes in sand

    International Nuclear Information System (INIS)

    Sadrnejad, S. A.

    2001-01-01

    In applying shear stress to saturated soil with arbitrary stress paths, the prediction of the exact value of strains is difficult because of mainly its stress path dependent nature. Rotation of the principal stress axes during shearing of the soil is a feature of stress paths associated with many field loading situations. A proper understanding of the effects of principal stress rotation on soil behavior can be provided if the anisotropy existing prior to stress rotation and induced anisotropy due to plastic flow in soil are clearly understood and modeled. A multi laminate based model for soil is developed and used to compute and present the influence of rotation of principal stress axes on the plastic behavior of soil. This is fulfilled by distributing the effects of boundary condition changes into several predefined sampling orientations at one point and summing the micro-results up as the macro-result. The validity of the presented model examined by comparing numerical and test results showing the mentioned aspect. In this paper, the state boundary surface is numerically obtained by a multi laminate based model capable of predicting the behavior of sand under the influences of rotation of the direction of principal stress axes and induced anisotropy. the predicted numerical results are tally in agreement with experiments

  8. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  9. Effect of a weight reduction program on baseline and stress-induced heart rate variability in children with obesity.

    Science.gov (United States)

    Mazurak, Nazar; Sauer, Helene; Weimer, Katja; Dammann, Dirk; Zipfel, Stephan; Horing, Björn; Muth, Eric R; Teufel, Martin; Enck, Paul; Mack, Isabelle

    2016-02-01

    Autonomic dysregulation is a well-established feature in adults with obesity but not in children. Since this dysregulation could contribute to weight dynamics, this study aimed to compare autonomic regulation in children with obesity and normal-weight peers and to track autonomic status during weight reduction. Sixty children with obesity and 27 age- and sex-matched normal-weight healthy participants were included. Heart rate variability (HRV) was assessed at baseline and during a mental stress test and a subsequent recovery period. Children with obesity were investigated both upon admission and discharge. Upon admission, no significant differences in HRV parameters were found for normal-weight participants and those with obesity. Inpatient treatment led to significant changes in HRV with increase in general variability (standard deviation of the normal-to-normal interval (SDNN), P Children with obesity had sympathetic activation similar to normal-weight controls during mental stress with subsequent return to baseline values, and weight loss did not affect this profile. A weight reduction program induced a change in autonomic activity in children with obesity toward parasympathetic dominance but had no influence on autonomic nervous system reactivity during stress conditions. © 2015 The Obesity Society.

  10. Process for measuring residual stresses

    International Nuclear Information System (INIS)

    Elfinger, F.X.; Peiter, A.; Theiner, W.A.; Stuecker, E.

    1982-01-01

    No single process can at present solve all problems. The complete destructive processes only have a limited field of application, as the component cannot be reused. However, they are essential for the basic determination of stress distributions in the field of research and development. Destructive and non-destructive processes are mainly used if investigations have to be carried out on original components. With increasing component size, the part of destructive tests becomes smaller. The main applications are: quality assurance, testing of manufactured parts and characteristics of components. Among the non-destructive test procedures, X-raying has been developed most. It gives residual stresses on the surface and on surface layers near the edges. Further development is desirable - in assessment - in measuring techniques. Ultrasonic and magnetic crack detection processes are at present mainly used in research and development, and also in quality assurance. Because of the variable depth of penetration and the possibility of automation they are gaining in importance. (orig./RW) [de

  11. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    Science.gov (United States)

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  12. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  13. Mitigation of inside surface residual stress of type 304 stainless steel pipe welds by inside water cooling method

    International Nuclear Information System (INIS)

    Sasaki, R.

    1980-01-01

    The weld residual stress distributions, macro- and microstructures of heat affected zone and IGSCC susceptibility of Type 304 stainless steel pipe welds by natural and inside water cooling methods have been investigated. The residual stresses of pipe welds by the natural cooling method are high tensile on both the inside and the outside surface. While the residual stresses on the inside surface of pipe welds by the inside water cooling method are compressive in both axial and circumferential directions for each pipe size from 2 to 24 inch diameter. The sensitized zones of welds by the inside water cooling method are closer to the fusion line, much narrower and milder than those by the natural cooling method. According to the constant extension rate test results for specimens taken from the inside surface of pipe welds, the inside water cooled welds are more resistant to IGSCC than naturally cooled ones

  14. Analysis of monthly variability of thermocline in the South China Sea

    Science.gov (United States)

    Peng, Hanbang; Pan, Aijun; Zheng, Quan'an; Hu, Jianyu

    2018-03-01

    This study analyzes monthly variability of thermocline and its mechanism in the South China Sea (SCS). The study is based on 51-year (1960-2010) monthly seawater temperature and surface wind stress data from Simple Ocean Data Assimilation (SODA), together with heat flux, precipitation and evaporation data from the National Centers for Environmental Prediction (NCEP), the National Oceanic and Atmospheric Administration (NOAA) and the Woods Hole Oceanographic Institution, respectively. The results reveal that the upper boundary depth ( Z up), lower boundary depth ( Z low), thickness (Δ Z) and intensity ( T z ) of thermocline in the SCS show remarkable monthly variability. Being averaged for the deep basin of SCS, Z up deepens gradually from May to the following January and then shoals from February to May, while Z low varies little throughout the whole year. Further diagnostics indicates that the monthly variability of Z up is mainly caused by the buoyancy flux and wind stress curl. Using a linear method, the impacts of the buoyancy flux and wind stress curl on Z up can be quantitatively distinguished. The results suggest that Z up tends to deepen about 4.6 m when the buoyancy flux increases by 1×10 -5 kg/(m•s 3), while it shoals about 2.5 m when the wind stress curl strengthens by 1×10 -7 N/m³.

  15. Study on mechanism of intergranular stress corrosion cracking and analysis of residual stress and work hardening in welds of low-carbon austenitic stainless steel with hard surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya

    2007-01-01

    In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  16. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  17. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  18. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  19. The Impact of Social–Cognitive Stress on Speech Variability, Determinism, and Stability in Adults Who Do and Do Not Stutter

    Science.gov (United States)

    Tiede, Mark; Beal, Deryk; Whalen, D. H.

    2016-01-01

    Purpose This study examined the impact of social–cognitive stress on sentence-level speech variability, determinism, and stability in adults who stutter (AWS) and adults who do not stutter (AWNS). We demonstrated that complementing the spatiotemporal index (STI) with recurrence quantification analysis (RQA) provides a novel approach to both assessing and interpreting speech variability in stuttering. Method Twenty AWS and 21 AWNS repeated sentences in audience and nonaudience conditions while their lip movements were tracked. Across-sentence variability was assessed via the STI; within-sentence determinism and stability were assessed via RQA. Results Compared with the AWNS, the AWS produced speech that was more variable across sentences and more deterministic and stable within sentences. Audience presence contributed to greater within-sentence determinism and stability in the AWS. A subset of AWS who were more susceptible to experiencing anxiety exhibited reduced across-sentence variability in the audience condition compared with the nonaudience condition. Conclusions This study extends the assessment of speech variability in AWS and AWNS into the social–cognitive domain and demonstrates that the characterization of speech within sentences using RQA is complementary to the across-sentence STI measure. AWS seem to adopt a more restrictive, less flexible speaking approach in response to social–cognitive stress, which is presumably a strategy for maintaining observably fluent speech. PMID:27936276

  20. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    Science.gov (United States)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  1. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further

  2. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG

    DEFF Research Database (Denmark)

    Tanev, George; Saadi, Dorthe Bodholt; Hoppe, Karsten

    2014-01-01

    Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot...... study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV...

  3. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  4. The influence of surface stress on dislocation emission from sharp and blunt cracks in f.c.c. metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob

    2000-01-01

    We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with res......We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable...... with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack...... is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress...

  5. Critical shear stress on the surface of a cuttings bed; Tensao critica de cisalhamento na superficie de um leito de cascalhos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Luciana Mancor [Universidade Estadual Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia de Petroleo]. E-mail: luciana@lenep.uenf.br; Campos, Wellington [PETROBRAS, S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: campos@cenpes.petrobras.com.br; Braga, Luiz Carvalho [Centro Federal de Educacao Tecnologica (CEFET), Macae, RJ (Brazil). Unidade de Ensino Descentralizada]. E-mail: luiz@lenep.uenf.br

    2000-07-01

    The cuttings transport during the drilling of highly inclined and horizontal wells is hindered by the creation of a cuttings bed in the annulus. In this work, it is shown that the equilibrium height of this bed can be determined from the shear stress on its surface. This fact enables the formulation of a methodology for evaluating the equilibrium height of the cuttings bed through the introduction of a new concept, that of critical shear stress. This is the shear stress that acts on the bed surface at the imminence of movement of the particles on the bed surface. The use of the methodology requires the determination of the acting shear stress and of the required critical shear stress. The acting shear stress is calculated by means of a computer program that solve the motion differential equations in the annular space; covering the cases of the laminar and turbulent flow regimes. The actuating shear stress is a function of flow rate and of the annular geometry in the presence of a cuttings bed; it is also a function of the physical properties of the fluid. On the other hand, the required critical shear stress is a function of the particles diameters and physical properties of the fluid and particles. A mechanistic model for the critical shear stress is also presented. (author)

  6. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  7. Variable Levels of Tolerance to Water Stress (Drought and Associated Biochemical Markers in Tunisian Barley Landraces

    Directory of Open Access Journals (Sweden)

    Sameh Dbira

    2018-03-01

    Full Text Available Due to its high tolerance to abiotic stress, barley (Hordeum vulgare is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought in nine accessions of “Ardhaoui” barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.

