WorldWideScience

Sample records for surface soil wetness

  1. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  2. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  3. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    Science.gov (United States)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  4. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  5. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-07-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.

  7. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  8. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  9. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia.

    Science.gov (United States)

    Muqaddas, Bushra; Zhou, Xiaoqi; Lewis, Tom; Wild, Clyde; Chen, Chengrong

    2015-12-01

    Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0-10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2-C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  11. Does Surface Roughness Amplify Wetting?

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr

    2014-01-01

    Roč. 141, č. 18 (2014), s. 184703 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S Institutional support: RVO:67985858 Keywords : density functional theory * wetting * roughness Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  12. Variation of runoff source areas under different soil wetness ...

    African Journals Online (AJOL)

    2018-04-03

    Apr 3, 2018 ... and dry antecedent soil wetness (the dominant soil moisture ... the initial abstraction of rainfall to be equal to 20% of the maximum potential soil water ...... ZAREI H (2012) Baseflow separation using isotopic techniques and.

  13. Wetted surface area of recreational boats

    NARCIS (Netherlands)

    Bakker J; van Vlaardingen PLA; ICH; VSP

    2018-01-01

    The wetted surface area of recreational craft is often treated with special paint that prevents growth of algae and other organisms. The active substances in this paint (antifouling) are also emitted into the water. The extent of this emission is among others determined by the treated surface area.

  14. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  15. On the remote measurement of evaporation rates from bare wet soil under variable cloud cover

    Science.gov (United States)

    Auer, S.

    1976-01-01

    Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

  16. Microbial community composition of transiently wetted Antarctic Dry Valley soils.

    Science.gov (United States)

    Niederberger, Thomas D; Sohm, Jill A; Gunderson, Troy E; Parker, Alexander E; Tirindelli, Joëlle; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  17. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng

    2016-01-01

    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  18. Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface

    Directory of Open Access Journals (Sweden)

    Zhi-hai Jia

    2016-01-01

    Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.

  19. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated

  20. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  1. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  2. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  3. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring

    DEFF Research Database (Denmark)

    Nocita, M.; Stevens, A.; van Wesemael, Bas

    2015-01-01

    The soil science community is facing a growing demand of regional, continental, and worldwide databases in order to monitor the status of the soil. However, the availability of such data is very scarce. Cost-effective tools to measure soil properties for large areas (e.g., Europe) are required....... Soil spectroscopy has shown to be a fast, cost-effective, envi-ronmental-friendly, nondestructive, reproducible, and repeatable analytical technique. The main aim of this paper is to describe the state of the art of soil spectroscopy as well as its potential to facilitating soil monitoring. The factors...... constraining the application of soil spectroscopy as an alternative to traditional laboratory analyses, together with the limits of the technique, are addressed. The paper also highlights that the widespread use of spectroscopy to monitor the status of the soil should be encouraged by (1) the creation...

  4. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    Science.gov (United States)

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  5. What's So Bad about Being Wet All Over: Investigating Leaf Surface Wetness.

    Science.gov (United States)

    Brewer, Carol A.

    1996-01-01

    Presents investigations of leaf surface wetness that provide ideal opportunities for students to explore the relationships between leaf form and function, to study surface conditions of leaves and plant physiology, and to make predictions about plant adaptation in different environments. Describes simple procedures for exploring questions related…

  6. Metal contamination of vineyard soils in wet subtropics (southern Brazil)

    International Nuclear Information System (INIS)

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O.

    2007-01-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg -1 , which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl 2 , demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1 M surpasses the toxic threshold as much as 4-6 times. - Copper-based pesticide use in wet subtropics is environmentally more risky

  7. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  8. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  9. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  10. Effect of land management models on soil erosion in wet tropical cacao plantations in Indonesia

    OpenAIRE

    Suhardi

    2017-01-01

    Indonesia is one of the world???s largest cocoa exporters and is located in a tropical wet region. In tropical regions, surface run off is a major factor behind the occurrence of erosion-driven land degradation. Both land slope and land cover influence the magnitude of surface run off and soil erosion. Cocoa plants are generally cultivated on land that has a steep slope without regard to existing land cover conditions resulting in a susceptibility to soil erosion. The purpose of this resea...

  11. Wetting study of patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)], E-mail: Bhushan.2@osu.edu; Jung, Yong Chae [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)

    2007-10-15

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements.

  12. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  13. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  14. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  15. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  16. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  17. Dynamics of wetting on smooth and rough surfaces.

    NARCIS (Netherlands)

    Cazabat, A.M.; Cohen Stuart, M.A.

    1987-01-01

    The rate of spreading of non-volatile liquids on smooth and on rough surfaces was investigated. The radius of the wetted spot was found to agree with recently proposed scaling laws (t 1/10 for capillarity driven andt 1/8 for gravity driven spreading) when the surface was smooth. However, the

  18. Blast load effects research in dry and wet soil

    CSIR Research Space (South Africa)

    Ahmed, R

    2014-09-01

    Full Text Available stream_source_info Ahmed_2014_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 904 Content-Encoding UTF-8 stream_name Ahmed_2014_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 South African Ballistics... Organisation Conference, Zebra Country Lodge, Gauteng, South Africa, 29 September – 1 October 2014 BLAST LOAD EFFECTS RESEARCH IN DRY AND WET SOIL R Ahmed and ME Miyambo Landward Sciences, Defence Peace Safety and Security, CSIR, PO Box 395, Pretoria...

  19. Tuning and predicting the wetting of nanoengineered material surface

    Science.gov (United States)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the

  20. Wetting behavior of magnesite and dolomite surfaces

    Science.gov (United States)

    Gence, Nermin

    2006-03-01

    Magnesite and dolomite are salt-type minerals that show similar chemical composition and flotation behavior due to same crystal structure, and sparingly soluble nature. The surface properties of minerals play a major role in determining their separation from each other in processes such as flotation. During flotation process, selectivity problem arises between magnesite and associated gangue minerals such as dolomite. There is a close relationship between floatability of minerals and their contact angles. Therefore, surface hydrophobicity of magnesite and dolomite minerals was investigated by contact angle measurements in the absence and presence of flotation reagents. Magnesite and dolomite show hydrophilic properties and they have got a small contact angle (magnesite ˜10.4° and dolomite ˜6.6°) in distilled water in the absence of any surfactant. The contact angle values at the magnesite and dolomite surfaces remained at 9.7°-10.9° in the presence of petroleum sulphonates (R825 and R840) while sodium oleate affected hydrophobicity of magnesite, and the contact angle value increased up to 79°. The contact angle value of 39° at dolomite surface was obtained in the solution of sodium oleate, respectively.

  1. Wetting Properties of Molecularly Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-01-01

    Roč. 143, č. 10 (2015), s. 104701 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : contant-angle * solid-surface * dynamics Subject RIV: BJ - Thermodynamics Impact factor: 2.894, year: 2015

  2. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  3. Electrostatic cloaking of surface structure for dynamic wetting

    Science.gov (United States)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  4. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  5. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  6. The contact angle of wetting of the solid phase of soil before and after chemical modification

    Directory of Open Access Journals (Sweden)

    Tyugai Zemfira

    2015-07-01

    Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of

  7. Wetting on micro-structured surfaces: modelling and optimization

    DEFF Research Database (Denmark)

    Cavalli, Andrea

    -patterns, and suggests that there is a balance between optimal wetting properties and mechanical robustness of the microposts. We subsequently analyse liquid spreading on surfaces patterned with slanted microposts. Such a geometry induces unidirectional liquid spreading, as observed in several recent experiments. Our...... liquid spreading and spontaneous drop removal on superhydrophobic surfaces. We do this by applying different numerical techniques, suited for the specific topic. We first consider superhydrophobicity, a condition of extreme water repellency associated with very large static contact angles and low roll......The present thesis deals with the wetting of micro-structured surfaces by various fluids, and its goal is to elucidate different aspects of this complex interaction. In this work we address some of the most relevant topics in this field such as superhydrophobicity, oleophobicity, unidirectional...

  8. A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness

    Science.gov (United States)

    Camuffo, Dario; della Valle, Antonio; Becherini, Francesca

    2018-05-01

    Surface wetness is a synergistic factor to determine atmospheric corrosion, monument weathering, mould growth, sick buildings, etc. However, its detection and monitoring are neither easy nor homogeneous, for a number of factors that may affect readings. Various types of methods and sensors, either commercial or prototypes built in the lab, have been investigated and compared, i.e. the international standard ISO 9223 to evaluate corrosivity after wetness and time-of-wetness; indirect evaluation of wetness, based on the dew point calculated after the output of temperature and relative humidity sensors and direct measurements by means of capacitive wetness sensors, safety sensors, rain sensors (also known as leaf wetness sensors), infrared reflection sensors and fibre optic sensors. A comparison between the different methods is presented, specifying physical principles, forms of wetting to which they are respondent (i.e. condensation, ice melting, splashing drops, percolation and capillary rise), critical factors, use and cost.

  9. Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces

    International Nuclear Information System (INIS)

    Pant, Reeta; Singha, Subhash; Bandyopadhyay, Aritra; Khare, Krishnacharya

    2014-01-01

    Ultraviolet (UV) radiation responsive surfaces, with tunable wetting properties, are fabricated by spin casting polystyrene/titania nanocomposite dispersion in tetrahydrofuran on silicon substrates. The prepared samples are found hydrophilic due to the presence of the water miscible solvent. Upon annealing, as the solvent evaporates, samples become superhydrophobic due to presence of hydrophobic polystyrene and formation of nano and micro scale surface roughness due to titania nanoparticles. Effect of different annealing temperatures and time on resulting wettability is investigated. Photocatalytic property of titania is exploited to make transition from superhydrophobic to hydrophilic state upon UV exposure. Subsequently, upon annealing again at elevated temperatures for sufficient time, the UV exposed hydrophilic samples recover their superhydrophobicity showing transition from hydrophilic to superhydrophobic state. Detailed static and dynamic study of these reversible transitions, between superhydrophobic and hydrophilic states, due to UV exposure and annealing is presented in this article.

  10. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  11. Transfer of 137Cs from soil to plants in a wet montane forest in subtropical Taiwan

    International Nuclear Information System (INIS)

    Chih-Yu Chiu

    1999-01-01

    The distribution of 137 Cs in an undisturbed, multistoried, subtropical wet montane forest ecosystem surrounding Yuanyang Lake (lake surface level ca. 1670 m, in northeastern Taiwan), was investigated. The mossy forest here represents a currently-rare perhumid temperate environment in subtropical region. The radioactivity concentration of 137 Cs was determined by γ-spectroscopy with a Ge(Li) detector. Although the soil is extremely acidic (pH 3.3 to 3.6) and the rainfall is high, 137 Cs is evidently retained in the organic layer. The radioactivity concentration of 137 Cs in surface soil ranges from 28 to 71 Bq x kg -1 . The concentrations of 137 Cs in the ground moss layer and litter were much lower than that in the soil organic layer; this suggests that 137 Cs detected is not from the newly deposited radioactive fallout. The radioactivity concentration and transfer factor (TF) of 137 Cs varied with plant species. Shrubs and ferns have higher values than a coniferous tree (Taiwan cedar). The TF in this ecosystem is as high as 0.21 to 1.88. The high values of TF is attributed to the abundance of the organic matter in the forest soils. The rapid recycling of 137 Cs through the soil-plant system of this undisturbed multistoried ecosystem suggests the existence of an internal cycling that help the accumulation of 137 Cs in this ecosystem. (author)

  12. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  13. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  14. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

    Science.gov (United States)

    Mergelov, N. S.

    2014-09-01

    The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, "classical" soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

  15. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    Science.gov (United States)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  16. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  17. 137Cs redistribution in time in wet bory and sugrudy soils in forests of Ukrainian Polissia

    Directory of Open Access Journals (Sweden)

    V. P. Krasnov

    2016-06-01

    Full Text Available The data on 137Cs distribution in sod-podzol forest soils of Ukrainian Polissia contaminated by radionuclides after Chornobyl accident are presented. Researches were conducted on the permanent sample areas in wet bory and sugrudy in 2000 and in 2012 years. It is proved that 137Cs migration from the forest litter to the soil mineral part occurred comparatively quickly. It can be explained by a thin layer and a high mineralization of the forest litter in wet sugrudy. Nevertheless, wet bory are characterized by more intensive radionuclide migration to the deeper layers of the soil mineral part. Such regularity can be explained by a small amount of humus and fine-dispersed particles as well as higher soil acidity in wet bory.

  18. 137 Cs redistribution in time in wet body and sugrudy soils in forests of Ukrainian Polissia

    International Nuclear Information System (INIS)

    Krasnov, V.P.; Kurbet, T.V.; Shelest, Z.M.; Boiko, O.I.

    2016-01-01

    The data on 137 Cs distribution in sod-podzol forest soils of Ukrainian Polissia contaminated by radionuclides after Chornobyl accident are presented. Researches were conducted on the permanent sample areas in wet bory and sugrudy in 2000 and in 2012 years. It is proved that 137 Cs migration from the forest litter to the soil mineral part occurred comparatively quickly. It can be explained by a thin layer and a high mineralization of the forest litter in wet sugrudy. Nevertheless, wet bory are characterized by more intensive radionuclide migration to the deeper layers of the soil mineral part. Such regularity can be explained by a small amount of humus and fine-dispersed particles as well as higher soil acidity in wet bory

  19. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    Science.gov (United States)

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    Science.gov (United States)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  1. The Investigation of the Cavitation Phenomenon in the Laval Nozzle with Full and Partial Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2017-04-01

    Full Text Available The article deals with the cavitation phenomenon affected by full and partial wetting of the wall. For the numerical computation of flow in the Laval nozzle the Schnerr-Sauer cavitation model was tested and was used for cavitation research of flow within the nozzle considering partial surface wetting. The coefficient of wetting for various materials was determined using experimental, theoretical and numerical methods of fluid flow due to partial surface wetting.

  2. Soil water retention curves of remoulded clay on drying and wetting paths

    International Nuclear Information System (INIS)

    Zhang Xiwei; Zhang Jian

    2010-01-01

    The present research focuses on the laboratory measurement of the Soil Water Retention Curve (SWRC), that expresses the relationship between water content (gravimetric or volumetric) or degree of saturation and soil suction. The SWRC plays an important role in an unsaturated soil mechanics framework and is required for the numerical modelling of any process of flow and transport in unsaturated soil problems, already as a part of constitutive model of unsaturated soil. Six remoulded London Clay samples were performed SWRC testing on the drying and wetting path, meanwhile measurement the volume change. The effect of initial water content and various drying/wetting paths were considered in the tests. The results of SWRC show that hysteretic characteristic in boundary drying/wetting curve, the water holding capacity was increased due to the increase of the initial water content. The shape of the SWRC strongly depended on the volume change. (authors)

  3. Evaporation dynamics of completely wetting drops on geometrically textured surfaces

    Science.gov (United States)

    Mekhitarian, Loucine; Sobac, Benjamin; Dehaeck, Sam; Haut, Benoît; Colinet, Pierre

    2017-10-01

    This study deals with the evaporation dynamics of completely wetting and highly volatile drops deposited on geometrically textured but chemically homogeneous surfaces. The texturation consists in a cylindrical pillars array with a square pitch. The triple line dynamics and the drop shape are characterized by an interferometric method. A parametric study is realized by varying the radius and the height of the pillars (at fixed interpillar distance), allowing to distinguish three types of dynamics: i) an evaporation-dominated regime with a receding triple line; ii) a spreading-dominated regime with an initially advancing triple line; iii) a cross-over region with strong pinning effects. The overall picture is in qualitative agreement with a mathematical model showing that the selected regime mostly depends on the value of a dimensionless parameter comparing the time scales for evaporation and spreading into the substrate texture.

  4. Distribution of the radionuclide 137Cs in the soils of a wet mountainous forest in Taiwan

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Lai, S.-Y.; Lin, Y.-M.; Chiang, H.-C.

    1999-01-01

    The behavior of 137 Cs was studied in the Yuanyang lake ecosystem, a wet mountainous forest in subtropical Taiwan. Soils investigated are either partially podzolic soils or nearly pure peats with a high organic matter concentration in the surface layer. Concentration of 137 Cs was highest in the organic surface layers, particularly in the Oe horizon or in the underlying A horizon. The downwards migration to the mineral horizons is limited, in spite of the high rainfall. Topography is a critical factor for the distribution of 137 Cs. It is shown that the concentration of 137 Cs is highest at the foot of the slope and lower near the summit and near the lakeshore. The variation of the concentration along the landscape has been attributed to erosion-deposition in combination with surface run-off of the undisturbed forest. The amount of 137 Cs in the site studied is significantly higher than at any other place in Taiwan. The accumulation of 137 Cs is attributed to the high rainfall, which brought large amounts of 137 Cs with the precipitation in the early 1960s. A very remarkable feature of the ecosystem is that 137 Cs is not leached to the subsoils, but is stored in the biomass. Due to permanent recycling it remains available, without being leached downward

  5. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  6. Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico.

    Science.gov (United States)

    Ariel E. Lugo F.N. Scatena

    1995-01-01

    Relationships between landforms, soil nutrients, forest structure, and the relative importance of different disturbances were quantified in two subtropical wet steepland watersheds in Puerto Rico. Ridges had fewer landslides and treefall gaps, more above-ground biomass, older aged stands, and greater species richness than other landscape positions. Ridge soils had...

  7. Creating gradient wetting surfaces via electroless displacement of zinc-coated carbon steel by nickel ions

    Science.gov (United States)

    Xu, Chang; Liu, Huicong; Liang, Weitao; Zhu, Liqun; Li, Weiping; Chen, Haining

    2018-03-01

    Gradient wetting surfaces are getting increasing attention due to their wide application in multiple fields such as droplet movement and biosorption. However, the fabrication processes of full gradient wetting surfaces are still complex and costly. In present work, a facile and low-cost chemical immersion method was used to create a full gradient wetting surface. By controlling the displacement time in Ni2+ solution, the prepared surfaces perform hydrophilic to superhydrophilic. After being modified by stearic acid, the gradient hydrophilic surfaces convert into hydrophobic. The surface morphology, composition, and wetting behaviors of the as-prepared surfaces were systematically studied and discussed. The gradient wetting property could be attributed to the change in microroughness and surface energy. In addition, these surfaces also exhibited excellent self-cleaning and wax prevention properties. Furthermore, high stability and corrosion resistance were also found for these surfaces, which further highlight their promising practical applications in many fields.

  8. Conceptual Modeling of the Influence of Wetting and Drying Cycles on Soil Aggregation and Stabilization

    Science.gov (United States)

    Albalasmeh, A. A.; Ghezzehei, T.

    2011-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.

  9. Simulated and measured soil wetting patterns for overlap zone ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... Drip irrigation is one of the most useful methods that is widely used in the arid and semi- ... Simulations of the water content and wetting front were close to the observed data. ... many researchers have employed numerical models to ... Field experiments were conducted in 2010 at the management of.

  10. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    Science.gov (United States)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  11. Soil aggregate formation: the role of wetting-drying cycles in the genesis of interparticle bonding

    Science.gov (United States)

    Albalasmeh, Ammar; Ghezzehei, Teamrat

    2013-04-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. In nature, soil is continually exposed to wetting (e.g., rainfall and diffusive flow) and drying (e.g., evaporation, diffusive flow and plant uptake). These natural wetting and drying cycles of soils are physical events that profoundly affect the development of soil structure, aggregate stability, carbon (C) flux and mineralization. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We found that aggregates of sand and silt particles can be formed by subjecting loose particles to wetting-drying cycles in the presence of dilute solutions of organic matter that mimic root or microbial exudates. Moreover, majority of the organic matter was deposited in the contact region between the sand particles, where the water accumulates during drying. The model predictions and aggregate stability measurements are supported by scanning electron micrographs that clearly show the process of aggregate formation.

  12. To the vibrational over wetting and liquefaction effects in moistured soils

    International Nuclear Information System (INIS)

    Karimov, F.H.; Oripov, G.O.; Saidov, R.M.; Tojibekov, M.

    2003-01-01

    There is a lot of evidence of the dynamical effects in soils when they become wetted or during or after the earthquakes or explosions. There are some quantitative estimates for the vibrational wetting and liquefaction of soils under consideration. For the models in the present research the moistured sands and weak soils like losses are accepted. The first model is focusing on soil fractures sliding down under the action of vibrations, tightening of a hard phase, squeezing water phase out and thus bringing to soil liquefaction. The second is based on soil fractures plunging at the action of vibrations into the aquatic background. This mechanism seems to be more effective for the high degree moistured soils. The third mechanism is based on capillary phenomena in moistured porous medium. When inertia forces are large enough the resultant force, consisting of sliding down gravity component and inertia forces, overcomes friction and fracture becomes unstable. Both vibrations amplitude and frequency are the stability controlling factors, playing an important role in the vibrational wetting and liquefaction effects through porous water phase squeezing out or capillary lifting phenomena leading to the wetting or liquefaction of the medium. (author)

  13. Revised Rapid Soils Analysis Kit (RSAK) - Wet Methodology

    Science.gov (United States)

    2018-01-01

    procedural steps in conducting a wet RSAK experiment. ............................ 14 Figure 12. Introductory screen to begin RSAK data input in...used to calculate the construction curves are provided in Berney and Wahl (2008). ERDC TR-18-1 16 Figure 12. Introductory screen to begin RSAK...platform to provide a robust data set for statistical evaluation. Atterberg limits conducted by the ERDC Materials Test Center are considered the

  14. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  15. Soil structure restoration by wet/dry cycles assessed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F. [Univ. of Sao Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Sao Paulo (Brazil)

    2005-07-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an {sup 241}Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  16. Soil structure restoration by wet/dry cycles assessed by computed tomography

    International Nuclear Information System (INIS)

    Pires, L.F.

    2005-01-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an 241 Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  17. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    Science.gov (United States)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  18. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  19. Surface Characterization of a Paper Web at the Wet End

    International Nuclear Information System (INIS)

    Abidi, B.R.; Goddard, J.S.; Sari-Sarraf, H.

    1999-01-01

    We present an algorithm for the detection and representation of structures and non-uniformities on the surface of a paper web at the wet end (slurry). This image processing/analysis algorithm is developed as part of a complete on-line web characterization system. Images of the slurry, carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. The images have very poor contrast and contain noise from a variety of sources. Those sources include the acquisition system itself, the lighting, the vibrations of the moving table being imaged, and the scattering water from the same table's movement. After many steps of enhancement, conventional edge detection methods were still inconclusive and were discarded. The facet model algorithm, is applied to the images and is found successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image is computed based on the general appearance and characteristics of the structures in question. Morphological operators are applied to detect and segment regions of interest. Those regions are then filtered according to their size, elongation, and orientation.Their bounding rectangles are computed and superimposed on the original image. Real time implementation of this algorithm for on-line use is also addressed in this paper. The algorithm is tested on over 500 images of slurry and is found to detect nonuniformities on all 500 images. Locating and characterizing all different size structures is also achieved on all 500 images of the web

  20. Role of wetting and drying cycles in formation and growth of soil aggregates

    Science.gov (United States)

    Ghezzehei, T. A.; Lopez, J. P.

    2009-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. In response to the various processes that occur within it, soil structure evolves continuously at multiple spatial and temporal scales. We hypothesize that the rhythm of the evolution is controlled by wetting and drying cycles. Here, we will present a mathematical description of the role of wetting and drying cycles in the formation and stabilization of soil aggregates with emphasis on two important roles of wetting and drying cycles: (1) transport and deposition of organic and inorganic cementing agents at the most effective locations, (2) chemical and physical alteration of cementing agents during desiccation and the resultant semi-permanent bonding (or bond hardening). Our results demonstrate that size and strength of aggregates are determined by particle size, degree of dryness, number of wetting-drying cycles, as well as concentration and solubility of dissolved and/or colloidal cementing agents. These results are in general agreement with experimental observations obtained from the literature.

  1. Soil wetting patterns of vegetation and inter-patches following single and repeated wildfires

    Science.gov (United States)

    González, Óscar; Malvar, Maruxa; van den Elsen, Erik; Hosseini, mohammadreza; Coelho, Celeste; Ritsema, Coen; Bautista, Susana; Keizer, Jan Jacob; Cerdà, Artemi

    2015-04-01

    Although wildfires spread in Mediterranean areas are considered a natural processes, the expected increase in fire frequency has raised concerns about the systems' future resilience (Pausas, 2004). Besides more frequent, future wildfires can become more severe and produce more pronounced changes in topsoil properties, vegetation and litter (Cerdá and Mataix-Solera, 2009). To deal with challenges, the EU funded CASCADE and RECARE projects, which are currently assessing soil threats and tipping-points for land degradation in a climatic gradient across Europe. The present research was developed in Portugal and aims to find relationships between fire frequency and soil wetting patterns following single versus repeated wildfires. In September 2012, a wildfire burnt 3000 ha. of Pine stands and shrub vegetation in the vicinity of Viseu district, North-Central Portugal. Analyses according to the available burnt-area maps (1975-2012), discriminated areas that has been burned 1x (called SD) and 4x (called D) times. In order to evaluate the post-fire soil surface moisture patterns, 6 slopes (3 in SD and 3 in D) were selected and a balanced experimental design with 72 soil moisture sensors (EC5 and GS3, from Decagon devices) was implemented under shrubs (n=18) and on bare (n=18) soil environments, at 2.5 cm and 7.5 cm soil depth each. The spatio-temporal occurrence of soil water repellence (SWR) (Keizer et al., 2008; Prats et al., 2013; Santos et al., 2014) was monthly assessed through the MED test at 2.5 cm and 7.5 cm soil depth into 5 sampling points located at regular distances along a transect running from the top to bottom of a selected slope in SD and D. Automatic and totalize rainfall gauges were also installed across the study area. Preliminary results showed that soil wetting patterns and SWR occurrence differs between SD, D sites and, between soil environment (under shrubs and on bare soil areas). SWR were more pronounced on the SD than in D, affecting soil wetting

  2. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  3. Development of a soil water dispersion index (SOWADIN) for testing the effectiveness of a soil-wetting agent

    International Nuclear Information System (INIS)

    Sawada, Y.; Aylmore, L.A.G.; Hainsworth, J.M.

    1989-01-01

    Computer-assisted tomography (CAT) applied to gamma-ray attenuation measurement has been used to develop an index termed the soil water dispersion index (SOWADIN), which describes quantitatively the amount and distribution of water in soil columns. The index, which is determined by classifying pixels in a scanned slice into three categories according to their attenuation coefficients, contains two numerical values. The first value corresponds to the water content of the scanned slice and the second value is a measure of the dispersion of the water throughout the slice. Artificially wetted zones were created in soil columns to give one-third of the scanned layer wetted with various patterns of wetted-area distribution. The SOWADIN values obtained accurately reflected the differences in water distribution associated with the different patterns. Application of SOWADIN to columns of a water-repellent sand before and after treatment with a soil-wetting agent clearly illustrates both the increase in water content and improvement in water distribution in the soil column following treatment. 33 refs., 3 figs., 2 tabs

  4. Variation of runoff source areas under different soil wetness ...

    African Journals Online (AJOL)

    Runoff source areas can serve as focus areas for water quality monitoring and catchment management. In this study, a conceptual form of the Soil Conservation Service Curve Number method (SCS-CN) is used to define variable-source runoff areas in a meso-scale catchment in the Zagros mountain region, southwest of ...

  5. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  6. REMR Management System - Coatings for Use on Wet or Damp Steel Surfaces

    National Research Council Canada - National Science Library

    Beitelman, Alfred

    1997-01-01

    .... The surfaces of these structures normally can be blast cleaned to a white metal grade, but condensation and/or water leaking around seals immediately make the surfaces too wet for the application of many coatings...

  7. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  8. Rapid Stabilization/Polymerization of Wet Clay Soils; Literature Review

    Science.gov (United States)

    2009-01-15

    MacDonald, W. A., Pitman, D., and Ryan, T. G. (1999). "High Tempera- ture Non-aqueous Dispersion Polymerization of Aromatic Main Chain Liquid...of Dispersive Soils by Using Different Additives." Indian Geotechnical Journal, 14(3), 202-216. 36. Charleson, D. A. and Widger, R. A. (1989...Baghdadi, Z. A., and Khan, A. M. (1991). "Overconsolidated Beha- vior of Phosphoric Acid and Lime-Stabilized Kaolin Clay." Transportation Research

  9. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  10. Soil CO2 efflux in three wet meadow ecosystems with different C and N status

    Czech Academy of Sciences Publication Activity Database

    Zemanová, K.; Čížková, Hana; Šantrůčková, H.

    Suppl.S, č. 9 (2008), s. 49-55 ISSN 1585-8553 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60660521 Keywords : wet meadow * soil CO2 efflux * eutrophication Subject RIV: EH - Ecology, Behaviour Impact factor: 0.898, year: 2008

  11. WET-sensor pore water EC calibration for three horticultural soils

    NARCIS (Netherlands)

    Balendonck, J.; Bruins, M.A.; Wattimena, M.R.; Voogt, W.; Huys, A.

    2005-01-01

    The WET-sensor is a frequency domain dielectric sensor that measures permittivity, conductivity and temperature, which can be used for monitoring soil water content and electrical conductivity in horticulture. By using a specific model it measures pore water conductivity as well. However, under

  12. Effect of Wetting Agents and Approaching Anodes on Lead Migration in Electrokinetic Soil Remediation

    OpenAIRE

    Ng, Yee-Sern; Gupta, Bhaskar Sen; Hashim, Mohd Ali

    2015-01-01

    This is the presentation slides for my conference paper "Effect of Wetting Agents and Approaching Anodes on Lead Migration in Electrokinetic Soil Remediation", which was presented in 5th International Conference on Chemical Engineering and Applications, Taipei on 27 August 2014.

  13. Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

    Directory of Open Access Journals (Sweden)

    Z Nemati

    2018-03-01

    replications. A composite disturbed sample of topsoil (0–200 mm deep of a silty clay loam soil was collected from Isfahan province (32 31.530 N; 51 49.40E in center of Iran. The mean annual precipitation and temperature of the region are about 160 mm and 16 C, respectively. Sugarcane residues (bagasse and filter cake were obtained from the sugarcane fields in Ahvaz, Khuzestan province (Iran. The samples were air-dried and passed through a 2-mm sieve. Soil treated by bagasse and filter cake in different rates was poured and knocked lightly into cylinders with diameter and height of 25 and 8 cm, respectively. Large air-dry disturbed soil samples were prepared and some of them were exposed to five wetting and drying cycles. Finally, the soil surface was covered by a plastic sheet and was left overnight in the laboratory (for 24 hours to enable the moisture to equilibrate. The loading tests were performed the next day. The pre-compaction stress was determined by plate sinkage test (PST. The loading test for PST was performed using CBR apparatus. The compression for PST was continuous at the same constant displacement rate of the CBR (i.e. 1 mm min-1. Determination of the σpc was done using Casagrande’s graphical estimation procedure (Casagrande, 1936 in a program written in MatLab software. Results and Discussion The results showed that σpc was significantly decreased by adding residues to the soil at both water contents, and with/without wetting and drying process. For untreated treatments (control, the σpc decreased with increasing water content. Although σpc decreased with adding the residues to the soil, however, the effect of residue types and percentages and soil water content on σpc was not significant for the soil samples treated with residues. Conclusions In order to prevent re-compaction of the soil and improve its structure, it is suggested that traffic control system with permanent routes for the movement of machinery to be used in sugar cane plantations and

  14. Retention mechanisms and the flow wetted surface - implications for safety analysis

    International Nuclear Information System (INIS)

    Elert, M.

    1997-02-01

    The purpose of this report is to document the state-of-the-art concerning the flow wetted surface, its importance for radionuclide transport in the geosphere and review various suggestions on how to increase the present knowledge. Definitions are made of the various concepts used for the flow wetted surface as well as the various model parameters used. In the report methods proposed to assess the flow wetted surface are reviewed and discussed, tracer tests, tunnel and borehole investigations, geochemical studies, heat transport studies and theoretical modelling. Furthermore, a review is made of how the flow wetted surface has been treated in various safety analyses. Finally, an overall discussion with recommendations is presented, where it is concluded that at present no individual method for estimating the flow wetted surface can be selected that satisfies all requirements concerning giving relevant values, covering relevant distances and being practical to apply. Instead a combination of methods must be used. In the long-term research as well as in the safety assessment modelling focus should be put on assessing the ratio between flow wetted surface and water flux. The long-term research should address both the detailed flow within the fractures and the effective flow wetted surface along the flow paths. 55 refs

  15. Negative soil moisture-precipitation feedback in dry and wet regions.

    Science.gov (United States)

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  16. Review of collapse triggering mechanism of collapsible soils due to wetting

    Directory of Open Access Journals (Sweden)

    Ping Li

    2016-04-01

    Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.

  17. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  18. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    Science.gov (United States)

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  19. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  20. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  1. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben

    2015-01-01

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  2. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    Science.gov (United States)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  3. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    Science.gov (United States)

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  4. Tetra point wetting at the free surface of liquid Ga-Bi

    International Nuclear Information System (INIS)

    Huber, P.; Shpyrko, O.G.; Pershan, P.S.; Ocko, B.M.; Di Masi, E.; Deutsch, M.

    2002-01-01

    A continuous surface wetting transition, pinned to a solid-liquid-liquid-vapor tetra coexistence point, is studied by x-ray reflectivity in liquid Ga-Bi binary alloys. The short-range surface potential is determined from the measured temperature evolution of the wetting film. The thermal fluctuations are shown to be insufficient to induce a noticeable breakdown of mean-field behavior, expected in short-range-interacting systems due to their d u =3 upper critical dimensionality

  5. Characterization of Polymer Surfaces by the Use of Different Wetting Theories Regarding Acid-Base Properties

    Directory of Open Access Journals (Sweden)

    Eduard Kraus

    2017-01-01

    Full Text Available The existing wetting methods for the determination of acid-base properties on solid surfaces are discussed. Striving for a better understanding of the adhesive polymer interactions in adhesively joined polymers, the methods of Berger and van Oss-Chaudhury-Good were found as the most suitable methods for the investigation of wetting on solid polymer surfaces. Methods of nonlinear systems by Della Volpe and Siboni were adapted and evaluated on plastic surfaces. In the context of these investigations various data of the surface free energy as well as its components have been identified for a number of polymer surfaces by application of spatial equation solutions.

  6. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  7. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  8. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  9. Investigation into the surface of implanted monocrystalline silicon with the aid of wetting angle

    International Nuclear Information System (INIS)

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1986-01-01

    The dependence of silicon wetting margical angle on its irradiation dose by ions of electrically active and neutral materials is studied. It has been found that the system of immiscible liquids - ether and water can be successfully used for studying the silicon ion implantation effect on its water wetting. Changing of implanted silicon wetting is bound up with the increase of the defects presence level of surface layers. The specimens annealing reestablishes silicon wetting up to parameters characteristic of non irradiated specimens. The most effective annealing region is within the 550-700 deg C range. The implanted silicon wetting by melts at increased temperatures can be employed for studying kinetics and defect annealing mechanism

  10. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    Science.gov (United States)

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  11. Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture

    Directory of Open Access Journals (Sweden)

    Wooyeon Sunwoo

    2017-01-01

    Full Text Available Runoff prediction in limited-data areas is vital for hydrological applications, such as the design of infrastructure and flood defenses, runoff forecasting, and water management. Rainfall–runoff models may be useful for simulation of runoff generation, particularly event-based models, which offer a practical modeling scheme because of their simplicity. However, there is a need to reduce the uncertainties related to the estimation of the initial wetness condition (IWC prior to a rainfall event. Soil moisture is one of the most important variables in rainfall–runoff modeling, and remotely sensed soil moisture is recognized as an effective way to improve the accuracy of runoff prediction. In this study, the IWC was evaluated based on remotely sensed soil moisture by using the Soil Conservation Service-Curve Number (SCS-CN method, which is one of the representative event-based models used for reducing the uncertainty of runoff prediction. Four proxy variables for the IWC were determined from the measurements of total rainfall depth (API5, ground-based soil moisture (SSMinsitu, remotely sensed surface soil moisture (SSM, and soil water index (SWI provided by the advanced scatterometer (ASCAT. To obtain a robust IWC framework, this study consists of two main parts: the validation of remotely sensed soil moisture, and the evaluation of runoff prediction using four proxy variables with a set of rainfall–runoff events in the East Asian monsoon region. The results showed an acceptable agreement between remotely sensed soil moisture (SSM and SWI and ground based soil moisture data (SSMinsitu. In the proxy variable analysis, the SWI indicated the optimal value among the proposed proxy variables. In the runoff prediction analysis considering various infiltration conditions, the SSM and SWI proxy variables significantly reduced the runoff prediction error as compared with API5 by 60% and 66%, respectively. Moreover, the proposed IWC framework with

  12. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  13. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Pravinraj, T., E-mail: pravinraj1711@gmail.com; Patrikar, Rajendra

    2017-07-01

    Highlights: • A LBM model on partial wetting surface for droplet dynamics is presented by introducing a simple initial partial wetting boundary condition in SC model. • With our approach one can tune the splitting volume and time by carefully choosing strip width and position. • It is shown that the droplet spreading on chemically heterogeneous surfaces can be controlled not only by Weber number but also by tuning strip width ratio. • The directional transportation of a droplet due to chemical wetting gradient is simulated and analyzed using hybrid thermodynamic-image processing technique. • Microstructure surface and its influence on the directional wetting based transportation of droplet are demonstrated. - Abstract: Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains

  14. The Influence of Surface Anisotropy Crystalline Structure on Wetting of Sapphire by Molten Aluminum

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2013-05-01

    The wetting of sapphire by molten aluminum was investigated by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) at PO2 <10-15 Pa under Ar atmosphere. This study focuses on sapphire crystalline structure and its principle to the interface. The planes " a" and " b" are oxygen terminated structures and wet more by Al, whereas the " c" plane is an aluminum terminated structure. A wetting transition at 1273 K (1000 °C) was obtained and a solid surface tension proves the capillarity trends of the couple.

  15. Splash Dynamics of Watercolors on Dry, Wet, and Cooled Surfaces

    Science.gov (United States)

    Baron, David; Vaidya, Ashwin; Su, Haiyan

    2015-11-01

    In his classic study in 1908, A.M. Worthington gave a thorough account of splashes and their formation through visualization experiments. In more recent times, there has been renewed interest in this subject, and much of the underlying physics behind Worthington's experiments has now been clarified. One specific set of such recent studies, which motivates this paper, concerns the fluid dynamics behind Jackson Pollock's drip paintings. The physical processes and the mathematical structures hidden in his works have received serious attention and made the scientific pursuit of art a compelling area of exploration. Our work explores the interaction of watercolors with watercolor paper. Specifically, we conduct experiments to analyze the settling patterns of droplets of watercolor paint on wet and frozen paper. Variations in paint viscosity, paper roughness, paper temperature, and the height of a released droplet are examined from time of impact, through its transient stages, until its final, dry state. Observable phenomena such as paint splashing, spreading, fingering, branching, rheological deposition, and fractal patterns are studied in detail and classified in terms of the control parameters.