  8. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  9. Changes in phase composition and stress state of surface layers of VK20 hard alloy after ion bombardment

    International Nuclear Information System (INIS)

    Platonov, G.L.; Leonov, E.Yu.; Anikin, V.N.; Anikeev, A.I.

    1988-01-01

    Titanium ion bombardment of the surface of the hard VK20 alloy is studied for its effect on variations in the phase and chemical composition of its surface layers. It is stated that ion treatment results in the appearance of the η-phase of Co 6 W 6 C composition in the surface layer of the VK20 alloy, in the increase of distortions and decrease of coherent scattering blocks of the hard alloy carbide phase. Such a bombardment is found to provoke a transition of the plane-stressed state of the hard alloy surface into the volume-stressed state. It is established that ion treatment does not cause an allotropic transition of the cobalt phase α-modification, formed during grinding of the hard alloy, into the β-modification

  10. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    Science.gov (United States)

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3

  11. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  12. Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity

    Directory of Open Access Journals (Sweden)

    Giuseppe Passarino

    2013-08-01

    Full Text Available Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.

  13. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    Science.gov (United States)

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  14. Effect of surface stress states on the corrosion behavior of alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Mo; Shim, Hee Sang; Seo, Myung Ji; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The test environment simulated the primary water chemistry in PWRs. Dissolved oxygen (DO), dissolved hydrogen (DH), pH and conductivity were monitored at room temperature using sensors manufactured by Orbisphere and Mettler Toledo. The temperature and pressure were maintained at 330 .deg. C and 150 bars during the corrosion test. The condition of the test solution was lithium (LiOH) 2 ppm and boron (H3BO4) 1,200 ppm, DH 35 cc/kg (STP) and less than 5 ppb DO. The flow rate of the loop system was 3.8 L/hour. Corrosion tests were conducted for 500 hours. The corrosion release rate was evaluated by a gravimetric analysis method using a two-step alkaline permanganate-ammonium citrate (AP/AC) descaling process. Compressive residual stress is induced by shot peening treatment but its value reveals some different trend between the shot peening intensity on the surface of Alloy 690 TT. A higher shot peening intensity causes a reduction in the corrosion rate and it is considered that the compressive residual stress beneath the surface layer suppresses the metal ion transfer in an alloy matrix.

  15. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  16. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  17. Rainfall variability, climate change and regionalization in the African monsoon region

    International Nuclear Information System (INIS)

    Fontaine, Bernard; Roucou, Pascal; Vigaud, Nicolas; Camara, Moctar; Konare, Abdourahamane; Sanda, Seidou Ibrah; Diedhiou, Arona; Janicot, Serge

    2012-01-01

    This summary recalls some results at the end of the AMMA international experiment (2003-2010) in terms of variability of the African monsoon at the intra-seasonal to multi-decadal scales and of climate prospective. The results confirmed the weight of surface temperatures and marine tele-connections for inter-annual and decadal fluctuations and stressed the importance of atmospheric variability. They also described the dominant modes of intra-seasonal variability as their interactions with the surface. Several hypotheses involving memory effects related to soil water and vegetation, particularly in boreal spring and autumn have also been made. Prospective analysis from model output suggests rainfall surplus around 2050 over the Eastern-central Sahel and relative deficit to the West. Phase 2 of AMMA (2010-2020) will focus more on aspects that have a high social impact in direct collaboration with meteorological services predictability, prediction scores, operational indicators, evaluation of the part of anthropogenic forcing in the current and future variations. (authors)

  18. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    Science.gov (United States)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  19. Modelling of surface stresses and fracturing during dyke emplacement: Application to the 2009 episode at Harrat Lunayyir, Saudi Arabia

    Science.gov (United States)

    Al Shehri, Azizah; Gudmundsson, Agust

    2018-05-01

    Correct interpretation of surface stresses and deformation or displacement during volcanotectonic episodes is of fundamental importance for hazard assessment and dyke-path forecasting. Here we present new general numerical models on the local stresses induced by arrested dykes. In the models, the crustal segments hosting the dyke vary greatly in mechanical properties, from uniform or non-layered (elastic half-spaces) to highly anisotropic (layers with strong contrast in Young's modulus). The shallow parts of active volcanoes and volcanic zones are normally highly anisotropic and some with open contacts. The numerical results show that, for a given surface deformation, non-layered (half-space) models underestimate the dyke overpressure/thickness needed and overestimate the likely depth to the tip of the dyke. Also, as the mechanical contrast between the layers increases, so does the stress dissipation and associated reduction in surface stresses (and associated fracturing). In the absence of open contacts, the distance between the two dyke-induced tensile and shear stress peaks (and fractures, if any) at the surface is roughly twice the depth to the tip of the dyke. The width of a graben, if it forms, should therefore be roughly twice the depth to the tip of the associated arrested dyke. When applied to the 2009 episode at Harrat Lunayyir, the main results are as follows. The entire 3-7 km wide fracture zone/graben formed during the episode is far too wide to have been generated by induced stresses of a single, arrested dyke. The eastern part of the zone/graben may have been generated by the inferred, arrested dyke, but the western zone primarily by regional extensional loading. The dyke tip was arrested at only a few hundred metres below the surface, the estimated thickness of the uppermost part of the dyke being between about 6 and 12 m. For the inferred dyke length (strike dimension) of about 14 km, this yields a dyke length/thickness ratio between 2400 and 1200

  20. Stochastic variability in stress, sleep duration, and sleep quality across the distribution of body mass index: insights from quantile regression.

    Science.gov (United States)

    Yang, Tse-Chuan; Matthews, Stephen A; Chen, Vivian Y-J

    2014-04-01

    Obesity has become a problem in the USA and identifying modifiable factors at the individual level may help to address this public health concern. A burgeoning literature has suggested that sleep and stress may be associated with obesity; however, little is know about whether these two factors moderate each other and even less is known about whether their impacts on obesity differ by gender. This study investigates whether sleep and stress are associated with body mass index (BMI) respectively, explores whether the combination of stress and sleep is also related to BMI, and demonstrates how these associations vary across the distribution of BMI values. We analyze the data from 3,318 men and 6,689 women in the Philadelphia area using quantile regression (QR) to evaluate the relationships between sleep, stress, and obesity by gender. Our substantive findings include: (1) high and/or extreme stress were related to roughly an increase of 1.2 in BMI after accounting for other covariates; (2) the pathways linking sleep and BMI differed by gender, with BMI for men increasing by 0.77-1 units with reduced sleep duration and BMI for women declining by 0.12 unit with 1 unit increase in sleep quality; (3) stress- and sleep-related variables were confounded, but there was little evidence for moderation between these two; (4) the QR results demonstrate that the association between high and/or extreme stress to BMI varied stochastically across the distribution of BMI values, with an upward trend, suggesting that stress played a more important role among adults with higher BMI (i.e., BMI > 26 for both genders); and (5) the QR plots of sleep-related variables show similar patterns, with stronger effects on BMI at the upper end of BMI distribution. Our findings suggested that sleep and stress were two seemingly independent predictors for BMI and their relationships with BMI were not constant across the BMI distribution.

  1. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    Science.gov (United States)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    effect that the revised parameterization will have on GCM simulations of climate variability and change. Best, M. J. et al. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. Egea, G., Verhoef, A., Vidale, P.L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 151 (10), 1370-1384.

  2. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  3. Heart rate variability reveals that a decrease in parasympathetic ('rest-and-digest') activity dominates autonomic stress responses in a free-living seabird.

    Science.gov (United States)

    Müller, Martina S; Vyssotski, Alexei L; Yamamoto, Maki; Yoda, Ken

    2017-10-01

    The autonomic stress response, often referred to as the 'fight-or-flight' response, is a highly conserved physiological reaction to stress in vertebrates that occurs via a decrease in parasympathetic (PNS) activity, which promotes self-maintenance 'rest and digest' processes, and an increase in sympathetic (SNS) activity, which prepares an animal for danger ('fight-or-flight'). Though the PNS and SNS both innervate most organs, they often control different tissues and functions within those organs (though the pacemaker of the heart is controlled by both). Moreover the PNS and SNS are regulated independently. Yet until now, most studies of autonomic stress responses in non-model species focused only on the SNS response. We used external electrocardiogram loggers to measure heart rate and heart rate variability indexes that reflect PNS and SNS activity in a seabird, the Streaked Shearwater (Calonectris leucomelas), during the stress of handling, and during recovery in the nest burrow or during restraint in a cloth bag. We show for the first time in a free-living animal that the autonomic stress response is mediated primarily by a rapid decrease in PNS activity: handling stress induced a large and long-lasting depression of PNS 'rest-and-digest' activity that required two hours to recover. We also found evidence for a substantially smaller and shorter-lasting SNS 'fight-or-flight' response. Confinement in a cloth bag was less stressful for birds than handling, but more stressful than recovering in nest burrows. We show that quantifying autonomic activity from heart rate variability is effective for non-invasively studying stress physiology in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Psycho-social and Mental Variables and Post-Traumatic Stress Disorder in Traffic Accident Survivors in Northern Iran.