  16. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  17. Preparation and Wetting Behavior of Lyophobic Surface on Zinc Substrate

    Directory of Open Access Journals (Sweden)

    HAN Xiang-xiang

    2018-03-01

    Full Text Available Micro-nano structure on zinc substrate was fabricated through the combination of chemical etching with hydrochloric acid aqueous solution and hydrothermal reaction. After modification with perfluorooctanoic solution, the lyophobic surface was prepared. The phase composition, microstructure, chemical composition, and wettability of the as-obtained surface were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. The results show that a layer of ZnO nano-rods grows on the surface of the submicrometer structure, and exhibits good resistance to water impact and stability under the combined action of low surface energy material. When hydrochloric acid concentration is 1.0mol/L and hydrothermal reaction temperature is 95℃, the lyophobic surface possesses the best morphology of ZnO nano-rods. The maximum contact angles of distilled water and peanut oil are 154.65° and 144.65°, respectively, and the sliding angle is less than 10°.

  18. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture. 1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus. 1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques. 1.4 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  20. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    Science.gov (United States)

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  1. Molecular dynamics simulation of wetting behaviors of Li on W surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuegui [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Wangyu, E-mail: wyuhu@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-04-15

    A modified analytic embedded atom potential has been developed for the Li-W system. The potential has been fitted to physical quantities derived from density functional theory calculations. It is shown that the new potential is capable of reproducing the solubility of solid solution for Li-W systems. The wetting behaviors between solid tungsten and liquid Li are examined by using molecular dynamics simulations. The MD simulation results for the Li droplet wetting on the W surface illustrated that our MAEAM potential model has a good forecasting ability for the contact angle of liquid Li on W the cleaning surface above the wetting temperature. And the results of Li film dewetting from the W surfaces are consistent with relative experimental results. It is believed that the potential can be used to investigate the surfaces wettability of liquid Li on W substrate. We also simulated the lithium droplet on grooved surface. It is shown that the grooving W surfaces can obviously improve the wetting of liquid Li on W surfaces.

  2. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    Science.gov (United States)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at

  3. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Science.gov (United States)

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  4. Impact of Optimized Land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    Science.gov (United States)

    Kumar, S.; Santanello, J. A.; Peters-Lidard, C. D.; Harrison, K.

    2011-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spinup of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  5. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  6. A proposal to assess the settlement and subsidence behaviour of noncohesive soils after wetting

    International Nuclear Information System (INIS)

    Hellweg, V.

    1981-01-01

    On the basis of the causes established for the Elbe-Seitenkanal dyke breach in 1976 - which was due a.o. to the settlement of the uniform fine sand placed-serial ground subsidence investigations according to a test method developed by the author were carried through in high-grade steel cylinders of 35 cm diameter and 70 cm height with three very different noncohesive soils to assess the subsidence behaviour after wetting. Besides a critical evaluation of the so far known methods for assessing ground subsidence and direct comparisons with other authors' results and usual laboratory test results, the processes inside the soil samples placed were carefully observed and analysed with the aid of the large experimental devices used. (orig./MSK) [de

  7. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    Science.gov (United States)

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1988-01-01

    Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.

  8. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  9. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    Science.gov (United States)

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Mathematical Investigation of the Cavitation Phenomenon in the Nozzle with Partially Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2015-12-01

    Full Text Available Partially surface wetting has a great influence on friction losses in the fluid flow in both the pipeline system and the complex shape of hydraulic elements. In many hydraulic elements (valves, pump impellers, cavitation is generated, which significantly changes the hydraulic flow parameters, so the last part of the article is devoted to the mathematical solution of this phenomena and evaluates the impact of wall wetting on the size and shape of the cavitation area which appears in the nozzle and in small gaps at special conditions. If the cavitation appears e. g. near the wall of pipes, the blades of turbine or a pump, then it destroys the material surface. On the basis of this physical experiment (nozzle, a two-dimensional (2D mathematical cavitation model of Schnerr-Sauer was made and calculated shape and size of the cavitation region was compared with the experiment. Later this verified model of cavitation was used for cavitation research flow with partial surface wetting. The pressure drop and the size of the cavitation area as it flows from partially surface wetting theory was tested depending on the adhesion coefficient.

  12. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.; Yan, Zhu; Yang, D. Q.; Rohani, Sohrab M F; Ray, Ajay

    2012-01-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a

  13. Behavior of two phenyl urea herbicides in clayey soils and effect of alternating dry-wet conditions on their availability.

    Science.gov (United States)

    Haouari, Jamila; Dahchour, Abdelmalek; Peña-Heras, Arancha; Louchard, Xzavier; Lennartz, Berndt; Alaoui, Mohamed Elbelghiti; Satrallah, Ahmad

    2006-01-01

    Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.

  14. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    Science.gov (United States)

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as

  15. SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS

    Directory of Open Access Journals (Sweden)

    Gorodilov A.A.

    2014-08-01

    Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.

  16. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  17. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  18. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Directory of Open Access Journals (Sweden)

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  19. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    Science.gov (United States)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  20. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures

    Science.gov (United States)

    Panter, J. R.; Kusumaatmaja, H.

    2017-03-01

    The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for square posts and reentrant structures in three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantify how capillary condensation and vapour cavitation affect wetting state stabilities. At high contact angles, cavitation is enhanced about wide, closely-spaced square posts, leading to the existence of suspended states without an associated collapsed state. At low contact angles, narrow reentrant pillars suppress condensation and enable the suspension of even highly wetting liquids. Secondly, two distinct collapse mechanisms are observed for 3D reentrant geometries, base contact and pillar contact, which are operative at different pillar heights. As well as morphological differences in the interface of the penetrating liquid, each mechanism is affected differently by changes in the contact angle with the solid. Finally, for highly-wetting liquids, condensates are shown to critically modify the transition pathways in both the base contact and pillar contact modes.

  1. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    Science.gov (United States)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  2. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  3. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

    Science.gov (United States)

    Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo

    2010-02-01

    The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

  4. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  5. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    Science.gov (United States)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  6. Threshold friction velocity influenced by wetness of soils within the Columbia Plateau

    Science.gov (United States)

    Windblown dust impacts air quality in the Columbia Plateau of the U.S. Pacific Northwest. Wind erosion of agricultural lands, which is the predominate source of windblown dust in the region, occurs when the friction velocity exceeds the threshold friction velocity (TFV) of the surface. Soil moisture...

  7. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  8. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Science.gov (United States)

    Pravinraj, T.; Patrikar, Rajendra

    2017-07-01

    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  9. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    Science.gov (United States)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  10. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  11. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  12. Slash Incorporation for Amelioration of Site, Soil and Hydrologic Properties on Pocosins and Wet Flats in North Carolina

    Science.gov (United States)

    William A. Lakel; W. Michael Aust; Emily A. Carter; Bryce J. Stokes; Felipe G. Sanchez

    1999-01-01

    It was hypothesized that mulching and incorporation of slash as part of site preparation treatments could affect soil water characteristics. Two forested wetland sites, an organic pocosin and a mineral wet flat. located in the lower coastal plain of North Carolina, were selected for treatments. Treatments consisted of slash mulching and incorporation in comoinations...

  13. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2018-06-01

    Full Text Available The aim of this experimental study was to assess the feasibility of using a wet oxidation (WO process for treating fine soil with a high level of total petroleum hydrocarbons (TPHs. Two samples of soil were spiked with two different contaminants (motor oil, and motor oil + diesel. The samples were subjected to a WO bench plant test, where the effect of the main process parameters (i.e., temperature and reaction time on the removal of TPHs was investigated. Results show that the WO process is effective for the decontamination of hydrocarbons, and a strong reduction (>85% can be obtained with the typical working conditions of a full-scale plant (temperature = 250 °C, reaction time = 30 min. The solid residue resulting from the WO process was characterized in order to evaluate the recovery options. In terms of chemical characterization, the contents of the pollutants comply with the Italian regulations for commercial and industrial site use. Moreover, the results of the leaching test suggested that these residues could be reused for ceramic and brick manufacturing processes.

  14. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  15. Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil)

    Science.gov (United States)

    Amorim, Priscilla Kobayashi; Batalha, Marco Antônio

    2007-11-01

    In South America, the largest savanna region is the Brazilian cerrado, in which there are few areas that become waterlogged in the rainy season. However, we found a small cerrado area in which the soil is poorly drained and becomes waterlogged at the end of the rainy season, allowing the appearance of a hyperseasonal cerrado. We investigated the soil-vegetation relationships in three vegetation forms: hyperseasonal cerrado, seasonal cerrado, and wet grassland. We collected vegetation and soil samples in these three vegetation forms and submitted obtained data to a canonical correspondence analysis. Our results showed a distinction among hyperseasonal cerrado, seasonal cerrado and wet grassland, which presented different floristic compositions and species abundances. The edaphic variables best related to the hyperseasonal and seasonal cerrados were sand, base saturation, pH, and magnesium. The wet grassland was related to higher concentrations of clay, organic matter, aluminium saturation, aluminium, phosphorus, and potassium. Although it is not possible to infer causal relationships based on our results, we hypothesize that the duration of waterlogging in the hyperseasonal cerrado may not be long enough to alter most of its soil characteristics, such as organic matter, phosphorus, and potassium, but may be long enough to alter some, such as pH and base saturation, as the soils under both cerrados were more similar to one another than to the soil under the wet grassland. Since waterlogging may alter soil characteristics and since these characteristics were enough to explain the plant community variation, we may conclude that water excess—permanent or seasonal—is one of the main factors to distinguish the three vegetation forms, which presented different floristic compositions and species abundances.

  16. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    Science.gov (United States)

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Skovbjerg, Lone Lindbæk; Stipp, Susan Louise Svane

    2009-01-01

    been drilled in a water-bearing formation. At this site, the chalk has never seen oil, though at other locations, the same stratigraphic horizon with the same rock properties is known to be a productive oil reservoir. Thus the properties of the investigated particle surfaces are inherent to the chalk......Ultimate Oil recovery from chalk reservoirs is limited by many factors - including the grain size and the surface properties of the small mainly biogenic calcite particles that chalk is made off . Wettability, the tendency for water or oil to spread over a surface, of the particle surfaces is one...... of the controlling factors for the effectiveness of water flooding, one of the most common methods to improve oil recovery in Chalk reservoirs. Understanding surface wetting and its variability at scales smaller than the pore dimension will potentially provide clues for more effective oil production methods. We used...

  18. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  19. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  20. Simulation of the evolution of fused silica's surface defect during wet chemical etching

    Science.gov (United States)

    Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei

    2017-08-01

    Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.

  1. Studies on the wetting properties of plate surfaces used in pulsed extraction columns

    International Nuclear Information System (INIS)

    Tai Derong; Yang Xin; Wang Xinchang

    1991-01-01

    Many factors influence the hydrodynamic characteristics of pulsed column. Of all the factors the surface effect at liquid-liquid interfaces and liquid-solid boundaries may be the most influential factor to the state of droplets. In order to get some understanding of the behaviour of droplets in a pulsed column, the time history of wetting properties of plates under different conditions in 30% TBP (Kerosene) -HNO 3 -UO 2 (NO 3 ) 2 -H 2 O systems was studied. The results show that the hydrophilic wetting behaviour of the plates changes into the hydrophobic and neutral conditions, respectively after they have been exposed to air and put in the 'open system' within about 50 days after contacting with process solutions. For the case where the access of air is prohibited at the upper organic phase boundary by a well fitting cover, or supersonic pulse cleaning is used to the cartridge, the behaviour of the metal surface stays in the original good hydrophilic wetting condition constant with time. The uranium charged liquid systems can conserve hydrophilic behaviour better than the non-charged systems under identical conditions. It is also found that the interfacial tension is unvaried with time for saturated process systems, hence it has no effects on the variation of wettability

  2. Effect of cocoa fat content on wetting and surface energy of chocolate

    Directory of Open Access Journals (Sweden)

    Lubomír Lapčík

    2017-01-01

    Full Text Available The aim of this study was the quantification of the effect of the cocoa fat content on the wetting characteristics and surface free energy of different chocolate compositions. On the market, there are many different types of chocolate products which differ both in the sensory and physico-chemical properties together with their raw material compositions and the contents of the individual components. This paper focuses on differences in the use of different types of fats - cocoa butter, milk fat, equivalents or cocoa butter substitutes in chocolate products. Studied samples (prepared at Carla, Ltd. Company were followed by static contact angles of wetting measurements and by calculated surface free energies. There were investigated the effects of fat content and used fat types of the chocolate products on their final wettabilities and resulting surface free energies. There was found a linear dependence between total fat content and the surface free energy, which was gradually increasing with increasing fat content. Additionally, there were performed TG DTG and NIR spectrometry measurements of the tested materials with the aim to determine the melting point of studied fats used, as well as to determine and identify individual fat components of chocolate products which may affect the resulting value of surface free energy.

  3. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  4. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  5. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  6. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...... and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry....... The data highlight how the work of adhesion of water in the temperature interval from about 25 °C to below −10 °C is affected by surface topography. A marked decrease in contact angle on the superhydrophobic surface is observed with decreasing temperature, and we attribute this to condensation below...

  7. Overcoming soil compaction in surface mine reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Sweigard, R.J. (University of Kentucky, Lexington, KY (USA). Dept. of Mining Engineering)

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig.

  8. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  9. Adaptable bioinspired special wetting surface for multifunctional oil/water separation

    Science.gov (United States)

    Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik

    2017-01-01

    Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163

  10. Deceleration-driven wetting transition of "gently" deposited drops on textured hydrophobic surfaces

    Science.gov (United States)

    Varanasi, Kripa; Kwon, Hyukmin; Paxson, Adam; Patankar, Neelesh

    2010-11-01

    Many applications of rough superhydrophobic surfaces rely on the presence of droplets in a Cassie state on the substrates. A well established understanding is that if sessile droplets are smaller than a critical size, then the large Laplace pressure induces wetting transition from a Cassie to a Wenzel state, i.e., the liquid impales the roughness grooves. Thus, larger droplets are expected to remain in the Cassie state. In this work we report a surprising wetting transition where even a "gentle" deposition of droplets on rough substrates lead to the transition of larger droplets to the Wenzel state. A hitherto unknown mechanism based on rapid deceleration is identified. It is found that modest amount of energy, during the deposition process, is channeled through rapid deceleration into high water hammer pressure which induces wetting transition. A new "phase" diagram is reported which shows that both large and small droplets can transition to Wenzel states due to the deceleration and Laplace mechanisms, respectively. This novel insight reveals for the first time that the attainment of a Cassie state is more restrictive than previous criteria based on the Laplace pressure transition mechanism.

  11. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  12. Tribology of thin wetting films between bubble and moving solid surface.

    Science.gov (United States)

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen; Phan, Chi M; Heinrich, Gert

    2014-08-01

    This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example: 1. A regime of mixed friction between dry and lubricated friction exists in the range of 6-170 μm/s, beyond which the rubbing between the bubble and solid becomes completely lubricated and passes through the maximum; 2. The friction coefficient of rubbing has high values at very small speeds of solid's motion and reduces substantially with the increase of the speed of the solid motion until reaching small values, which change insignificantly with the further increase of the speed of the solid. Despite the numerous studies on the motion of bubble/droplet in close proximity to solid wall in the literature, the present investigation appears to be a step ahead in this area as far as we were able to derive 3D maps of the bubble close to the solid surface, which makes the investigation more profound. © 2013.

  13. Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils

    International Nuclear Information System (INIS)

    Evans, Chris D.; Norris, Dave; Ostle, Nick; Grant, Helen; Rowe, Edwin C.; Curtis, Chris J.; Reynolds, Brian

    2008-01-01

    Nitrate (NO 3 - ) is often observed in surface waters draining terrestrial ecosystems that remain strongly nitrogen (N) limited. It has been suggested that this occurs due to hydrological bypassing of soil or vegetation N retention, particularly during high flows. To test this hypothesis, artificial rain events were applied to 12 replicate soil blocks on a Welsh podzolic acid grassland hillslope, labelled with 15 N-enriched NO 3 - and a conservative bromide (Br - ) tracer. On average, 31% of tracer-labelled water was recovered within 4 h, mostly as mineral horizon lateral flow, indicating rapid vertical water transfer through the organic horizon via preferential flowpaths. However, on average only 6% of 15 N-labelled NO 3 - was recovered. Around 80% of added NO 3 - was thus rapidly immobilised, probably by microbial communities present on the surfaces of preferential flowpaths. Transitory exceedance of microbial N-uptake capacity during periods of high water and N flux may therefore provide a mechanism for NO 3 - leaching. - Nitrate retention occurs rapidly in organic soils along preferential flowpaths

  14. Leaf surface wetness and evaporation studies with a β-ray gauge

    International Nuclear Information System (INIS)

    Barthakur, N.N.

    1984-01-01

    Surface wetness duration was measured by a β-ray gauge as a function of wind velocity in the laboratory. The instrument was field-tested as a dewmeter over a wax bean canopy. Diurnal variations of the net count rate through a turgid tobacco leaf measured by a β-ray gauge system corresponded with the stomatal movement. The approximate exponential relationship of the transmission of β-particles with absorber thickness was found acceptable to study rates of evaporation from free water and through pores. The cumulative rate of evaporation of free water varied linearly with time. Three distinct stages of evaporation rates were observed through a porous medium. (author)

  15. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    Science.gov (United States)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  16. Ge clusters and wetting layers forming from granular films on the Si(001) surface

    International Nuclear Information System (INIS)

    Storozhevykh, M S; Arapkina, L V; Yuryev, V A

    2016-01-01

    The report studies the transformation of a Ge granular film deposited on the Si(001) surface at room temperature into a Ge/Si(001) heterostructure as a result of rapid heating and annealing at 600 °C. As a result of the short-term annealing at 600 °C in conditions of a closed system, the Ge granular film transforms into a usual wetting layer and Ge clusters with multimodal size distribution and Ge oval drops having the highest number density. After the long-term thermal treatment of the Ge film at the same temperature, Ge drops disappear; the large clusters increase their sizes at the expense of the smaller ones. The total density of Ge clusters on the surface drastically decreases. The wetting layer mixed c(4 x 2) + p(2 x 2) reconstruction transforms into a single c(4 x 2) one which is likely to be thermodynamically favoured. Pyramids or domes are not observed on the surface after any annealing. (paper)

  17. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  18. U-ages in soils and groundwater evidencing wet periods 400-600 kyr ago in southeast Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.; Jimenez-Rueda, J.R.

    2007-01-01

    238 U and its radiogenic daughter 234 U have been utilized for dating soil formation and groundwater residence time during the last 1.5 million years, in this case based on the U-dissolution/precipitation occurring during modifications of the oxidation-reduction conditions. In this paper, we report a 400-600 kyr proxy of wet periods from sediments occurring in a soil profile developed over rocks outcropping at the Parana sedimentary basin in Brazil, and from groundwater exploited of Guarani aquifer at the same basin. The approaches indicated successful use of the U-modeled ages for suggesting wet periods exceeding the past 116-210 kyr from previous studies

  19. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    Science.gov (United States)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  20. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Directory of Open Access Journals (Sweden)

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  1. Effect of dental tool surface texture and material on static friction with a wet gloved fingertip.

    Science.gov (United States)

    Laroche, Charles; Barr, Alan; Dong, Hui; Rempel, David

    2007-01-01

    Hand injuries are an important cause of pain and disability among dentists and dental hygienists and may be due to the high pinch forces involved in periodontal work. The pinch forces required to perform scaling may be reduced by increasing the friction between the tool and fingers. The purpose of this study was to determine whether modifying the tool material, surface texture, or glove type altered the coefficient of static friction for a wet gloved finger. Seven tools with varying surface topography were machined from 13 mm diameter stainless steel and Delrin and mounted to a 6-component force plate. The textures tested were a fine, medium and coarse diamond knurled pattern and a medium and fine annular pattern (concentric rings). Thirteen subjects pulled their gloved, wet thumb pad along the long axis of the tool while maintaining a normal force of 40 N. Latex and nitrile gloves were tested. The coefficient of static friction was calculated from the shear force history. The mean coefficients of static friction ranged from 0.20 to 0.65. The coefficient of static friction was higher for a smooth tool of Delrin than one of stainless steel. Differences in the coefficient of static friction were observed between the coarse and medium knurled patterns and the fine knurled and annular patterns. Coefficients of static friction were higher for the nitrile glove than the latex glove for tools with texture. These findings may be applied to the design of hand tools that require fine motor control with a wet, gloved hand.

  2. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.

    Science.gov (United States)

    Janeček, V; Nikolayev, V S

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  3. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  4. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.

    2011-01-01

    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation in t...

  5. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  6. Fabrication of Nanostructured Polymer Surfaces and Characterization of their Wetting Properties

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard

    . • Simulations of wetting transitions. • Clean room fabrication of functional surfaces, and production of micro- and nanostructured mold inserts. • Injection molding of micro- and nanostructured polymer parts on a commercial injection molding machine. • Co-invented a patented technique for microstructuring steel...... molds able to produce superhydrophobic polymer parts. The patented microstructuring technique generates microstructures similar to those found on the leaf of the lotus flower, without the overlaying nanostructure. Despite the lack of hierarchical structures, the microstructured surface shows excellent...... structures and the irregular structures produced by the patented microstructuring technique. The second study bridges the gap between silicon structures produced by planar processes in the clean room and the smooth multi-height structures often found in nature. Finally i have demonstrated a novel type...

  7. Surface tension and wetting behaviour of Bi-In-Sn alloys

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Ahmad Badri Ismail; Soong, T.K.; Chin, Y.T.; Luay Bakir Hussain

    2007-01-01

    Concerns about possible landfill contamination, influent discharge from production process are one of the reasons convert from lead-containing electronics to lead-free containing. The surface and interfacial properties of Bi-In-Sn lead-free solder system as a basic system of multicomponent alloys proposed as lead-free solder materials have been studied. The surface tension of Bi-In-Sn lead-free solder system of melting temperature 60 degree Celsius has been measured the temperature range 80 degree Celsius and 140 degree Celsius. The study of the wetting behaviour of Bi-In-Sn lead-free solder system on a Cu substrate has been performed by measuring contact angle on various metal substrates by Optical Microscopy with software. (author)

  8. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  9. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu; Schrader, Alex M.; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N.

    2015-01-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  10. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  11. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  12. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.

    Science.gov (United States)

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm

    2013-09-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.

  13. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting

    International Nuclear Information System (INIS)

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Barthlott, Wilhelm; Albach, Dirk C

    2013-01-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells. (paper)

  14. Effects of surface roughness on deviation angle and performance losses in wet steam turbines

    International Nuclear Information System (INIS)

    Bagheri Esfe, H.; Kermani, M.J.; Saffar Avval, M.

    2015-01-01

    In this paper, effects of turbine blade roughness and steam condensation on deviation angle and performance losses of the wet stages are investigated. The steam is assumed to obey non-equilibrium thermodynamic model, in which abrupt formation of liquid droplets produces condensation shocks. An AUSM-van Leer hybrid scheme is used to solve two-phase turbulent transonic steam flow around turbine rotor tip sections. The dominant solver of the computational domain is taken to be the AUSM scheme (1993) that in regions with large gradients smoothly switches to van Leer scheme (1979). This guarantees a robust hybrid scheme throughout the domain. It is observed that as a result of condensation, the aerothermodymics of the flow field changes. For example for a supersonic wet case with exit isentropic Mach number M e,is  = 1.45, the deviation angle and total pressure loss coefficient change by 65% and 200%, respectively, when compared with dry case. It is also observed that losses due to surface roughness in subsonic regions are much larger than those in supersonic regions. Hence, as a practical guideline for maintenance sequences, cleaning of subsonic parts of steam turbines should be considered first. - Highlights: • Two-phase turbulent transonic steam flow is numerically studied in this paper. • As a result of condensation, aerothermodynamics of the flow field changes. • Surface roughness has almost negligible effect on deviation angle. • Surface roughness plays an important role in performance losses. • Contribution of different loss mechanisms for smooth and rough blades are computed.

  15. Distribution of technetium-99 in surface soils

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2000-01-01

    Technetium-99 ( 99 Tc) is an important fission product which has been widely distributed in the environment as a result of fallout from nuclear weapons testing. In order to improve our understanding of the behavior of 99 Tc in the environment, it is essential that we obtain more reliable information on the levels, distribution and fate of 99 Tc in the environment. In this study, the concentration of global fallout 99 Tc, in several surface soil samples (0 - 20 cm) collected in Japan, were determined by ICP-MS (inductively coupled plasma mass spectroscopy). The range of 99 Tc in rice paddy field, upland field and other soils determined in this study were 0.006 - 0.11, 0.004 - 0.008 and 0.007 - 0.02 Bq kg -1 dry, respectively. 137 Cs was used as a comparative indicator for the source of 99 Tc, because the fission yields from 235 U and 239 Pu were about the same (ca. 6%) for the two isotopes, and the behavior and distribution of 137 Cs in the environment is reasonably well understood. The 137 Cs contents in rice paddy field, upland field and other soils range between 1.7 - 28, 1.4 - 9.2 and -1 dry, respectively. The activity ratios of 99 Tc/ 137 Cs in all soil samples were (0.6 - 5.9) x 10 -3 . Most of the measured ratios were one order of magnitude higher than the theoretical one obtained from fission. However, this ratio in soil, presumably depends on not only both the characteristic of radionuclides and the soil, but also on their contents after deposition to the earth's surface. (author)

  16. Long term effects of wet site timber harvesting and site preparation on soil properties and loblolly pine (Pinus taeda L.) productivity in the lower Atlantic Coastal Plain

    OpenAIRE

    Neaves III, Charles Mitchell

    2017-01-01

    Short term studies have suggested that ground based timber harvesting on wet sites can alter soil properties and inhibit early survival and growth of seedlings. Persistence of such negative effects may translate to losses in forest productivity over a rotation. During the fall and winter of 1989, numerous salvage logging operations were conducted during high soil moisture conditions on wet pine flats in the lower coastal plain of South Carolina following Hurricane Hugo. A long-term experim...

  17. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  18. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  19. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  20. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins

    Science.gov (United States)

    Nasoohi, Negin; Hoorizad, Maryam

    2017-01-01

    Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (Pcomposites (Pcomposites (Pcomposites (Pcomposite resins. PMID:29104597

  1. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Kerr, C.; Osprey, M.; Zhang, Z.L.; Duff, E.I.; Lilly, A.; Nolan, A.; Hudson, G.; Towers, W.; Bell, J.; Coull, M.; McKenzie, C.

    2013-01-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0–5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. -- Highlights: •Concentrations of selected organic pollutants in Scottish soils were determined. •Concentrations were highly variable. •There were few effects of soil or vegetation type, soil carbon, pH or altitude. •Distance from cities was not an important determinant of concentrations. •Atmospheric deposition and soil organic carbon content may affect concentrations. -- Soil concentrations of anthropogenic persistent organic pollutants are not clearly related to soil type or pH, vegetation, altitude, or distance from pollutant sources

  2. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  3. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  4. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  5. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  6. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    Science.gov (United States)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  7. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    Science.gov (United States)

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  8. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    Science.gov (United States)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  9. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  10. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  11. The Effects of Moisture Conditions—From Wet to Hyper dry—On Visible Near-Infrared Spectra of Danish Reference Soils

    DEFF Research Database (Denmark)

    Knadel, Maria; Deng, Fan; Alinejadian, Afsaneh

    2014-01-01

    Changes in soil water content are known to affect soil reflectance. Even though it was suggested some time ago that the phenomenon of increased forward scattering due to the presence of water in the soil is related to water film thickness and matric potential, there has been no detailed...... investigation of this in any studies. The effects of moisture conditions on visible nearinfrared (vis-NIR) spectra of four representative soils in Denmark have been assessed as a function of both water film thickness (expressed as the number of molecular layers) and matric potential. Complete water retention...... curves, from wet (pF 0.3, pF = log(|j|), where j is the matric potential in cm) to hyper dry end (oven-dried and freeze-dried soil), were obtained by initial wetting followed by successive draining and drying of soil samples, performing NIR measurements at each step. Soil reflectance was found...

  12. Influence of soil on St3 surface spectroscopic characteristics under cathode protection conditions

    International Nuclear Information System (INIS)

    Kuznetsova, E.G.; Lazorenko-Manevich, R.M.; Sokolova, L.A.; Remezkova, L.V.

    1992-01-01

    Using electroreflection spectra it is shown, that St3 surface following long holding in cold clay without cathode protection is less heterogeneous relative to water absorption, than surface of initial specimens, as well as, of specimens holded in wet clay. This variation of distribution of adsorption centres by heats of water absorption results from stable absorption of surface-and-active components of clayed soil and is accompanied by increase of St3 corrosion stability. Long-term cathode polarization reduces initial distribution and decreases corrosion stability of St3

  13. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  14. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent [Central Missouri State Univ., Warrensburg, MO (United States)

    2004-12-01

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  15. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  16. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.

    Science.gov (United States)

    Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily

    2016-03-01

    The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water

  17. Impacts of grass removal on wetting and actual water repellency in a sandy soil

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Geissen, V.; Ritsema, C.J.

    2016-01-01

    Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm

  18. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  19. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  20. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  1. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  2. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  3. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface

    International Nuclear Information System (INIS)

    Pan Xiaodong

    2007-01-01

    Elastomer compounds reinforced with precipitated silica can exhibit elevated wet sliding friction on a rough surface in comparison with corresponding compounds filled with carbon black particles. The underlying mechanism is currently not well understood. To unravel this puzzling observation, the variation of wet sliding friction with filler volume fraction is examined at the sliding speed of the order of 1 m s -1 under different lubrication conditions. Depending on the lubrication liquid-water or ethanol-a compound that shows both higher bulk hysteretic loss and lower modulus does not always exhibit a higher wet sliding friction. A thorough characterization of the bulk rheology of the compounds investigated fails to provide the rationale for such behaviour, thus constituting an apparent violation of the conventional viscoelastic understanding of rubber friction on a rough surface. On the other hand, the detected lowering of friction when the lubrication liquid is changed from water to ethanol resembles the effect of liquid medium on interfacial adhesion reported in the literature. Hence, it is suggested that a stronger interfacial attractive interaction should exist in water between the road surface and silica particles on the compound surface immediately next to the road surface. This should be related to the elevated wet sliding friction detected for silica-filled compounds under water lubrication

  4. A novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Santini, M., E-mail: maurizio.santini@unibg.it [Department of Engineering and Applied Sciences, University of Bergamo, Bergamo (Italy); Guilizzoni, M. [Department of Energy, Politecnico di Milano, Milano (Italy); Fest-Santini, S. [Department of Engineering, University of Bergamo, Bergamo (Italy); Lorenzi, M. [School of Engineering and Mathematical Sciences, City University London, London (United Kingdom)

    2015-02-15

    An experimental study about the anisotropic wetting behavior of a surface patterned with parallel grooves is presented as an application example of a novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography. Shape of glycerin droplets on such surface is investigated by X-ray micro computed tomography (microCT) acting as a non-intrusive, full volume 3D microscope with micrometric spatial resolution. The reconstructed drop volumes enable to estimate the exact volumes of the drops, their base contours, and 3D static contact angles, based on true cross-sections of the drop-surface couple. Droplet base contours are compared to approximate geometrical contour shapes proposed in the literature. Contact angles along slices parallel and perpendicular to the grooves direction are compared with each other. The effect of the sessile drop volume on the wetting behavior is discussed. The proposed technique, which is applicable for any structured surface, enables the direct measure of Wenzel ratio based on the microCT scan in the wetted region usually inapproachable by any others. Comparisons with simplified models are presented and congruence of results with respect to the minimum resolution needed is evaluated and commented.

  5. Spatial variations of wet deposition rates in an extended region of complex topography deduced from measurements of 210Pb soil inventories

    International Nuclear Information System (INIS)

    Branford, D.; Mourne, R.W.; Fowler, D.

    1998-01-01

    The radionuclide 210 Pb derived from gaseous 222 Rn present in the atmosphere becomes attached to the same aerosols as the bulk of the main pollutants sulphur and nitrogen. When scavenged from the atmosphere by precipitation, the 210 Pb is readily attached to organic matter in the surface horizons of the soil. Inventories of 210 Pb in soil can thus be used to measure the spatial variations in wet (or cloud) deposition due to orography averaged over many precipitation events (half-life of 210 Pb is 22·3 year). Measurements of soil 210 Pb inventories were made along a transect through complex terrain in the Scottish Highlands to quantify the orographic enhancement of wet deposition near the summits of the three mountains Ben Cruachan, Beinn Dorain and Ben Lawers, which, respectively, lie at distances of approximately 30, 55 and 80 km from the coast in the direction of the prevailing wind. The inventory of 210 Pb on the wind-facing slopes of Ben Cruachan shows an increase with altitude that rises faster than the precipitation rate, which is indicative of seeder-feeder scavenging of orographic cloud occurring around the summit. Results for Beinn Dorain show a smaller rise with altitude whereas those for Ben Lawers give no indication of a rise. It is concluded that the seeder-feeder mechanism in regions of complex topology decreases in effectiveness as a function of distance inland along the direction of the prevailing wind. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Surface Corrosion and Microstructure Degradation of Calcium Sulfoaluminate Cement Subjected to Wet-Dry Cycles in Sulfate Solution

    Directory of Open Access Journals (Sweden)

    Wuman Zhang

    2017-01-01

    Full Text Available The hydration products of calcium sulfoaluminate (CSA cement are different from those of Portland cement. The degradation of CSA cement subjected to wet-dry cycles in sulfate solution was studied in this paper. The surface corrosion was recorded and the microstructures were examined by scanning electron microscopy (SEM. The results show that SO42-, Na+, Mg2+, and Cl− have an effect on the stability of ettringite. In the initial period of sulfate attack, salt crystallization is the main factor leading to the degradation of CSA cement specimens. The decomposition and the carbonation of ettringite will cause long-term degradation of CSA cement specimens under wet-dry cycles in sulfate solution. The surface spalling and microstructure degradation increase significantly with the increase of wet-dry cycles, sulfate concentration, and water to cement ratio. Magnesium sulfate and sodium chloride reduce the degradation when the concentration of sulfate ions is a constant value.

  7. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  8. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    Science.gov (United States)

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  9. A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.

    1999-01-29

    To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

  10. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    Science.gov (United States)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across

  11. Environmental Radionuclides in Surface Soils of Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Luyen, T.V.; Binh, T.V.; Ngo, N.T.; Long, N.Q.; Bac, V.T.

    2012-01-01

    A database on 238 U, 232 Th, 40 K and 137 Cs in surface soils was established to provide inputs for the assessment of the collective dose to the population of Vietnam and to support soil erosion studies using 137 Cs as a tracer. A total of 292 soil samples were taken from undisturbed sites across the territory and the concentrations of radionuclides were determined by gamma spectrometry method. The multiple regression of 137 Cs inventories against characteristics of sampling locations allowed us to establish the distribution of 137 Cs deposition density and its relationship with latitude and annual rainfall. The 137 Cs deposition density increases northward and varies from 178 Bq m -2 to 1,920 Bq m -2 . High rainfall areas in the northern and central parts of the country have received considerable 137 Cs inputs exceeding 600 Bq m -2 , which is the maximum value that can be expected for Vietnam from the UNSCEAR global pattern. The mean activity concentrations of naturally occurring radionuclides 238 U, 232 Th and 40 K are 45, 59 and 401 Bq kg- 1 , respectively, which entail an average absorbed dose rate in air of 62 nGy h -1 , which is about 7% higher than the world average. (author)

  12. Caesium Radionuclide Uptake from Wet Soil to Kangkung Plant (Ipomoea sp)

    International Nuclear Information System (INIS)

    Putu Sukmabuana; Poppy Intan Tjahaja

    2009-01-01

    Caesium radionuclide transfer from soil to kangkung plant (Ipomoea sp) generally consumed by people had been examined to obtain transfer factor value for internal radiation dose assessment via soil-plant-human pathway. The kangkung plants were cultivated on watered soil medium containing 134 Cs with concentration of about 80 Bq/g, and the 134 Cs uptake by plants, i.e root, stem, and leaves, were measured using gamma spectrometer. The 134 Cs plant uptake was expressed as transfer factor, i.e. ratio of plant 134 Cs concentration to 134 Cs concentration on soil medium. From this research it was obtained transfer factor value of 134 C from soil to plant is 0.07, and the transfer factor for root, stem, and leaves are 0.34 ; 0.05 ; 0,03 respectively, after 45 days cultivation. The transfer factor values are less than one, indicate that kangkung plant do not accumulate Cs radionuclide from soil. (author)

  13. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces.

    Science.gov (United States)

    Adams, Rachel I; Lymperopoulou, Despoina S; Misztal, Pawel K; De Cassia Pessotti, Rita; Behie, Scott W; Tian, Yilin; Goldstein, Allen H; Lindow, Steven E; Nazaroff, William W; Taylor, John W; Traxler, Matt F; Bruns, Thomas D

    2017-09-26

    Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful

  14. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  15. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  16. Borneol Is a TRPM8 Agonist that Increases Ocular Surface Wetness.

    Directory of Open Access Journals (Sweden)

    Gui-Lan Chen

    Full Text Available Borneol is a compound widely used in ophthalmic preparations in China. Little is known about its exact role in treating eye diseases. Here we report that transient receptor potential melastatin 8 (TRPM8 channel is a pharmacological target of borneol and mediates its therapeutic effect in the eyes. Ca2+ measurement and electrophysiological recordings revealed that borneol activated TRPM8 channel in a temperature- and dose-dependent manner, which was similar to but less effective than the action of menthol, an established TRPM8 agonist. Borneol significantly increased tear production in guinea pigs without evoking nociceptive responses at 25°C, but failed to induce tear secretion at 35°C. In contrast, menthol evoked tearing response at both 25 and 35°C. TRPM8 channel blockers N-(3-Aminopropyl-2-[(3-methylphenylmethoxy]-N-(2-thienylmethylbenzamide hydrochloride (AMTB and N-(4-tert-butylphenyl-4-(3-chloropyridin-2-ylpiperazine-1-carboxamide (BCTC abolished borneol- and menthol-induced tear secretion. Borneol at micromolar concentrations did not affect the viability of human corneal epithelial cells. We conclude that borneol can activate the cold-sensing TRPM8 channel and modestly increase ocular surface wetness, which suggests it is an active compound in ophthalmic preparations and particularly useful in treating dry eye syndrome.

  17. Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces

    Directory of Open Access Journals (Sweden)

    Sajad M.R. Khani

    2017-06-01

    Full Text Available Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results illustrated that the modular wind tower can decrease the air temperature significantly and increase the relative humidity of airflow into the building. The average differences for air temperature and air relative humidity between ambient air and air exiting from the wind tower were approximately 10 °C and 40%, respectively. The main advantage of the proposed wind tower is that it is a modular design that can reduce the cost of wind tower construction.