    Science.gov (United States)

    Khodadadi-Hassankiadeh, Naema; Dehghan-Nayeri, Nahid; Shahsavari, Hooman; Yousefzadeh-Chabok, Shahrokh; Haghani, Hamid

    2017-07-01

    To assess the psycho-social and mental variables associated with post-traumatic stress disorder (PTSD) in a series of Iranian patients. A total of 528 eligible accident survivors in pre-sampling of a randomized controlled trial targeting PTSD were included in this cross-sectional study. Psycho-social characteristics associated to PTSD were explored in these survivors in an outpatient clinic. They completed the questionnaires via interview between six weeks to six months after accident. Data collection tools were PSS (DSM-V version) for PTSD and BDI-II for depression and a researcher-made questionnaire for psycho-social variables. There was a significant association between PTSD and the following variables; family communication, current depression, return to work, history of death of relatives, witnessed the death, length of amnesia, hospitalization, injured situation, and accident severity. Multivariate logistic regression indicated that some variables were associated with PTSD such as accident severity, ( p severe accident and poor family communication who do not return to work. Thus, routine assessment of PTSD, depression and psycho-social variables after traffic accidents must be taken into account.

  5. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  6. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    International Nuclear Information System (INIS)

    Li, P; Xie, J; Cheng, J; Wu, K K

    2014-01-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25–80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface. (paper)

  7. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    Science.gov (United States)

    Li, P.; Xie, J.; Cheng, J.; Wu, K. K.

    2014-07-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25-80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

  8. Analysis of stress fractures associated with lameness in Thoroughbred flat racehorses training on different track surfaces undergoing nuclear scintigraphic examination.

    Science.gov (United States)

    MacKinnon, M C; Bonder, D; Boston, R C; Ross, M W

    2015-05-01

    There is limited information regarding the impact of training track surface on the occurrence of stress fractures. To evaluate the impact of training track surface on the proportion of long bone and pelvic stress fractures associated with lameness in Thoroughbred horses in flat race training undergoing nuclear scintigraphic examination. Retrospective study. Scintigraphic examinations of Thoroughbred flat racehorses were evaluated from 2 hospitals (hospital A [Toronto Equine Hospital], 2003-2009, and hospital B [George D. Widener Hospital for Large Animals, School of Veterinary Medicine, University of Pennsylvania], 1994-2006). Horses admitted to hospital A trained at a single track, at which the main training surface changed from dirt to synthetic on 27 August 2006. Two distinct populations existed at hospital B: horses that trained on dirt (numerous trainers) and those that trained on turf (single trainer). All scintigraphic images were evaluated by a blinded reviewer. Fisher's exact test and logistic regression were used when appropriate, and significance was set at Pfractures detected in scintigraphic examinations from horses training on a synthetic surface (31.7%) in comparison to scintigraphic examinations from horses training on a dirt surface (23.0%) at an earlier point in time (P = 0.03). There was a greater proportion of hindlimb/pelvic and tibial stress fractures diagnosed in horses from the synthetic surface-trained group than from the dirt-trained group at hospital A (Pfractures diagnosed, but other factors, such as training philosophy, appear to be important. Future prospective investigations to fully elucidate the relationship between training track surface and the proportion of stress fractures and other nonfatal musculoskeletal injuries are warranted. © 2014 EVJ Ltd.

  9. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  10. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  11. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available For real-time reverse transcription-PCR (qRT-PCR in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2 in soybean under biotic stress from Bean pod mottle virus (BPMV, powdery mildew (PMD, soybean aphid (SBA, and two-spotted spider mite (TSSM. BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3 values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  12. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  13. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  14. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-08-01

    During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress) due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba) some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate-induced. In those countries, it can be seen

  15. NbSe3: Fermi surface and magnetoresistance under uniaxial stress

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Kuh, J.; Skove, M.J.; Lacerda, A.H.; Bennett, M.

    1999-01-01

    The Fermi surface of NbSe 3 below the two CDW transitions is still not very clear. Large magnetoresistance and giant quantum oscillations have been seen at low temperature below the second CDW transition. The SdH oscillations are attributed to one or several small pieces of electron or hole pockets spared by the two CDW transitions at 145 and 59 K. In a previous low field study (μ 0 H<8 T) of the transverse magnetoresistance (H in the (b,c) plane) we have shown that the extremal area of one of these pockets decreases linearly with strain, ε, vanishing at ε = 2.5%. Here we extend our study into the high magnetic field regime (pulsed 60 T) and investigate the effect of uniaxial stress on the magnetoresistance (I//H). Our high field study is consistent with the fermiology study and shows that uniaxial stress leads to the obliteration of a small closed pocket. Above 1% strain the magnetoresistance is linear with H with no sign of saturation. (orig.)

  16. Variability in dynamic properties of tantalum : spall, attenuation and load/unload.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Reinhart, William Dodd; Trott, Wayne Merle; Vogler, Tracy John; Chhabildas, Lalit Chandra

    2005-07-01

    A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

  17. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  18. Surface layer investigation of duplex stainless steel S32205 after stress peening utilizing X-ray diffraction

    International Nuclear Information System (INIS)

    Feng, Qiang; Jiang, Chuanhai; Xu, Zhou

    2013-01-01

    Highlights: ► The stress shot peening is superior to the conventional shot peening. ► Residual stresses along the loaded direction are bigger than transverse direction. ► Higher prestress leads to smaller domain size, high density of dislocation. ► Compared to ferrite, austenite has much higher hardness and work hardening. ► Ferrite has higher recover of elastic deformation than austenite after unloading. - Abstract: Residual stresses and micro-hardness of duplex stainless steel S32205 after stress peening are measured and domain sizes and microstrain are calculated. The results show that stress peening can significantly improve the compressive residual stresses and micro-hardness in both austenite and ferrite, and the former is affected by both the prestress and the measurement directions. Microstructure investigation reveals that material deformation is enhanced after stress peening, and smaller domain sizes and higher microstrain are introduced. The compressive residual stress enhancement by stress peening in ferrite is more than that in austenite under the same stress peening, which is due to the more elastic deformation recover in ferrite. Therefore, the difference of residual stresses between ferrite and austenite can be narrowed down by conducting appropriate stress peening. Based on these investigations, it is concluded that stress peening is superior to conventional shot peening treatment to improve the surface properties of duplex stainless steel

  19. Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models

    Science.gov (United States)

    Schneider, Adam; Flanner, Mark; Perket, Justin

    2018-02-01

    Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal-scale SAF is strongly correlated with century-scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m-2 K-1. These results suggest that models' mean decadal-scale SAFs are good estimates of their century-scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.

  20. Ability of multiaxial fatigue criteria accounting for stress gradient effect for surface defective material

    Directory of Open Access Journals (Sweden)

    Niamchaona Wichian

    2018-01-01

    Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.

  1. Evaluation of intra-individual test–re-test variability of uroflowmetry in healthy women and women suffering from stress, urge, and mixed urinary incontinence

    DEFF Research Database (Denmark)

    Lunacek, Libor; Gärtner, Marcel; Krhut, Jan

    2018-01-01

    Introduction and hypothesis: The objective was to evaluate the intra-individual variability of uroflowmetry (UFM) in healthy control subjects and women suffering from stress, urge, and mixed urinary incontinence. Methods: A total of 35 healthy controls (group A) and 105 women suffering from urinary...... incontinence were enrolled in the study. Thirty-five women suffered from stress urinary incontinence (group B), 35 women suffered from mixed urinary incontinence (group C), and 35 women with overactive bladder both dry and wet (group D). All participants were asked to perform UFM measurement three times......-individual difference in any of the recorded parameters was identified among the three UFM recordings in groups A, C, and D. The intra-individual variability of the following parameters reached statistical significance in patients suffering from stress urinary incontinence (group B): Qmax (p = 0.0016), Qave (p = 0...

  2. Effect of yoga on short-term heart rate variability measure as a stress index in subjunior cyclists: a pilot study.

    Science.gov (United States)

    Patil, Satish G; Mullur, Lata M; Khodnapur, Jyoti P; Dhanakshirur, Gopal B; Aithala, Manjunatha R

    2013-01-01

    Subjunior athletes experience mental stress due to pressure from the coach, teachers and parents for better performance. Stress, if remains for longer period and not managed appropriately can leads to negative physical, mental and cognitive impact on children. The present study was aimed to evaluate the effect of integrated yoga module on heart rate variability (HRV) measure as a stress index in subjunior cyclists. Fast furrier transform technique of frequency domain method was used for the analysis of HRV. We have found a significant increase in high frequency (HF) component by 14.64% (P activity and causes a shift in the autonomic balance towards parasympathetic dominance indicating a reduction in stress. In conclusion, yoga practice helps to reduce stress by optimizing the autonomic functions. So, it is suggested to incorporate yoga module as a regular feature to keep subjunior athletes both mentally and physically fit.