  18. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  19. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Zhu, Kai; Wu, Bingbing [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Lou, Jia [Piezoelectric Device Laboratory, Department of Mechanics and Engineering Science, Ningbo University, Ningbo, Zhejiang 315211 (China); Zhang, Zheng [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Chai, Guozhong, E-mail: chaigz@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China)

    2016-09-30

    Highlights: • Apparent contact angle equation of all wetting states on dual-scale rough surfaces is derived. • Structured sidewalls can improve superhydrophobicity than smooth sidewalls. • Structured sidewalls can enlarge ACA than smooth sidewalls. • Structured sidewalls present an advantage over smooth sidewalls in terms of enhancing superhydrophobic stability. - Abstract: The superhydrophobicity of biological surfaces with dual-scale roughness has recently received considerable attention because of the unique wettability of such surfaces. Based on this, artificial micro/nano hierarchical structures with structured sidewalls and smooth sidewalls were designed and the influences of sidewall configurations (i.e., structured and smooth) on the wetting state of micro/nano hierarchical structures were systematically investigated based on thermodynamics and the principle of minimum free energy. Wetting transition and superhydrophobic stability were then analyzed for a droplet on dual-scale rough surfaces with structured and smooth sidewalls. Theoretical analysis results show that dual-scale rough surfaces with structured sidewalls have a larger “stable superhydrophobic region” than those with smooth sidewalls. The dual-scale rough surfaces with smooth sidewalls can enlarge the apparent contact angle (ACA) without improvement in the superhydrophobic stability. By contrast, dual-scale rough surfaces with structured sidewalls present an advantage over those with smooth sidewalls in terms of enlarging ACA and enhancing superhydrophobic stability. The proposed thermodynamic model is valid when compared with previous experimental data and numerical analysis results, which is helpful for designing and understanding the wetting states and superhydrophobic stability of surfaces with dual-scale roughness.

  20. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  1. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces

    Science.gov (United States)

    Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.

    2011-01-01

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  2. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  3. Collection of Wet-Origin Footwear Impressions on Various Surfaces Using an Electrostatic Dust Print Lifter.

    Science.gov (United States)

    Hong, Sungwook; Park, Miseon

    2018-01-19

    Electrostatic dust print lift method is known to be able to recover only dry-origin footwear impression. However, the wet-origin footwear impression could also be recovered using this method. As the amount of dust accumulated before deposition of the wet-origin footwear impression increased, the intensity of the footwear impression lifted with this method became stronger. If the footwear impression is not affected by moisture after it is made, the 28-h old wet-origin footwear impression could be recovered using this method. The intensity of the lifted footwear impression did not decrease significantly even when the number of sequential steps increased as long as the shoe sole is wet. However, when the moisture on the shoe sole depleted, the intensity of the footwear impression decreased sharply. This method has the advantage of being able to enhance the footwear impression without being affected by the footwear impressions deposited in the past. © 2018 American Academy of Forensic Sciences.

  4. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  5. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Chakradhar, R.P.S., E-mail: chakra@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Kumar, V. Dinesh [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Rao, J.L. [Department of Physics, S.V. University, Tirupathi 517502 (India); Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India)

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of {approx}108{sup o}, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155{sup o} and less than 5{sup o} respectively. The surface properties such as surface free energy ({gamma}{sub p}), interfacial free energy ({gamma}{sub pw}), and the adhesive work (W{sub pw}) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  6. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Science.gov (United States)

    Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( γp), interfacial free energy ( γpw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  7. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    International Nuclear Information System (INIS)

    Chakradhar, R.P.S.; Kumar, V. Dinesh; Rao, J.L.; Basu, Bharathibai J.

    2011-01-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108 o , however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155 o and less than 5 o respectively. The surface properties such as surface free energy (γ p ), interfacial free energy (γ pw ), and the adhesive work (W pw ) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  8. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    Science.gov (United States)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  9. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  10. Effect of periodic wetting and drying on selective sorption of 137Cs by mixtures of soil and organomineral sorbent

    Science.gov (United States)

    Popov, V. E.; Maslova, K. M.; Stepina, I. A.

    2014-05-01

    The incubation of sandy soddy-podzolic soil with a three-component organomineral sorbent (OMS) on the basis of sapropel, neutralized hydrolysis lignin, and clay-salt slime under alternating wetting-drying (W-D) conditions for two years has increased the selective sorption of 137Cs by 2.5-5 times. The addition of 5% OMS increases the effect of periodic W-D cycles on the selective sorption of 137Cs compared to the addition of 10% OMS. The relationship between the 137Cs interception potential and the number of W-D cycles has been predicted on the basis of the additivity rule and under the assumption that this potential linearly depends on the number of W-D cycles. The predicted values of the 137Cs interception potential almost coincide with the experimental data for the mixtures of sandy soddy-podzolic soil with 10% OMS and are lower than the experimental values by 60% for the mixtures of soil with 10% OMS.

  11. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest.

    Science.gov (United States)

    Shen, Ju-pei; Chen, C R; Lewis, Tom

    2016-01-20

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  12. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  13. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.

    Science.gov (United States)

    Kim, In-Ju; Hsiao, Hongwei; Simeonov, Peter

    2013-01-01

    Literature has shown a general trend that slip resistance performance improves with floor surface roughness. However, whether slip resistance properties are linearly correlated with surface topographies of the floors or what roughness levels are required for effective slip resistance performance still remain to be answered. This pilot study aimed to investigate slip resistance properties and identify functional levels of floor surface roughness for practical design applications in reducing the risk of slip and fall incidents. A theory model was proposed to characterize functional levels of surface roughness of floor surfaces by introducing a new concept of three distinctive zones. A series of dynamic friction tests were conducted using 3 shoes and 9 floor specimens under clean-and-dry as well as soapsuds-covered slippery wet environments. The results showed that all the tested floor-shoe combinations provided sufficient slip resistances performance under the clean-and-dry condition. A significant effect of floor type (surface roughness) on dynamic friction coefficient (DFC) was found in the soapsuds-covered wet condition. As compared to the surface roughness effects, the shoe-type effects were relatively small. Under the soapsuds-covered wet condition, floors with 50 μm in Ra roughness scale seemed to represent an upper bound in the functional range of floor surface roughness for slip resistance because further increase of surface roughness provided no additional benefit. A lower bound of the functional range for slip resistance under the soapsuds-covered wet condition was estimated from the requirement of DFC > 0.4 at Ra ≅ 17 μm. Findings from this study may have potential safety implications in the floor surface design for reducing slip and fall hazards. Published by Elsevier Ltd.

  14. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.

    Science.gov (United States)

    Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert

    2013-08-26

    We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

  15. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  16. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  17. Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl

    Directory of Open Access Journals (Sweden)

    Bao-tian Wang

    2015-01-01

    Full Text Available Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.

  18. Investigation into macroscopic and microscopic behaviors of wet granular soils using discrete element method and X-ray computed tomography

    Science.gov (United States)

    Than, Vinh-Du; Tang, Anh-Minh; Roux, Jean-Noël; Pereira, Jean-Michel; Aimedieu, Patrick; Bornert, Michel

    2017-06-01

    We present an investigation into macroscopic and microscopic behaviors of wet granular soils using the discrete element method (DEM) and the X-ray Computed Tomography (XRCT) observations. The specimens are first prepared in very loose states, with frictional spherical grains in the presence of a small amount of an interstitial liquid. Experimental oedometric tests are carried out with small glass beads, while DEM simulations implement a model of spherical grains joined by menisci. Both in experiments and in simulations, loose configurations with solid fraction as low as 0.30 are prepared under low stress, and undergo a gradual collapse in compression, until the solid fraction of cohesionless bead packs (0.58 to 0.6) is obtained. In the XRCT tests, four 3D tomography images corresponding to different typical stages of the compression curve are used to characterize the microstructure.

  19. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  20. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.

    Science.gov (United States)

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F

    2017-04-01

    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    Science.gov (United States)

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Determination of 129I in large soil samples after alkaline wet disintegration

    International Nuclear Information System (INIS)

    Bunzl, K.; Kracke, W.

    1992-01-01

    Large soil samples (up to 500 g) can conveniently be disintegrated by hydrogen peroxide in an utility tank under alkaline conditions to determine subsequently 129 I by neutron activation analysis. Interfering elements such as Br are removed already before neutron irradiation to reduce the radiation exposure of the personnel. The precision of the method is 129 I also by the combustion method. (orig.)

  3. Impact of mechanized logging operations on wet and dry soils of ...

    African Journals Online (AJOL)

    Mechanization of timber harvesting operations in Tanzania involves use of machinery such as feller bunchers, skidders and tractors which are generally heavy in weight ranging from 12 to 16 tones in unloaded state. The movements of these machines induce soil compaction owing to the exerted normal pressure, vibrations ...

  4. U02 pellets surface properties and environmental conditions effects on the wet adsorption

    International Nuclear Information System (INIS)

    Junqueira, Fabio da S.; Carnaval, Joao Paulo R.

    2013-01-01

    Angra power plants fuels are made bye en riche uranium dioxide (UO 2 ) pellets which are assembled inside metal tubes. These tubes are welded and arranged in order to perform the final product, the fuel assembly. The UO 2 pellets have a specified humidity tolerance designed to comply with security and performance requirements when working under operating conditions in the reactor. This work intends to verify the pellet opened porosity and the environmental conditions (relative humidity and temperature) influence on the wet adsorption by UO 2 pellet. The work was done in 2 parts: Firstly, pallets groups from 3 opened porosity levels were tested under a fixed relative humidity, temperature and time. In the second part of the work, the most critical pallet group upon wet adsorption was tested under different relative humidity and temperature conditions, regarding design of experiments. The opened porosity and environmental conditions tests allowed the evolution of the wet adsorption by the UO 2 pallet. (author)

  5. Surface changes of biopolymers PHB and PLLA induced by Ar{sup +} plasma treatment and wet etching

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar{sup +} plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers – polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  6. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  7. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  8. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  9. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Bartsch, A; Balzter, H; George, C

    2009-01-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km 2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  10. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models

    DEFF Research Database (Denmark)

    Kheir, Rania Bou; Greve, Mogens Humlekrog; Bøcher, Peder Klith

    2010-01-01

    the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature...... field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v......) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME...

  11. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  12. The wetting of planar solid surfaces by symmetric binary mixtures near bulk gas-liquid coexistence

    International Nuclear Information System (INIS)

    Woywod, Dirk; Schoen, Martin

    2004-01-01

    We investigate the wetting of planar, nonselective solid substrates by symmetric binary mixtures where the attraction strength between like molecules of components A and B is the same, that is ε AA ε BB AB vertical bar ≤ vertical bar ε AA vertical bar, that is by varying the attraction between a pair of unlike molecules. By means of mean-field lattice density functional calculations we observe a rich wetting behaviour as a result of the interplay between ε AB and the attraction of fluid molecules by the solid substrate ε W . In accord with previous studies we observe complete wetting only above the critical end point if the bulk mixture exhibits a moderate to weak tendency to liquid-liquid phase separation even for relatively strong fluid-substrate attraction. However, in this case layering transitions may arise below the temperature of the critical end point. For strongly phase separating mixtures complete wetting is observed for all temperatures T ≥0 along the line of discontinuous phase transitions in the bulk

  13. Visibility of road markings on wet road surfaces : a literature study.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    The English version of B 14153 is presented. Road markings, notably lane markers, are often only poorly visible when the road is wet. This is particularly a problem at night on unlit roads. A study is made of whether a solution for this problem can be found on the basis of the known, published

  14. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  15. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Science.gov (United States)

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  16. Correlation signatures of wet soils and snows. [algorithm development and computer programming

    Science.gov (United States)

    Phillips, M. R.

    1972-01-01

    Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.

  17. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  18. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  19. Continuous Long-Term Modeling of Shallow Groundwater-Surface Water Interaction: Implications for a Wet Prairie Restoration

    Science.gov (United States)

    Wijayarathne, D. B.; Gomezdelcampo, E.

    2017-12-01

    The existence of wet prairies is wholly dependent on the groundwater and surface water interaction. Any process that alters this interaction has a significant impact on the eco-hydrology of wet prairies. The Oak Openings Region (OOR) in Northwest Ohio supports globally rare wet prairie habitats and the precious few remaining have been drained by ditches, altering their natural flow and making them an unusually variable and artificial system. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the US Army Engineer Research and Development Center was used to assess the long-term impacts of land-use change on wet prairie restoration. This study is the first spatially explicit, continuous, long-term modeling approach for understanding the response of the shallow groundwater system of the OOR to human intervention, both positive and negative. The GSSHA model was calibrated using a 2-year weekly time series of water table elevations collected with an array of piezometers in the field. Basic statistical analysis indicates a good fit between observed and simulated water table elevations on a weekly level, though the model was run on an hourly time step and a pixel size of 10 m. Spatially-explicit results show that removal of a local ditch may not drastically change the amount of ponding in the area during spring storms, but large flooding over the entire area would occur if two other ditches are removed. This model is being used by The Nature Conservancy and Toledo Metroparks to develop different scenarios for prairie restoration that minimize its effect on local homeowners.

  20. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  1. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  2. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-12-01

    Full Text Available The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  3. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  4. Soil microarthropods are only weakly impacted after 13 years of repeated drought treatment in wet and dry heathland soils

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Sørensen, Jesper G.; Schmidt, Inger Kappel

    2013-01-01

    Studies of biological responses in the terrestrial environment to rapid changes in climate have mostly been concerned with aboveground biota, whereas less is known of belowground organisms. The present study focuses on mites and springtails of heathland ecosystems and how the microarthropod...... and temperature. This approach provided an opportunity to study biological responses on a local (within sites) and regional scale. Warming treatments increasing night time temperature (0.3–1 °C higher than ambient at 5 cm soil depth) had no detectable effects on the microarthropod communities. Increased intensity...... and frequency of drought had only weak persistent effects on springtail species composition, but practically no effect on major mite groups (Oribatida, Prostigmata or Mesostigmata) suggesting that ecosystem functions of microarthropods may only be transiently impacted by repeated spring or summer drought....

  5. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture

    Science.gov (United States)

    Yan, Li-Tang; Xie, Xu-Ming

    2007-02-01

    Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.

  6. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  7. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  8. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to

  9. Distribution coefficient Kd in surface soils collected in Aomori prefecture

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Hasegawa, Hidenao; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)

  10. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    International Nuclear Information System (INIS)

    Li, P; Xie, J; Cheng, J; Wu, K K

    2014-01-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25–80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface. (paper)

  11. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    Science.gov (United States)

    Li, P.; Xie, J.; Cheng, J.; Wu, K. K.

    2014-07-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25-80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

  12. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  13. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    Science.gov (United States)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  14. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  15. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  16. Low-loss slot waveguides with silicon (111 surfaces realized using anisotropic wet etching

    Directory of Open Access Journals (Sweden)

    Kapil Debnath

    2016-11-01

    Full Text Available We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI platform. Waveguides oriented along the (11-2 direction on the Si (110 plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  17. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.; Leclercq, D.

    1960-01-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [fr

  18. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  19. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  20. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  1. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  2. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  3. Oxidation of FGD-CaSO{sub 3} and effect on soil chemical properties when applied to the soil surface

    Energy Technology Data Exchange (ETDEWEB)

    Liming Chen; Cliff Ramsier; Jerry Bigham; Brian Slater; David Kost; Yong Bok Lee; Warren A. Dick [Ohio State University, Wooster, OH (United States). School of Environment and Natural Resources

    2009-07-15

    Use of high-sulfur coal for power generation in the United States requires the removal of sulfur dioxide (SO{sub 2}) produced during burning in order to meet clean air regulations. If SO{sub 2} is removed from the flue gas using a wet scrubber without forced air oxidation, much of the S product created will be sulfite (SO{sub 3}{sup 2-}). Plants take up S in the form of sulfate (SO{sub 2}{sup 2-}). Sulfite may cause damage to plant roots, especially in acid soils. For agricultural uses, it is thought that SO{sub 4}{sup 2-} in flue gas desulfurization (FGD) products must first oxidize to SO{sub 4}{sup 2-} in soils before crops are planted. However, there is little information about the oxidation of SO{sub 3}{sup 2-} in FGD product to SO{sub 4}{sup 2-} under field conditions. An FGD-CaSO{sub 3} was applied at rates of 0, 1.12, and 3.36 Mg ha{sup -1} to the surface of an agricultural soil (Wooster silt loam, Oxyaquic Fragiudalf). The SO{sub 4}{sup 2-} in the surface soil (0-10 cm) was analyzed on days 3, 7, 17, 45, and 61. The distribution of SO{sub 4}{sup 2-} and Ca in the 0-90 cm soil layer was also determined on day 61. Results indicated that SO{sub 3}{sup 2-} in the FGD-CaSO{sub 3} rapidly oxidized to SO{sub 4}{sup 2-} on the field surface during the first week and much of the SO{sub 4}{sup 2-} and Ca moved downward into the 0-50 cm soil layer during the experimental period of two months. It is safe to grow plants in soil treated with FGD-CaSO{sub 3} if the application is made at least three days to several weeks before planting. 20 refs., 6 figs., 4 tabs.

  4. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  5. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  6. The onset of cavitation during the collision of a sphere with a wetted surface

    KAUST Repository

    Mansoor, Mohammad M.; Uddin, Jamal; Marston, Jeremy; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2014-01-01

    We investigate the onset of cavitation during the collision of a sphere with a solid surface covered with a layer of Newtonian liquid. The conventional theory dictates cavitation to initiate during depressurization, i.e. when the sphere rebounds from the solid surface. Using synchronized dual-view high-speed imaging, we provide conclusive experimental evidence that confirms this scenario- namely-that cavitation occurs only after the sphere makes initial contact with the solid surface. Similar to previous experimental observations for spheres released above the liquid surface, bubbles are formed on the sphere surface during entry into the liquid layer. These were found to squeeze radially outwards with the liquid flow as the sphere approached the solid surface, producing an annular bubble structure unrelated to cavitation. In contrast, spheres released below the liquid surface did not exhibit these patterns. © Springer-Verlag Berlin Heidelberg 2014.

  7. Wet cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  8. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bo-Kai [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, Hsin-Hung [Department of Marine Engineering, Taipei College of Maritime Technology, Taipei 11174, Taiwan (China); Nien, Li-Wei; Chen, Miin-Jang [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Nagao, Tadaaki [Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hsueh, Chun-Hway, E-mail: hsuehc@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-12-01

    Graphical abstract: - Highlights: • We fabricated textured SERS substrate with a high surface area and low reflectance. • Large surface area of substrate contains more gold nanodroplets to absorb analytes. • Low reflectance of textured SERS substrate enabled multiple reflections of incident laser light. • We obtained strong SERS enhancement from nanopillar-on-pyramid SERS substrate. - Abstract: A high surface area and low reflection textured surface-enhanced Raman scattering (SERS) substrate with plasmonic gold nanodroplets fabricated by wet etching and island lithography was reported in the present study. Specifically, four textured substrates, planar, pyramid, nanopillar, and nanopillar-on-pyramid, were fabricated. The fabricated structures were simulated using the finite-difference time-domain method and the results agreed with the reflection and dark-field scattering measurements. Although the SERS signals varied in different measured regions because of the random nanostructure, the SERS substrates with nanopillar-on-pyramid structure always have the stronger enhancement factor than the SERS substrates with only pyramids or nanopillars. Based on the atomic force microscope and reflection measurements, the nanopillar-on-pyramid structure provided a large surface area and multiple reflections for SERS enhancement, which was about 3 orders of magnitude larger than that of the planar substrate. Our results can be applied to fabricate the inexpensive, large surface area, and high SERS enhancement substrates.

  9. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate.