  3. A new method of fully three dimensional analysis of stress field in the soil layer of a soil-mantled hillslope

    Science.gov (United States)

    Wu, Y. H.; Nakakita, E.

    2017-12-01

    Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.

  4. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  5. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  6. Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15

    Science.gov (United States)

    Xu, Xinping; Li, Fei; He, Shengping; Wang, Huijun

    2018-06-01

    Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature (SAT) variability reversals in the early and late winter remain poorly understood. In this study, we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover (ASIC) in September-October 2014 was lower than normal, and warmer sea surface temperature (SST) anomalies occurred in the Niño4 region in winter, together with a positive Pacific Decadal Oscillation (PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Niño4 phase (autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Niño4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January-February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream (EAJS) is significantly decelerated in January-February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase, the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.

  7. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  8. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  9. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  11. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  12. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  13. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  14. The effects of work surface hardness on mechanical stress, muscle activity, and wrist postures.

    Science.gov (United States)

    Kim, Jeong Ho; Aulck, Lovenoor; Trippany, David; Johnson, Peter W

    2015-01-01

    Contact pressure is a risk factor which can contribute to musculoskeletal disorders. The objective of the present study was to determine whether a work surface with a soft, pliable front edge could reduce contact pressure, muscle activity, and subjective musculoskeletal comfort, and improve wrist posture relative to a conventional, hard work surface. In a repeated-measures blinded experiment with eighteen subjects (8 females and 10 males), contact pressure, wrist posture, typing productivity, perceived fatigue, wrist and shoulder muscle activity, and subjective comfort were compared between the two different work surfaces during keyboard use, mouse use and mixed mouse and keyboard use. The results showed that across the three modes of computer work, the contact pressure was lower on the soft-edge work surface compared to the conventional work surface (p's work surfaces. Given the significant reduction in contact pressure and corresponding lower ratings in perceived fatigue, the soft-edge work surface subjectively and objectively improved measures of contact stress which may reduce physical exposures associated with the onset and development of musculoskeletal disorders.

  15. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    Science.gov (United States)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  16. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  17. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  18. Complexity and time asymmetry of heart rate variability are altered in acute mental stress.

    Science.gov (United States)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Gala, M; Jurko, A; Calkovska, A; Tonhajzerova, I

    2014-07-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease.

  19. Complexity and time asymmetry of heart rate variability are altered in acute mental stress

    International Nuclear Information System (INIS)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Calkovska, A; Tonhajzerova, I; Gala, M; Jurko, A

    2014-01-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease. (paper)

  20. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra; Chopp, David L.; Moran, Brian

    2009-01-01

    of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions

  1. Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

    Science.gov (United States)

    Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson

    2016-01-01

    There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...

  2. Heart Rate Variability as an Indicator of Chronic Stress Caused by Lameness in Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Levente Kovács

    Full Text Available Most experimental studies on animal stress physiology have focused on acute stress, while chronic stress, which is also encountered in intensive dairy cattle farming--e.g. in case of lameness--, has received little attention. We investigated heart rate (HR and heart rate variability (HRV as indicators of the autonomic nervous system activity and fecal glucocorticoid concentrations as the indicator of the hypothalamic-pituitary-adrenal axis activity in lame (with locomotion scores 4 and 5; n = 51 and non-lame (with locomotion scores 1 and 2; n = 52 Holstein-Friesian cows. Data recorded during the periods of undisturbed lying--representing baseline cardiac activity--were involved in the analysis. Besides linear analysis methods of the cardiac inter-beat interval (time-domain geometric, frequency domain and Poincaré analyses non-linear HRV parameters were also evaluated. With the exception of standard deviation 1 (SD1, all HRV indices were affected by lameness. Heart rate was lower in lame cows than in non-lame ones. Vagal tone parameters were higher in lame cows than in non-lame animals, while indices of the sympathovagal balance reflected on a decreased sympathetic activity in lame cows. All geometric and non-linear HRV measures were lower in lame cows compared to non-lame ones suggesting that chronic stress influenced linear and non-linear characteristics of cardiac function. Lameness had no effect on fecal glucocorticoid concentrations. Our results demonstrate that HRV analysis is a reliable method in the assessment of chronic stress, however, it requires further studies to fully understand the elevated parasympathetic and decreased sympathetic tone in lame animals.

  3. Residual Stresses and Other Properties of Teardrops

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-26

    The Department of Energy’s 3013 Standard for packaging plutonium-bearing materials for storage up to fifty years specifies a minimum of two individually welded, nested containers herein referred to as the 3013 outer and the 3013 inner.1 Stress corrosion cracking (SCC) is a potential failure mechanism for 3013 inner containers.2,3 The bagless transfer container (BTC), a 3013 inner container used by Hanford and Savanna River Site (SRS) made from 304L stainless steel (SS), poses the greatest concern for SCC.4,5 The Surveillance and Monitoring Program (SMP) use stressed metal samples known as teardrops as screening tools in SCC studies to evaluate factors that could result in cracks in the 3013 containers.6,7 This report provides background information on the teardrops used in the Los Alamos National Laboratory (LANL) SMP studies including method of construction, composition and variability. In addition, the report discusses measurements of residual stresses in teardrops and compares the results with residual stresses in BTCs reported previously.4 Factors affecting residual stresses, including teardrop dimensions and surface finish, are also discussed.

  4. Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2009-08-01

    Full Text Available Bacteriophage T4 nanoparticles possess characteristics that make them ideal candidates as materials for sensors, particularly as sensor probes. Their surface can be modified, either through genetic engineering or direct chemical conjugation to display functional moieties such as antibodies or other proteins to recognize a specific target. However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to understand and control the variables that determine their assembly and organization on a surface. The aim of this work is to discuss some of variables that we have identified as influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, substrate characteristics, nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy (AFM.

  5. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Arjen Tilstra

    2017-10-01

    Full Text Available Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1 for 31 days, followed by artificially induced heat stress (∼33.4 °C. We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

  6. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  7. Cortical surface area reduction in identification of subjects at high risk for post-traumatic stress disorder: A pilot study.

    Science.gov (United States)

    Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen

    2018-01-01

    Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.

  8. Heart rate variability during acute psychosocial stress: A randomized cross-over trial of verbal and non-verbal laboratory stressors.

    Science.gov (United States)

    Brugnera, Agostino; Zarbo, Cristina; Tarvainen, Mika P; Marchettini, Paolo; Adorni, Roberta; Compare, Angelo

    2018-05-01

    Acute psychosocial stress is typically investigated in laboratory settings using protocols with distinctive characteristics. For example, some tasks involve the action of speaking, which seems to alter Heart Rate Variability (HRV) through acute changes in respiration patterns. However, it is still unknown which task induces the strongest subjective and autonomic stress response. The present cross-over randomized trial sought to investigate the differences in perceived stress and in linear and non-linear analyses of HRV between three different verbal (Speech and Stroop) and non-verbal (Montreal Imaging Stress Task; MIST) stress tasks, in a sample of 60 healthy adults (51.7% females; mean age = 25.6 ± 3.83 years). Analyses were run controlling for respiration rates. Participants reported similar levels of perceived stress across the three tasks. However, MIST induced a stronger cardiovascular response than Speech and Stroop tasks, even after controlling for respiration rates. Finally, women reported higher levels of perceived stress and lower HRV both at rest and in response to acute psychosocial stressors, compared to men. Taken together, our results suggest the presence of gender-related differences during psychophysiological experiments on stress. They also suggest that verbal activity masked the vagal withdrawal through altered respiration patterns imposed by speaking. Therefore, our findings support the use of highly-standardized math task, such as MIST, as a valid and reliable alternative to verbal protocols during laboratory studies on stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evaluation of stress intensity factor for craks in surface of tubes with internal pressure

    International Nuclear Information System (INIS)

    Cesari, F.; Hellen, T.K.

    1977-01-01

    In this report the authors have examined the different methods for calculation of the stress intensity factor in tubes subject at internal pressure with surface cracks. The analysis includes cracks in 2-D axialsymmetric and 3-D. Moreover the authors have clarified the difference between the ASME Sec.11 and the procedure more rigorous

  10. Thermal stresses calculations in near-surface layers of sphere bodies, falling to the Sun

    International Nuclear Information System (INIS)

    Demchenko, B.I.; Shestakova, L.I.

    2005-01-01

    Profiles of temperature and temperature stresses in surface layers of silicate and icy spheric bodies, falling to the Sun along parabolic orbits were obtained on the base of the analytical solution of the linear heat diffusion equation. Results may be useful for thermal evolution analysis of meteor and comet bodies in the Sun system. (author)

  11. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    Science.gov (United States)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  12. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2013-02-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea shelf, detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the southeastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the central and northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore winds and northward transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf, whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport, in both the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during the open water season. A continuing trend toward

  13. Existence of torsional surface waves in an earth's crustal layer lying ...

    Indian Academy of Sciences (India)

    This paper aims to study the dispersion of torsional surface waves in a crustal layer being sandwiched between a rigid boundary plane and a sandy mantle. In the mantle, rigidity and initial stress vary linearly while density remains constant. Dispersion relation has been deduced in a closed form by means of variable ...