    Science.gov (United States)

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine

  10. Wetting and other physical characteristics of polycarbonate surface textured using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Abu-Dheir, N.; Al-Aqeeli, N.; Said, S.A.M. [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ahmed, A.O.M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Varanasi, K.K.; Toumi, Y.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston (United States)

    2014-11-30

    Highlights: • Laser causes micro/nano size pores and shallow fine-size cavities. • Crystallinity at surface is 18% after laser treatment increasing hydrophobicity. • Surface hydrophobicity improves after laser treatment. • Microhardness increases twofold after laser treatment process. • Residual stress is compressive and scratch hardness is 110 ± 11 MPa. • Optical transmittance reduces by 15% after laser treatment. - Abstract: Surface texturing of polycarbonate glass is carried out for improved hydrophobicity via controlled laser ablation at the surface. Optical and physical characteristics of the laser treated layer are examined using analytical tools including optical, atomic force, and scanning electron microscopes, Fourier transform infrared spectroscopy, and X-ray diffraction. Contact angle measurements are carried out to assess the hydrophobicity of the laser treated surface. Residual stress in the laser ablated layer is determined using the curvature method, and microhardnes and scratch resistance are analyzed using a micro-tribometer. Findings reveal that textured surfaces compose of micro/nano pores with fine cavities and increase the contact angle to hydrophobicity such a way that contact angles in the range of 120° are resulted. Crystallization of the laser treated surface reduces the optical transmittance by 15%, contributes to residual stress formation, and enhances the microhardness by twice the value of untreated polycarbonate surface. In addition, laser treatment improves surface scratch resistance by 40%.

  11. Fabrication of Superhydrophobic Surface with Controlled Wetting Property by Hierarchical Particles.

    Science.gov (United States)

    Xu, Jianxiong; Liu, Weiwei; Du, Jingjing; Tang, Zengmin; Xu, Lijian; Li, Na

    2015-04-01

    Hierarchical particles were prepared by synthetically joining appropriately functionalized polystyrene spheres of poly[styrene-co-(3-(4-vinylphenyl)pentane-2,4-dione)] (PS-co-PVPD) nanoparticles and poly(styrene-co-chloromethylstyrene) (PS-co-PCMS) microparticles. The coupling reaction of nucleophilic substitution of pendent β-diketone groups with benzyl chloride was used to form the hierarchical particles. Since the polymeric nanoparticles and microparticles were synthesized by dispersion polymerization and emulsion polymerization, respectively, both the core microparticles and the surface nanoparticles can be different size and chemical composition. By means of changing the size of the PS-co-PVPD surface nanoparticles, a series of hierarchical particles with different scale ratio of the micro/nano surface structure were successfully prepared. Moreover, by employing the PS-co-PVPD microparticles and PS-co-PCMS nanoparticles as building blocks, hierarchical particles with surface nanoaprticles of different composition were made. These as-prepared hierarchical particles were subsequently assembled on glass substrates to form particulate films. Contact angle measurement shows that superhydrophobic surfaces can be obtained and the contact angle of water on the hierarchically structured surface can be adjusted by the scale ratio of the micro/nano surface structure and surface chemical component of hierarchical particles.

  12. Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains

    Directory of Open Access Journals (Sweden)

    E. Zehe

    2010-06-01

    Full Text Available This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed

  13. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  14. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  15. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    Science.gov (United States)

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  16. Year-round atmospheric wet and dry deposition of nitrogen and phosphorus on water and land surfaces in Nanjing, China.

    Science.gov (United States)

    Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin

    2013-06-01

    The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.

  17. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  18. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  19. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces

    Science.gov (United States)

    Bhushan, Bharat; Jung, Yong Chae

    2008-06-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence of a thin wax film on the leaf surface. Various leaf surfaces on the microscale and nanoscale have been characterized in order to separate out the effects of the microbumps and nanobumps and the wax on the hydrophobicity. The next logical step in realizing superhydrophobic surfaces that can be produced is to design surfaces based on understanding of the leaves. The effect of micropatterning and nanopatterning on the hydrophobicity was investigated for two different polymers with micropatterns and nanopatterns. Scale dependence on adhesion was also studied using atomic force microscope tips of various radii. Studies on silicon surfaces patterned with pillars of varying diameter, height and pitch values and deposited with a hydrophobic coating were performed to demonstrate how the contact angles vary with the pitch. The effect of droplet size on contact angle was studied by droplet evaporation and a transition criterion was developed to predict when air pockets cease to exist. Finally, an environmental scanning electron microscope study on the effect of droplet size of about 20 µm radius on the contact angle of patterned surfaces is presented. The importance of hierarchical roughness structure on destabilization of air pockets is discussed.

  20. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban

    2017-09-01

    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  1. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  2. Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A{sub 2} enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Wiacek, Agnieszka Ewa, E-mail: a.wiacek@poczta.umcs.lublin.pl [Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin (Poland)

    2010-10-01

    Wetting properties of silica plates contacted with dipalmitoylphosphatidylcholine (DPPC) or DPPC/enzyme (phospholipase PLA{sub 2}) in NaCl solution were determined by thin layer wicking and with a help of Washburn equation. The wicking experiments were performed both for bare plates and the silica plates precontacted overnight with the probe liquid saturated vapors the silica plates, as well as untreated and DPPC (or DPPC/enzyme) treated. Adsorption of DPPC on original silica plates increases a bit hydrophobic character of silica surface in such a way that hydrocarbon chains are directed outwards and the polar part towards the silica surface. However, after the enzyme action the products of DPPC hydrolysis by PLA{sub 2} (palmitic acid and lysophosphatidylcholine) increase again hydrophilic character of silica surface (an increase in acid-base interactions, {gamma}{sub s}{sup AB}). The changes of silica surface wettability are evidently dependent on the time of enzyme contacting with DPPC in NaCl solution. Although, the changes of total surface free energy of silica after treatment with DPPC/enzyme solution are minor about 2-6 mJ/m{sup 2}, the changes of the electron-donor ({gamma}{sub s}{sup -}) and Lifshitz-van der Waals ({gamma}{sub s}{sup LW}) component of the surface free energy are noticeable. Despite, these results are somehow preliminary, it seems that thin layer wicking method is an interesting tool for investigation of the effect of adsorbed DPPC on hydrophobicity/hydrophilicity of silica surface and influence of enzyme PLA{sub 2} action.

  3. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  4. A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Zhang Hongyun; Li Wen; Fang Guoping

    2012-01-01

    Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.

  5. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  6. The Heat Strain of Various Athletic Surfaces: A Comparison Between Observed and Modeled Wet-Bulb Globe Temperatures.

    Science.gov (United States)

    Pryor, J Luke; Pryor, Riana R; Grundstein, Andrew; Casa, Douglas J

    2017-11-01

      The National Athletic Trainers' Association recommends using onsite wet-bulb globe temperature (WBGT) measurement to determine whether to modify or cancel physical activity. However, not all practitioners do so and instead they may rely on the National Weather Service (NWS) to monitor weather conditions.   To compare regional NWS WBGT estimates with local athletic-surface readings and compare WBGT measurements among various local athletic surfaces.   Observational study.   Athletic fields.   Measurements from 2 identical WBGT devices were averaged on 10 athletic surfaces within an NWS station reporting radius. Athletic surfaces consisted of red and black all-weather tracks (track), blue and black hard tennis courts (tennis), nylon-knit artificial green turf, green synthetic turfgrass, volleyball sand, softball clay, natural grass (grass), and a natural lake (water). Measurements (n = 143 data pairs) were taken over 18 days (May through September) between 1 pm and 4:30 pm in direct sunlight 1.2 m above ground. The starting location was counterbalanced across surfaces. The NWS weather data were entered into an algorithm to model NWS WBGT.   Black tennis, black track, red track, and volleyball sand WBGT recordings were greater than NWS estimates ( P ≤ .05). When all athletic-surface measurements were combined, NWS (26.85°C ± 2.93°C) underestimated athletic-surface WBGT measurements (27.52°C ± 3.13°C; P < .001). The range of difference scores (-4.42°C to 6.14°C) and the absolute mean difference (1.71°C ± 1.32°C) were large. The difference between the onsite and NWS WBGT measurements resulted in misclassification of the heat-safety activity category 45% (65/143) of the time ([Formula: see text]= 3.857, P = .05). The WBGT of water was 1.4°C to 2.7°C lower than that of all other athletic surfaces ( P = .04). We observed no other differences among athletic surfaces but noted large WBGT measurement variability among athletic playing surfaces.

  7. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  8. The role of substrate electrons in the wetting of a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Takahashi, O.; Andersson, Klas Jerker

    2010-01-01

    We address how the electronic and geometric structures of metal surfaces determine water-metal bonding by affecting the balance between Pauli repulsion and electrostatic attraction. We show how the rigid d-electrons and the softer s-electrons utilize different mechanisms for the redistribution...

  9. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of microstructure and surface features on wetting angle of a Fe-3.2 wt%C.E. cast iron with water

    Science.gov (United States)

    Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.

    2018-05-01

    In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.

  11. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  12. Soil Surface Sealing Reverse or Promote Desertification?

    Science.gov (United States)

    Assouline, S.; Thompson, S. E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G. G.

    2017-12-01

    Vegetation cover in dry regions is a key variable determining desertification. Bare soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here, it is shown how physical crusts can act as either drivers of, or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research (LTER) site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  13. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  14. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  15. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Santruckova, H.; Kastovska, E.; Liveckova, M. (Univ. of South Bohemia, Faculty of science, Branisovska (CZ)); Kozlov, D. (Lomonosov Moscow State Univ., Geographical Dept., Moscow (Russian Federation)); Kurbatova, J.; Tatarinov, F. (A.N. Severtson Inst. of ecology and evolution RAS, Moscow (Russian Federation)); Shibistova, O. (V.N.Sukachev Forest Inst., Krasnoyarsk (Russian Federation)); Lloyd, J. (Earth and Biosphere Inst., Univ. of Leeds (United Kingdom))

    2010-10-22

    Vertical and horizontal distributions of soil organic carbon, potential microbial activity and basic soil properties were studied in a boreal mixed forest (Central Forest Reserve, TVER region) to elucidate whether the soil CO{sub 2}-efflux is related to basic soil properties that affect the C pool and activity. Soil cores (0-100 cm depth) were taken from two transects every 50 meters (44 points) immediately after completion of soil CO{sub 2}-efflux measurements. Soil was separated into layers and moisture, bulk density, root density and bacterial counts were determined within one day after soil was taken. Microbial respiration, biomass, CN contents and pH were measured within few months. The variability in the soil CO{sub 2}-efflux and microbial activity was mainly explained by soil bulk density. Results further indicate that laboratory measurements of microbial respiration can represent heterotrophic soil respiration of a distinctive ecosystem in natural conditions, if microbial respiration is measured after the effect of soil handling disappears. (orig.)

  16. Soil surface decontamination and revegetation progress

    International Nuclear Information System (INIS)

    Graves, A.W.

    1981-01-01

    A review is given of work by Rockwell Hanford Operations related to large-area decontamination efforts. Rockwell has a Program Office which manages the decontamination and decommissioning (D and D) efforts. Part of the program is involved with large-surface area cleanup in conjunction with surveillance and maintenance of retired sites and facilities. The other part is the decontamination and decommissioning of structures. There are 322 surplus contaminated sites and facilities for which Rockwell has responsibility on the Hanford Site. A Program Office was established for a disciplined approach to cleanup of these retired sites. There are three major projects: the first is surveillance and maintenance of the sites prior to D and D, the project under which the radiation area cleanup is contained. Another project is for contaminated-equipment volume reduction; size reduction with arc saw cut-up and volume reduction with a vacuum furnace meltdown are being used. The third major project is structural D and D

  17. Analysis Of Post-Wet-Chemistry Heat Treatment Effects On Nb SRF Surface Resistance

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2014-01-01

    Most of the current research in superconducting radio frequency (SRF) cavities is focused on ways to reduce the construction and operating cost of SRF-based accelerators as well as on the development of new or improved cavity processing techniques. The increase in quality factors is the result of the reduction of the surface resistance of the materials. A recent test on a 1.5 GHz single cell cavity made from ingot niobium of medium purity and heat treated at 1400 °C in a ultra-high vacuum induction furnace resulted in a residual resistance of ∼ 1nΩ and a quality factor at 2.0 K increasing with field up to ∼ 5A-10 10 at a peak magnetic field of 90 mT. In this contribution, we present some results on the investigation of the origin of the extended Q 0 -increase, obtained by multiple HF rinses, oxypolishing and heat treatment of A ''all NbA'' cavities

  18. Cavitation structures formed during the rebound of a sphere from a wetted surface

    KAUST Repository

    Marston, Jeremy; Wang, Yong; Ng, Waikiong; Tan, Reginald; Thoroddsen, Sigurdur T

    2010-01-01

    We use high-speed imaging to observe the dynamics of cavitation, caused by the impact and subsequent rebound of a sphere from a solid surface covered with a thin layer of highly viscous liquid. We note marked qualitative differences between the cavitation structures with increase in viscosity, as well as between Newtonian and non-Newtonian liquids. The patterns observed are quite unexpected and intricate, appearing in concentric ring formations around the site of impact. In all cases, we identify a distinct radius from which the primary bubbles emanate. This radius is modelled with a modified form of Hertz contact theory. Within this radius, we show that some fine cavitation structure may exist or that it may be one large cavitation bubble. For the non-Newtonian fluids, we observe foam-like structures extending radially with diminishing bubble sizes with increase in radial position. Whereas for the Newtonian fluids, the opposite trend is observed with increasing bubble size for increasing radial position. Finally, we compare our experimental observations of cavitation to the maximum tension criterion proposed by Joseph (J Fluid Mech 366:367-378, 1998) showing that this provides the lower limit for the onset of cavitation in our experiments. © 2010 Springer-Verlag.

  19. Analysis of 'wet-landscape' surface water fractions using medaka embryo-toxicity bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Peters, L. E.; McConkey, B. J.; Vanden Heuvel, M. R. (Waterloo, Univ., Dept, of Biology, Waterloo, ON (Canada)); MacKinnon, M. D. (Syncrude Canada Ltd., Fort McMurray, AB (Canada)) Munkittricx, K. (Environment Canada, Burlington, ON (Canada))

    1998-01-01

    The self-sustaining biological potential of Syncrude's 'wetland-scape' waste disposal method was evaluated by testing water extracts from experimental pits of different ages and fine tailings/natural water compositions. This waste disposal method involves capping fine tailings with a layer of surface water. Preliminary estimates suggests a higher incidence of mortality and deformity in Japanese Medaka embryos incubated in pit waters containing elevated concentrations of naphthenates. Another study on adult perch stocked in the demonstration pit indicated the presence of PAHs in the fish bile at biologically relevant concentrations. This study was designed to determine the causative agents of the fish embryo toxicity and the level of concentrations at which chronic effects occur. The water extracts were fractionated into acid (containing naphthenates) and base-neutral (containing PAHs) components and tested using the Japanese Medaka bioassay. Endpoints measured were the presence of deformity, hatch success, swim-bladder inflation, length at hatch and time to mortality. HPLC analysis showed that PAHs were present at concentrations in the part/billion and the parts/million range. This is being taken as an indication that PAHs are not directly responsible for the observed toxicity to the embryos.

  20. Cavitation structures formed during the rebound of a sphere from a wetted surface

    KAUST Repository

    Marston, Jeremy

    2010-09-28

    We use high-speed imaging to observe the dynamics of cavitation, caused by the impact and subsequent rebound of a sphere from a solid surface covered with a thin layer of highly viscous liquid. We note marked qualitative differences between the cavitation structures with increase in viscosity, as well as between Newtonian and non-Newtonian liquids. The patterns observed are quite unexpected and intricate, appearing in concentric ring formations around the site of impact. In all cases, we identify a distinct radius from which the primary bubbles emanate. This radius is modelled with a modified form of Hertz contact theory. Within this radius, we show that some fine cavitation structure may exist or that it may be one large cavitation bubble. For the non-Newtonian fluids, we observe foam-like structures extending radially with diminishing bubble sizes with increase in radial position. Whereas for the Newtonian fluids, the opposite trend is observed with increasing bubble size for increasing radial position. Finally, we compare our experimental observations of cavitation to the maximum tension criterion proposed by Joseph (J Fluid Mech 366:367-378, 1998) showing that this provides the lower limit for the onset of cavitation in our experiments. © 2010 Springer-Verlag.

  1. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

    Directory of Open Access Journals (Sweden)

    Yuting Yang

    2015-06-01

    Full Text Available Surface soil moisture (SM plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data based on a trapezoidal space defined by remotely sensed vegetation cover (Fc and land surface temperature (LST. Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed

  2. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  3. Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface

    KAUST Repository

    Mansoor, Mohammad M.

    2016-05-05

    We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press

  4. Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface

    KAUST Repository

    Mansoor, Mohammad M.; Marston, J. O.; Uddin, J.; Christopher, G.; Zhang, Z.; Thoroddsen, Sigurdur T

    2016-01-01

    We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press

  5. Soil bioengineering methods for abandoned mine land surface drainage channels

    Energy Technology Data Exchange (ETDEWEB)

    Sotir, R.B.; Simms, A.P.; Sweigard, R.J.; Hammer, P.; Graves, D.H.; Adkins, M. [Robbin B. Sotir & Associates, Marietta, GA (USA)

    1999-07-01

    Research to determine the suitability of soil bioengineering for slope stabilization at abandoned surface mining sites is described. The technology uses live woody plant material as a structural component, in this case live fascine with coir erosion control fabric made from coconut. A large water collection pond draining to nine channels on the slope below was constructed as a test site. The pond has drainage channels for testing at low, intermediate, and steep slope grades. Each group of three channels is composed of one riprap rock channel, one gabion channel, and one soil bioengineering channel. The channels will be tested summer 1999. 11 refs., 5 figs., 2 tabs., 8 photos.

  6. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  7. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  8. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  9. Analytical aspects of the remediation of soil by wet oxidation - Characterisation of tar contaminants and their degradation products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Nielsen, T.; Plöger, A.

    1999-01-01

    Wet oxidation of tar compounds gives rise to a wide range of products. Due to the incorporation of oxygen, these products become increasingly more water soluble and the analytical strategy has to take into account the different physical/chemicalproperties of the compounds. An interplay between ga...

  10. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, H. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany)], E-mail: angermann@hmi.de; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany); Huebener, K.; Hauschild, J. [Freie Universitaet Berlin, FB Physik, Arnimallee 14, 14195 Berlin (Germany)

    2008-08-30

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D{sub it}(E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency.

  11. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    International Nuclear Information System (INIS)

    Angermann, H.; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M.; Huebener, K.; Hauschild, J.

    2008-01-01

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D it (E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency

  12. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  13. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  14. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  15. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  16. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  17. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  18. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  19. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    Science.gov (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  20. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

    Science.gov (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.

    2017-01-01

    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  1. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-02-01

    Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.

    Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.

    We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer

  2. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  3. Applicability of {sup 239}Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Lal, R., E-mail: rajeev.lal@anu.edu.au [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Tims, S.G.; Fifield, L.K. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Wasson, R.J.; Howe, D. [Charles Darwin University, Darwin, NT 0810 (Australia)

    2013-01-15

    The technique of accelerator mass spectroscopy (AMS) has been employed to determine modern soil loss rates through the analysis of {sup 239}Pu profiles in soil cores from the Daly basin in Northern Territory, Australia. In areas in which soil conservation banks were not present or were only added recently (<25a) and which had a history of grazing and cultivation the measured soil loss rates over the past {approx}50 years were 7.5-19.5 t ha{sup -1} a{sup -1}. The measured rates are up to 5 times higher compared to agricultural and uncultivated areas within soil conservation banks in other parts of the catchment. High intensity seasonal rainfall combined with reduction in land cover due to grazing and episodic bush fires are primary factors influencing erosion although other impacts on the landscape such as tillage generated runoff and land clearing seem to be responsible for accelerated sediment production.