  14. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  15. Short-term variability of surface heat budget of the east central Arabian Sea during November, 1992

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Rao, L.V.G.

    The analysis of surface meteorological data collected from the east central Arabian Sea during 10-28 November, 1992 revealed considerable variability in the meteorological parameters and heat budget components on both daily and diurnal time scales...

  16. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  17. Heart rate variability associated with posttraumatic stress disorder in victims' families of sewol ferry disaster.

    Science.gov (United States)

    Lee, Sang Min; Han, Hyesung; Jang, Kuk-In; Huh, Seung; Huh, Hyu Jung; Joo, Ji-Young; Chae, Jeong-Ho

    2018-01-01

    Posttraumatic stress disorder (PTSD), which is caused by a major traumatic event, has been associated with autonomic nervous function. However, there have been few explorations of measuring biological stress in the victims' family members who have been indirectly exposed to the disaster. Therefore, this longitudinal study examined the heart rate variability (HRV) of the family members of victims of the Sewol ferry disaster. We recruited 112 family members of victims 18 months after the disaster. Sixty-seven participants were revisited at the 30 months postdisaster time point. HRV and psychiatric symptoms including PTSD, depression and anxiety were evaluated at each time point. Participants with PTSD had a higher low frequency to high frequency ratio (LF:HF ratio) than those without PTSD. Logistic regression analysis showed that the LF:HF ratio at 18 months postdisaster was associated with a PTSD diagnosis at 30 months postdisaster. These results suggest that disrupted autonomic nervous system functioning for longer than a year after trauma exposure contributes to predicting PTSD vulnerability. Our finding may contribute to understand neurophysiologic mechanisms underlying secondary traumatic stress. Future studies will be needed to clarify the interaction between autonomic regulation and trauma exposure. Copyright © 2017. Published by Elsevier B.V.

  18. Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations

    Science.gov (United States)

    Té, Yao; Jeseck, Pascal; Franco, Bruno; Mahieu, Emmanuel; Jones, Nicholas; Paton-Walsh, Clare; Griffith, David W. T.; Buchholz, Rebecca R.; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Janssen, Christof

    2016-09-01

    This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere. The CO seasonal variability obtained from the total columns and free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by the IASI-MetOp (Infrared Atmospheric Sounding Interferometer) and MOPITT (Measurements Of Pollution In The Troposphere) instruments confirm this seasonality. Ground-based FTIR (Fourier transform infrared) measurements provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios at the Paris and Jungfraujoch sites reveal a time lag of the near-surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem (Goddard Earth Observing System chemical transport model) is employed to interpret our observations. GEOS-Chem sensitivity runs identify the emission sources influencing the seasonal variation of CO. At both Paris and Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. At Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface measurements and total column data.

  19. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  20. Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)

    2005-08-01

    The internal variability in a 1000-yr control simulation with the coupled atmosphere/ocean global climate model ECHO-G is analysed using near-surface temperature, precipitation and mean sea level pressure variables, and is compared with observations and other coupled climate model simulations. ECHO-G requires annual mean flux adjustments for heat and freshwater in order to simulate no significant climate drift for 1000 yr, but no flux adjustments for momentum. The ECHO-G control run captures well most aspects of the observed seasonal and annual climatology and of the interannual to decadal variability of the three variables. Model biases are very close to those in ECHAM4 (atmospheric component of ECHO-G) stand-alone integrations with prescribed observed sea surface temperature. A trend comparison between observed and modelled near-surface temperatures shows that the observed near-surface global warming is larger than internal variability produced by ECHO-G, supporting previous studies. The simulated global mean near-surface temperatures, however, show a 2-yr spectral peak which is linked with a strong biennial bias of energy in the El Nino Southern Oscillation signal. Consequently, the interannual variability (39 yr) is underestimated.

  1. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  2. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  3. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  4. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  5. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    Science.gov (United States)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  6. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  7. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress

    NARCIS (Netherlands)

    Siegelaar, S. E.; Kulik, W.; van Lenthe, H.; Mukherjee, R.; Hoekstra, J. B. L.; DeVries, J. H.

    2009-01-01

    To assess the effect of three times daily mealtime inhaled insulin therapy compared with once daily basal insulin glargine therapy on 72-h glucose profiles, glucose variability and oxidative stress in type 2 diabetes patients. In an inpatient crossover study, 40 subjects with type 2 diabetes were

  8. Effect of Tip Shape of Frictional Stir Burnishing Tool on Processed Layer’s Hardness, Residual Stress and Surface Roughness

    Directory of Open Access Journals (Sweden)

    Yoshimasa Takada

    2018-01-01

    Full Text Available Friction stir burnishing (FSB is a surface-enhancement method used after machining, without the need for an additional device. The FSB process is applied on a machine that uses rotation tools (e.g., machining center or multi-tasking machine. Therefore, the FSB process can be applied immediately after the cutting process using the same machine tool. Here, we apply the FSB to the shaft materials of 0.45% C steel using a multi-tasking machine. In the FSB process, the burnishing tool rotates at a high-revolution speed. The thin surface layer is rubbed and stirred as the temperature is increased and decreased. With the FSB process, high hardness or compressive residual stress can be obtained on the surface layer. However, when we applied the FSB process using a 3 mm diameter sphere tip shape tool, the surface roughness increased substantially (Ra = 20 µm. We therefore used four types of tip shape tools to examine the effect of burnishing tool tip radius on surface roughness, hardness, residual stress in the FSB process. Results indicated that the surface roughness was lowest (Ra = 10 µm when the tip radius tool diameter was large (30 mm.

  9. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    International Nuclear Information System (INIS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD ® BacLight ™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD ® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria. (paper)

  10. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical "yield" value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In the Appendix, we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations. © 2012 American Institute of Physics.

  11. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  13. The Impact of Social-Cognitive Stress on Speech Variability, Determinism, and Stability in Adults Who Do and Do Not Stutter

    Science.gov (United States)

    Jackson, Eric S.; Tiede, Mark; Beal, Deryk; Whalen, D. H.

    2016-01-01

    Purpose: This study examined the impact of social-cognitive stress on sentence-level speech variability, determinism, and stability in adults who stutter (AWS) and adults who do not stutter (AWNS). We demonstrated that complementing the spatiotemporal index (STI) with recurrence quantification analysis (RQA) provides a novel approach to both…

  14. Symptoms of Depression and Anxiety in Adolescents with Sickle Cell Disease: The Role of Intrapersonal Characteristics and Stress Processing Variables

    Science.gov (United States)

    Simon, Katherine; Barakat, Lamia P.; Patterson, Chavis A.; Dampier, Carlton

    2009-01-01

    Sickle cell disease (SCD) complications place patients at risk for poor psychosocial adaptation, including depression and anxiety symptoms. This study aimed to test a mediator model based on the Risk and Resistance model to explore the role of intrapersonal characteristics and stress processing variables in psychosocial functioning. Participants…

  15. Variable surface composition and radial interface formation in self-assembled free, mixed Ar/Xe clusters

    International Nuclear Information System (INIS)

    Tchaplyguine, M.; Maartensson, N.; Lundwall, M.; Oehrwall, G.; Feifel, R.; Svensson, S.; Bjoerneholm, O.; Gisselbrecht, M.; Sorensen, S.

    2004-01-01

    Using photoelectron spectroscopy, we demonstrate how the self-assembling process of cluster formation in an adiabatic expansion leads to radial segregation and layering as well as to variable surface composition for binary Ar/Xe clusters. The radial structuring can be qualitatively understood from the different interatomic bonding strengths of the two components

  16. Effect of geometry, material and pressure variability on strain and stress fields in dented pipelines under static and cyclic pressure loading using probability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muslim, Husain Mohammed; Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2010-07-01

    Mechanical damage in transportation pipelines is an issue of extreme importance to pipeline operators and many others. Appropriate procedures for severity assessment are necessary. This paper mainly studies the effect of geometry, material and pressure variability on strain and stress fields in dented pipelines subjected to static and cyclic pressure. Finite element analysis (FEA) has often been used to overcome the limitations of a full-scale test, but it is still impossible to run FEA for all possible combinations of parameters. Probabilistic analysis offers an excellent alternative method to determine the sensitivity of the strain and stress fields to each of those input parameters. A hundred cases were randomly generated with Monte Carlo simulations and analyzed, a general formula was proposed to relate the output variables in terms of practically measured variables, and regression analysis was performed to confirm the appropriateness of the general formula.

  17. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  18. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    Science.gov (United States)

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  19. Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress.

    Science.gov (United States)

    Hodes, Georgia E; Pfau, Madeline L; Purushothaman, Immanuel; Ahn, H Francisca; Golden, Sam A; Christoffel, Daniel J; Magida, Jane; Brancato, Anna; Takahashi, Aki; Flanigan, Meghan E; Ménard, Caroline; Aleyasin, Hossein; Koo, Ja Wook; Lorsch, Zachary S; Feng, Jian; Heshmati, Mitra; Wang, Minghui; Turecki, Gustavo; Neve, Rachel; Zhang, Bin; Shen, Li; Nestler, Eric J; Russo, Scott J

    2015-12-16

    Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic mechanism, which

  20. X-ray stress analysis of residual stress gradients in surface layers of steel

    International Nuclear Information System (INIS)

    Ganev, N.; Kraus, I.; Gosmanova, G.; Pfeiffer, L.; Tietz, H.-D.

    2001-01-01

    The aim of the contribution is to present the theoretical possibilities of X-ray non-destructive identification of stress gradients within the penetration depth of used radiation and its utilization for experimental stress analysis. Practical usefullness of outlined speculations is illustrated with results of stress measurements on cut and shot-penned steel samples. (author)

  1. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Science.gov (United States)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  2. Work stress, life stress, and smoking among rural–urban migrant workers in China

    Directory of Open Access Journals (Sweden)

    Cui Xiaobo

    2012-11-01

    Full Text Available Abstract Background Stimulated by rapid modernization and industrialization, there is massive rural–urban migration in China. The migrants are highly susceptible to smoking and mental health problems. This study examined the association between both perceived work stress and perceived life stress with smoking behavior among this group during the period of migration. Methods Participants (n = 1,595 were identified through stratified, multi-stage, systematic sampling. Smoking status separated non-smokers from daily and occasional smokers, and migration history, work stress, and life stress were also measured. Analyses were conducted using the Chi-square test and multiple logistic regression. Two models were utilized. The first was the full model that comprised sociodemographic and migration-related characteristics, as well as the two stress variables. In addressing potential overlap between life and work stress, the second model eliminated one of the two stress variables as appropriate. Results Overall smoking prevalence was 64.9% (95% CI: 62.4-67.2%. In the regression analysis, under the full model, migrants with high perceived life stress showed a 45% excess likelihood to be current smokers relative to low-stress counterparts (OR: 1.45; 95% CI: 1.05 – 2.06. Applying the second model, which excluded the life stress variable, migrants with high perceived work stress had a 75% excess likelihood to be current smokers relative to opposites (OR: 1.75; 95% CI: 1.26–2.45. Conclusions Rural–urban migrant workers manifested a high prevalence of both life stress and work stress. While both forms of stress showed associations with current smoking, life stress appeared to outweigh the impact of work stress. Our findings could inform the design of tobacco control programs that would target Chinese rural–urban migrant workers as a special population.

  3. Physiological-metabolic variables of caloric stress in cows under silvopastoral and prairie without trees

    International Nuclear Information System (INIS)

    Barragan Hernandez, Wilson Andres; Cajas-Giron, Yasmin Socorro; Mahecha-Ledesma, Lilliana

    2015-01-01

    Changes in physiological and metabolic parameters were assessed as indicators of caloric stress of cows under grazing were investigated. The study was developed at the Centro de Investigacion Corpoica Turipana, Region Caribe, Cerete, Colombia, during the years 2011-2012. Temperature (T) and relative humidity (H), and in animals: rectal temperature (RT), skin temperature (TP), respiratory rate (RF) and acid-base status were determined. The variables were measured in the morning (6:00 h) and in the afternoon (13:00 h). Effect of treatment on environmental temperature was found with 7 and 6% less temperature in p-Arbur-Arbor and p-Arbor, respectively, compared with the grass treatment. There was an effect of time (p [es

  4. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Bottoli, Federico; Christiansen, Thomas Lundin; Winther, Grethe

    2016-01-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (εeq=0.5) samples of stable stainless steel EN 1.4369 were nitrided...... or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic...... deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone....

  5. A variable thickness window: Thermal and structural analyses

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.

    1994-01-01

    In this paper, the finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window to an Advanced Photon Source beamline is presented

  6. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa

    DEFF Research Database (Denmark)

    Mertz, Ole; D'haen, Sarah Ann Lise; Maiga, Abdou

    2012-01-01

    Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic...... to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources......, vegetation, and fauna, but more so in the 500–900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region...

  7. The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer

    Science.gov (United States)

    Bernardes, M.; Dias, N. L.

    2010-01-01

    A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around

  8. Self Efficacy and Some Demographic Variables as Predictors of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    Science.gov (United States)

    Akpochafo, G. O.

    2014-01-01

    This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…

  9. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  10. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    Science.gov (United States)

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  11. Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    Directory of Open Access Journals (Sweden)

    Jesús Álvarez-Mozos

    2009-01-01

    Full Text Available Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values.

  12. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  13. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  14. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    International Nuclear Information System (INIS)

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-01

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO 4 ; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO 4 exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO 4 -exposed SH rats were greater than those on NiSO 4 -exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO 4 . Both NAC and celecoxib mitigated the NiSO 4 -induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and celecoxib mitigated the Ni

  15. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi, E-mail: r92841005@ntu.edu.tw [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Tzu-Wei, E-mail: r95841015@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Chuen-Chau, E-mail: nekota@tmu.edu.tw [Department of Anaesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan (China); Hwang, Jing-Shiang, E-mail: jshwang@stat.sinica.edu.tw [Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Chuang, Kai-Jen, E-mail: kjc@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Yan, Yuan-Horng, E-mail: d97841006@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  16. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before

  17. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  18. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress

    International Nuclear Information System (INIS)

    Ben Khalifa, W; Jezzine, K; Hello, G; Grondel, S

    2012-01-01

    Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.

  19. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  20. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  1. The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Kaczmarek Ł.

    2015-09-01

    Full Text Available The article present the results of the study on the improvement of mechanical properties of the surface layer of 7075 aluminum alloy via two-stage aging combined with shot peening. The experiments proved that thermo-mechanical treatment may significantly improve hardness and stress distribution in the surface layer. Compressive stresses of 226 MPa±5.5 MPa and hardness of 210±2 HV were obtained for selected samples.

  2. Adriatic Sea surface temperature and ocean colour variability during the MFSPP

    Directory of Open Access Journals (Sweden)

    E. Böhm

    2003-01-01

    Full Text Available Two years and six months of night-time Advanced Very High Resolution Radiometer (AVHRR sea surface temperature (SST and daytime Sea viewing Wide Field of view Sensor (SeaWiFS data collected during the MFSPP have been used to examine spatial and temporal variability of SST and chlorophyll (Chl in the Adriatic Sea. Flows along the Albanian and the Italian coasts can be distinguished year-round in the monthly averaged Chl but only in the colder months in the monthly averaged SST’s. The Chl monthly-averaged fields supply less information on circulation features away from coastal boundaries and where conditions are generally oligotrophic, except for the early spring bloom in the Southern Adriatic Gyre. To better characterise the year-to-year and seasonal variability, exploratory data analysis techniques, particularly the plotting of multiple Chl-SST histograms, are employed to make joint quantitative use of monthly-averaged fields. Modal water mass (MW, corresponding to the Chl-SST pairs in the neighbourhood of the maximum of each monthly histogram, are chosen to represent the temporal and spatial evolution of the prevalent processes and their variability in the Adriatic Sea. Over an annual cycle, the MW followed a triangular path with the most pronounced seasonal and interannual variations in both Chl-SST properties and spatial distributions of the MW in the colder part of the year. The winter of 1999 is the colder (by at least 0.5°C and most eutrophic (by 0.2 mg/m 3. The fall of the year 2000 is characterised by the lack of cooling in the month of November that was observed in the previous year. In addition to characterising the MW, the two-dimensional histogram technique allows a distinction to be made between different months in terms of the spread of SST values at a given Chl concentration. During spring and summer, the spread is minimal indicating surface homothermal conditions. In fall and winter, on the other hand, a spread of points

  3. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  4. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  5. Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

    Science.gov (United States)

    Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2017-11-07

    This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  7. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  8. An analytical and numerical study of the nonlinear reflection at a stress-free surface

    Energy Technology Data Exchange (ETDEWEB)

    Romer, Anne, E-mail: anne.romer@gmx.net; Kim, Jin-Yeon, E-mail: anne.romer@gmx.net [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-03-31

    Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic waves generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on a perturbation method. Here, the model is chosen to mimic an experimental setup where the longitudinal wave is generated at oblique angle using a wedge transducer. Due to the mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stress-free boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid interaction with diffracted waves.

  9. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  10. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-01-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (∼1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation

  11. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    Science.gov (United States)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  12. Mediating processes between stress and problematic marijuana use.