  4. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    This study investigated lead concentrations in < 250 μm and < 75 μm of deposited dust and< 2000 μm, < 250 μm, and < 75 μm of surface soils at undeveloped residential lands leased to auto-mechanic artisans for a minimum of ten years and estimated exposure risk for children that will reside on the polluted lands after the ...

  5. Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture

    OpenAIRE

    Wooyeon Sunwoo; Minha Choi

    2017-01-01

    Runoff prediction in limited-data areas is vital for hydrological applications, such as the design of infrastructure and flood defenses, runoff forecasting, and water management. Rainfall–runoff models may be useful for simulation of runoff generation, particularly event-based models, which offer a practical modeling scheme because of their simplicity. However, there is a need to reduce the uncertainties related to the estimation of the initial wetness condition (IWC) prior to a rainfall even...

  6. Runoff losses of excreted chlortetracycline, sulfamethazine, and tylosin from surface-applied and soil-incorporated beef cattle feedlot manure.

    Science.gov (United States)

    Amarakoon, Inoka D; Zvomuya, Francis; Cessna, Allan J; Degenhardt, Dani; Larney, Francis J; McAllister, Tim A

    2014-03-01

    Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 μg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 μg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 μg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 μg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  8. Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters

    Science.gov (United States)

    Campos, Xochi; Germino, Matthew; de Graaff, Marie-Anne

    2017-01-01

    AimsChanging precipitation regimes in semiarid ecosystems will affect the balance of soil carbon (C) input and release, but the net effect on soil C storage is unclear. We asked how changes in the amount and timing of precipitation affect litter decomposition, and soil C stabilization in semiarid ecosystems.MethodsThe study took place at a long-term (18 years) ecohydrology experiment located in Idaho. Precipitation treatments consisted of a doubling of annual precipitation (+200 mm) added either in the cold-dormant season or in the growing season. Experimental plots were planted with big sagebrush (Artemisia tridentata), or with crested wheatgrass (Agropyron cristatum). We quantified decomposition of sagebrush leaf litter, and we assessed organic soil C (SOC) in aggregates, and silt and clay fractions.ResultsWe found that: (1) increased precipitation applied in the growing season consistently enhanced decomposition rates relative to the ambient treatment, and (2) precipitation applied in the dormant season enhanced soil C stabilization.ConclusionsThese data indicate that prolonged increases in precipitation can promote soil C storage in semiarid ecosystems, but only if these increases happen at times of the year when conditions allow for precipitation to promote plant C inputs rates to soil.

  9. Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia

    Science.gov (United States)

    Lal, R.; Tims, S. G.; Fifield, L. K.; Wasson, R. J.; Howe, D.

    2013-01-01

    The technique of accelerator mass spectroscopy (AMS) has been employed to determine modern soil loss rates through the analysis of 239Pu profiles in soil cores from the Daly basin in Northern Territory, Australia. In areas in which soil conservation banks were not present or were only added recently (banks in other parts of the catchment. High intensity seasonal rainfall combined with reduction in land cover due to grazing and episodic bush fires are primary factors influencing erosion although other impacts on the landscape such as tillage generated runoff and land clearing seem to be responsible for accelerated sediment production.

  10. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

    Science.gov (United States)

    Tillmann, Wolfgang; Pfeiffer, Jan; Wojarski, Lukas

    2015-08-01

    Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

  11. Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia

    International Nuclear Information System (INIS)

    Lal, R.; Tims, S.G.; Fifield, L.K.; Wasson, R.J.; Howe, D.

    2013-01-01

    The technique of accelerator mass spectroscopy (AMS) has been employed to determine modern soil loss rates through the analysis of 239 Pu profiles in soil cores from the Daly basin in Northern Territory, Australia. In areas in which soil conservation banks were not present or were only added recently ( −1 a −1 . The measured rates are up to 5 times higher compared to agricultural and uncultivated areas within soil conservation banks in other parts of the catchment. High intensity seasonal rainfall combined with reduction in land cover due to grazing and episodic bush fires are primary factors influencing erosion although other impacts on the landscape such as tillage generated runoff and land clearing seem to be responsible for accelerated sediment production.

  12. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  13. Heavy metal pollution of surface soil in Thrace region (Turkey)

    International Nuclear Information System (INIS)

    Goskun, Mahmut; Goskun, Munevver; Steinnes, E.; Eidhammer Sjobakk, T.; Frontas'eva, M.V.; Demkina, S.V.

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of Cu, Zn, Ni, Cd, Cr, Pb, and As were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology

  14. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  15. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil

    Science.gov (United States)

    Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-01-01

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  16. Dryland photoautotrophic soil surface communities endangered by global change

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  17. Dryland photoautotrophic soil surface communities endangered by global change

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  18. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  19. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  20. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.

    2014-10-01

    Evapotranspiration has been recognized as one of the most uncertain term in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs simulations of evapotranspiration are assessed at local scale over a 12 year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamic of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key soil parameters which drive the simulation of evapotranspiration, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. The simulations achieved with the standard values of these parameters are compared to those achieved with the in situ values. The portability of the ISBA pedotransfer functions is evaluated over a typical Mediterranean crop site. Various in situ estimates of the soil parameters are considered and distinct parametrization strategies are tested to represent the evapotranspiration dynamic over the crop succession. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24% over 12 years. The bias in daily daytime evapotranspiration is -0.24 mm day-1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated which explains most of the evapotranspiration underestimation. The overestimation of the soil moisture at wilting point causes the underestimation of

  1. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  2. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  3. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  4. Have wet meadow restoration projects in the Southwestern U.S. been effective in restoring geomorphology, hydrology, soils, and plant species composition?

    Directory of Open Access Journals (Sweden)

    Ramstead Karissa M

    2012-09-01

    Full Text Available Abstract Background Wet meadows occur in numerous locations throughout the American Southwest, but in many cases have become heavily degraded. Among other things they have frequently been overgrazed and have had roads built through them, which have affected the hydrology of these wetland ecosystems. Because of the important hydrologic and ecological functions they are believed to perform, there is currently significant interest in wet meadow restoration. Several restoration projects have been completed recently or are underway in the region, sometimes at considerable expense and with minimal monitoring. The objective of this review was to evaluate the effects of wet meadow restoration projects in the southwestern United States on geomorphology, hydrology, soils and plant species composition. A secondary objective was to determine the effects of wet meadow restoration projects on wildlife. Methods Electronic databases, internet search engines, websites and personal contacts were used to find articles of relevance to this review. Articles were filtered by title, abstract and full text. Summary information for each of the articles remaining after the filtering process was compiled and used to assess the quality of the evidence presented using two different approaches. Results Our searches yielded 48 articles, of which 25 were published in peer-reviewed journals, 14 were monitoring or project reports, and 9 were published in conference proceedings or are unpublished theses or manuscripts. A total of 26 operational-scale restoration projects were identified. A wide range of restoration techniques were employed, ranging from small-scale manipulations of stream channels (e.g., riffle structures to large scale pond-and-plug projects. Other common restoration techniques included fencing to exclude livestock (and sometimes also native ungulates, other forms of grazing management, seeding, and transplanting seedlings. Most of the articles reported that

  5. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  6. Two-dimensional LIF measurements of humidity and OH density resulting from evaporated water from a wet surface in plasma for medical use

    International Nuclear Information System (INIS)

    Yagi, Ippei; Ono, Ryo; Oda, Tetsuji; Takaki, Koichi

    2015-01-01

    In plasma medicine, plasma is applied to a wet surface and is often accompanied by dry-gas flow. The dry-gas flow affects water evaporation from the wet surface and influences production of reactive species derived from water vapor, such as OH radicals. In this study, the effect of the dry-gas flow on two-dimensional distributions of humidity and OH radical density are examined by measuring them using laser-induced fluorescence (LIF). First, humidity is measured when nitrogen flows from a quartz tube of 4 mm inner diameter onto distilled water and agar media from 5 mm distance. NO gas is added to the nitrogen as a tracer and humidity is obtained from the quenching rate of NO molecules measured using LIF. This measurement has a spatial resolution of 0.2 mm 3 and a temporal resolution of less than 220 ns. The two-dimensional humidity distribution shows that the dry-gas flow pushes away water vapor evaporating from the wet surface. As a result, a low-humidity region is formed near the quartz tube nozzle and a high-humidity region is formed near the wet surface. The thickness of the low-humidity region reduces with increasing gas flow rate. It is 0.1–0.5 mm for the flow rate of higher than 0.3 l min −1 . Next, the OH density is measured when a nanosecond pulsed streamer discharge is applied to a distilled water surface with dry-air flow. The OH density decreases with increasing gas flow rate due to decreased humidity. When the flow rate is lower than 0.1 l min −1 , the OH distribution is approximately uniform in the plasma region, while the humidity distribution shows a large gradient. The importance of the thin high-humidity region on the flux of reactive species onto the wet surface is discussed. (paper)

  7. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    International Nuclear Information System (INIS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-01-01

    Highlights: • Direct measurement of the surface band bending exhibited by ZnO nanowires using monochromatic XPS. • Modulation of the surface depletion region using wet chemical treatment (EtOH, H 2 O 2 ). • The measured surface potential barrier agrees with electrical measurements of individual nanowires. • H 2 O 2 depletes the nanowire of charge carriers while EtOH donates electrons at the surface. • EtOH has the effect of restoring the surface potential barrier of oxidised nanowires. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H 2 O 2 ) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending

  8. Spring-Thaw Nitrous Oxide Emissions from Reed Canarygrass on Wetness-Prone Marginal Soil in New York State

    NARCIS (Netherlands)

    Mason, C.; Stoof, C.R.; Richards, B.K.; Rossiter, D.; Steenhuis, T.S.

    2016-01-01

    In temperate climates, a significant fraction of annual emissions of nitrous oxide (N2O) from agricultural land can occur during soil thaw in late winter and early spring. The objective of this study is to determine the impact of land use change from long-term fallow grassland to managed perennial

  9. Increased frequency of drought reduces species richness of enchytraeid communities in both wet and dry heathland soils

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Sørensen, Jesper G.; Maraldo, Kristine

    2012-01-01

    providing an opportunity to study biological responses on a local (within sites) and regional scale. Warming treatments increasing night-time temperature (0.5–1 °C higher than ambient at 5 cm soil depth) had no detectable effects on the enchytraeid communities. Increased intensity and frequency of drought...

  10. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  11. The sensitivity of Sphagnum to surface layer conditions in a re-wetted bog: a simulation study of water stress

    NARCIS (Netherlands)

    Schouwenaars, J.M.; Gosen, A.M.

    2007-01-01

    The behaviour of the water table in re-wetted bogs varies widely between different locations so that recolonising Sphagnum is vulnerable to water stress, especially when the water table is drawn down in summer. It is important to understand how physical site conditions influence the occurrence of

  12. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  13. Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model

    Science.gov (United States)

    Thomsen, L. M.; Baartman, J. E. M.; Barneveld, R. J.; Starkloff, T.; Stolte, J.

    2015-04-01

    Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow, and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods (such as roller chain and pinboard) and sensor methods (such as stereophotogrammetry and terrestrial laser scanning (TLS)). A novel depth-sensing technique, originating in the gaming industry, has recently become available for earth sciences: the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph at catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct seeding on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per square metre). In terms of costs and ease of use in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain overestimated the random roughness (RR) values and the model subsequently calculated less surface runoff than measured. In conclusion, the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.

  14. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  15. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  16. LPRM/TMI/TRMM L2 Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  17. Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions

    Science.gov (United States)

    Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.

    2009-01-01

    Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.

  18. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  19. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  20. Changing spatial patterns of evapotranspiration and deep drainage in response to the interactions among impervious surface arrangement, soil characteristics, and weather on a residential parcel.

    Science.gov (United States)

    Voter, C. B.; Steven, L. I.

    2015-12-01

    The introduction impervious surfaces in urban areas is a key driver of hydrologic change. It is now well understood that the amount of "effective" impervious area directly connected to the storm sewer network is a better indicator of hydrologic behavior than the total amount of impervious area. Most studies in urban hydrology have focused on the relationship between impervious connectivity and stormwater runoff or other surface water flows, with the result that the effect on subsurface flow is not as well understood. In the field, we observe differences in soil moisture availability that are dependent on proximity to impervious features and significant from a root water uptake perspective, which indicates that parcel-scale subsurface and plant water fluxes may also be sensitive to fine-scaled heterogeneity in impervious surface arrangement and connectivity. We use ParFlow with CLM, a watershed model with fully integrated variably-saturated subsurface flow, overland flow, and land-surface processes, to explore the extent to which soil moisture, evapotranspiration, and deep drainage vary under various impervious surface arrangement and soil condition scenarios, as well as under a range of precipitation regimes. We investigate the effect of several impervious surface and soil characteristics, including general lot layout, downspout disconnect, and direction of driveway/sidewalk slope, and soil compaction. We show that that some impervious connectivity schemes transfer more water from impervious areas to pervious ones and promote localized recharge by developing well-defined, fast-moving wetting fronts that are able to penetrate the root zone. Enhanced infiltration is translated more directly to recharge in normal to wet years but partitioned more often to transpiration in dry years, leading to a nonlinear relationship among precipitation, runoff and recharge.

  1. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  2. Characteristics of organic matter fractions separated by wet-sieving and differences in density from five soils of different pedogenesis under mature beech forest.

    Science.gov (United States)

    Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard

    2017-04-01

    Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, soil horizon specific samples. The OC of the topsoil (Ah horizon) on Lime Stone and Red Sandstone was predominately stored in the larger macro-aggregates (>1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of the OC associated with the aggregate size fractions 53 µm were positively correlated with basal respiration and the microbial biomass C. This suggests, in contrast to the topsoil, the easily decomposable OM to be distributed more homogeneously among fractions. Only the OC content of the soil mineral

  3. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy.

    Science.gov (United States)

    Fukami, Jinichi; Ozawa, Asuka; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2005-12-01

    A fast disintegrating compressed tablet was formulated using amino acids, such as L-lysine HCl, L-alanine, glycine and L-tyrosine as disintegration accelerator. The tablets having the hardness of about 4 kgf were prepared and the effect of amino acids on the wetting time and disintegration time in the oral cavity of tablets was examined on the basis of surface free energy of amino acids. The wetting time of the tablets increased in the order of L-lysine HCl, L-alanine, glycine and L-tyrosine, whereas the disintegration time in the oral cavity of the tablets increased in the order of L-alanine, glycine, L-lysine HCl and L-tyrosine. These behaviors were well analyzed by the introduction of surface free energy. When the polar component of amino acid was large value or the dispersion component was small value, faster wetting of tablet was observed. When the dispersion component of amino acid was large value or the dispersion component was small value, faster disintegration of tablet was observed, expect of L-tyrosine tablet. The fast disintegration of tablets was explained by the theory presented by Matsumaru.

  4. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  5. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    Science.gov (United States)

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  6. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  7. Small scale spatial variability and pattern of soil respiration and water content in wet and a dry temperate grasslands and bare soil

    Czech Academy of Sciences Publication Activity Database

    Fóti, S.; Nagy, Z.; Balogh, J.; Bartha, S.; Acosta, Manuel; Czóbel, S.; Péli, E.; Marek, Michal V.; Tuba, Z.

    2009-01-01

    Roč. 28, č. 4 (2009), s. 389-398 ISSN 1335-342X Institutional research plan: CEZ:AV0Z60870520 Institutional support: RVO:67179843 Keywords : chamber technique * coefficient of variation * semivariance * Soil respiration * spatial pattern Subject RIV: EH - Ecology, Behaviour

  8. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  9. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  10. Wetting induced by near-surface Ti-enrichment in the CaF2/In-Ti and CaF2/Cu-Ti systems

    International Nuclear Information System (INIS)

    Froumin, N.; Barzilai, S.; Aizenshtein, M.; Lomberg, M.; Frage, N.

    2008-01-01

    This paper is concerned with the wetting of CaF 2 by liquid Cu and In and with the effect of Ti additions to the melt. According to thermodynamic analysis and to the experimental observations, the significantly decreased contact angle following the addition of Ti to the molten metals is not due to the formation of interfacial fluoride phases, in contrast to previously reported results. Ab initio density functional calculations indicate that preferential Ti adsorption takes place at the near CaF 2 surface. It is suggested that the presence of a Ti-enriched liquid, adjacent to the substrate, gives rise, by means of heterogeneous nucleation, to the formation of a thin intermetallic compound layer that stands behind the experimentally observed enhanced wetting. The suggested wetting mechanism is supported by the notable correlation that has been observed between the temperature dependence of the contact angle and the temperature domains, associated with the presence of intermetallic compounds in both Me-Ti (Me = Cu, In) binary systems

  11. The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001 GaAs Surface

    Directory of Open Access Journals (Sweden)

    Lyamkina AA

    2011-01-01

    Full Text Available Abstract In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.

  12. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%

    Science.gov (United States)

    Xu, Xiuwen; Ma, Chunqing; Cheng, Yuanhang; Xie, Yue-Min; Yi, Xueping; Gautam, Bhoj; Chen, Shengmei; Li, Ho-Wa; Lee, Chun-Sing; So, Franky; Tsang, Sai-Wing

    2017-08-01

    Non-wetting hole transport materials (HTMs) have great potential in facilitating large-sized perovskite crystal growth and enhancing device stability by opposing moisture ingress, However, the severe non-wetting issue limits the wide application of these materials in low-temperature solution-processed inverted planar perovskite solar cells (PVSCs), and corresponding devices are rarely reported. Here, a facile ultraviolet-ozone (UVO) modification method is demonstrated to overcome this issue. By carefully controlling the UVO modification time, the surface wettability of poly-TPD can be tuned without affecting the bulk properties of the film, hence perovskite films with desired grain size and excellent coverage can be deposited via a one-step spin-coating method. Benefiting from the high-quality perovskite, well-matched energy level alignment and hydrophobic property of poly-TPD, the resulting PVSCs show a champion power conversion efficiency of 18.19% with significantly enhanced stability as compared to the PEDOT:PSS counterparts. Moreover, the UVO modification approach also demonstrates its validity when being extended to other hydrophobic HTMs. This work not only provides a general strategy to broaden the selection pool of HTMs for solution-processed inverted planar PVSCs, but also may triggers the exploration of more advanced strategies to make non-wetting HTMs applicable in solution-processed inverted planar PVSCs.

  13. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  14. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  15. Control of oil-wetting on technical textiles by means of photo-chemical surface modification and its relevance to the performance of compressed air filters

    International Nuclear Information System (INIS)

    Bahners, Thomas; Mölter-Siemens, Wolfgang; Haep, Stefan; Gutmann, Jochen S.

    2014-01-01

    Highlights: • The oil repellence of textile fabrics was increased following the Wenzel concept. • Fiber surfaces were micro-roughened by means of pulsed UV laser irradiation. • Subsequent UV-induced grafting yielded pronounced oil repellence. • The grafting process conserved the delicate topography of the fiber surfaces. • The modified fabrics showed favorable drainage behavior in oil droplet separation. - Abstract: A two-step process comprising a surface roughening step by excimer laser irradiation and a post-treatment by photo-grafting to decrease the surface free energy was employed to increase the oil repellence of technical fabrics made of poly(ethylene terephthalate) (PET). The modification was designed to improve the performance of multi-layer filters for compressed air filtration, in which the fabrics served to remove, i.e. drain, oil separated from the air stream. In detail, the fibers surfaces were roughened by applying several laser pulses at a wavelength of 248 nm and subsequently photo-grafted with 1H,1H,2H,2H-perfluoro-decyl acrylate (PPFDA). The oil wetting behavior was increased by the treatments from full wetting on the as-received fabrics to highly repellent with oil contact angles of (131 ± 7)°. On surfaces in the latter state, oil droplets did not spread or penetrate even after one day. The grafting of PPFDA alone without any surface roughening yielded an oil contact angle of (97 ± 11)°. However, the droplet completely penetrated the fabric over a period of one day. The drainage performance was characterized by recording the pressure drop over a two-layer model filter as a function of time. The results proved the potential of the treatment, which reduced the flow resistance after 1-h operation by approximately 25%

  16. Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion

    Energy Technology Data Exchange (ETDEWEB)

    Isozaki, Toshikuni; Shibata, Katsuyuki

    1997-04-01

    Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

  17. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling

    International Nuclear Information System (INIS)

    Wang Xiaoping; Sheng Jiujiang; Gong Ping; Xue Yonggang; Yao Tandong; Jones, Kevin C.