    Science.gov (United States)

    Ketcherside, Ariel; Filbey, Francesca M

    2015-06-01

    The literature widely reports that stress is associated with marijuana use, yet, to date, the path from stress to marijuana-related problems has not been tested. In this study, we evaluated whether negative affect mediates the relationship between stress and marijuana use. To that end, we tested models to determine mediators between problems with marijuana use (via Marijuana Problem Scale), stress (via Early Life Stress Questionnaire, Perceived Stress Scale), and negative affect (via Beck Depression Inventory; Beck Anxiety Inventory) in 157 current heavy marijuana users. Mediation tests and bootstrap confidence intervals were carried out via the "Mediation" package in R. Depression and anxiety scores both significantly mediated the relationship between perceived stress and problematic marijuana use. Only depression significantly mediated the relationship between early life stress and problematic marijuana use. Early life stress, perceived stress and problematic marijuana use were significant only as independent variables and dependent variables. These findings demonstrate that (1) depression mediated both early life stress and perceived stress, and problematic marijuana use, and, (2) anxiety mediated perceived stress and problematic marijuana use. This mediation analysis represents a strong first step toward understanding the relationship between these variables; however, longitudinal studies are needed to determine causality between these variables. To conclude, addressing concomitant depression and anxiety in those who report either perceived stress or early life stress is important for the prevention of cannabis use disorders. Copyright © 2015. Published by Elsevier Ltd.

  13. A variable temperature cryostat that produces in situ clean-up germanium detector surfaces

    International Nuclear Information System (INIS)

    Pehl, R.H.; Madden, N.W.; Malone, D.F.; Cork, C.P.; Landis, D.A.; Xing, J.S.; Friesel, D.L.

    1988-11-01

    Variable temperature cryostats that can maintain germanium detectors at temperatures from 82 K to about 400 K while the thermal shield surrounding the detectors remains much colder when the detectors are warmed have been developed. Cryostats such as these offer the possibility of cryopumping material from the surface of detectors to the colder thermal shield. The diode characteristics of several detectors have shown very significant improvement following thermal cycles up to about 150 K in these cryostats. Important applications for cryostats having this attribute are many. 4 figs

  14. Residual stress analysis on materials with steep stress gradient by using X-ray incidence at higher angles

    International Nuclear Information System (INIS)

    Ohya, Shin-ichi; Yoshioka, Yasuo; Maeno, Shigeki

    1996-01-01

    X-ray stress measurements for isotropic polycrystalline are materials are usually carried out by the sin 2 ψ method under the assumption of no stress gradient in X-ray penetration depth. When a steep stress gradient exists in the vicinity of surface layer, however, non-linear sin 2 ψ relation is observed and the sin 2 ψ method cannot be applied on such cases. Although several X-ray stress analyzers have been developed for materials with steep stress gradient in the surface layer, it is desirable to use diffraction data at higher incident angles of ψ 0 as possible as close on 90 degrees in order to determine the both values of surface stress and stress gradient with high accuracy. In the present study, an X-ray stress analyzer based on Ω geometry was fabricated to enable X-ray incidence at higher angle of ψ 0 . The X-ray detector was positioned on -η side against X-ray incident beam. Both of the residual surface stress and stress gradient were determined by use of the COSψ method on shot-peened steel and silicon nitride specimens. This prototype stress analyzer was found effective to perform a biaxial or triaxial stress analysis. (author)

  15. Interaction between diffusion and chemical stresses

    International Nuclear Information System (INIS)

    Yang Fuqian

    2005-01-01

    The present work studies the interaction between chemical stresses and diffusion. A new relation between hydrostatic stress and concentration of solute atoms is established. For a solid free of action of body force, the Laplacian of the hydrostatic stress is proportional to the Laplacian of the concentration of solute atoms, that is, deviation of the hydrostatic stress from its local average is proportional to deviation of the local concentration of solute atoms. A general relationship among surface concentration of solute atoms, normal stress and surface deformation of a solid is then derived, in which the normal stress is dependent on the mean curvature of the undeformed surface and tangential components of the surface displacement. A closed-form solution of the steady state concentration of solute atoms in a thin plate is obtained. It turns out that linear distribution of solute atoms in the plate is non-existent due to the interaction between chemical stresses and diffusion

  16. Exam stressors, modulating variables and academic failure

    Directory of Open Access Journals (Sweden)

    Arturo Barraza Macías

    2010-07-01

    Full Text Available This research was raised four objectives: a to establish the profile of stress descriptive review of the higher education students, b identify areas that cause more stress on the students of higher education when presenting a review c distinguish socio-demographic variables and situational which provide significant differences in stress examination of students in higher education d determining the relationship between stress examination and the number of subjects disapproved of the students in higher education. It is based on the model theoretically systemic cognoscitivism academic stress which is derived from the slope of transaccionalista Research Program Person-environment. To achieve these goals, a study was conducted transectional not experimental and correlational through the implementation of the Inventory Stress Test to 343 students, of the Preparatory Lomas of the city of Durango, in the state of Durango, Mexico. Its main results allow establishing a descriptive profile of stress examination of students in higher education, as well as confirm the modulatory effect of the variables and gender semester and the positive correlation between stress and the number of examination subject disapproved.

  17. Theoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems with Residual Stress Based on Pressure Blister Test Technique

    Directory of Open Access Journals (Sweden)

    Zhi-xin Yang

    2018-01-01

    Full Text Available In this study, based on the pressure blister test technique, a theoretical study on the synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress was presented, where the problem of axisymmetric deformation of a blistering film with initial stress was analytically solved and its closed-form solution was presented. The expressions to determine Poisson’s ratios, Young’s modulus, and residual stress of surface thin films were derived; the work done by the applied external load and the elastic energy stored in the blistering thin film were analyzed in detail and their expressions were derived; and the interfacial adhesion energy released per unit delamination area of thin-film/substrate (i.e., energy release rate was finally presented. The synchronous characterization technique presented here has theoretically made a big step forward, due to the consideration for the residual stress in surface thin films.

  18. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  19. A test case of the deformation rate analysis (DRA) stress measurement method

    Energy Technology Data Exchange (ETDEWEB)

    Dight, P.; Hsieh, A. [Australian Centre for Geomechanics, Univ. of WA, Crawley (Australia); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Hudson, J.A. [Rock Engineering Consultants (United Kingdom); Kemppainen, K.

    2012-01-15

    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the {approx} 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely

  20. A test case of the deformation rate analysis (DRA) stress measurement method

    International Nuclear Information System (INIS)

    Dight, P.; Hsieh, A.; Johansson, E.; Hudson, J.A.; Kemppainen, K.

    2012-01-01

    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the ∼ 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely different to the NW-SE regional

  1. Performance of two-lobe hole-entry hybrid journal bearing system under the combined influence of textured surface and couple stress lubricant

    Science.gov (United States)

    Khatri, Chandra B.; Sharma, Satish C.

    2018-02-01

    Textured surface in journal bearings is becoming an important area of investigation during the last few years. Surface textures have the shapes of micro-dimple with a small diameter and depth having order of magnitude of bearing clearance. This paper presents the influence of couple stress lubricant on the circular and non-circular hole-entry hybrid journal bearing system and reports the comparative study between the textured and non-textured circular/non-circular hybrid journal bearing system. The governing Reynolds equation has been modified for the couple stress lubricant flow in the clearance of bearing and journal. The FEM technique has been applied to solve the modified Reynolds equation together with restrictor flow equation. The numerically simulated results indicate that the influence of couple stress lubricant is significantly more in textured journal bearing than that of non-textured journal bearing. Further, it has been observed that the textured two-lobe (δ = 1.1) hybrid journal bearing lubricated with couple stress lubricant provides larger values of fluid film stiffness coefficients and stability threshold speed against other bearings studied in the present paper.

  2. Stress field determination in an alloy 600 stress corrosion crack specimen; Determination du champ de contraintes dans une eprouvette de corrosion sous contrainte de l`alliage 600

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends.

  3. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait.

    Science.gov (United States)

    Thies, Sibylle B; Richardson, James K; Demott, Trina; Ashton-Miller, James A

    2005-08-01

    Patients with peripheral neuropathy (PN) report greater difficulty walking on irregular surfaces with low light (IL) than on flat surfaces with regular lighting (FR). We tested the primary hypothesis that older PN patients would demonstrate greater step width and step width variability under IL conditions than under FR conditions. Forty-two subjects (22 male, 20 female: mean +/- S.D.: 64.7 +/- 9.8 years) with PN underwent history, physical examination, and electrodiagnostic testing. Subjects were asked to walk 10 m at a comfortable speed while kinematic and force data were measured at 100 Hz using optoelectronic markers and foot switches. Ten trials were conducted under both IL and FR conditions. Step width, time, length, and speed were calculated with a MATLAB algorithm, with the standard deviation serving as the measure of variability. The results showed that under IL, as compared to FR, conditions subjects demonstrated greater step width (197.1 +/- 40.8 mm versus 180.5 +/- 32.4 mm; P < 0.001) and step width variability (40.4 +/- 9.0 mm versus 34.5 +/- 8.4 mm; P < 0.001), step time and its variability (P < 0.001 and P = 0.003, respectively), and step length variability (P < 0.001). Average step length and gait speed decreased under IL conditions (P < 0.001 for both). Step width variability and step time variability correlated best under IL conditions with a clinical measure of PN severity and fall history, respectively. We conclude that IL conditions cause PN patients to increase the variability of their step width and other gait parameters.

  4. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.

    Science.gov (United States)

    Ross, Cliff; Olsen, Kevin; Henry, Michael; Pierce, Richard

    2015-04-01

    The declining health of coral reefs is intensifying worldwide at an alarming rate due to the combined effects of land-based sources of pollution and climate change. Despite the persistent use of mosquito control pesticides in populated coastal areas, studies examining the survival and physiological impacts of early life-history stages of non-targeted marine organisms are limited. In order to better understand the combined effects of mosquito pesticides and rising sea surface temperatures, we exposed larvae from the coral Porites astreoides to selected concentrations of two major mosquito pesticide ingredients, naled and permethrin, and seawater elevated +3.5 °C. Following 18-20 h of exposure, larvae exposed to naled concentrations of 2.96 µg L(-1) or greater had significantly reduced survivorship compared to controls. These effects were not detected in the presence of permethrin or elevated temperature. Furthermore, larval settlement, post-settlement survival and zooxanthellae density were not impacted by any treatment. To evaluate the sub-lethal stress response of larvae, several oxidative stress endpoints were utilized. Biomarker responses to pesticide exposure were variable and contingent upon pesticide type as well as the specific biomarker being employed. In some cases, such as with protein carbonylation and catalase gene expression, the effects of naled exposure and temperature were interactive. In other cases pesticide exposure failed to induce any sub-lethal stress response. Overall, these results demonstrate that P. astreoides larvae have a moderate degree of resistance against short-term exposure to ecologically relevant concentrations of pesticides even in the presence of elevated temperature. In addition, this work highlights the importance of considering the complexity and differential responses encountered when examining the impacts of combined stressors that occur on varying spatial scales.

  5. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    Science.gov (United States)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  6. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  7. Residual stress and microstructural behaviour of a shot peened steel in fatigue. An X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, J.

    1986-01-01

    The surface residual stress behaviour during fatigue of the quenched and tempered medium strength low-alloyed steel SS 2244-05, equivalent to AISI 4140, has been investigated. Notched specimens of shot peened and ground surface conditions were used. The residual stresses were measured by the X-ray diffraction sin/sup 2/psi-method at intervals in the fatigue tests. Fatigue testing was performed with constant load amplitude at nominal pull-push and pull-pull cycling. The effects of peak-load and variable amplitude were also examined. It was found that the residual stress relaxation could be linked to a total mean stress relaxation towards zero, to an extent which is ruled by a softening criteria. Fatigue test data of the shot peened and ground surface conditions are also given. An X-ray diffraction line broadening analysis was undertaken to examine the microstructural behaviour due to fatigue loading and its correlation to the residual stress behaviour. Single-peak analysis with a Voigt-function method was used to estimate the microstructural parameters, domain size and microstrain. Multiple-peak analysis according to the Warren-Averbach method was used to verify the single-peak analysis. The dislocation density was found to decrease depending on the load amplitude, while the dislocation arrangement follows a pattern depending on yield history.

  8. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  9. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  10. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  11. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  12. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  13. Assessment of the interaction of variables in the intergranular stress corrosion crack growth rate behavior of Alloys 600, 82, and 182

    International Nuclear Information System (INIS)

    Paraventi, D.J.; Moshier, W.C.

    2007-01-01

    SCC testing of Alloy 600 and its weld metals has demonstrated that temperature, stress intensity factor (K), dissolved hydrogen, and yield strength all play a role on crack growth in deaerated, hydrogenated water. Typically, each variable has been modeled independently. However, some of these variables interact, which can affect crack growth predictions. In particular, testing has demonstrated several important interactions, including final annealing temperature and K, cold work and dissolved hydrogen, and orientation and cold work. The annealing temperature influences the K dependence of Alloy 600, with lower temperature anneals decreasing the influence of stress on growth. The response to cold work varies as a function of processing method and orientation, with crack growth in the processing direction having a stronger yield strength dependence than crack growth perpendicular to the processing direction. The effect of hydrogen has been found to be related to electrochemical potential, with the most susceptible condition occurring near the Ni/NiO phase transition. However, cold worked Alloy 600 maintains the peak susceptibility at low hydrogen conditions. (author)

  14. Understanding and determining the variability of the primitive stress environment.

    CSIR Research Space (South Africa)

    Sellers, EJ

    2002-10-01

    Full Text Available The primitive stress state is an important input into the design of underground excavations. However, it is well known that the stress state varies considerably from place to place. The aim of this project was to determine the main causes...

  15. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    Science.gov (United States)

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability

    Science.gov (United States)

    Ciarniello, M.; Raponi, A.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Kappel, D.; Rousseau, B.; Arnold, G.; Capria, M. T.; Barucci, M. A.; Quirico, E.; Longobardo, A.; Kuehrt, E.; Mottola, S.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Migliorini, A.; Zinzi, A.; Palomba, E.; Schmitt, B.; Piccioni, G.; Cerroni, P.; Ip, W.-H.; Rinaldi, G.; Salatti, M.

    2016-11-01

    VIRTIS-M observations of the nucleus of comet 67P/Churyumov-Gerasimenko acquired from 2014 August to 2015 May have been analysed to investigate surface temporal variability at both seasonal and diurnal scales. The measured reflectance spectra are studied by means of comet spectral indicators (CSI) such as slopes in the visible and infrared ranges, and 3.2 μm band area and band centre. CSI maps derived from data acquired at different heliocentric distances (from 3.62 to 1.72 au) along the inbound leg of the comet's orbit are used to infer surface water ice abundance. We measure a global scale enrichment of water ice from 2014 August to 2015 May across the body of the comet, along with variability at small spatial scale, possibly related with the local insolation conditions. Analysis of water ice diurnal variability is performed on 2014 August observations. Water ice appears at the border of receding shadows in the neck of the comet (Hapi), sublimating in less than 1 h, after exposure to sunlight. As similar variability is not observed in other regions of the comet, we interpreted this as the expression of a diurnal cycle of sublimation and re-condensation of water ice, triggered by sudden shadowing produced on the neck by the body and the head of the nucleus.

  17. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  18. Effect on stress-strain relations brought by surface carburization of 316 stainless steel

    International Nuclear Information System (INIS)

    Matsumoto, K.

    1977-01-01

    The effect of sodium. environment on austenitic stainless steels used as structural materials in Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) has long been the subject of extensive studies in many countries. Recent developments tending toward stricter control of the oxygen content permitted to be present in the circulating sodium have come to allay the apprehensions formerly held on the possibility of general corrosion affecting the mechanical properties of structural materials expected to be used In LMFBR plants. Grain boundary corrosion and depletion of elements from the structure surface also have come to be considered to provide little cause of fear in this regard, though some uncertainty is still left concerning the influence that these phenomena might exert toward the end of plant life. What still remains essentially to be clarified relates to carbon mass transfer. Decarburization and/or carburization are phenomena that cannot be disregarded even in the primary heat transfer system of LMFBRs, on account of the temperature dependence of carbon activity in steels, which could cause the carbon to leak out from structural material into the circulating sodium in the higher temperature zones of a circuit, to deposit itself on the channel walls in the lower temperature parts. Recent reports on loop experiments point toward the possibility of carboneous matter leaching into flowing sodium and into the cover gas to produce significant carburization phenomena. Carburization, in particular, can bring about loss of ductility and deterioration of fatigue properties, and hence serious consideration of this aspect is called for in the design of components incorporating thin stainless steel plates. To represent the stress-strain behavior at 550 deg. C of 316 stainless steel affected by surface carburization, an empirical formula was adopted. It was proposed by Voce for relating true stress to true plastic strain: σ = Aexp(C ε p ) + B, where σ is the true stress, and

  19. Effect of step width manipulation on tibial stress during running.

    Science.gov (United States)

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (pstresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mesh construction and evaluation of the stress intensity factor for the semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Wook; Lee, Gyu Mahn; Jeong, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae

    2001-01-01

    As actual cracks found in practical structures are mostly three-dimensional surface cracks, such cracks give rise to the important problem when the structural integrity is evaluated in a viewpoint of fracture mechanics. The case of a semi-elliptical surface crack is more complicated than that of the embedded elliptical crack since the crack front intersects the free surface. Therefore, the exact expression of stress field according to the boundary condition can be the prior process for the structural integrity evaluation . The commercial code, I-DEAS does not provide the family of strain singular element for the cracked-body analysis. This means that the user cannot make use of the pre-processing function of I-DEAS effectively. But I-DEAS has the capability to hold input data in common with computational fracture mechanics program like ABAQUS. Hence, user can construct the optimized analysis method for the generation of input data of program like ABAQUS using the I-DEAS. In the present study, a procedure for the generation of input data for the optimized 3-dimensional computational fracture mechanics is developed as a series of effort to establish the structural integriyt evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are made using the commercial code, I-DEAS program, The stress analysis is performed using the ABAQUS. To demonstrate the validation of the developed procedure in the present sutdy, semi-elliptic surface crack in a half space subjected to uniform tension are solved, and the effects of crack configuration ratio are discussed in detail. The numerical results are presented and compared to those presented by Raju and Newman. Also, we have established the structural integrity evaluation procedure through the 3-D crack modeling