    2012-01-01

    There are limited data on persistent organic pollutants (POPs) in the soils of the Tibetan Plateau. This paper presents data from a survey of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 40 background surface (0–5 cm) soils of the Tibetan Plateau. Soil concentrations (pg/g, dw) ranged as follows: DDTs, 13-7700; HCHs, 64-847; HCB, 24-564; sum of 15 PCBs, 75-1021; and sum of 9 PBDEs, below detection limit −27. Soil DDT, HCB, PCB and PBDE concentrations were strongly influenced by soil organic carbon content. HCH concentrations were clearly associated with the proximity to source regions in south Asia. The air–soil equilibrium status of POPs suggested the Tibetan soils may be partial “secondary sources” of HCB, low molecular weight PCBs and HCHs and will likely continue to be “sinks” for the less volatile DDE and DDT. - Highlights: ► Soil organic carbon content influence the spatial distribution of persistent organic pollutants. ► The Tibetan soil acts as “secondary sources” for HCB, low molecular weight PCBs and HCHs. ► The Tibetan soil will continue to be “sinks” for DDE and DDT. - Tibetan soils may be potential “secondary sources” of the HCB, low molecular weight PCBs and HCHs that are observed in air.

  18. Effects of surface soil loss in South Eastern Nigeria: I. crop ...

    African Journals Online (AJOL)

    The widespread incidence of soil erosion in the tropics has been identified, though few studies have dealt with specific problems of decline in crop productivity associated with soil loss. An understanding of the influence of surface soil loss on crop yield is necessary in order to find out their effects on performance of crops.

  19. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    Science.gov (United States)

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  20. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. IV. Improvement in wet peel strength

    International Nuclear Information System (INIS)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Adhesive joints of hydrolyzed methyl acrylate grafts, bonded with epoxy adhesives, yield extremely high peel strength (adherend failure) in dry conditions. However, when the joints are exposed to humid environments, the peel strength rapidly decreases with exposure time and then reaches a constant value (wet peel strength). Since the locus of failure changes from the adherend to the homopolymer layer with decreasing peel strength, the decrease is due to a decrease in mechanical strength of the homopolymer layer itself, which results from its swelling by water absorption. Many attempts to reduce the swelling of the homopolymer layer or to strengthen the swollen homopolymer layer were unsuccessful except (1) priming with epoxy solutions consisting of a base epoxy resin and organic solvents which can dissolve not only epoxy resins but also hydrolyzed poly(methyl acrylate) and (2) partial etching of the homopolymer layer by photo-oxidative degradation. All the results on the improvement in wet peel strength can be explained in terms of the penetration of epoxy resins into the homopolymer layer and subsequent curing of the penetrated epoxy resin. 15 figures, 1 table

  1. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  2. The solonetzic process in surface soils and buried paleosols and its reflection in the mineralogical soil memory

    Science.gov (United States)

    Chizhikova, N. P.; Kovda, I. V.; Borisov, A. V.; Shishlina, N. I.

    2009-10-01

    The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.

  3. Effects of the Soil Incorporation of Increasing Amounts of Non-Fermented Wet Pomace on the Oil Yield and Acid Profile of Sunflower Seeds

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2007-12-01

    Full Text Available The agricultural use of olive processing waste is a strategic resource in the integrated management of the agricultural system as it satisfies the two objectives of evacuating the olive-processing residue and using it beneficially for agricultural purposes. For such aims, a research was conducted in Bari (South of Italy to study the effects of the incorporation into the soil of increasing amounts of non-fermented wet pomace (WP (0, 17.5, 35, 70, 105, 140, 175, 210 Mg ha-1 on the oil yield and acid profile of sunflower seeds. The results obtained point out that the seed yield was negatively affected by the application of WP starting from 70 Mg ha-1; an opposite trend was observed for the seed oil yield. The incorporation of WP has also affected the oil fatty acids’ composition. Oleic and linoleic acids, the principal fatty acids (beyond 90% of total fatty acids, showed significant variations: from the control treatment to the one receiving the maximum application of waste, oleic acid decreased (-5.4%, linoleic acid increased (+ 6.6%, and the saturated fatty acids fraction decreased (-7.6%.

  4. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris

    2006-01-01

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  5. Exchange of soil moisture between patches of wild-olive and pasture sustains evapotranspiration of a Mediterranean ecosystem in both wet and dry seasons

    Science.gov (United States)

    Curreli, M.; Montaldo, N.; Oren, R.

    2017-12-01

    Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow

  6. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  7. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment.

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-12-31

    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness

    DEFF Research Database (Denmark)

    Grant, J. P.; Wigneron, J. P.; Van de Grind, A. A.

    2007-01-01

    France, using a multi-angle L-band (1.4 GHz) radiometer to measure from above the forest at horizontal polarization. At the same time, ground measurements were taken of soil and litter moisture content, while precipitation was also permanently monitored. This experiment was done in the context of...

  9. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  10. Monitoring Multidecadal satellite earth observation of soil moisture products through land surface reanalysis

    NARCIS (Netherlands)

    Albergel, C.; Dorigo, W.; Balsamo, G.; Sabatar, J; de Rosnay, P.; Isaksen, I; Brocca, L; de Jeu, R.A.M.; Wagner, W.

    2013-01-01

    Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim), is used to monitor at a global scale the consistency of a new microwave based multi-satellite surface soil moisture date set

  11. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  12. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  13. Role of soil health in maintaining environmental sustainability of surface coal mining.

    Science.gov (United States)

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian

    2011-12-01

    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  14. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    DEFF Research Database (Denmark)

    Sun, Ling; Laustsen, Milan; Mandsberg, Nikolaj

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano-and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll......-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic...

  15. [Concentrations and Component Profiles PAHs in Surface Soils and Wheat Grains from the Cornfields Close to the Steel Smelting Industry in Handan, Hebei Province].

    Science.gov (United States)

    Wu, Di; Wang, Yi-long; Liu, Wei-jian; Chen, Yuan-chen; Fu, Xiao-fang; Tao, Shu; Liu, Wen-xin

    2016-02-15

    In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).

  16. Does overshoot in leaf development of ponderosa pine in wet years leads to bark beetle outbreaks on fine-textured soils in drier years?

    Directory of Open Access Journals (Sweden)

    Wendy Peterman

    2014-12-01

    Full Text Available Background Frequent outbreaks of insects and diseases have been recorded in the native forests of western North America during the last few decades, but the distribution of these outbreaks has been far from uniform. In some cases, recent climatic variations may explain some of this spatial variation along with the presence of expansive forests composed of dense, older trees. Forest managers and policy makers would benefit if areas especially prone to disturbance could be recognized so that mitigating actions could be taken. Methods We use two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modeling approach that couples information acquired via remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. Although there was a general downward trend in precipitation for both sites over the period between 1998 and 2010 (slope = −1.3, R2 = 0.08, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier (circa 2000 to 2001 and more severely on one site than on the other. The initial canopy density of the two sites was also similar, with leaf area indices ranging between 1.7-2.0 m2·m−2. We wondered if the difference in bark beetle activity was related to soils that were higher in clay content at site I than at site II. To assess this possibility, we applied a process-based stand growth model (3-PG to analyze the data and evaluate the hypotheses. Results We found that when wet years were followed by drier years, the simulated annual wood production per unit of leaf area, a measure of tree vigor, dropped below a critical threshold on site I but not on site II. Conclusion We concluded that the difference in vulnerability of the two stands to beetle outbreaks can be explained largely by differences in gross photosynthesis

  17. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    climatic data. The strategy takes profit of all work made on soil texture as a proxi of soil hydraulic through pedotransfer functions. It also takes into account the constraints in soil moisture variations after important precipitation events. Performances on soil moisture are assessed by considering both the soil moisture accuracy and the ability of detecting a soil moisture threshold. o The added value of soil moisture measurements. The aim is to evaluate to which extent we can improve soil moisture simulations by assimilating a few soil moisture measurements made in the surface layer (ploughed layers). We focus on such a layer since moisture can be derived from remote sensing observations or by using in situ sensors (capacitance sensor, TDR) with minimal effort. The validity of such measurements to represent the soil moisture at the field scale is analysed. It is shown that relative variations in soil moisture are much easier to obtain than an absolute characterisation of the soil moisture measurements. We evaluate the value of assimilating surface measurement in the TEC model and how we can deal with a measurement of relative soil moisture variations (in order to prevent a tedious calibration process). Again the performances of the approach are evaluated with the soil moisture accuracy and the ability of detecting a soil moisture threshold.

  18. Soil contamination of plant surfaces from grazing and rainfall interactions

    International Nuclear Information System (INIS)

    Hinton, T.G.; Stoll, J.M.; Tobler, L.

    1995-01-01

    Contaminants often attach to soil particles, and their subsequent environmental transport is largely determined by processes that govern soil movement. We examined the influence of grazing intensity on soil contamination of pastures. Four different grazing densities of sheep were tested against an ungrazed control plot. Scandium concentrations were determined by neutron activation analysis and was used as a tracer of soil adhesion on vegetation. Soil loadings ( g soil kg -1 dry plant) increased 60% when grazing intensity was increased by a factor of four (p 0.003). Rain and wind removed soil from vegetation in the ungrazed control plots, but when grazing sheep were present, an increase in rain from 0.3 to 9.7 mm caused a 130% increase in soil contamination. Multiple regression was used to develop an equation that predicts soil loadings as a function of grazing density, rainfall and wind speed (p = 0.0001, r 2 = 0.78). The model predicts that if grazing management were to be used as a tool to reduce contaminant intake from inadvertent consumption of resuspended soil by grazing animals, grazing densities would have to be reduced 2.5 times to reduce soil loadings by 50%. (author)

  19. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    Science.gov (United States)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures. PMID:26892169

  20. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange

    International Nuclear Information System (INIS)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2014-01-01

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0–5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m 3 , which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air–soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs. Highlights: • The levels of PAHs in air and soil of the Tibetan Plateau were relatively lower than other background region of world. • The soil PAHs concentration decreased with the increase of elevation. • The Tibetan Plateau will likely remain as a sink for high molecular weight PAHs. • The Tibetan Plateau may become a potential “secondary source” for low molecular weight PAHs. -- The Tibetan soil will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs

  1. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  2. Cs-137 migration in soil near NPPs

    International Nuclear Information System (INIS)

    Silant'ev, A.N.; Shkuratova, I.G.; Khatskevich, R.N.

    1984-01-01

    A convective-diffusion model has been employed for describing Cs-137 migration in soil. The migration parameters were determined by comparing the calculated vertical distribution profiles with the experimental ones. The migration parameters dependence on the soil state has been studied. Cs-137 penetration rate was found to be function of the soil type, surface state, soil wetness and orography. The obtained values are presented. A method is suggested for revealing the soil surface contamination by Cs-137 produced during NPP operation with distinguishing it from the global contamination background. For this purpose Cs-137 content in the upper 5 mm soil layer is estimated [ru

  3. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  4. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J.; Gerzabek, M.H.; Mueck, K.

    1994-03-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  5. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  6. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  7. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  8. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  9. The persistence of human DNA in soil following surface decomposition.

    Science.gov (United States)

    Emmons, Alexandra L; DeBruyn, Jennifer M; Mundorff, Amy Z; Cobaugh, Kelly L; Cabana, Graciela S

    2017-09-01

    Though recent decades have seen a marked increase in research concerning the impact of human decomposition on the grave soil environment, the fate of human DNA in grave soil has been relatively understudied. With the purpose of supplementing the growing body of literature in forensic soil taphonomy, this study assessed the relative persistence of human DNA in soil over the course of decomposition. Endpoint PCR was used to assess the presence or absence of human nuclear and mitochondrial DNA, while qPCR was used to evaluate the quantity of human DNA recovered from the soil beneath four cadavers at the University of Tennessee's Anthropology Research Facility (ARF). Human nuclear DNA from the soil was largely unrecoverable, while human mitochondrial DNA was detectable in the soil throughout all decomposition stages. Mitochondrial DNA copy abundances were not significantly different between decomposition stages and were not significantly correlated to soil edaphic parameters tested. There was, however, a significant positive correlation between mitochondrial DNA copy abundances and the human associated bacteria, Bacteroides, as estimated by 16S rRNA gene abundances. These results show that human mitochondrial DNA can persist in grave soil and be consistently detected throughout decomposition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  10. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    International Nuclear Information System (INIS)

    Baker, I. T.; Sellers, P. J.; Denning, A. S.; Medina, I.; Kraus, P.

    2017-01-01

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed to represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.

  11. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Science.gov (United States)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  12. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy

    OpenAIRE

    Le Febvrier, Arnaud; Jensen, Jens; Eklund, Per

    2017-01-01

    The effect of the wet-cleaning process using solvents and detergent on the surface chemistry of MgO(001) substrate for film deposition was investigated. Six different wet-cleaning processes using solvent and detergent were compared. The effect on film growth was studied by the example system ScN. The surface chemistry of the cleaned surface was studied by x-ray photoelectron spectroscopy and the film/substrate interface after film growth was investigated by time-of-flight secondary ion mass s...

  13. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured ... and the influence of solar elevation angle and cloud cover are also investigated. .... ters are important factors in climate modelling and.

  14. FIELD SIMULATION OF WET AND DRY YEARS IN THE CHIHUAHUAN DESERT: SOIL MOISTURE, N MINERALIZATION AND ION-EXCHANGE RESIN BAGS

    Science.gov (United States)

    Irrigation and rain-out shelters were used to simulate precipitation patterns of wet and dry years in the northern Chihuahuan Desert. Irrigation provided approximately double the long-term average monthly precipitation. Rain was excluded during the wet season, July-October, to si...

  15. Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation

    Science.gov (United States)

    Roberts, G.; Crane, S. B.

    Near surface soil moisture measurements were recorded at hourly intervals at two contrasting sites within the Cyff sub-catchment using a prototype capacitance probe system. In a mire area within a valley bottom, over the twelve month recording period, very little change in moisture content occurred. At the other site, a well drained area on a steeply sloping hillside, major variations occurred with significant soil moisture deficits being generated during a particularly dry summer. Soil moisture on the slope responded rapidly to rainfall inputs during wet periods, with little response during particularly dry periods. A number of rainfall events was analysed to determine whether changes in soil moisture could be used to characterise storm hydrographs for the Cyff and the Gwy, two sub-catchments being composed of differing percentages of mire area and steep slopes. It was found that percentage runoff for the Cyff was correlated with antecedent soil moisture on the slope, though the agreements for peak flow and lag time were poorer. For the Gwy, poor agreements were obtained for all three hydrograph characteristics. A simple formulation, based on storm rainfall and antecedent soil moisture deficits in the slope and mire areas, gave good agreement with storm streamflow volumes.

  16. Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation

    Directory of Open Access Journals (Sweden)

    G. Roberts

    1997-01-01

    Full Text Available Near surface soil moisture measurements were recorded at hourly intervals at two contrasting sites within the Cyff sub-catchment using a prototype capacitance probe system. In a mire area within a valley bottom, over the twelve month recording period, very little change in moisture content occurred. At the other site, a well drained area on a steeply sloping hillside, major variations occurred with significant soil moisture deficits being generated during a particularly dry summer. Soil moisture on the slope responded rapidly to rainfall inputs during wet periods, with little response during particularly dry periods. A number of rainfall events was analysed to determine whether changes in soil moisture could be used to characterise storm hydrographs for the Cyff and the Gwy, two sub-catchments being composed of differing percentages of mire area and steep slopes. It was found that percentage runoff for the Cyff was correlated with antecedent soil moisture on the slope, though the agreements for peak flow and lag time were poorer. For the Gwy, poor agreements were obtained for all three hydrograph characteristics. A simple formulation, based on storm rainfall and antecedent soil moisture deficits in the slope and mire areas, gave good agreement with storm streamflow volumes.

  17. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  18. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Time (s). A. Amplitude of the soil thermal wave at any depth (. ◦. C). A0. Amplitude of thermal ... system, soil moisture has a long memory (Pielke et al 1999; Wu et al .... measurements of the short wave radiation compo- nents as follows: α = Su.

  19. Homogenization of the soil surface following fire in semiarid grasslands

    Science.gov (United States)

    Carleton S. White

    2011-01-01

    Semiarid grasslands accumulate soil beneath plant "islands" that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting...

  20. Variability of soil moisture and its relationship with surface albedo

    Indian Academy of Sciences (India)

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed.

  1. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient ... Data measured for eight years on induced erosion experiments on a Ferralsol covered by artificial soil netting locally called sombrite at Campinas, Brazil, were used ...

  2. Acoustic Determination of Near-Surface Soil Properties

    Science.gov (United States)

    2008-12-01

    requiring geostatistical analysis, while nearby others are spatially independent. In studies involving many different soil properties and chemistry ...Am 116(6), p. 3354-3369. Kravchenko, N., C.W. Boast, D.G. Bullock, 1991. Fractal analysis of soil spatial variability. Agronomy Journal 91

  3. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils

    NARCIS (Netherlands)

    Alamry, Abdulmohsen S.; van der Meijde, Mark; Noomen, Marleen; Addink, Elisabeth A.|info:eu-repo/dai/nl/224281216; van Benthem, Rik; de Jong, Steven M.|info:eu-repo/dai/nl/120221306

    2017-01-01

    ERT techniques are especially promising in (semi-arid) areas with shallow and rocky soils where other methods fail to produce soil moisture maps and to obtain soil profile information. Electrical Resistivity Tomography (ERT) was performed in the Peyne catchment in southern France at four sites

  4. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  5. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  6. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  7. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    OpenAIRE

    Lubis, E

    2011-01-01

    The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operatio...

  8. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  9. Study on leakage rates of high temperature water from wet-type transport casks for spent fuel. Pt. 2. Leakage rates from a scratch on O-ring surface and narrow wires adhering to O-ring surface

    International Nuclear Information System (INIS)

    Asano, R.; Aritomi, M.; Sudi, A.; Kohketsu, Y.

    1997-01-01

    A programme for enhancement of fuel burnup has been promoted in Japan as part of the sophisticated programme for light water reactors to reduce the fuel cost and the amount of spent fuel. As part of this fuel programme, a new wet-type transport cask has been developed to transport the high burnup fuels efficiently. The purpose of this work is to clarify the margin of safety in the evaluation of the release rate of radioactive materials from the wet-type transport cask into the environment and to establish a practical evaluation method for leakage rates on leak behaviour of high temperature water from the casks. In this paper, leakage rates of water under high pressures and at high temperatures are investigated from two kinds of leak path model. One is a disc with a scratch on the surface which simulates a defect on the seal surface of the O-ring flange and the other is narrow stainless steel wires installed on the O-ring surface which simulates hair adhering to the O-ring surface. From the results, an evaluation method for the leakage rate of water under high pressure and at high temperature from a non-circular leak path and multiple leak paths is proposed. (author)

  10. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    Science.gov (United States)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture i