WorldWideScience

Sample records for surface soil temperature

  1. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field

    Science.gov (United States)

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.

    1998-01-01

    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  2. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  3. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  4. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...... the adverse impacts of urbanization on microclimate, soil processes and human health....

  5. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    Indian Academy of Sciences (India)

    Ya-Feng Zhang; Xin-Ping Wang; Yan-Xia PAN; Rui Hu; Hao Zhang

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of ‘cool islands’ in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  6. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    Science.gov (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  7. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  8. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    Science.gov (United States)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  9. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  10. Variations in FASST Predictions of Soil Surface Temperatures

    Science.gov (United States)

    2006-04-01

    technical reviews of the manuscript. Rachel Jordan’s comments on Appendix B improved its usefulness to modelers of soil state. Margo Burgess of the...Crushed stone 1.82 0–8 0.51 A-13 Crushed shale and limestone screenings 1.76 0–8 A-16 Red-brown fine silty sand with fine to medium gravel

  11. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing

    Science.gov (United States)

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried

    1997-01-01

    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  12. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  13. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2014-09-01

    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  14. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  15. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  16. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  17. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

    Science.gov (United States)

    De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.

    2016-12-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  18. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    Science.gov (United States)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  19. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2011-09-01

    Full Text Available Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one having shallow groundwater – to the same meteorological forcing, and inspected their different responses regarding surface soil moisture, temperature and energy balance. We found that the two profiles differed in the absorbed and emitted amounts of energy, in portioning out the available energy and in heat fluency within the soil. We conclude that shallow groundwater areas reflect less shortwave radiation due to their lower albedo and therefore they get higher magnitude of net radiation. When potential evaporation demand is high enough, a large portion of the energy received by these areas is spent on evaporation. This makes the latent heat flux predominant, and leaves less energy to heat the soil. Consequently, this induces lower magnitudes of both sensible and ground heat fluxes. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. In view of remote sensors' capability of detecting shallow groundwater effect, we conclude that this effect can be sufficiently clear to be sensed if at least one of two conditions is met: high potential evaporation and big contrast in air temperature between day and night. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  20. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  1. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  2. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan C.; van de Giesen, Nick

    2016-11-01

    Surface heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology, and climate change studies, but in situ observations are costly and difficult. It has been demonstrated that surface heat fluxes can be estimated from assimilation of land surface temperature (LST). One approach is to estimate a neutral bulk heat transfer coefficient (CHN) to scale the sum of turbulent heat fluxes, and an evaporative fraction (EF) that represents the partitioning between fluxes. Here the newly developed particle batch smoother (PBS) is implemented. The PBS makes no assumptions about the prior distributions and is therefore well-suited for non-Gaussian processes. It is also particularly advantageous for parameter estimation by tracking the entire prior distribution of parameters using Monte Carlo sampling. To improve the flux estimation on wet or densely vegetated surfaces, a simple soil moisture scheme is introduced to further constrain EF, and soil moisture observations are assimilated simultaneously. This methodology is implemented with the FIFE 1987 and 1988 data sets. Validation against observed fluxes indicates that assimilating LST using the PBS significantly improves the flux estimates at both daily and half-hourly timescales. When soil moisture is assimilated, the estimated EFs become more accurate, particularly when the surface heat flux partitioning is energy-limited. The feasibility of extending the methodology to use remote sensing observations is tested by limiting the number of LST observations. Results show that flux estimates are greatly improved after assimilating soil moisture, particularly when LST observations are sparse.

  3. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Cheng, Jie; Leng, Pei

    2017-04-01

    The collection 6 (C6) MODIS land surface temperature (LST) product is publicly available for the user community. Compared to the collection 5 (C5) MODIS LST product, the C6 MODIS LST product has been refined over bare soil pixels. Assessing the accuracy of the C6 MODIS LST product will help to facilitate the use of the LST product in various applications. In this study, we present a cross-satellite comparison to evaluate the accuracy of the C6 MODIS LST product (MOD11_L2) over bare soil surfaces under various atmospheric and surface conditions using the ASTER LST product as a reference. For comparison, the C5 MODIS LST product was also used in the analysis. The absolute biases (0.2-1.5 K) of the differences between the C6 MODIS LST and ASTER LST over bare soil surfaces are approximately two times less than those (0.6-3.8 K) of the differences between the C5 MODIS LST and ASTER LST. Furthermore, the RMSEs (0.7-2.3 K) over bare soil surfaces for the C6 MODIS LST are significantly smaller than those (0.9-4.2 K) for the C5 MODIS LST. These results indicate that the accuracy of the C6 MODIS LST product is much better than that of the C5 MODIS LST product. We recommend that the user community employs the C6 MODIS LST product in their applications.

  4. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields.

  5. Temperature and biological soil effects on the survival of selected foodborne pathogens on a mortar surface.

    Science.gov (United States)

    Allan, J T; Yan, Z; Genzlinger, L L; Kornacki, J L

    2004-12-01

    The survival of three foodborne pathogens (Listeria monocytogenes, Yersinia enterocolitica, and Salmonella) attached to mortar surfaces, with or without biological soil (porcine serum) and incubated at either 4 or 10 degrees C in the presence of condensate, was evaluated. Soiled and unsoiled coupons were inoculated by immersion into a five-strain cocktail (approximately 10(7) CFU/ml) of each organism type and evaluated. Coupons were incubated at 25 degrees C for 2 h to allow attachment of cells, rinsed to remove unattached cells, and incubated at either 4 or 10 degrees C at high humidity to create condensate on the surface. Sonication was used to remove the attached cells, and bacteria (CFU per coupon) was determined at 9 to 10 sampling periods over 120 h. Yersinia populations decreased more than 5 log units in the presence of serum in a 24-h period. Listeria and Salmonella had better survival on mortar in the presence of serum than Yersinia throughout the 120-h incubation period. Populations of L. monocytogenes declined more rapidly at 10 than at 4 degree C after 24 h. In general, differences in temperature did not affect the survival of Salmonella or Yersinia. Serum had a protective effect on the survival of all three organisms, sustaining populations at significantly (P 0.05) among the mean number (CFU per coupon) of L. monocytogenes, Y. enterocolitica, or Salmonella on initial attachment onto the mortar surfaces (unsoiled). The results indicate relatively rapid destruction of selected pathogenic bacteria on unsoiled mortar surfaces compared with those that contained biological soil, thus highlighting the need for effective cleaning to reduce harborage of these microbes in the food factory environment.

  6. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    Science.gov (United States)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  7. Comparison of evaporative fluxes from porous surfaces resolved by remotely sensed and in-situ temperature and soil moisture data

    Science.gov (United States)

    Wallen, B.; Trautz, A.; Smits, K. M.

    2014-12-01

    The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the

  8. An Indirect Data Assimilation Scheme for Deep Soil Temperature in the Pleim-Xiu Land Surface Model

    Science.gov (United States)

    The Pleim-Xiu land surface model (PX LSM) has been improved by the addition of a 2nd indirect data assimilation scheme. The first, which was described previously, is a technique where soil moisture in nudged according to the biases in 2-m air temperature and relative humidity be...

  9. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  10. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    Science.gov (United States)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  11. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    Science.gov (United States)

    Messmer, Martina; José Gómez-Navarro, Juan; Raible, Christoph C.

    2017-07-01

    Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF) model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the intensity of the Vb

  12. Fire Events and Soil Thermometry: The Applications of Clay Chemistry for Tracing Temperature Changes in Soils and Sediments Below Surface Fires

    Science.gov (United States)

    Watson, E.; Werts, S. P.; Gelabert, M.

    2016-12-01

    Fires in the natural environment affect the physical, chemical, and biological properties of soils. However, fires may also alter the mineralogy of the geologic material in which it comes in contact. Previous experiments on high temperature alteration of clays indicate that dehydration, oxidation, and hydroxylation in clay minerals can occur progressively in that order at increasing temperatures up to 500°C. It is also well known that wildfire events can heat soils to these temperature ranges several centimeters deep. In this experiment, alterations in clay chemistry were used as a tool to investigate fire intensity along with the changing morphology of clay minerals. For data collection, small camp fires were set in York County, SC and temperatures were recorded using a datalogger system to 5 cm deep during the fire event. Control samples were taken adjacent to the fires to compare the changing morphology of the minerals when heated. Powder x-ray diffraction and scanning electron microscopy were used to identify the clay mineralogy. The clay from soil samples was identified as hydrous kaolinite, anhydrous kaolinite, and varying types of goethite. To observe the dehydration, oxidation, and hydroxylation of clay minerals, scanning electron microscopy with emission dispersive spectroscopy was used to identify the O/cation ratios present, which would indicate changes in the oxidation state of the clay minerals. By mapping the changes in O/cation ratios with temperature in silicates, we are able to trace the temperature of the sediments during fire events. This research suggests it may be possible to utilize these geochemical trends to aid in soil and sediment temperature investigations in both archeological and modern soil and surface process investigations.

  13. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  14. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  15. A coupled force-restore model of surface temperature and soil moisture using the maximum entropy production model of heat fluxes

    Science.gov (United States)

    Huang, S.-Y.; Wang, J.

    2016-07-01

    A coupled force-restore model of surface soil temperature and moisture (FRMEP) is formulated by incorporating the maximum entropy production model of surface heat fluxes and including the gravitational drainage term. The FRMEP model driven by surface net radiation and precipitation are independent of near-surface atmospheric variables with reduced sensitivity to the uncertainties of model input and parameters compared to the classical force-restore models (FRM). The FRMEP model was evaluated using observations from two field experiments with contrasting soil moisture conditions. The modeling errors of the FRMEP predicted surface temperature and soil moisture are lower than those of the classical FRMs forced by observed or bulk formula based surface heat fluxes (bias 1 ~ 2°C versus ~4°C, 0.02 m3 m-3 versus 0.05 m3 m-3). The diurnal variations of surface temperature, soil moisture, and surface heat fluxes are well captured by the FRMEP model measured by the high correlations between the model predictions and observations (r ≥ 0.84). Our analysis suggests that the drainage term cannot be neglected under wet soil condition. A 1 year simulation indicates that the FRMEP model captures the seasonal variation of surface temperature and soil moisture with bias less than 2°C and 0.01 m3 m-3 and correlation coefficients of 0.93 and 0.9 with observations, respectively.

  16. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  17. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  18. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  19. Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Miriam Pablos

    2016-07-01

    Full Text Available Soil moisture (SM is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST and evapotranspiration (ET. Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS and NASA’s Soil Moisture Active Passive (SMAP. LST is remotely sensed using thermal infrared (TIR sensors on-board satellites, such as NASA’s Terra/Aqua MODIS or ESA & EUMETSAT’s MSG SEVIRI. This study provides an assessment of SM and LST dynamics at daily and seasonal scales, using 4 years (2011–2014 of in situ and satellite observations over the central part of the river Duero basin in Spain. Specifically, the agreement of instantaneous SM with a variety of LST-derived parameters is analyzed to better understand the fundamental link of the SM–LST relationship through ET and thermal inertia. Ground-based SM and LST measurements from the REMEDHUS network are compared to SMOS SM and MODIS LST spaceborne observations. ET is obtained from the HidroMORE regional hydrological model. At the daily scale, a strong anticorrelation is observed between in situ SM and maximum LST (R ≈ − 0.6 to −0.8, and between SMOS SM and MODIS LST Terra/Aqua day (R ≈ − 0.7. At the seasonal scale, results show a stronger anticorrelation in autumn, spring and summer (in situ R ≈ − 0.5 to −0.7; satellite R ≈ − 0.4 to −0.7 indicating SM–LST coupling, than in winter (in situ R ≈ +0.3; satellite R ≈ − 0.3 indicating SM–LST decoupling. These different behaviors evidence changes from water-limited to energy-limited moisture flux across seasons, which are confirmed by the observed ET evolution. In water-limited periods, SM is extracted from the soil through ET until critical SM is reached. A method to estimate the soil critical SM is proposed. For REMEDHUS, the critical SM is estimated to be ∼0

  20. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-10-01

    Full Text Available Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth’s surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1–2 GHz. Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E, as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM, and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm and descending (01:30 am paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for

  1. Decadal co-variability of the summer surface air temperature and soil moisture in China under global warming

    Institute of Scientific and Technical Information of China (English)

    SU MingFeng; WANG HuiJun

    2007-01-01

    The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer, significant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China, North China, and Northeast China. An important finding is that in the west region of Northwest China and Southeast China, pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years, the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities, and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wetness as anthropogenic global warming progresses.

  2. A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2010-06-01

    Soil hydraulic properties (SHPs) play an important role in land-surface models, but their spatial distribution is poorly known, and it is not feasible to make field measurements of SHPs everywhere they are needed. In addition, the scale SHPs are measured on (10 cm) is substantially smaller than the scale at which land-surface models are run (>1 km). As a result, land-surface models need landscape hydraulic properties (LHPs), not SHPs. We present a method for identifying LHPs from MODIS surface temperatures. We calibrated LHPs in the Noah land-surface model using MODIS surface temperatures in 2005 at 14 sites from the Atmospheric Radiation Measurement Program (ARM) using locally observed forcing data from 2005. We then used observed flux data during this same time period for model verification. Next, we determined LHPs from MODIS surface temperature at five sites using High Resolution Land Data Assimilation forcing data from 2002. We then used these LHPS to run Noah with 2005 ARM forcing data and compared the output to the same observed 2005 fluxes. Fitting LHPs to MODIS data decreases the error in modeled latent heat flux from 98 W/m2 to 67 W/m2. Fitting LHPs to these same latent heat flux measurements decreases the error to 50 W/m2. Therefore, two thirds of the parameter estimation improvement from calibration to in situ flux data can be achieved using remotely sensed surface temperature. These results are insensitive to errors in other parameters. For example, changing albedo by 0.1 changes the saturated conductivity (Ks) by 10% and the van Genuchten "m" parameter by 1%. However, changing minimum canopy resistance by 40 s/m produced a significant but mutually compensating change in both Ks and "m."

  3. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  4. Temperature exerts no influence on organic matter δ13C of surface soil along the 400 mm isopleth of mean annual precipitation in China

    Science.gov (United States)

    Jia, Yufu; Wang, Guoan; Tan, Qiqi; Chen, Zixun

    2016-09-01

    Soil organic carbon is the largest pool of carbon in the terrestrial ecosystem, and its isotopic composition is affected by a number of factors. However, the influence of environmental factors, especially temperature, on soil organic carbon isotope values (δ13CSOM) is poorly constrained. This impedes the application of the variability of organic carbon isotopes to reconstructions of paleoclimate, paleoecology, and global carbon cycling. Given the considerable temperature gradient along the 400 mm isohyet (isopleth of mean annual precipitation - MAP) in China, this isohyet provides ideal experimental sites for studying the influence of temperature on soil organic carbon isotopes. In this study, the effect of temperature on surface soil δ13C was assessed by a comprehensive investigation of 27 sites across a temperature gradient along the isohyet. Results demonstrate that temperature does not play a role in soil δ13C. This suggests that organic carbon isotopes in sediments cannot be used for paleotemperature reconstruction and that the effect of temperature on organic carbon isotopes can be neglected in the reconstruction of paleoclimate and paleovegetation. Multiple regressions with MAT (mean annual temperature), MAP, altitude, latitude, and longitude as independent variables and δ13CSOM as the dependent variable show that these five environmental factors together account for only 9 % of soil δ13C variance. However, one-way ANOVA analyses suggest that soil type and vegetation type are significant factors influencing soil δ13C. Multiple regressions, in which the five aforementioned environmental factors were taken as quantitative variables, and vegetation type, soil type based on the Chinese Soil Taxonomy, and World Reference Base (WRB) soil type were separately used as dummy variables, show that 36.2, 37.4, and 29.7 %, respectively, of the variability in soil δ13C are explained. Compared to the multiple regressions in which only quantitative environmental

  5. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  6. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    Science.gov (United States)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  7. The potential information in the temperature difference be-tween shadow and sunlit of surfaces and a new way of retrieving the soil moisture

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermal inertia and plant water stress index are oftenadopted to estimate soil moisture available for crops or plants. However, it is not very easy to obtain two temporal temperatures for thermal inertia model and air temperature for the plant water stress mode. Shadows of ground objects are often referred to noise on visible and near infrared remote sensing. But the difference of temperature between shadows and sunlit contains rich information concerning with heat-water status for soil. This paper presented a new way to excavate just by temperature difference usually between shadow and sunlit surface. Experiments validated the ideal. We can adopt thermal camera to measure the differences in the field measurements. However, we must use inversion based on multianglar thermal infrared remote sensing data in airborne and spaceborne. An inverting model was also presented by using Monte-Carlo and the least square method. Results show that this way is feasible.

  8. Hysteresis of soil temperature under different soil moisture and ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... temperature under three soil moisture and two fertilizer levels in solar greenhouse .... temperature is governed by the one-dimensional heat conduction equation in the soil, and the soil temperature varied sinusoidally. We.

  9. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration

    Science.gov (United States)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.

    2017-04-01

    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land

  10. Dryness Indices Based on Remotely Sensed Vegetation and Land Surface Temperature for Evaluating the Soil Moisture Status in Cropland-Forest-Dominant Watersheds

    Directory of Open Access Journals (Sweden)

    Heewon Moon and Minha Choi

    2015-01-01

    Full Text Available The Temperature Vegetation Dryness Index (TVDI was derived from the relationship between remotely sensed vegetation indices and land surface temperature (TS in this study for assessing the soil moisture status at regional scale in South Korea. The Leaf Area Index (LAI is newly applied in this method to overcome the increasing uncertainty of using the Normalized Difference Vegetation Index (NDVI at high vegetation conditions. Both dryness indices were found to be well correlated with in situ soil moisture and 8-day average precipitation at most of the in situ measurement sites. The dryness indices accuracy was found to be influenced by rainfall events. An average correlation coefficient was improved from -0.253 to -0.329 when LAI was used instead of NDVI in calculating the TVDI. In the spatial analysis between the dryness indices and Advanced SCATterometer (ASCAT surface soil moisture (SSM using geographically weighted regression (GWR, the results showed the average negative correlation (R between the variables, while LAI-induced TVDI was more strongly correlated with SSM on average with the R value improved from -0.59 to -0.62. Both dryness indices and ASCAT SSM mappings generally showed coherent patterns under low vegetation and dry conditions. Based on these results, the LAI-induced TVDI accuracy as an index for soil moisture status was validated and found appropriate for use as an alternative and complementary method for NDVI-induced TVDI.

  11. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  12. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.

    2015-01-01

    The soil thermal properties (soil thermal conductivity, soil heat capacity and soil diffusivity) are the main parameters in the applications that need quantitative information on soil heat transfer. Conventionally, these properties are either measured in situ or estimated by semi-empirical models us

  13. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  14. Prediction of Turbulent Heat Fluxes by Assimilation of Remotely Sensed Land Surface Temperature and Soil Moisture Data into an Ensemble-Based Data Assimilation Framework

    Science.gov (United States)

    Xu, T.; Bateni, S. M.; Liu, S.

    2015-12-01

    Accurate estimation of turbulent heat fluxes is important for water resources planning and management, irrigation scheduling, and weather forecast. Land surface models (LSMs) can be used to simulate turbulent heat fluxes over large-scale domains. However, the application of LSMs is hindered due to the high uncertainty in model parameters and state variables. In this study, a dual-pass ensemble-based data assimilation (DA) approach is developed to estimate turbulent heat fluxes. Initially, the common land model (CoLM) is used as the LSM (open-loop), and thereafter the ensemble Kalman filter is employed to optimize the CoLM parameters and variables. The first pass of the DA scheme optimizes vegetation parameters of CoLM (which are related to the leaf stomatal conductance) on a weekly-basis by assimilating the MODIS land surface temperature (LST) data. The second pass optimizes the soil moisture state of CoLM on a daily-basis by assimilating soil moisture observations from Cosmic-ray instrument. The ultimate goal is to improve turbulent heat fluxes estimates from CoLM by optimizing its vegetation parameters and soil moisture state via assimilation of LST and soil moisture data into the proposed DA system. The DA approach is tested over a wet and densely vegetated site, called Daman in northwest of China. Results indicate that the CoLM (open-loop) model typically underestimates latent heat flux and overestimates sensible heat flux. By assimilation of LST in the first pass, the turbulent heat fluxes are improved compared to those of the open-loop. These fluxes become even more accurate by assimilation of soil moisture in the second pass of the DA approach. These findings illustrate that the introduced DA approach can successfully extract information in LST and soil moisture data to optimize the CoLM parameters and states and improve the turbulent heat fluxes estimates.

  15. Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference

    Institute of Scientific and Technical Information of China (English)

    WANG De-Cai; ZHANG Gan-Lin; PAN Xian-Zhang; ZHAO Yu-Guo; ZHAO Ming-Song; WANG Gai-Fen

    2012-01-01

    The use of landscape covariates to estimate soil properties is not suitable for the areas of low relief due to the high variability of soil properties in similar topographic and vegetation conditions.A new method was implemented to map regional soil texture (in terms of sand,silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input.To examine this hypothesis,the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period,i.e.,after a heavy rainfall between autumn harvest and autumn sowing,were classified using fuzzy-c-means (FCM) clustering.Six classes were generated,and for each class,the sand (> 0.05 mm),silt (0.002-0.05 mm) and clay (< 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class.A weighted average model was then used to digitally map soil texture.The results showed that the predicted map quite accurately reflected the regional soil variation.A validation dataset produced estimates of error for the predicted maps of sand,silt and clay contents at root mean of squared error values of 8.4%,7.8% and 2.3%,respectively,which is satisfactory in a practical context.This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.

  16. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-01-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes. PMID:27765953

  17. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-10-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes.

  18. Water pressure head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management.

    Science.gov (United States)

    Alletto, Lionel; Coquet, Yves; Bergheaud, Valérie; Benoit, Pierre

    2012-08-01

    Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied (14)C in soil samples and from 0.0% to 2.4% of applied (14)C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied (14)C remained extractable during the experiment and, after 21d, less than 15% of applied (14)C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied (14)C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole.

  19. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  20. A Study of Spatial Soil Moisture Estimation Using a Multiple Linear Regression Model and MODIS Land Surface Temperature Data Corrected by Conditional Merging

    Directory of Open Access Journals (Sweden)

    Chunggil Jung

    2017-08-01

    Full Text Available This study attempts to estimate spatial soil moisture in South Korea (99,000 km2 from January 2013 to December 2015 using a multiple linear regression (MLR model and the Terra moderate-resolution imaging spectroradiometer (MODIS land surface temperature (LST and normalized distribution vegetation index (NDVI data. The MODIS NDVI was used to reflect vegetation variations. Observed precipitation was measured using the automatic weather stations (AWSs of the Korea Meteorological Administration (KMA, and soil moisture data were recorded at 58 stations operated by various institutions. Prior to MLR analysis, satellite LST data were corrected by applying the conditional merging (CM technique and observed LST data from 71 KMA stations. The coefficient of determination (R2 of the original LST and observed LST was 0.71, and the R2 of corrected LST and observed LST was 0.95 for 3 selected LST stations. The R2 values of all corrected LSTs were greater than 0.83 for total 71 LST stations. The regression coefficients of the MLR model were estimated seasonally considering the five-day antecedent precipitation. The p-values of all the regression coefficients were less than 0.05, and the R2 values were between 0.28 and 0.67. The reason for R2 values less than 0.5 is that the soil classification at each observation site was not completely accurate. Additionally, the observations at most of the soil moisture monitoring stations used in this study started in December 2014, and the soil moisture measurements did not stabilize. Notably, R2 and root mean square error (RMSE in winter were poor, as reflected by the many missing values, and uncertainty existed in observations due to freezing and mechanical errors in the soil. Thus, the prediction accuracy is low in winter due to the difficulty of establishing an appropriate regression model. Specifically, the estimated map of the soil moisture index (SMI can be used to better understand the severity of droughts with the

  1. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    Science.gov (United States)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  2. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-07-01

    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  3. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  4. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  5. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  6. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  7. The microbiology of arable soil surfaces

    OpenAIRE

    Jeffery, Simon

    2007-01-01

    Whilst much is known about the physics and erosion of soil surfaces on a millimetre scale, little is known about the associated microbiology, particularly in temperate arable systems. The vast majority of research regarding microbial interactions at soil surfaces has concerned microbiotic crusts. However, such surface crusts take many years to form and then only in relatively undisturbed soil systems. Arable soil surfaces are subject to relatively extreme environmental conditio...

  8. The potential information in the temperature difference be-tween shadow and sunlit of surfaces and a new way of retrieving the soil moisture

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua

    2001-01-01

    [1]Zhang Renhua, A new model for estimating crop water deficiency based on infrared information, Science in China, Ser. B, 1987, 30(4): 413[2]Jackson, R. D., Canopy temperature as a crop water stress indictor, Water Resources Research, 1981, 17 (4): 1133.[3]Price, J. C., Thermal inertia mapping: a new view of earth, Journal of Geophysical Research, 1982, 87: 2582.[4]Kahle A. B., A simple thermal model of earth surface by remote sensing, Journal of Geophysical Research, 1977, 82: 1673.[5]Zhang Renhua, A remote sensing thermal inertia model for soil moisture and it application, Chinese Science Bulletin, 1991, 35: 924[6]Zhang Renhua, Tia Guliang, Determination of emissivity of objects at normal temperature, Chinese Science Bulletin, 1981, 25: 447.[7]Zhang Renhua, Sun Xiaomin, Li Zhaoliang et al., Revealing of major factors in the directional thermal radiation of ground object: a new way for improving the precision of directional radiant temperature measuring and data analysis, Science in China, Ser. E, 2000, 43 (supplement): 34.[8]Su Hongbo, Zhang Renhua, Sun Xiaomin, et al., The thermal model for discrete vegetation and its solution on pixel scale using computer graphics, Science in China, Ser. E, 2000, 43 (supplement): 62.[9]Zhang Renhua, Sun Xiaomin, Su Hongbo et al., A remote sensing model of CO2 flux for wheat and studying of regional distribution, Science in China, Series D, 1999, 42: 325[10]Li Xiaowen, Strahler, A., Geometric-optical bidirectional reflectance modeling of discrete crown vegetation canopy effect of crown shape and mutual shadowing, IEEE, Transactions on Geoscience and Remote Sensing, 1992, 30: 276.

  9. Soil temperature extrema recovery rates after precipitation cooling

    Science.gov (United States)

    Welker, J. E.

    1984-01-01

    From a one dimensional view of temperature alone variations at the Earth's surface manifest themselves in two cyclic patterns of diurnal and annual periods, due principally to the effects of diurnal and seasonal changes in solar heating as well as gains and losses of available moisture. Beside these two well known cyclic patterns, a third cycle has been identified which occurs in values of diurnal maxima and minima soil temperature extrema at 10 cm depth usually over a mesoscale period of roughly 3 to 14 days. This mesoscale period cycle starts with precipitation cooling of soil and is followed by a power curve temperature recovery. The temperature recovery clearly depends on solar heating of the soil with an increased soil moisture content from precipitation combined with evaporation cooling at soil temperatures lowered by precipitation cooling, but is quite regular and universal for vastly different geographical locations, and soil types and structures. The regularity of the power curve recovery allows a predictive model approach over the recovery period. Multivariable linear regression models alloy predictions of both the power of the temperature recovery curve as well as the total temperature recovery amplitude of the mesoscale temperature recovery, from data available one day after the temperature recovery begins.

  10. Predicting Soil Moisture in the Field from Amplitude Temperature

    Science.gov (United States)

    Al-Kayssi, A. W.

    2009-04-01

    Measurements of amplitude temperature and soil moisture content of sandy loam and silty clay loam soils were conducted in Al-Mada'in Research Station south of Baghdad during the period from the 1st of February to the 30th of April, 2004. Exponential regression relations were developed between amplitude temperature and volumetric moisture content for soil depths of 0.5, 3.0, 7.5 and 15cm below surface, which was highly significant (R2>0.96). A good linear regression between measured and predicted soil moisture contents was deduced for each depth (r>0.97). Soil moisture content was successfully predicted from the regression line when amplitude temperature was known.

  11. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  12. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  13. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  14. Examining moisture and temperature sensitivity of soil organic matter decomposition in a temperate coniferous forest soil

    Directory of Open Access Journals (Sweden)

    C. E. Gabriel

    2011-02-01

    Full Text Available Temperature and moisture are primary environmental drivers of soil organic matter (SOM decomposition, and the development of a better understanding fo their roles in this process through depth in soils is needed. The objective of this research is to independently assess the roles of temperature and moisture in driving heterotrophic soil respiration for shallow and deep soils in a temperate red spruce forest. Minimally disturbed soil cores from shallow (0–25 cm and deep (25–50 cm layers were extracted from a 20 yr old red spruce stand and were then transferred to a climate chamber where they were incubated for 3 months under constant and diurnal temperature regimes. Soils were subjected to different watering treatments representing a full range of water contents. Temperature, moisture, and CO2 surface flux were assessed daily for all soils and continuously on a subset of the microcosms. The results from this study indicate that shallow soils dominate the contribution to surface flux (90% and respond more predictably to moisture than deep soils. An optimum moisture range of 0.15 to 0.60 water-filled pore space was observed for microbial SOM decomposition in shallow cores across which a relatively invariant temperature sensitivity was observed. For soil moisture conditions experienced by most field sites in this region, flux-temperature relationships alone can be used to reasonably estimate heterotrophic respiration, as in this range moisture does not alter flux, with the exception of rewetting events along the lower part of this optimal range. Outside this range, however, soil moisture determines SOM decomposition rates.

  15. Microwave brightness temperature imaging and dielectric properties of lunar soil

    Indian Academy of Sciences (India)

    Wu Ji; Li Dihui; Zhang Xiaohui; Jiang Jingshan; A T Altyntsev; B I Lubyshev

    2005-12-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become attractive due to the existence of He3 and ilmenite in the lunar soil and their possible utilization as nuclear fuel for power generation.Although the composition of the lunar surface soil can be determined by optical and /X-ray spectrometers, etc., the evaluation of the total reserves of He3 and ilmenite within the regolith and in the lunar interior are still not available.In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also present the results of the microwave dielectric properties of terrestrial analogues of lunar soil and,discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  16. SMAP Level 4 Surface and Root Zone Soil Moisture

    Science.gov (United States)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  17. Quantifying soil evaporation and transpiration at the scale of a remote sensing pixel by extrapolating mini-lysimeter results with the aid of remote sensed surface temperatures

    Science.gov (United States)

    Voortman, B.; Bartholomeus, R.; Witte, J. M.

    2012-12-01

    Lysimeters are often used to measure evapotranspiration (Et) by changes in mass of a volume of soil. Precision lysimeters generate data of Et at a high resolution in the order of 0.02 to 0.05 mm. This resolution is often reported as the accuracy of the lysimeter, which is in fact the accuracy of the weighing device. Improper installation or design of lysimeters is often not accounted for when assessing their accuracy. In general, measurement errors due to improper environmental conditions will decrease with increasing surface area and depth of the lysimeter. This is primarily because a larger part of the lysimeter is unaffected by its boundaries and because heterogeneities in soil hydraulic properties and micro-climate are more averaged out. However, the cost of large systems make them unattractive and scientists often choose for more economical solutions, optimizing between lysimeter dimensions and costs. One of the difficulties when designing a lysimeter is controlling the boundary condition at the base of the lysimeter. In case of a freely draining lysimeter (atmospheric pressure at the bottom), the lower portion of the lysimeter must saturate to generate a hydraulic gradient in downward direction, after which the lysimeter starts to drain. In groundwater independent sites this will lead to a higher soil moisture content in the lysimeter in comparison with the surrounding soil. One could overcome this problem by using suction plates and vacuum pumps to set a suction level at the base of the lysimeter equal to the surrounding soil., In dry soils, however, suction plates may dry out beyond the air entry value of the ceramic material, which neutralizes the suction pressure. Furthermore, a sophisticated drainage system will increase the maintenance and construction cost of the lysimeter. Moisture conditions in lysimeters are difficult to control and whenever this affects the available water for rooting plants this will lead to erroneous measurements of Et. We

  18. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  19. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    Science.gov (United States)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  20. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  1. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Directory of Open Access Journals (Sweden)

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  2. Significance of Transients in Soil Temperature Series

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The primary objective of this study was to investigate the impact of observation scale on the estimation of soil thermal properties. Transients are usually filtered out and ignored when classical Fourier approaches are used to deconstruct and model temperature time series. It was hypothesized that examination of such transients may be more important in identifying and quantifying short-term perturbations in internal soil heat transfer induced by agronomic disturbances.Data-logged temperatures were collected at 10-minute intervals from thermistor probes installed at 10 and 25 cm depths in isolated areas of two grassed plots. One plot (6T) had been treated twice with 6 Mg ha-1 composted turkey litter as received. The other plot (NPK) was fertilized at the same time with NPK fertilizer. Various methods were used to analyze the series to obtain apparent soil thermal diffusivity (D-value) at various time scales. Results supported the hypothesis that short-term differences in internal soil heat transfer between the 6T and NPK plots were more manifest and effectively captured by estimated D-values calculated from the monthly and daily partial series. The 6T plot had higher soil organic matter content than the NPK plot and had lower apparent soil thermal diffusivity. Diurnal soil temperature amplitudes,required to calculate the mean D-values from partial series, were more effectively obtained using a temperature change rate method. The more commonly used Fourier analysis tended to be effective for this purpose when the partial series reasonably presented well-defined diurnal patterns of increasing and decreasing temperatures.

  3. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-04-01

    Full Text Available Currently, no extensive global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This note describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  4. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  5. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Science.gov (United States)

    Sugathan, Neena; Biju, V.; Renuka, G.

    2014-06-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59'E longitude and 8°29'N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  6. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka

    2014-07-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  7. Relation Analysis of Remotely Sensed Temperature, Soil Surface and Air Temperature over Alpine Meadow%高山草甸遥感温度和地、气温度的关系分析

    Institute of Scientific and Technical Information of China (English)

    闵文彬; 李跃清; 李宾

    2013-01-01

    An infrared thermometer that can measure canopy temperature (Tc) is a chief instrument to examine the accuracy of satellite remotely sensed land surface temperature. Data analysis included Tc, soil surface temperature ( Ts) and air temperature (Ta) over the alpine meadow in the eastern of Qinghai-Tibetan Plateau in 2008. The purpose of this work is to understand the time-varying characteristics and the relations of the three temperatures and to provide a basis for getting the spatial distributions of Ts and Ta using satellite data. The analysis results show that Tc has significant positive linear correlations with Ts and nighttime Ta respectively, regardless of annual, monthly average, or instantaneous value, while has unstable correlations with daytime TE. Tt for annual, monthly average and instantaneous value can be retrieved from Tc with maximum standard error of 0. 507 6 ℃, 359 3℃ and of 3. 021 2 ℃,and of 0. 262 5℃,1. 662 3℃ and 2. 328 1 ℃ for nighttime Ta. The meadow state and solar radiation need to be considered to estimate daytime Ta.%红外测温仪是检验卫星反演地表温度准确性的主要仪器,其测得的地表温度被看作卫星反演地表温度最准确的参考值.通过对2008年青藏高原东侧高山草甸的遥感地表温度Tc、0 cm地温Ts和空气温度Ta的分析,认识三种温度的时间变化特征,探寻Tc与Ts、Ta间的相互关系,为利用遥感技术,准确获取地、气温度的空间分布提供依据.分析结果表明:相同时刻的Tc同Ts和夜间Ta不论年、月平均,还是瞬时值之间都具有显著的线性正相关关系,而同白天Ta的相关性不稳定,受草甸状态和太阳辐射的影响;基于Tc的相同时刻年平均、月平均和瞬时Ts的最大估算标准误差分别是0.507 6℃,2.359 3℃和3.021 2℃,夜间Ta的估算标准误差分别是0.262 5℃,1.662 3℃和2.328 1℃.

  8. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  9. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture

    Science.gov (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.

    2015-12-01

    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  10. HONO fluxes from soil surfaces: an overview

    Science.gov (United States)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  11. [Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season].

    Science.gov (United States)

    Zhang, Fang; Guo, Sheng-Li; Zou, Jun-Liang; Li, Ze; Zhang, Yan-Jun

    2011-11-01

    On the loess plateau, summer fallow season is a hot rainy time with intensive soil microbe activities. To evaluate the response of soil respiration to soil moisture, temperature, and N fertilization during this period is helpful for a deep understanding about the temporal and spatial variability of soil respiration and its impact factors, then a field experiment was conducted in the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. The experiment included five N application rates: unfertilized 0 (N0), 45 (N45), 90 (N90), 135(N135), and 180 (N180) kg x hm(-2). The results showed that at the fallow stage, soil respiration rate significantly enhanced from 1.24 to 1.91 micromol x (m2 x s)(-1) and the average of soil respiration during this period [6.20 g x (m2 x d)(-1)] was close to the growing season [6.95 g x (m2 x d)(-1)]. The bivariate model of soil respiration with soil water and soil temperature was better than the single-variable model, but not so well as the three-factor model when explaining the actual changes of soil respiration. Nitrogen fertilization alone accounted for 8% of the variation soil respiration. Unlike the single-variable model, the results could provide crucial information for further research of multiple factors on soil respiration and its simulation.

  12. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  13. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  14. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  15. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from...... and parallel; as well as the iterative algorithm included in the TSM to disaggregate the soil-surface composite temperature into its separate components. Continuous field measurements of composite soil-vegetation surface temperature (T) and bare soil temperature (T) from thermal infrared sensors were used...... T and the simplified version that uses separate inputs of T and T' were minor. This demonstrates the robustness of the iterative procedure to disaggregate a composite soil-vegetation temperature into separate soil and vegetation components in semiarid environments with good prospects for image...

  16. Effects of different patterns surface mulching on ground temperature, humidity and soil moisture%不同地表覆盖对地表温度、湿度和土壤水分的影响

    Institute of Scientific and Technical Information of China (English)

    彭超; 陈月华; 吴际友

    2014-01-01

    以土壤为对象,研究在高温下5种不同覆盖方式(清耕处理、地膜覆盖、秸秆覆盖、枝叶覆盖、灌木覆盖)对土壤性状的影响。结果表明,5种覆盖方式在高温下对土壤性状产生了影响:地膜覆盖提高了地表温度,且地膜覆盖下的地表温度上升最快,上升幅度最大,秸秆覆盖、枝叶覆盖和灌木覆盖则降低了地表温度,灌木覆盖的降温效果最好;地膜覆盖、秸秆覆盖、枝叶覆盖和灌木覆盖都能提高地表湿度,其中地膜覆盖前期保湿效果最好,后期则低于清耕处理;地膜覆盖的土壤水分散失最慢最少,秸秆覆盖和枝叶覆盖次之,灌木覆盖的水分散失最快最多。%Taking soil as testing object, the effects of different surface mulching patterns (clean tillage, plastic film mulch, straw mulch, litter mulch and shrub mulch) on soil properties have been studied. The results showed that the five surface mulching patterns all had influences on the soil properties under the condition of high temperature. With the patterns of clean tillage and plastic film mulch, the ground temperature were raised and was the fastest-growing and the largest increase;with the patterns of straw mulch, litter mulch and shrub mulch, the ground temperature lowed down and the cooling effect of shrub cover was the best;the patterns of plastic film mulch, straw mulch, litter mulch and shrub mulch all can improve the surface humidity, of them, the plastic film mulch in the earlier stage had the best moisturizing effect, later was lower than clean cultivation;the soil moisture loss covered with plastic film mulch had the least decrease in later stage and that of straw mulch and litter mulch were the next in turn, that of shrub mulch evaporated fastest and greatest.

  17. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  18. Espacialização da umidade do solo por meio da temperatura da superfície e índice de vegetação Spatial distribution of soil moisture using land surface temperature and vegetation indices

    Directory of Open Access Journals (Sweden)

    Helio L. Lopes

    2011-09-01

    Full Text Available O estudo da umidade do solo é fundamental não só para a determinação da resiliência de ecossistemas e sua recuperação, mas também na modelagem da relação água-vegetação-atmosfera. Na aquisição dessas informações o sensoriamento remoto perfaz uma ferramenta importante e de potencial adequado para monitoramento e mapeamento. Visando à espacialização de índices relacionados à umidade, vários métodos têm sido propostos, embora sua aplicação ainda seja limitada. Neste trabalho se aplicou o modelo de índice de umidade do solo (IUS cujos objetivos foram: espacializar o IUS, estabelecer graus de desertificação, delimitar a área em processo de desertificação e verificar possíveis relações do IUS com parâmetros de água no solo. Na aplicação deste modelo se utilizaram, como dados de entrada, o NDVI (índice de vegetação da diferença normalizada e a LST (temperatura da superfície e se observou que o IUS representado pela média dos valores desses índices pode ser empregado na determinação do grau de degradação da superfície e para gerar classificação legendada, discriminando vários níveis de degradação ambiental. Constatou-se também que não houve relação direta do IUS com parâmetros físicos de retenção de umidade do solo. Desta forma, o sensoriamento remoto mostrou ser uma ferramenta significativa na avaliação de índices de umidade do solo em áreas degradadas tal como para delinear a dinâmica de borda em núcleo de desertificação.The study of soil moisture is important in determining the resilience of ecosystems and their recovery, as well as in the modeling of water-vegetation-atmosphere relationship. Remote sensing is an important tool for the acquisition, mapping and monitoring soil moisture through the surface temperature and vegetation indices. For the soil moisture content assessment, several methods have been proposed, however its application is still limited. In this work the

  19. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  20. Soil temperature manipulation to study global warming effects in arable land

    DEFF Research Database (Denmark)

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  1. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  2. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  3. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  4. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  5. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  6. Evaluation of reanalysis datasets against observational soil temperature data over China

    Science.gov (United States)

    Yang, Kai; Zhang, Jingyong

    2017-03-01

    Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.

  7. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick

    2016-06-01

    This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and

  8. Effect of Fluctuating Temperatures on Forest Soil Nitrogen Minerealization

    Institute of Scientific and Technical Information of China (English)

    LIAOLIPING; P.INESON

    1997-01-01

    Nitrogen mineralization in forest soil wa studied in laboratory by incubating undisturbed soil cores enclosed within PVC columns at different temperatures to compare the effect of flucttuating temperature with that of constant temperaature,and to find out whether soil nitrification shows linearity over time .The results showed that there was no significant difference between soil nitrification at fluctuating temperature and that at constant temperature,and suggested that it must be careful to make the conclusion that soil nitrification has linearity over time.

  9. Determination of Soil Evaporation Fluxes Using Distributed Temperature Sensing Methods

    Science.gov (United States)

    Munoz, J.; Serna, J. L.; Suarez, F. I.

    2015-12-01

    Evaporation is the main process for water vapor exchange between the land surface and the atmosphere. Evaporation from shallow groundwater tables is important in arid zones and is influenced by the water table depth and by the soil's hydrodynamic characteristics. Measuring evaporation, however, is still challenging. Thus, it is important to develop new measuring techniques that can better determine evaporation fluxes. The aim of this work is to investigate the feasibility of using distributed-temperature-sensing (DTS) to study the processes that control evaporation from soils with shallow water tables. To achieve this objective, an experimental column was instrumented with traditional temperature probes, time-domain-reflectometry probes, and an armored fiber-optic cable that allowed the application of heat pulses to estimate the soil moisture profile. The experimental setup also allowed to fix the water table at different depths and to measure evaporation rates at the daily scale. Experiments with different groundwater table depths were carried out. For each experiment, the evaporation rates were measured and the moisture profile was determined using heat pulses all through the DTS cable. These pulses allowed estimation of the moisture content with errors smaller than 0.045 m3/m3 and with a spatial resolution of ~6.5 mm. The high spatial resolution of the moisture profile combined with mathematical modeling permitted to investigate the processes that control evaporation from bare soils with shallow groundwater tables.

  10. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    ), which represents the instantaneous temperature; and the weather-change temperature cycle (WTC), which is divided into two parts to represent both the daily-averaged (WTCavg) and the instantaneous temperature (WTCinst). The DTC and WTCinst were further parameterized into four undetermined variables...

  11. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey

    Science.gov (United States)

    Citakoglu, Hatice

    2016-08-01

    Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient (R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  12. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  13. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil

    National Research Council Canada - National Science Library

    Turtola, Eila; Alakukku, Laura; Uusitalo, Risto; Kaseva, Antti

    2007-01-01

    Conservation tillage practices were tested against autumn mouldboard ploughing for differences in physical properties of soil, surface runoff, subsurface drainflow and soil erosion. The study (1991-2001...

  14. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  15. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  16. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  17. Analysis of the linearised observation operator in a soil moisture and temperature analysis scheme

    Science.gov (United States)

    Dharssi, I.; Candy, B.; Steinle, P.

    2015-06-01

    Several weather forecasting agencies have developed advanced land data assimilation systems that, in principle, can analyse any model land variable. Such systems can make use of a wide variety of observation types, such as screen level (2 m above the surface) observations and satellite based measurements of surface soil moisture and skin temperature. Indirect measurements can be used and information propagated from the surface into the deeper soil layers. A key component of the system is the calculation of the linearised observation operator matrix (Jacobian matrix) which describes the link between the observations and the land surface model variables. The elements of the Jacobian matrix (Jacobians) are estimated using finite difference by performing short model forecasts with perturbed initial conditions. The calculated Jacobians show that there can be strong coupling between the screen level and the soil. The coupling between the screen level and surface soil moisture is found to be due to a number of processes including bare soil evaporation, soil thermal conductivity as well as transpiration by plants. Therefore, there is significant coupling both during the day and at night. The coupling between the screen level and root-zone soil moisture is primarily through transpiration by plants. Therefore the coupling is only significant during the day and the vertical variation of the coupling is modulated by the vegetation root depths. The calculated Jacobians that link screen level temperature to model soil temperature are found to be largest for the topmost model soil layer and become very small for the lower soil layers. These values are largest during the night and generally positive in value. It is found that the Jacobians that link observations of surface soil moisture to model soil moisture are strongly affected by the soil hydraulic conductivity. Generally, for the Joint UK Land Environment Simulator (JULES) land surface model, the coupling between the surface

  18. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    Science.gov (United States)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  19. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  20. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  1. Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe

    Science.gov (United States)

    Orth, René; Seneviratne, Sonia I.

    2014-12-01

    Soil moisture exhibits outstanding memory characteristics and plays a key role within the climate system. Especially through its impacts on the evapotranspiration of soils and plants, it may influence the land energy balance and therefore surface temperature. These attributes make soil moisture an important variable in the context of weather and climate forecasting. In this study we investigate the value of (initial) soil moisture information for sub-seasonal temperature forecasts. For this purpose we employ a simple water balance model to infer soil moisture from streamflow observations in 400 catchments across Europe. Running this model with forecasted atmospheric forcing, we derive soil moisture forecasts, which we then translate into temperature forecasts using simple linear relationships. The resulting temperature forecasts show skill beyond climatology up to 2 weeks in most of the considered catchments. Even if forecasting skills are rather small at longer lead times with significant skill only in some catchments at lead times of 3 and 4 weeks, this soil moisture-based approach shows local improvements compared to the monthly European Centre for Medium Range Weather Forecasting (ECMWF) temperature forecasts at these lead times. For both products (soil moisture-only forecast and ECMWF forecast), we find comparable or better forecast performance in the case of extreme events, especially at long lead times. Even though a product based on soil moisture information alone is not of practical relevance, our results indicate that soil moisture (memory) is a potentially valuable contributor to temperature forecast skill. Investigating the underlying soil moisture of the ECMWF forecasts we find good agreement with the simple model forecasts, especially at longer lead times. Analyzing the drivers of the temperature forecast skills we find that they are mainly controlled by the strengths of (1) the soil moisture-temperature coupling and (2) the soil moisture memory. We

  2. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils.

    Science.gov (United States)

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M

    2017-01-01

    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  4. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  5. A soil miosture and temperature network for SMOS validation in Western Denmark

    DEFF Research Database (Denmark)

    Bircher, Simone; Skou, Niels; Jensen, Karsten Høgh

    2012-01-01

    pixel (44 x 44 km), which is representative of the land surface conditions of the catchment and with minimal impact from open water (2) arrangement of three network clusters along the precipitation gradient, and (3) distribution of the stations according to respective fractions of classes representing......The Soil Moisture and Ocean Salinity Mission (SMOS) acquires surface soil moisture data of global coverage every three days. Product validation for a range of climate and environmental conditions across continents is a crucial step. For this purpose, a soil moisture and soil temperature sensor...

  6. Effects of snow accumulation on soil temperature and change of salinity in frozen soil from laboratory experiments

    Science.gov (United States)

    Harada, K.; Sato, E.; Ishii, M.; Nemoto, M.; Mochizuki, S.

    2008-12-01

    In order to clarify the effect of snow depth on the ground temperature, snowfalls were occurred on soil samples using an artificial snowfall machine in the laboratory and variations of soil temperatures up to 30cm were measured during snowfall. The snow types used here were dendrites (type A) and sphere (type B). The snow depths on the soil surface were 10cm and 30cm for each snow type, so four deferent experimental results were obtained. At each experiment, two samples with deferent initial volumetric water content were prepared, about 10% and 20%. The initial soil temperature was set to 5°C and temperature in the laboratory was kept at -10°C. Soil temperatures were measured at the depths of 0cm, 10cm, 20cm and 30cm during the snowfall, and continuous measurements were conducted for ten hours after the stop of snowfall. From the experiments, it is confirmed that the soil temperature strongly depended on the depths of snow on the surface, density and water content. The soil sample using the type A with the depth of 30cm snow accumulation had the highest temperature at the surface, followed by the type A with 10cm snow, type B with 30cm snow and type B with 10cm snow. It was also pointed that temperature of the high water content samples showed the high temperature decrease compared with the low water one due to the high heat capacity except for the sample using type A with 10cm snow. Numerical calculation will be needed to explain these results. In addition, another experiment will be carried out to clarify the change of salinity during soil freezing with snow accumulation. The method to measure the salinity of soil is to measure the electrical conductivity of soil and volumetric water content at the same depth. The temperature condition in the cooling bath is ranged between -10 and 5°C and changed in 24 hours. Firstly, the temperature profiles will be measured to detect the frozen front, then measurements will start and discuss the results.

  7. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic......The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies...

  8. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  9. Impact of temperature on the biological properties of soil

    Science.gov (United States)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  10. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán;

    2011-01-01

    Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...... efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity...

  11. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  12. Determining soil moisture by assimilating soil temperature measurements using the Ensemble Kalman Filter

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick

    2015-12-01

    This study investigates the potential to estimate the vertical profile of soil moisture by assimilating temperature observations at a limited number of depths into a coupled heat and moisture transport model (Hydrus-1D). The method is developed with a view to assimilating temperature data from distributed temperature sensing (DTS) to estimate soil moisture at high resolution over large areas. The correlation between temperature and soil moisture in the shallow soil (top ∼ 50 cm) ensures that soil moisture can be estimated using just soil temperature observations. Synthetic tests across a range of soil textures show that with data assimilation both modeled temperature and the moisture profile are improved considerably compared to the ensemble open loop model simulations. In addition, employing data assimilation provides a means to quantitatively account for different sources of uncertainty. This is particularly relevant in the context of DTS given the influence of spatial variability in soil texture and its impact on estimation error. The data assimilation approach could also be used to determine, the number of temperature observations required and the depths at which they should be made. Results suggest that temperature observed at two depths is typically sufficient to estimate soil moisture using this approach. The root mean square error (RMSE) in soil moisture was reduced by up to 75% in the top 20 cm. Furthermore, this approach solves many of the challenges identified in the application of an inversion approach to estimate soil moisture from DTS.

  13. Photodegradation of pesticides on plant and soil surfaces.

    Science.gov (United States)

    Katagi, Toshiyuki

    2004-01-01

    Photodegradation is an abiotic process in the dissipation of pesticides where molecular excitation by absorption of light energy results in various organic reactions, or reactive oxygen species such as OH*, O3, and 1O2 specifically or nonspecifically oxidize the functional groups in a pesticide molecule. In the case of soil photolysis, the heterogeneity of soil together with soil properties varying with meteorological conditions makes photolytic processes difficult to understand. In contrast to solution photolysis, where light is attenuated by solid particles, both absorption and emission profiles of a pesticide are modified through interaction with soil components such as adsorption to clay minerals or solubilization to humic substances. Diffusion of a pesticide molecule results in heterogeneous concentration in soil, and either steric constraint or photoinduced generation of reactive species under the limited mobility sometimes modifies degradation mechanisms. Extensive investigations of meteorological effects on soil moisture and temperature as well as development of an elaborate testing chamber controlling these factors seems to provide better conditions for researchers to examine the photodegradation of pesticides on soil under conditions similar to the real environment. However, the mechanistic analysis of photodegradation has just begun, and there still remain many issues to be clarified. For example, how photoprocesses affect the electronic states of pesticide molecules on soil or how the reactive oxygen species are generated on soil via interaction with clay minerals and humic substances should be investigated in greater detail. From this standpoint, the application of diffuse reflectance spectroscopy and usage or development of various probes to trap intermediate species is highly desired. Furthermore, only limited information is yet available on the reactions of pesticides on soil with atmospheric chemical species. For photodegradation on plants, the

  14. [Effect of temperature on methane production and oxidation in soils].

    Science.gov (United States)

    Ding, Weixin; Cai, Zucong

    2003-04-01

    The influence of temperature and its mechanism on methane production and oxidation in soils were reviewed in this paper. Temperature can alter the soil ability to produce methane through changing types of dominant methanogens in archaeal community. Dominant methanogen is Methanosarcinaceae at higher temperature which can utilize both H2/CO2 and acetate as the precursor to produce methane, while Methanosaetaceae at lower temperature which only use acetate as the precursor and produce far less methane than do Methanosarcinaceae. Increasing soil temperature apparently raises soil ability to produce methane, which is called temperature effectiveness and expressed as Q10 with a range from 1.5 to 28 and an average of 4.1. There is an obviously positive correlation between temperature effectiveness (Q10) on methane production and substrate content. As compared to methane production, effect of temperature on methane oxidation is lower, which may be related to the strong affinity of methanotrophs for methane.

  15. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Science.gov (United States)

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  16. Temperature response of soil respiration largely unaltered with experimental warming.

    Science.gov (United States)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  17. Spatial and temporal variability of soil moisture-temperature coupling in current and future climate

    Science.gov (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia Isabelle

    2017-04-01

    While climate models generally agree on a future global mean temperature increase, the exact rate of change is still uncertain. The uncertainty is even higher for regional temperature trends that can deviate substantially from the projected global temperature increase. Several studies tried to constrain these regional temperature projections. They found that over land areas soil moisture is an important factor that influences the regional response. Due to the limited knowledge of the influence of soil moisture on atmospheric conditions on global scale the constraint remains still weak, though. Here, we use a framework that is based on the dependence of evaporative fraction (i.e. the fraction of net radiation that goes into latent heat flux) on soil moisture to distinguish between different soil moisture regimes (Seneviratne et al., 2010). It allows to estimate the influence of soil moisture on near-surface air temperature in the current climate and in future projections. While in the wet soil moisture regime, atmospheric conditions and related land surface fluxes can be considered as mostly driven by available energy, in the transitional regime - where evaporative fraction and soil moisture are essentially linearly coupled - soil moisture has an impact on turbulent heat fluxes, air humidity and temperature: Decreasing soil moisture and concomitant decreasing evaporative fraction cause increasing sensible heat flux, which might further lead to higher surface air temperatures. We investigate the strength of the single couplings (soil moisture → latent heat flux → sensible heat flux → air temperature) in order to quantify the influence of soil moisture on surface air temperature in the transitional regime. Moreover, we take into account that the coupling strength can change in the course of the year due to seasonal climate variations. The relations between soil moisture, evaporative fraction and near-surface air temperature in re-analysis and observation

  18. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  19. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Science.gov (United States)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2017-06-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  20. A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; ZHANG Weidong; QIU Chongjian

    2007-01-01

    A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.

  1. Fungal responses to elevated temperature and soil nitrogen availability

    Science.gov (United States)

    Whitney, S.; Geyer, K.; Morrison, E. W.; Frey, S. D.

    2016-12-01

    The soil microbial community controls decomposition of organic residues which constitute a large portion of soil organic matter. Microbial growth is impacted by global changes such as warming and soil nitrogen (N) availability. Carbon use efficiency (CUE) is an important parameter that influences soil C dynamics by partitioning organic matter between soil C and CO2 pools. This research focuses on the growth of different fungal species' exposed to varying temperatures and N availabilities, while quantifying respiration (CO2 flux) and microbial growth. To assess individual fungal isolates, we constructed a sterilized artificial soil medium to mimic a sandy loam soil by mixing 70% sand, 20% silt, and 10% clay. Several fungal species of the phyla Ascomycota and Basidiomycota were individually grown in this media at different temperatures (15 and 25°C) and N levels. Soil respiration was measured over the incubation period. Fungal biomass was estimated by chloroform fumigation extraction and qPCR of the fungal ITS region. Our results indicate that fungi were able to grow effectively and reproducibly in the artificial soil medium, demonstrating that using an artificial soil is an effective method for assessing individual species responses. Temperature and N availability had a positive affect on C mineralization and biomass. CUE varied among fungal species and, in general, declined with temperature.

  2. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  3. Temperature-associated increases in the global soil respiration record

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Thomson, Allison M.

    2010-03-25

    Soil respiration (RS), the flux of CO2 from the soil surface to the atmosphere, comprises the second-largest terrestrial carbon flux, but its dynamics are incompletely understood, and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses, and biokinetics all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium, and inability of remote sensing instruments to measure large-scale RS fluxes. Given these constraints, is it possible to discern climate-driven changes in regional or global RS fluxes in the extant four-decade record of RS chamber measurements? Here we use a database of worldwide RS observations, matched with high-resolution historical climate data, to show a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition, and changes in CO2 measurement technique. Air temperature anomaly (deviation from the 1961-1990 mean) is significantly and positively correlated with changes in RS fluxes; both temperature and precipitation anomalies exert effects in specific biomes. We estimate that the current (2008) annual global RS flux is 98±12 Pg and has increased 0.1 Pg yr-1 over the last 20 years, implying a global RS temperature response (Q10) of 1.5. An increasing global RS flux does not necessarily constitute a positive feedback loop to the atmosphere; nonetheless, the available data are consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

  4. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen

    2015-12-01

    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  5. Uncertainties of seasonal surface climate predictions induced by soil moisture biases in the La Plata Basin

    Science.gov (United States)

    Sorensson, Anna; Berbery, E. Hugo

    2015-04-01

    This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata Basin in South America. WRF/Noah model simulations covering multiple cases during a two-year period are designed to emphasize the conceptual nature of the simulations at the expense of statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for Savanna, Grassland and Cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with Evergreen Broadleaf Forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees during the dry season in cases when: (a) the soil is much wetter in the reanalysis than in the WRF/Noah equilibrium soil moisture, and (b) the memory of the initial value is long due to scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

  6. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  7. Development and evaluation of the Soil and Water Temperature Model (SWTM) for rural catchments

    Science.gov (United States)

    Kwon, Yonghwan; Koo, Bhon K.

    2017-10-01

    A physically-based energy balance model, the Soil and Water Temperature Model (SWTM), is developed in an effort to improve the soil temperature estimation for Korean rural watersheds or catchments, which are characterized by heterogeneous land-cover types and rugged topography and have many paddy fields retaining surface water during the growing season. The developed model is applied to a small rural catchment in South Korea where soil temperature is measured for two months, July to August 2008, at eight monitoring sites including forest, paddy field, dry field, and natural vegetation area. The degree of agreement between the simulated and observed soil temperature is quite good for the soil surface (RMSE 1.11-3.16 °C, R2 0.80-0.88), except for forests. Although some estimation errors resulting from data deficiency and model structure are observed, SWTM reasonably well simulates the spatial and temporal distribution of soil temperature at the catchment scale by considering the effects of topography, vegetation cover, and hydrological characteristics, especially the existence of surface water. SWTM is well suited for rural watersheds or catchments and expected to contribute to enhancing our understanding of watershed biogeochemical processes and managing the watershed environment.

  8. Assimilation of neural network soil moisture in land surface models

    Science.gov (United States)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias

    2017-04-01

    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests

  9. Inverse modeling of soil characteristics from surface soil moisture observations: potential and limitations

    Directory of Open Access Journals (Sweden)

    A. Loew

    2008-01-01

    Full Text Available Land surface models (LSM are widely used as scientific and operational tools to simulate mass and energy fluxes within the soil vegetation atmosphere continuum for numerous applications in meteorology, hydrology or for geobiochemistry studies. A reliable parameterization of these models is important to improve the simulation skills. Soil moisture is a key variable, linking the water and energy fluxes at the land surface. An appropriate parameterisation of soil hydraulic properties is crucial to obtain reliable simulation of soil water content from a LSM scheme. Parameter inversion techniques have been developed for that purpose to infer model parameters from soil moisture measurements at the local scale. On the other hand, remote sensing methods provide a unique opportunity to estimate surface soil moisture content at different spatial scales and with different temporal frequencies and accuracies. The present paper investigates the potential to use surface soil moisture information to infer soil hydraulic characteristics using uncertain observations. Different approaches to retrieve soil characteristics from surface soil moisture observations is evaluated and the impact on the accuracy of the model predictions is quantified. The results indicate that there is in general potential to improve land surface model parameterisations by assimilating surface soil moisture observations. However, a high accuracy in surface soil moisture estimates is required to obtain reliable estimates of soil characteristics.

  10. The SMOS Validation Campaign 2010 in the Upper Danube Catchment: A Data Set for Studies of Soil Moisture, Brightness Temperature, and Their Spatial Variability Over a Heterogeneous Land Surface

    DEFF Research Database (Denmark)

    T. dall' Amico, Johanna; Schlenz, Florian; Loew, Alexander;

    2013-01-01

    The Soil Moisture and Ocean Salinity mission has been launched by the European Space Agency (ESA) in November 2009. It is the worldwide first satellite dedicated to retrieve soil moisture information at the global scale, with a high temporal resolution, and from spaceborne L-band radiometry...... as of meteorological parameters such as air temperature and humidity, precipitation, wind speed, and radiation. All data have undergone thorough postprocessing and quality checking. Their values and trends fit well among each other and with the theoretically expected behavior. The aim of this paper is to present...... these data which may contribute to potential further studies of soil moisture, brightness temperature, and their spatial variability. The presented data are available to the scientific community upon request to ESA....

  11. Increased ambient air temperature alters the severity of soil water repellency

    Science.gov (United States)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  12. Gamma-ray computed tomography to characterize soil surface sealing

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F.Luiz F. E-mail: lfpires@cena.usp.br; Macedo, Jose R. de; Souza, Manoel D. de; Bacchi, Osny O.S.; Reichardt, Klaus

    2002-09-01

    The application of sewage sludge as a fertilizer on soils may cause compacted surface layers (surface sealing), which can promote changes on soil physical properties. The objective of this work was to study the use of gamma-ray computed tomography, as a diagnostic tool for the evaluation of this sealing process through the measurement of soil bulk density distribution of the soil surface layer of samples subjected to sewage sludge application. Tomographic images were taken with a first generation tomograph with a resolution of 1 mm. The image analysis opened the possibility to obtain soil bulk density profiles and average soil bulk densities of the surface layer and to detect the presence of soil surface sealing. The sealing crust thickness was estimated to be in the range of 2-4 mm.

  13. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  14. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  15. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  16. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  17. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  18. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  19. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  20. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  1. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  2. Reconstruction of ploughed soil surface with 3D fractal interpolation

    NARCIS (Netherlands)

    Liu, Y.; Lu, Z.; Hoogmoed, W.B.; Li, X.

    2014-01-01

    By using a laser profiler, the roughness of ploughed soil surface was obtained. 3D fractal interpolation method was used to interpolate several kinds of reduced measured surface data which were reduced from the original measured ploughed soil surface elevation data in different reduction rates. Also

  3. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  4. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  5. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  6. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  7. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  8. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  9. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  10. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux * is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  11. Soil organic matter decomposition and temperature sensitivity after forest fire in permafrost regions in Canada

    Science.gov (United States)

    Aaltonen, Heidi; Palviainen, Marjo; Köster, Kajar; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    On the Northern Hemisphere, 24% of soils are underlain by permafrost. These soils contain 50% of the global soil carbon pool. The Northern Hemisphere is also the region which is predicted to be most affected by climate warming and this causes uncertainties over the future of the permafrost. It has been estimated that 25% of permafrost might thaw by 2100, exposing previously frozen carbon pools to decomposition. In addition, global warming is expected to cause increase in the frequency of wild fires, which further increase permafrost melting by removing the insulating organic surface layer. The amount of released soil carbon from permafrost soils after forest fire is affected by degradability and temperature sensitivity of the soil organic matter, as well as soil depth and the stage of succession. Yet the common effect of these factors remains unclear. We studied how soil respiration and its temperature sensitivity (Q10) vary in different depths and within time by taking soil samples from different fire chronosequence areas (burned 3, 25, 46 and 100 years ago) from permafrost region in Northern Canada (Yukon and Northwest Territories, along Dempster Highway). The samples from three different depths (5, 10 and 30 cm) were incubated in four different temperatures (1, 7, 13 and 19°C) over 24h. Our results showed that the CO2 fluxes followed the stages of succession, with recently burned sites having lowest rates. The organic matter at 5 cm depth proved to be more labile and temperature sensitive than in deeper depths. The Q10 values, however, did not differ between sites, excluding 30 cm at the most recently burned site that had a significantly higher Q10 value than the other sites. The results implicate that heterotrophic soil respiration decreases on permafrost regions during the first stages after forest fire. At the same time the temperature sensitivity in deeper soil layers may increase.

  12. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  13. 利用地表温度与LAI的新型土壤湿度监测方法%A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI

    Institute of Scientific and Technical Information of China (English)

    高中灵; 郑小坡; 孙越君; 王建华

    2015-01-01

    地表温度( Ts )是土壤湿度和植被生长状态等因素的综合反映,利用植被指数和 Ts 能够监测土壤湿度的时空分布特征。利用农田气候模型CUPID的 Ts 模拟结果,发展了利用温度与叶面积指数(LAI)的新型土壤水分反演方法(advanced temperature vegetation dryness index ,ATVDI)。前人研究表明归一化植被指数(NDVI)容易达到饱和状态,因此利用LAI代替NDVI开展土壤水分反演。利用CUPID模型模拟结果构建LAI‐Ts 散点图,分析 Ts 随LAI与土壤湿度的变化特征,利用对数关系式改进了温度植被干旱指数(TVDI)中相同土壤湿度时 Ts 与植被指数之间的线性关系,建立了ATVDI方法。在实际应用中,首先利用LAI与Ts 的散点图确定对数曲线的上边界与下边界,然后采用查找表的方法将每个像元对应的 Ts 变换为研究区最小叶面积指数对应的 Ts 。以陕西省关中作为研究区,利用 MODIS 的 LAI和 Ts 产品(MOD11A2和MOD15A2)以及野外观测土壤湿度数据对ATVDI模型进行验证,结果表明该方法具有较高的监测精度,R2达到0.62。此外,A T VDI的计算结果具有一定的物理意义,使得不同时期的监测结果具有一致性,因而可更好地满足不同空间尺度土壤湿度的动态监测。%Land surface temperature (Ts ) is influenced by soil background and vegetation growing conditions ,and the combina‐tion of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC) .In this study ,Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID .Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point ,andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper .With LAI

  14. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  15. Changes in structural stability with soil surface degradation. Consequences for soil erosion processes

    OpenAIRE

    Darboux, Frédéric; Le Bissonnais, Yves

    2006-01-01

    Hydrological Science, section 39 - Soil Science Systems, section 23: Dryland hydrologySRef-ID: 1607-7962/gra/EGU06-A-07243; Erosion and sediment transport processes depend on the soil surface properties. Because of water flow and other processes (climate, agricultural practices, biological activity, etc.), the properties of the soil surface can undergo significant changes that affect erosion. As a consequence, understanding of the transport processes and improvement in soil erosion prediction...

  16. Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression

    Institute of Scientific and Technical Information of China (English)

    Qin XU; Binbin ZHOU

    2003-01-01

    A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11-20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1-31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 ma m-a). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

  17. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  18. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  19. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  20. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  1. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  2. Temperature Effect on Boron Adsorption—Desorption Kinetics in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; SHILEI; 等

    1999-01-01

    The effect of temperature on the properties of boron adsorption-desorption in brown-red soil,yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique.The experimental data of B adsorption-desorption amounts and reaction time at 25 and 40℃ were fitted by the zero-order,first-order and parabolic diffusion kinetic equations.The adsorption process was in conformity with the parabolic diffusion law at both the temperatures,and the values of rate constant of the parabolic diffusion equation in B adsorption were 0.138,0.124 and 0.105 mg kg-1 min-1/2 at 25℃,and 0.147,0.146and 0.135mg kg-1 min1/2 at 40℃ for the brown-red soil,yellow-brown soil,and calcareous alluvial soil,respectively,The relationship between amount of B desorption and reaction time could be well described by the first-order kinetic equation,and the corresponding values of rate constant were 0.0422,0.0563 and 0.0384min-1 at 25℃,and 0.0408,0.0423 and 0.0401min-1 at 40℃ for the brown-red soil,the yellow-brown soil and the calcareous alluvial soil,respectively.Therefore,the desorption process of B might be related to the amount of B adsorbed in soil,The higher th temperature,the lower the amount of B adsorption of the same soil in the same reaction time,The values of the apparent activation energy of B adsorption in the three soils calculated with the rate constants of parabolic diffusion equation were 3.27,8.44 and 12.99 kJ mol-1,respectively,based on the experimental data of B adsorption amounts and reaction time at and 40℃.

  3. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  4. SWATS: Diurnal Trends in the Soil Temperature Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  5. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  6. Microbial response to increasing temperatures during winter in arable soils

    Science.gov (United States)

    Lukas, Stefan; Potthoff, Martin; Joergensen, Rainer Georg

    2014-05-01

    Climate scenarios predict increasing temperatures and higher precipitation rates in late fall to early spring, both holding the potential to modify carbon and nutrient dynamics in soils by altering snow pack thickness and soil frost events. When soils are frozen, a small amount of unfrozen water allows microorganisms to remain active at temperatures down to -10 °C. We carried out a field experiment on the microbial use of maize straw. We compared soils of two different clay contents and used latitude as a proxy for climate. Microcosms with sieved soil were mixed with chopped maize leaf straw (C/N 17) at a rate of 1 mg C g-1 dry soil, un-amended microcosms served as control. Results indicated that C-mineralization rates were independent from clay content. However, the microbial use of maize derived nitrogen was only increased in the soil with 13% clay compared to 33% clay in the other soil. Microbial responses to climate changes can be expected to be very specific due to characteristics of the soil and/or the location.

  7. Active Distributed Temperature Sensing to Characterise Soil Moisture and Heat Dynamics of a Vegetated Hillslope.

    Science.gov (United States)

    Ciocca, F.; Krause, S.; Chalari, A.; Hannah, D. M.; Mondanos, M.

    2015-12-01

    Complex correlated water and heat dynamics characterise the land surface and shallow subsurface, as consequence of the concurrent action of multiple transport processes. Point sensors and/or remote techniques show limitations in providing precise measurements of key indicators of soil heat and water transport such as soil temperature and moisture, at both high spatiotemporal resolution and large areal coverage. Fibre optics Distributed Temperature Sensors (DTS) allow for precise temperature measurement along optical cables of up to several kilometres, sampling at resolutions of up to few centimetres in space and seconds in time. The optical cable is the sensor and can be buried in the soil with minimum disturbance, to construct soil temperature profiles, over large surveying areas. Soil moisture can be obtained from the analysis of both heating and cooling rates measured by the DTS, when copper conductors embedded in the optical cable are electrically heated (technique known as Active DTS). In July 2015, three loops of optical cable of 500m each have been buried in the soil at different depths (0.05m, 0.25m and 0.40m), along an inclined recently vegetated field in the Birmingham area, UK. Active DTS tests have been set with the aim to characterize the soil temperature and moisture regimes of the field at high spatial resolution, in response to both sporadic events such as showers or scheduled irrigation, and diurnal fluctuations induced by atmospheric forcing. Spatiotemporal variations of the aforementioned regimes will be used to trace vertical and horizontal soil heat and water movements. Finally, assumptions on the possibility to correlate soil heat and water dynamics to a specific process such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the Marie Curie Initial Training Network (ITN) INTERFACES project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with

  8. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  9. Soil moisture and temperature algorithms and validation

    Science.gov (United States)

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  10. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status

    DEFF Research Database (Denmark)

    Sandholt, Inge; Rasmussen, Kjeld; Andersen, Jens Asger

    2002-01-01

    A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing interpre......A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing...... interpretations of the T-s/NDVI space, the index is conceptually and computationally straightforward. It is based on satellite derived information only, and the potential for operational application of the index is therefore large. The spatial pattern and temporal evolution in TVDI has been analysed using 37 NOAA...

  11. Analysis of Variation Characters and Prediction Model of Soil Temperature in Solar Greenhouse

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the soil temperature changes and its forecast model in greenhouse by solar heat. [Method] Annual and daily variation characters of soil temperature were analyzed in this paper by using the observation data of air temperature out of solar greenhouse and different layers soil temperature in it. The soil temperature (daily maximum, daily minimum and daily mean) forecasting models were also studied. Simulation and test were conducted to the forecast model of soil temperature in ...

  12. Effect of temperature on nitrification intensity in soil.

    Science.gov (United States)

    Seifert, J

    1980-01-01

    The temperature dependence of nitrification can be expressed by the Arrhenius equation while the time course of nitrate production can be expressed by the Gomperz function. These two findings served as a basis for a mathematical model which makes it possible to calculate nitrate production in the soil even when the temperature changes once or more times during the incubation.

  13. Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain–snow transition zone

    OpenAIRE

    P. R. Kormos; Marks, D.; Williams, C J; H. P. Marshall; P. Aishlin; D. G. Chandler; J. P. McNamara

    2014-01-01

    A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain–snow transition zone. This type of data set is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow (ROS) events. Surface so...

  14. Soil temperature triggers the onset of photosynthesis in Korean pine.

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0 °C even if the air temperature was far beyond 15 °C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios.

  15. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  16. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    NARCIS (Netherlands)

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  17. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    NARCIS (Netherlands)

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  18. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  19. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  20. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  1. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  2. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  3. On the compressibility and temperature boundary of warm frozen soils

    Science.gov (United States)

    Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu

    2017-04-01

    A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.

  4. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  5. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  6. Surface Reactivity in Tropical Highly Weathered Soils and Implications for Rational Soil Management

    Institute of Scientific and Technical Information of China (English)

    R. MOREAU; J. PETARD

    2004-01-01

    Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper.Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.

  7. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies

    Directory of Open Access Journals (Sweden)

    A. Graf

    2008-05-01

    Full Text Available CO2 efflux at the soil surface is the result of respiration in different depths that are subjected to variable temperatures at the same time. Therefore, the temperature measurement depth affects the apparent temperature sensitivity of field-measured soil respiration. We summarize existing literature evidence on the importance of this effect, and describe a simple model to understand and estimate the magnitude of this potential error source for heterotrophic respiration. The model is tested against field measurements. We discuss the influence of climate (annual and daily temperature amplitude, soil properties (vertical distribution of CO2 sources, thermal and gas diffusivity, and measurement schedule (frequency, study duration, and time averaging. Q10 as a commonly used parameter describing the temperature sensitivity of soil respiration is taken as an example and computed for different combinations of the above conditions. We define conditions and data acquisition and analysis strategies that lead to lower errors in field-based Q10 determination. It was found that commonly used temperature measurement depths are likely to result in an underestimation of temperature sensitivity in field experiments. Our results also apply to activation energy as an alternative temperature sensitivity parameter.

  8. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies

    Directory of Open Access Journals (Sweden)

    A. Graf

    2008-08-01

    Full Text Available CO2 efflux at the soil surface is the result of respiration in different depths that are subjected to variable temperatures at the same time. Therefore, the temperature measurement depth affects the apparent temperature sensitivity of field-measured soil respiration. We summarize existing literature evidence on the importance of this effect, and describe a simple model to understand and estimate the magnitude of this potential error source for heterotrophic respiration. The model is tested against field measurements. We discuss the influence of climate (annual and daily temperature amplitude, soil properties (vertical distribution of CO2 sources, thermal and gas diffusivity, and measurement schedule (frequency, study duration, and time averaging. Q10 as a commonly used parameter describing the temperature sensitivity of soil respiration is taken as an example and computed for different combinations of the above conditions. We define conditions and data acquisition and analysis strategies that lead to lower errors in field-based Q10 determination. It was found that commonly used temperature measurement depths are likely to result in an underestimation of temperature sensitivity in field experiments. Our results also apply to activation energy as an alternative temperature sensitivity parameter.

  9. Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating

    NARCIS (Netherlands)

    Overduin, P.; Kane, D.L.; Loon, van W.K.P.

    2006-01-01

    The thermal conductivity of the thin seasonally freezing and thawing soil layer in permafrost landscapes exerts considerable control over the sensitivity of the permafrost to energy and mass exchanges at the surface. At the same time, the thermal conductivity is sensitive to the state of the soil, v

  10. Reflectance anisotropy for characterising fine-scale changes in soil surface condition across different soil types

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in a reduction in soil productivity, an increased susceptibility to erosion and increased release of greenhouse gases. Soil surface roughness at the centimetre scale plays a fundamental role in affecting soil erosion and surface runoff pathways. A decline in surface roughness can also be used to infer soil degradation as soil aggregates are broken down through raindrop impact. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially-distributed information on soil surface condition. Remotely sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Furthermore, a growing recognition into the importance of the directional reflectance domain has led to an increasing number of satellites with multiple view angle (MVA) capabilities (e.g. MISR, CHRIS on Proba). This is potentially useful for monitoring soil degradation and susceptibility to erosion because changes in soil surface roughness, associated with the breakdown of macro-aggregates, have a measurable effect on directional reflectance factors. Consequently, field and laboratory data are required for an empirical understanding of soil directional reflectance characteristics, underpinning subsequent model development. This study assessed the extent to which a hyperspectral MVA approach (350-2500 nm) could detect fine-scale changes in soil crusting states across five different soil types. A series of soil crusting states were produced for all five soil types, using an artificial rainfall simulator. The controlled conditions allowed the production of a series of stages in the soil crusting process; showing progressively declining surface roughness values. Each soil state was then spatially characterised, using a laboratory laser device at 2 mm sample spacing, over a 10 x 10 cm area. Laser data

  11. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  12. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts

    Science.gov (United States)

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.

    2008-01-01

    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  13. Modification of the functionality of soil biogeochemical interfaces: Impact of sorbed cation and temperature

    Science.gov (United States)

    Bachmann, Joerg; Woche, Susanne K.

    2010-05-01

    Soil as a porous 3-phase system is characterized by a tremendously high surface area to volume ratio. Complex interactions of physical, chemical and biological processes occur at biogeochemical interfaces generally formed in living media like soil. Along with electrostatic interactions, the interfacial properties (surface free energies) control wetting kinetics, physical status of adsorbed water films, flocculation, adsorption, and they are also a major contributor to the rheological properties of dispersions. To describe the surface properties in a mechanistic way it is crucial to understand complex biological, physical and hydraulical processes within a general mechanistic framework. Biogeochemical interfaces, on one hand, signicantly determine the relationship between the surface geochemistry of a pore domain and the micoorganism or plant life in that specific region. On the other hand, they determine additionally with the pore geometry (local pore diameter, turtuosity and connectivity) the hydraulic properties of the pore domain. However, until now no physically measurable surface property has been established to determine all aspects mentioned above with one set of parameters. One of the key physicochemical parameters for describing the interaction of water and colloids is the interfacial free energy which is basically measured through contact angle measurements. With respect to water repellency we will present approaches and problems related to the evaluation of soil wettability for a sandy topsoil and a peat soil. Hence, the first part of the study emphasizes a framework to determine the mixed hydrophilic-hydrophobic behavior of particle surfaces. Furthermore, the sensitivity of physical impact of frequently changing conditions in soil like cation composition of soil solution and temperature is analyzed. We conclude that the wettability of OM, quantified by the contact angle, links specifically the chemical structure of SOM with a bundle of physical soil

  14. Soil Surface Structure: A key factor for the degree of soil water repellency

    Science.gov (United States)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  15. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain

    DEFF Research Database (Denmark)

    Beulig, Felix

    2016-01-01

    is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade-long drying manipulation on an Arctic floodplain influences CH4-associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage......As surface temperatures are expected to rise in the future, ice-rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes......-induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers...

  16. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    Science.gov (United States)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2016-09-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  17. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  18. Temperature regime of agrosoddy-podzolic soils on slopes of different steepness

    Science.gov (United States)

    Shein, E. V.; Bannikov, M. V.; Savoskina, O. A.; Mazirov, M. A.

    2011-02-01

    Soil temperature regime at the depth of 20 cm may vary considerably on different parts of a given slope. This variation may be related to the position of the particular site on the slope and to the geomorphic features of the slope, including its surface inclination. The soils of the upper steep part of the slope of southern aspect are subjected to more active warming in the spring. They are characterized by higher cumulative temperatures above 10°C. The degree of this difference depends on the particular weather conditions. The differences in the soil temperature regimes may be the reason for the unequal crop yields on the different parts of the slope.

  19. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    Science.gov (United States)

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  1. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    Science.gov (United States)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  2. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    Directory of Open Access Journals (Sweden)

    Shai Sela

    2014-08-01

    Full Text Available Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach that accounts explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the respective layers corresponding to both the ground validation probe and the radar beam’s typical effective penetration depth were considered. A cyclic pattern was found in which, as compared to an unsealed profile, the seal layer intensifies the bias in validation during rainfall events and substantially reduces it during subsequent drying periods. The analysis of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, the optimal time for soil sampling following a rainfall event is a few hours in the case of an unsealed system and a few days in the case of a sealed one. Surface sealing was found to increase the temporal stability of soil moisture. In both sealed and unsealed systems, the greatest temporal stability was observed at positions with moderate slope inclination. Soil porosity was the best predictor of soil moisture temporal stability, indicating that prior knowledge regarding the soil texture distribution is crucial for the application of remote sensing validation schemes.

  3. The effect of heterogeneity and surface roughness on soil hydrophobicity

    Science.gov (United States)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated

  4. Temperature sensitivity of soil organic matter decomposition was strongly affected by land use under low temperature

    Science.gov (United States)

    Zang, Huadong; Blagodatskaya, Evgenia; Xu, Xingliang; Kuzyakov, Yakov

    2017-04-01

    The temperature sensitivity of soil organic matter (SOM) decomposition (often measured as Q10 value) is important for predicting global carbon (C) stocks under warming scenarios. However, the effects of land use and labile substrates on Q10 value remain unclear. We investigated CO2 emission from soils of three land use types (i.e. grassland, cropland and bare fallow) at five temperatures (0, 10, 20, 30 and 40 °C) with or without labile C (14C-glucose) addition. The CO2 efflux from SOM increased with temperature and was 43, 21 and 9 times higher at 40 °C than at 0 °C in grassland, cropland and bare fallow soils, respectively. High temperature strongly increased the cumulative priming effect (PE) in grassland soil (from 0.1 to 4.7 mg g-1 SOC), while the PE in cropland and bare fallow was not sensitive to warming. The Q10 of SOM (2.3-6) was higher at low temperature (0-10 °C) and decreased strongly to Q10 = 1.7-2.0 with temperature increase. The Q10 of SOM in grassland was 1.6 and 2.7 times higher than cropland and bare fallow at low temperature, respectively. Labile C addition decreased the Q10 of SOM in grassland and cropland, but increased it in bare fallow, especially under low temperature. Overall, temperature sensitivity of SOM was strongly affected by land use at low temperature and was relatively stable in high temperature (> 10°C). Labile C addition mainly affected temperature sensitivity of SOM at lower temperature, which decreased in grassland and cropland, and increased in bare fallow. These findings indicate that global warming may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures.

  5. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  6. Reconstruction of MODIS daily land surface temperature under clouds

    Science.gov (United States)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  7. Seasonal Variation of Soil Resistivity and Soil Temperature in Bayelsa State

    Directory of Open Access Journals (Sweden)

    John T. Afa

    2010-01-01

    Full Text Available Problem statement: Due to the climatic variation for the year and it's sever harmattan during the month of December to March with the high keraunic level (80-90 in the areas, it was necessary to know the seasonal variation of soil resistivity. The seasonal variation and the nature of soil have considerable influence on electrical characteristics and therefore affect the earthling system performance. Approach: Eighteen sites were chosen from three main soil divisions. The soil resistivity was taken in each of the site at depths of 0.5, 0.8 and 1.2 m using the four point test instrument (Wenner Method. From the selected sites in the three soil divisions the temperature was also taken at depths of 0.2, 0.5, 0.8 and 1.0 m. Results: The coefficient of seasonal variation at the depth of 0.5 m was high and reduced drastically at a depth of 1.2 m. The soil temperature was higher than the ambient temperature at the depth of 0.2 m during the months of December to March. From 0.8 m depth and below the temperature reduced even during the dry seasons. Conclusion: The coefficient of seasonal variation of soil at the depth of 0.8 and 1.2 m was small (1.8-3.0 throughout the year in all soil types. That indicates the high water level and or the permanent moisture table which gives an advantage to low soil resistivity for buried conductors and electrodes in the area.

  8. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  9. Effect of temperature on soil respiration in a Chinese fir forest

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-fen; YANG Yu-sheng; LIU Le-zhong; ZHAO Yue-cai; CHEN Zeng-wen; MAO Yan-ling

    2009-01-01

    Soil samples collected from the surface soil (0(10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at the temperatures of 15°C, 25°C and 35°C in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35°C, followed by those at 25°C, and 15°C. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25°C, but it decreased to 1.2 at 25- 35°C. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.

  10. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  11. Soil Temperature Dependent Growth of Cotton Seedlings Before Emergence

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil temperature is an important variable governing plant growth and development.Studies were conducted under laboratory conditions to determine the effect of soil temperature on root and shoot growth of cotton during emergence.Cotton seedlings were grown for 192 h at 20,32 and 38℃ in soil packed in 300 mm long and 50 mm diameter cylinders.The data indicated that the longest roots(173 ram)as well as shoots(152 mm)were recorded at 32 ℃ followed by 20 (130 mm root and 82 mm shoot)and 38℃(86 mm root and 50 mm shoot).Roots grown at 20 and 38 ℃ were 20% and 50% shorter,respectively,than those grown at 32℃ after 192 h.Roots and shoots exhibited the lowest length and dry biomass at 38℃.Shoot lengths grown at 20(74 ram)and 38℃(51 mm)were 44% and 61% shorter than those grown at 32℃(131 mm)after 180 h growth period,respectively.Growth at all three temperatures followed a similar pattern.Initially there was a linear growth phase followed by the reduction or cessation of growth.Time to cessation of growth varied with temperature and decreased faster at higher temperatures.Sowing of cotton should be accomlplished before seedbed reaches a soil temperature(≥38℃)detrimental for emergence.Further,the seedbeds should be capable of providing sufficient moisture and essential nutrients for emerging seedling before its seed reserves are exhausted to enhance seedling establishment in soil.

  12. Temperature Effects on Survival of Xiphinema bakeri in Fallow Soil.

    Science.gov (United States)

    Sutherland, J R; Ross, D A

    1971-07-01

    Numbers of Xiphinema bakeri increased during the first month of storage at temperatures 5-30 C in naturally-infested soil sealed in polyethylene bags. From 1 to 6 months, populations trended toward later developmental stages, and total numbers declined, especially at the higher temperatures. Similarly-packaged X. bakeri eggs, larvae and adults were killed by -18 C for 48 hr or -34 C for 12 hr.

  13. Soil CO2 flux in relation to dissolved organic carbon, soil temperature and moisture in a subtropical arable soil of China

    Institute of Scientific and Technical Information of China (English)

    LOU Yun-sheng; LI Zhong-pei; ZHANG Tao-lin

    2003-01-01

    Soil CO2 emission from an arable soil was measured by closed chamber method to quantify year-round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2.23 kgCO2/(m2·a) for average annual soil CO2 flux. Regressed separately, the reasons for soil flux variability were 86.6% from soil temperature, 58.8% from DOC, and 26.3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85.2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2.49 kgCO2/(m2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO2 flux from arable soil in subtropical regions of China.

  14. Temperature responses of individual soil organic matter components

    Science.gov (United States)

    Feng, Xiaojuan; Simpson, Myrna J.

    2008-09-01

    Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.

  15. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  16. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    Science.gov (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  17. Soil erosion under climate change: simulatingthe response of temperature and rainfall changes in three UK catchments

    Science.gov (United States)

    Ciampalini, Rossano; Walker-Springett, Kate J.; Constantine, José Antonio; Hales, Tristram C.

    2015-04-01

    results show that, because of the role of the vegetation, each land use has different reactions to temperature - rainfall variations; crop surfaces confirm to have a strong sensitivity while forests and grassland play a mitigation role on soil erosion.

  18. Soil Temperature and Moisture Effects on Soil Respiration and Microbial Community Abundance

    Science.gov (United States)

    2015-04-13

    we assessed their abundance. Commonly, the response of ammonia oxidizers (Avrahami and Bohannan 2007), nitrifiers, and denitrifiers (Stres et al...snowfall. Soil Biology and Biochemistry 57:217–227. Avrahami, S., and B. J. M. Bohannan. 2007. Response of Nitrosospira sp. Strain AF-like ammonia ...Sullivan, and N. C. van Gestel. 2011. The temperature responses of soil respiration in deserts: a seven desert synthesis . Biogeochemistry 103:71–90

  19. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  20. Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance

    Science.gov (United States)

    Simpson, M. J.; Feng, X.

    2007-12-01

    The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global

  1. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  2. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  3. Effects of temperature and soil components on emissions from pyrolysis of pyrene-contaminated soil.

    Science.gov (United States)

    Risoul, Véronique; Richter, Henning; Lafleur, Arthur L; Plummer, Elaine F; Gilot, Patrick; Howard, Jack B; Peters, William A

    2005-11-11

    Effects of temperature and soil on yields and identities of light gases (H2, CH4, C2H2, C2H4, C2H6, CO, and CO2) and polycyclic aromatic hydrocarbons (PAH) from thermal treatment of a pyrene-contaminated (5 wt%) soil in the absence of oxygen were determined for a U.S. EPA synthetic soil matrix prepared to proxy U.S. Superfund soils. Shallow piles (140-170 mg) of contaminated soil particles and as controls, neat (non-contaminated) soil (140-160 mg), neat pyrene (10-15 mg), neat sand (230 mg), and pyrene-contaminated sand (160 mg), were heated in a ceramic boat inside a 1.65 cm i.d. pyrex tube at temperatures from 500 to 1100 degrees C under an axial flow of helium. Volatile products spent 0.2-0.4s at temperature before cooling. Light gases, PAH and a dichloromethane extract of the residue in the ceramic boat, were analyzed by gas chromatography or high pressure liquid chromatography (HPLC). Over 99% pyrene removal was observed when heating for a few tens of seconds in all investigated cases, i.e., at 500, 650, 750, 1000, and 1100 degrees C for soil, and 750 and 1000 degrees C for sand. However, each of these experiments gave significant yields (0.2-16 wt% of the initial pyrene) of other PAH, e.g., cyclopenta[cd]pyrene (CPP), which mutates bacterial cells and human cells in vitro. Heating pyrene-polluted soil gave pyrene conversions and yields of acetylene, CPP, and other PAH exceeding those predicted from similar, but separate heating of neat soil and neat pyrene. Up to 750 degrees C, recovered pyrene, other PAH, and light gases accounted for all or most of the initial pyrene whereas at 1000 and 1100 degrees C conversion to soot was significant. A kinetic analysis disentangled effects of soil-pyrene interactions and vapor phase pyrolysis of pyrene. Increase of residence time was found to be the main reason for the enhanced conversion of pyrene in the case of the presence of a solid soil or sand matrix. Light gas species released due to the thermal treatment, such as

  4. Effects of Nitrogen Fertilizer,Soil Moisture and Temperature on Methane Oxidation in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    YANXIAOYUAN; CAIZUCONG

    1996-01-01

    Effects of nitrogen fertilizer,soil mosture and temperature and temperature on methane oxidation in paddy soil were investigated under laboratory conditions.Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell,Not only NH4+ but also NO3- greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg-1 ,and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃ in paddy soil.while no methane oxidation was observed at 5℃or 50℃。

  5. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  6. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  7. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  8. Sound absorption at the soil surface

    NARCIS (Netherlands)

    Janse, A.R.P.

    1969-01-01

    The properties of a soil structure may be examined in various manners. As well as a study of the stability, a knowledge of the geometry of the volume of air filled pores is often needed. The most common measurements, like those of porosity and flow resistance to gases do not permit a detailed

  9. Carbon Turnover in Alaskan Tundra Soils: Effects of Organic Matter Quality, Temperature, Moisture and Fertilizer

    National Research Council Canada - National Science Library

    Gaius R. Shaver; A. E. Giblin; K. J. Nadelhoffer; K. K. Thieler; M. R. Downs; J. A. Laundre; E. B. Rastetter

    2006-01-01

    .... This study describes how soil C loss is related to temperature, moisture and chemical composition of organic matter in Alaskan tundra soils, including soils that were fertilized annually for 8 years prior to the study...

  10. Non-stationary temporal characterization of the temperature profile of a soil exposed to frost in south-eastern Canada

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2008-05-01

    Full Text Available The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.

  11. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment.

    Science.gov (United States)

    Wolters, André; Steffens, Markus

    2005-08-15

    Among the processes affecting transport and degradation of antibiotics released to the environment during application of manure and slurry to agricultural land, photochemical transformations are of particular interest. Drying-out of the top soil layer under field conditions enables sorption of surface-applied antibiotics to soil dust, thus facilitating direct, indirect, and sensitized photodegradation at the soil/atmosphere interface. For studying various photochemical transformation processes of sulfadiazine, a photovolatility chamber designed in accordance with the requirements of the USEPA Guideline and 161-3 was used. Application of 14C-labeled sulfadiazine enabled complete mass balances and allowed for investigating the impact of various surfaces (glass and soil dust) and environmental factors, i.e., irradiation and atmospheric ozone, on photodegradation and volatilization. Volatilization was shown to be a negligible process. Even after increasing the air temperature up to 35 degrees C only minor amounts of sulfadiazine and transformation products (0.01-0.28% of applied radioactivity) volatilized. Due to direct and indirect photodegradation, the highest extent of mineralization to 14CO2 (3.9%), the formation of degradation products and of nonextractable soil residues was measured in irradiated soil dust experiments using ozone concentrations of 200 ppb. However, even in the dark significant mineralization was observed when ozone was present, indicating ozone-controlled transformation of sulfadiazine to occur at the soil surface.

  12. Predicting root zone soil moisture using surface data

    Science.gov (United States)

    Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J.; Fiorentino, M.

    2012-04-01

    In recent years, much effort has been given to monitoring of soil moisture from satellite remote sensing. These tools represent an extraordinary source of information for hydrological applications, but they only provide information on near-surface soil moisture. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method derives from a simplified form of the soil water balance equation and for this reason all parameters adopted are physically consistent. The formulation provides a closed form of the relationship between the root zone soil moisture and the surface soil moisture with a limited number of parameters, such as: the ratio between the depth of the surface layer and the deeper layer, the water loss coefficient, and the field capacity. The method has been tested using modeled soil moisture obtained from the North American Land Data Assimilation System (NLDAS). The NLDAS is a multi-institution partnership aimed at developing a retrospective data set, using available atmospheric and land surface meteorological observations to compute the land surface hydrological budget. The NLDAS database was extremely useful for the scope of the present research since it provides simulated data over an extended area with different climatic and physical condition and moreover it provides soil moisture data averaged over different depths. In particular, we used values in the top 10 cm and 100 cm layers. One year of simulation was used to test the ability of the developed method to describe soil moisture fluctuation in the 100cm layer over the entire NLDAS domain. The method was adopted by calibrating one of its three parameters and defining the remaining two based on physical characteristics of the site (using the potential evapotranspiration and ratio between the first and the second soil layer depth). In general, the method performed better than

  13. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  14. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  15. Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Botta-Dukát, Zoltán; de Dato, Giovanbattista

    2016-01-01

    and corroborating process-based models. In this study, we evaluated the performance of three empirical temperature–SR response functions (exponential, Lloyd–Taylor and Gaussian) at seven shrublands located within three climatic regions (Atlantic, Mediterranean and Continental) across Europe. We investigated...... that improved the model fit in all cases. The direct soil moisture effect on SR, however, was weak at the annual time scale. We conclude that the exponential soil temperature function may only be a good predictor for SR in a narrow temperature range, and that extrapolating predictions for future climate based...

  16. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  17. Spatial Soil Temperature and Moisture Monitoring Across the Transylvanian Plain, in Romania

    Science.gov (United States)

    Rusu, Teodor; Weindorf, David; Haggard, Beatrix; Moraru, Paula Ioana; Sopterean, Mara Lucia

    2011-01-01

    The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Soil temperatures were monitored at the surface and at 10, 30, and 50 cm depths, and soil moisture was monitored at 10 cm. Preliminary results indicate that most soils of the Transylvanian Plain will have a mesic temperature regime. However, differences in seasonal warming and cooling trends across the plain were noted. These have important implications for planting recommendations. Growing degree days (GDDs) are preferred over maturity ratings, because they can account for temperature anomalies. The crop being considered for this study was corn. The base temperature (BT) was set at 10oC, and the upper threshold was 30oC. Two methods were used to calculate GDDs; 1) minimum and maximum daily temperatures, and 2) 24 h of averaged temperature data. Growing degree days were run from 110-199 day of year (DOY) to represent approximate planting date to tasseling. The DOY that 694 accumulated growing degree days (AGDDs) was reached at each site was then analyzed to identify differences across the TP. Three sites failed to reach 694 AGDDs by DOY 199, and were excluded from comparisons to other results. Averaged values were used to create spline interpolation maps with ArcMap 9.2 (ESRI, Redlands, CA, USA). The southeastern portion of the TP was found to tassel a month earlier assuming a planting date of 109 DOY. Four DeKalb® corn hybrids were then selected based on GDDs to tasseling, drydown, drought tolerance, and insect resistance. With a better understanding of the GDD trends across the TP, more effective planting and harvesting could be accomplished by Romanian farmers to maximize agronomic production.

  18. Hourly variability of soil temperature profile in an orchard of mango trees (Mangifera indica l. in the location of Cuiarana, Salinopolis – PA

    Directory of Open Access Journals (Sweden)

    Romero Thiago Sobrinho Wanzeler

    2016-03-01

    Full Text Available The soil temperature is one of the most important elements in the characterization of a microclimate. The aim of this work was to analyze the temperature profile in the soil, on surfaces with vegetated and non-vegetated soil, checking the average hourly variation of soil temperature at different depths and comparing the soil temperature profiles. The hourly data of soil temperature were measured and collected during the period of 23 at 25 June of 2015, in the experimental site Modesto Rodrigues, in the locality of Cuiarana, Salinopolis-PA. The soil temperature increases from 6h to approximately 14h, and decreases from that time. The highest temperatures occur in non-vegetated soil and the lower temperatures in the vegetated soil, due to the presence of higher humidity in vegetated soil. In the analysis of results, the conclusion is that soil temperature was directly related to solar radiation exposure time, being this kind of information, essential in understanding agro-meteorological and micrometeorological studies.

  19. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    Science.gov (United States)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  20. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Science.gov (United States)

    Porada, Philipp; Ekici, Altug; Beer, Christian

    2017-04-01

    Bryophytes and lichens covering the soil surface at high latitudes act as an insulating layer, which has a net cooling effect on the soil and thereby protects permafrost. Climate change, however, may lead to changes in the average surface coverage of bryophytes and lichens. This can result in thawing of permafrost and an associated release of soil carbon to the atmosphere, which may cause a positive feedback on atmospheric CO2 concentration. Hence, it is crucial to predict the future large-scale response of bryophyte and lichen cover to climatic change at high latitudes. Current global land surface models, however, contain mostly empirical approaches to represent the surface cover of bryophytes and lichens, which makes it difficult to quantify its future extent and dynamics. Therefore, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg). Thereby, we explicitly simulate dynamic thermal properties of the bryophyte and lichen cover and their relation to environmental factors. To quantify the insulating effect of the cover on the soil, we compare simulations with and without simulated bryophyte and lichen cover. We estimate that the bryophyte and lichen cover exerts an average cooling effect of 2.7 K on temperature in the topsoil for the region north of 50o N under current climatic conditions. Locally, a cooling of up to 5.7 K may be reached. Furthermore, we show that using a simple, empirical representation of the bryophyte and lichen cover instead of a dynamic one results only in an average cooling of around 0.5 K. We conclude that bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and that dynamic thermal properties are necessary for a realistic representation of the cooling effect.

  1. Restoring the natural state of the soil surface by biocrusts

    Science.gov (United States)

    Zaady, Eli; Ungar, Eugene D.; Stavi, Ilan; Shuker, Shimshon; Knoll, Yaakov M.

    2017-04-01

    In arid and semi-arid areas, with mean annual precipitation of 70-200 mm, the dominant component of the ground cover is biocrusts composed of cyanobacteria, moss and lichens. Biocrusts play a role in stabilizing the soil surface, which reduces erosion by water and wind. Human disturbances, such as heavy vehicular traffic, earthworks, overgrazing and land mining destroy the soil surface and promote erosion. The aim of the study was to evaluate restoration of the soil surface by the return of a biocrust layer. We examined the impact of disturbances on the creation of a stable crust and on the rate of recovery. Biocrust disturbance was studied in two sites in the northern Negev. The nine treatments included different rates of biocrust inoculum application and NPK fertilization. Recovery rates of the biocrusts were monitored for five years using chemical, physical and bio-physiological tests which determined infiltration rate, soil surface resistance to pressure, shear force of the soil surface, levels of chlorophyll, organic matter and polysaccharide, NDVI and aggregate stability. The results show that untreated disturbed biocrusts present long-term damage and a very slow rate of recovery, which may take decades, while most of the treatments showed a faster recovery. In particular, NDVI, polysaccharide levels and aggregate stability showed steady improvements over the research period.

  2. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1992-01-01

    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  3. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  4. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Science.gov (United States)

    Koster, Randal D.; Mahanama, P. P.

    2012-01-01

    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  5. State-space approach for the analysis of soil water content and temperature in a sugarcane crop

    Directory of Open Access Journals (Sweden)

    Dourado-Neto Durval

    1999-01-01

    Full Text Available The state-space approach is used to describe surface soil water content and temperature behaviour, in a field experiment in which sugarcane is submitted to different management practices. The treatments consisted of harvest trash mulching, bare soil, and burned trash, all three in a ratoon crop, after first cane harvest. One transect of 84 points was sampled, meter by meter, covering all treatments and borders. The state-space approach is described in detail and the results show that soil water contents measured along the transect could successfully be estimated from water content and temperature observations made at the first neighbour.

  6. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems

    Science.gov (United States)

    Ding, Jinzhi; Chen, Leiyi; Zhang, Beibei; Liu, Li; Yang, Guibiao; Fang, Kai; Chen, Yongliang; Li, Fei; Kou, Dan; Ji, Chengjun; Luo, Yiqi; Yang, Yuanhe

    2016-09-01

    Our knowledge of fundamental drivers of the temperature sensitivity (Q10) of soil carbon dioxide (CO2) release is crucial for improving the predictability of soil carbon dynamics in Earth System Models. However, patterns and determinants of Q10 over a broad geographic scale are not fully understood, especially in alpine ecosystems. Here we addressed this issue by incubating surface soils (0-10 cm) obtained from 156 sites across Tibetan alpine grasslands. Q10 was estimated from the dynamics of the soil CO2 release rate under varying temperatures of 5-25°C. Structure equation modeling was performed to evaluate the relative importance of substrate, environmental, and microbial properties in regulating the soil CO2 release rate and Q10. Our results indicated that steppe soils had significantly lower CO2 release rates but higher Q10 than meadow soils. The combination of substrate properties and environmental variables could predict 52% of the variation in soil CO2 release rate across all grassland sites and explained 37% and 58% of the variation in Q10 across the steppe and meadow sites, respectively. Of these, precipitation was the best predictor of soil CO2 release rate. Basal microbial respiration rate (B) was the most important predictor of Q10 in steppe soils, whereas soil pH outweighed B as the major regulator in meadow soils. These results demonstrate that carbon quality and environmental variables coregulate Q10 across alpine ecosystems, implying that modelers can rely on the "carbon-quality temperature" hypothesis for estimating apparent temperature sensitivities, but relevant environmental factors, especially soil pH, should be considered in higher-productivity alpine regions.

  7. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  8. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  9. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  10. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  11. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  12. Some Chytridiomycota in soil recover from drying and high temperatures.

    Science.gov (United States)

    Gleason, Frank H; Letcher, Peter M; McGee, Peter A

    2004-05-01

    Rhizophlyctis rosea was found in 44% of 59 soil samples from national parks, urban reserves and gardens, and agricultural lands of eastern New South Wales, Australia. As some of the soils are periodically dry and hot, we examined possible mechanisms that enable survival in stressful environments such as agricultural lands. Air-dried thalli of R. rosea in soil and pure cultures of R. rosea, two isolates of Allomyces anomalus, one isolate of Catenaria sp., one of Catenophlyctis sp. and one of Spizellomyces sp. recovered following incubation at 90 degrees C for two days. Powellomyces sp. recovered following incubation at 80 degrees. Sporangia of all seven fungi shrank during air-drying, and immediately returned to turgidity when rehydrated. Some sporangia of R. rosea released zoospores immediately upon rehydration. These data indicate that some Chytridiomycota have resistant structures that enable survival through periodic drying and high summer temperatures typical of soils used for cropping. Eleven Chytridiomycota isolated from soil did not survive either drying or heat. Neither habitat of the fungus nor morphological type correlated with the capacity to tolerate drying and heat.

  13. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    Energy Technology Data Exchange (ETDEWEB)

    Neher, Deborah A. [University of Vermont

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  14. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    Science.gov (United States)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  15. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.

  16. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation.The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data assimilation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in consideration of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process,while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heterogeneity and soil water thawing and freezing. With the improvement of soil moisture simulation,the soil temperature-simulated precision can be also improved to some extent.

  17. Development of a land surface model with coupled snow and frozen soil physics

    Science.gov (United States)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  18. A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature

    Institute of Scientific and Technical Information of China (English)

    JIA BingHao; XIE ZhengHui; TIAN XiangJun; SHI ChunXiang

    2009-01-01

    This study presents a soil moisture assimilation scheme,which could assimilate microwave brightness temperature directly,based on the ensemble Kalman filter and the shuffled complex evolution method (SCE-UA).It uses the soil water model of the land surface model CLM3.0 as the forecast operator,and a radiative transfer model (RTM) as the observation operator in the assimilation system.The assimilation scheme is implemented in two phases:the parameter calibration phase and the pure soil moisture assimilation phase.The vegetation optical thickness and surface roughness parameters in the RTM are calibrated by SCE-UA method and the optimal parameters are used as the final model parameters of the observation operator in the assimilation phase.The ideal experiments with synthetic data indicate that this scheme could significantly improve the simulation of soil moisture at the surface layer.Furthermore,the estimation of soil moisture in the deeper layers could also be improved to a certain extent.The real assimilation experiments with AMSR-E brightness temperature at 10.65 GHz (vertical polarization) show that the root mean square error (RMSE) of soil moisture in the top layer (0-10 cm) by asms.msimilation is 0.03355 m~3·m~(-3),which is reduced by 33.6% compared with that by simulation (0.05052m~3·m~(-3)).The mean RMSE by assimilation for the deeper layers (10-50 cm) is also reduced by 20.9%.All these experiments demonstrate the reasonability of the assimilation scheme developed in this study.

  19. A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This study presents a soil moisture assimilation scheme, which could assimilate microwave brightness temperature directly, based on the ensemble Kalman filter and the shuffled complex evolution method (SCE-UA). It uses the soil water model of the land surface model CLM3.0 as the forecast operator, and a radiative transfer model (RTM) as the observation operator in the assimilation system. The assimilation scheme is implemented in two phases: the parameter calibration phase and the pure soil moisture assimilation phase. The vegetation optical thickness and surface roughness parameters in the RTM are calibrated by SCE-UA method and the optimal parameters are used as the final model parameters of the observation operator in the assimilation phase. The ideal experiments with synthetic data indicate that this scheme could significantly improve the simulation of soil moisture at the surface layer. Further- more, the estimation of soil moisture in the deeper layers could also be improved to a certain extent. The real assimilation experiments with AMSR-E brightness temperature at 10.65 GHz (vertical polariza- tion) show that the root mean square error (RMSE) of soil moisture in the top layer (0―10 cm) by as- similation is 0.03355 m3·m-3, which is reduced by 33.6% compared with that by simulation (0.05052 m3·m-3). The mean RMSE by assimilation for the deeper layers (10―50 cm) is also reduced by 20.9%. All these experiments demonstrate the reasonability of the assimilation scheme developed in this study.

  20. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  1. Impact of Some Agronomic Practices on Paddy Field Soil Health Under Varied Ecological Conditions:II.Influence of Soil Temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 21-d incubation experiment was conducted under controlled laboratory conditions to study the effects of elevated temperatures (10,25,and 40 ℃) on some microbiological and biochemical properties in flooded paddy soil amended or unamended with urea at 100 μg N g-1 soil and/or insecticide (triazophos) at field rate (FR).Enhancements in temperature led to increase the electron transport system (ETS)/dehydrogenase activity and phospholipid contents of the soil,while soil organic matter phenol and protein contents decreased with increasing temperature with or without the addition of inputs.An increase of temperature from 10 ℃ to 25 or 40 ℃ enhanced the ETS activity 2 folds (on average for all soils),while the inclusion of N and insecticide increased and decreased it,respectively,compared to the control.The soil phenol and protein contents were highly correlated with temperatures (for all soils,r = -0.936 and -0.971,respectively) and the additions of N and insecticide produced slight reductions and enhancements in them,respectively.At a particular temperature,the soil protein contents remained unaffected among all the soil treatments.An overall slight increase in phospholipid contents with N and a small decline with insecticide addition were noticed against the untreated soil.The toxicity of fertilizer and insecticide decreased as the incubation temperature increased,suggesting faster degradation of agrochemicals with raising temperature.

  2. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  3. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  4. Degradation of metaflumizone in soil: impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization.

    Science.gov (United States)

    Chatterjee, Niladri Sekhar; Gupta, Suman; Varghese, Eldho

    2013-01-01

    Soil is a major sink for the bulk of globally used pesticides. Hence, fate of pesticides in soil under the influence of various biotic and abiotic factors becomes important for evaluation of stability and safety. This paper presents the impact of varying moisture, light, temperature, atmospheric CO(2) level, soil type and soil sterilization on degradation of metaflumizone, a newly registered insecticide in India. Degradation of metaflumizone in soil followed the first order reaction kinetics and its half life values varied from ~20 to 150 d. Under anaerobic condition, degradation of metaflumizone was faster (t(½) 33.4 d) compared to aerobic condition (t(½) 50.1 d) and dry soil (t(½) 150.4 d). Under different light exposures, degradation was the fastest under UV light (t(½) 27.3 d) followed by Xenon light (t(½) 43 d) and dark condition (t(½) 50.1 d). Degradation rate of metaflumizone increased with temperature and its half life values ranged from 30.1 to 100.3d. Elevated atmospheric CO(2) level increased the degradation in soil (t(½) 20.1-50.1 d). However, overall degradation rate was the fastest at 550 ppm atmospheric CO(2) level, followed by 750 ppm and ambient level (375 ppm). Degradation of metaflumizone was faster in Oxisol (pH 5.2, Total Organic Carbon 1.2%) compared to Inceptisol (pH 8.15, TOC 0.36%). In sterile soil, only 5% dissipation of initial concentration was observed after 90 d of sampling. Under various conditions, 4-cyanobenzoic acid (0.22-1.86 mg kg(-1)) and 4-trifluoromethoxy aniline (0.21-1.23 mg kg(-1)) were detected as major degradation products.

  5. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    Science.gov (United States)

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (Psoil organic carbon concentration (r=0.838, Psoil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  6. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  7. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Science.gov (United States)

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  8. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  9. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  10. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  11. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied (13) C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R(2)  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.

  12. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    to gas recovery at smaller and older landfills in northern Europe. Equations have been developed that describe the dependency of temperature and soil moisture content for each soil. The oxidation rates depended significantly on the soils (and thereby organic matter content), temperature, and soil...... moisture content. Soil moisture was the most important factor. However, high Q(10) values indicate that temperature also was important. The four soils tested had optimum soil moisture content between 11 and 32%. At increasing organic matter content, both the optimal soil moisture content and the maximum...... cannot be extrapolated to soils exposed to high methane concentrations. Four sandy soils with different organic matter content (1-9% w/w) from two landfills in Denmark were investigated in batch experiments in the laboratory to determine the response of methane oxidation at low temperatures and different...

  13. Elevated soil CO2 efflux at the boundaries between impervious surfaces and urban greenspaces

    Science.gov (United States)

    Wu, XiaoGang; Hu, Dan; Ma, ShengLi; Zhang, Xia; Guo, Zhen; Gaston, Kevin J.

    2016-09-01

    Impervious surfaces and greenspaces have significant impacts on ecological processes and ecosystem services in urban areas. However, there have been no systematic studies of how the interaction between the two forms of land cover, and especially their edge effects, influence ecosystem properties. This has made it difficult to evaluate the effectiveness of urban greenspace design in meeting environmental goals. In this study, we investigated edge effects on soil carbon dioxide (CO2) fluxes in Beijing and found that soil CO2 flux rates were averagely 73% higher 10 cm inwards from the edge of greenspaces. Distance, soil temperature, moisture, and their interaction significantly influenced soil CO2 flux rates. The magnitude and distance of edge effects differed among impervious structure types. Current greening policy and design should be adjusted to avoid the carbon sequestration service of greenspaces being limited by their fragmentation.

  14. Impacts of Soil Temperature and Moisture Change on Soil Carbon Dynamics in the Alaskan Yukon River Basin - From the Perspective of Vertical Distribution

    Science.gov (United States)

    Tao, B.; Liu, S.; Tan, Z.; Tieszen, L.; Hansen, M.

    2008-12-01

    Boreal ecosystems are experiencing rapid climate change and land surface disturbances (e.g., fires and insect outbreaks), which have triggered substantial changes in ecosystem structure and functions, biogeochemical cycle, and land surface processes. These changes in turn have major implications to the changes of regional and climate systems. There is an urgent need to develop robust process-based land surface modeling systems that can simulate the responses of many poorly understood but fast-changing soil processes in the region. In this study, we improved the soil physics module in the Erosion-Deposition-Carbon Model (EDCM), mainly following the algorithms in the Integrated BIosphere Simulator (IBIS), to simulate historical and future changes of soil temperature, moisture, active layer thickness, permafrost depth, and their impacts on organic layer and soil carbon dynamics from two boreal forest sites in the Alaskan Yukon River Basin. We used a multi-snow-soil-layer model structure to represent the vertical profiles of soil properties and processes. Our results showed more soil carbon emission than the single-soil-layer models predicted under future climate change scenarios. A multi-soil-layer model has to be used in the northern high latitudes to predict the fate of deep soil organic matter, organic layer thickness, and degradation of permafrost. At the site scale, major uncertainties for model development and characterization of the responses of vegetation and soils to future climate change include vegetation succession, transitional vegetation rooting depth change, root mortality, and fire intensity and frequency. Additional intensive site studies and remote sensing research have to be conducted to address some of the uncertainties in order to apply the model at the regional scale.

  15. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration

    Science.gov (United States)

    Wang, J.; Parolari, A.; Huang, S. Y.

    2014-12-01

    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  16. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    Science.gov (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  17. Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill

    Directory of Open Access Journals (Sweden)

    Maarit Niemi

    2014-08-01

    Full Text Available A landfill site in southern Finland was converted into urban green space by covering it with a layer of fresh forest humus transferred from nearby construction sites. The aim was to develop the 70 m high artificial hill into a recreational area with high biodiversity of flora and fauna. Forest humus was used as a source of organic matter, plant roots, seeds, soil fauna and microorganisms in order to enable rapid regeneration of diverse vegetation and soil biological functions. In this study we report the results of three years of monitoring of soil enzyme activity and plant species compositional patterns. Monthly soil samples were taken each year between June and September from four sites on the hill and from two standing reference forests using three replicate plots. Activities of 10 different enzymes, soil organic matter (SOM content, moisture, pH and temperature of the surface layer were monitored. Abundances of vascular plant species were surveyed on the same four hill sites between late May and early September, three times a season in 2004 and 2005. Although the addition of organic soil considerably increased soil enzyme activities (per dw, the activities at the covered hill sites were far lower than in the reference forests. Temporal changes and differences between sites were analysed in more detail per soil organic matter (SOM in order to reveal differences in the quality of SOM. All the sites had a characteristic enzyme activity pattern and two hill sites showed clear temporal changes. The enzyme activities in uncovered topsoil increased, whereas the activities at the covered Middle site decreased, when compared with other sites at the same time. The different trend between Middle and North sites in enzyme activities may reflect differences in humus material transferred to these sites, but difference in the succession of vegetation affects enzyme activities strongly. Middle yielded higher β-sitosterol content in 2004, as an indication

  18. Denitrification 'hot spots' in soil following surface residue application

    Science.gov (United States)

    Kuntz, Marianne; Morley, Nicholas J.; Hallett, Paul D.; Watson, Christine; Baggs, Elizabeth M.

    2015-04-01

    The availability of organic C is an important driver for the production and reduction of the greenhouse gas nitrous oxide (N2O) during denitrification. Denitrification as a response to plant residue amendments to soil surfaces has been extensively researched. However, the nature of hotspot sites of N2O production and reduction within the soil profile, especially in relation to the location of applied residues, is unknown. In a laboratory experiment we investigated the relationship between denitrifier N2O surface fluxes and N2O production and reduction sites. Probes which equilibrate with the soil gas phase by diffusion were developed to quantify denitrification products and product ratios at 1-2 cm, 4.5-5.5 cm or 8-9 cm from the surface. 13C labelled barley straw was incorporated at rates of 0, 2 and 4 t ha-1 into the top 3 cm of soil and subsequently amended with 14NH415NO3. In a three week experiment the soil gas phase at the three depths was analysed for 15N-N2O, 15N-N2, 13C-CO2 and O2 concentrations. Additionally, cores were destructively sampled for mineral 15N as well as microbial C and dissolved C in the respective depths. 15N-N2O and CO2 surface fluxes peaked one day after N application, with residue application resulting in significantly higher 15N-N2O emission rates compared to the non-amended control. The timing of the 15N-N2O surface flux on day 1 was related to maximum 15N-N2O concentrations of 36.6 μg 15N L-1 within the pore space at 5 cm depth. Three days after fertilizer application 15N-N2O pore space concentrations had significantly increased to 193 μg 15N L-1 at 9 cm depth indicating denitrifier activity at greater depth. Denitrification below the soil surface could be explained by increased microbial activity, oxygen depletion with increasing depth and progressive downwards diffusion of fertilizer NO3-. However, C availability appeared to only affect denitrification in the surface layer in which the residue was incorporated. Our results provide

  19. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  20. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Directory of Open Access Journals (Sweden)

    W. Sun

    2015-07-01

    Full Text Available Soil exchange of carbonyl sulfide (COS is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments, but not explicitly resolved diffusion in the soil column. We developed a 1-D diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP, OK, USA and an oak woodland (Stunt Ranch Reserve, CA, USA. The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled, and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  1. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Science.gov (United States)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-10-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  2. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness

    NARCIS (Netherlands)

    Martins Bento, Celia; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; Dam, van Ruud; Zomer, Paul; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16 mg kg− 1

  3. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness

    NARCIS (Netherlands)

    Martins Bento, Celia; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; Dam, van Ruud; Zomer, Paul; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16 mg kg− 1

  4. Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature Forecasts

    Science.gov (United States)

    Koster, R. D.; Walker, G. K.

    2015-01-01

    The time scales that characterize the variations of vegetation phenology are generally much longer than those that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which both soil moisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2) an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the forecasts. Evaluating the monthly forecasts of air temperature in each ensemble against observations, as well as quantifying the inherent predictability of temperature within each ensemble, shows that dynamic phenology can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed by that of soil moisture.

  5. Enhancement of chromate reduction in soils by surface modified biochar.

    Science.gov (United States)

    Mandal, Sanchita; Sarkar, Binoy; Bolan, Nanthi; Ok, Yong Sik; Naidu, Ravi

    2017-01-15

    Chromium (Cr) is one of the common metals present in the soils and may have an extremely deleterious environmental impact depending on its redox state. Among two common forms, trivalent Cr(III) is less toxic than hexavalent Cr(VI) in soils. Carbon (C) based materials including biochar could be used to alleviate Cr toxicity through converting Cr(VI) to Cr(III). Incubation experiments were conducted to examine Cr(VI) reduction in different soils (Soil 1: pH 7.5 and Soil 2: pH 5.5) with three manures from poultry (PM), cow (CM) and sheep (SM), three respective manure-derived biochars (PM biochar (PM-BC), CM biochar (CM-BC) and SM biochar (SM-BC)) and two modified biochars (modified PM-BC (PM-BC-M) and modified SM-BC (SM-BC-M)). Modified biochar was synthesized by incorporating chitosan and zerovalent iron (ZVI) during pyrolysis. Among biochars, highest Cr(VI) reduction was observed with PM-BC application (5%; w/w) (up to 88.12 mg kg(-1); 45% reduction) in Soil 2 (pH 5.5). The modified biochars enhanced Cr(VI) reduction by 55% (SM-BC-M) compared to manure (29%, SM) and manure-derived biochars (40% reduction, SM-BC). Among the modified biochars, SM-BC-M showed a higher Cr(VI) reduction rate (55%) than PM-BC-M (48%) in Soil 2. Various oxygen-containing surface functional groups such as phenolic, carboxyl, carbonyl, etc. on biochar surface might act as a proton donor for Cr(VI) reduction and subsequent Cr(III) adsorption. This study underpins the immense potential of modified biochar in remediation of Cr(VI) contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Soil surface sealing reverse or promote desertification?

    Science.gov (United States)

    Assouline, Shmuel; Thompson, Sally; Chen, Li; Svoray, Tal; Sela, Shai; Katul, Gabriel

    2016-04-01

    Vegetation cover in dry regions is a key variable determining desertification. Bare soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here, it is shown how physical crusts can act as either drivers of, or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research (LTER) site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  7. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  8. Daytime and nighttime groundwater contributions to soils with different surface conditions

    Science.gov (United States)

    Xing, Xuguang; Ma, Xiaoyi; Shi, Wenjuan

    2015-12-01

    Contributions of groundwater to the soil-water balance play an important role in areas with shallow water tables. The characteristics of daytime and nighttime water flux using non-weighing lysimeters were studied from June to September 2012 and 2013 in the extremely arid Xinjiang Uyghur Autonomous Region in northwestern China. The study consisted of nine treatments: three surface conditions, bare soil and cotton plants, each with water tables at depths of 1.0, 1.5, and 2.0 m; and plastic mulch with a water table at 1.5 m but with three percentages of open areas (POAs) in the plastic. The groundwater supply coefficient (SC) and the groundwater contribution (GC) generally varied with surface conditions. Both SC and GC decreased in the bare-soil and cotton treatments with increasing depth of the groundwater. Both SC and GC increased in the plastic-mulch treatment with increasing POA. Average nighttime GCs in the bare-soil treatments in July and August (the midsummer months) were 50.8-60.8 and 53.2-65.3 %, respectively, of the total daily contributions. Average nighttime GCs in the cotton treatments in July and August were 51.4-60.2 and 51.5-58.1 %, respectively, of the total daily contributions. The average GCs in June and September, however, were lower at night than during the daytime. Soil temperature may thus play a more important role than air temperature in the upflow of groundwater.

  9. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Michele Freppaz

    2011-02-01

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  10. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  11. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet

    Institute of Scientific and Technical Information of China (English)

    HU Heping; YE Baisheng; ZHOU Yuhua; TIAN Fuqiang

    2006-01-01

    Land surface process is of great importance in global climate change,moisture and heat exchange in the interface of the earth and atmosphere,human impacts on the environment and ecosystem,etc.Soil freeze/thaw plays an important role in cold land surface processes.In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied.A sophisticated land surface model is developed,the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux.The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil,but also demonstrates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone,which makes the model applicable for various circumstances.The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme.Finally,the model is applied to analyze the diurnal energy and water cycle characteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998.Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently,in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period,ground heat flux increases,and sensible heat flux decreases,but latent heat flux does not change much; and (iv) during freezing period,soil temperature decreases,though ground heat flux increases.

  12. Vanadium Trineodecanoate Promoter for Fiberglass-Polyester Soil Surfacings.

    Science.gov (United States)

    1980-06-01

    surfaces for soils consists of a polyester resin, cumene hydroperoxide catalyst and a promoter solution containing a vanadium salt and N,N-dimethyl-p-tolui...4 Synthesis of Vanadium Trineodecanoate .. .... ......... 4 Reactions Using Various Reagents. ..... ........... 4 Analysis of Vanadium...polymer system consists of a polyester resin, a peroxide cata- lyst ( cumene hydroperoxide) and a two-part, premixed, promoter solution. The promoter

  13. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Science.gov (United States)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  14. Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil.

    Science.gov (United States)

    Schafer, Alexis N; Snape, Ian; Siciliano, Steven D

    2009-07-01

    Fuel spills in Antarctica typically occur in rare ice-free oases along the coast, which are areas of extreme seasonal freezing. Spills often occur at subzero temperatures, but little is known of ecosystem sensitivity to pollutants, in particular the influence that soil liquid water and low temperature have on toxicity of petroleum hydrocarbons (PHC) in Antarctic soil. To evaluate PHC toxicity, 32 locations at an aged diesel spill site in Antarctica were sampled nine times to encompass frozen, thaw, and refreeze periods. Toxicity was assessed using potential activities of substrate-induced respiration, basal respiration, nitrification, denitrification, and metabolic quotient as well as microbial community composition and bacterial biomass. The most sensitive indicator was community composition with a PHC concentration effecting 25% of the population (EC25) of 800 mg/kg, followed by nitrification (2,000 mg/kg), microbial biomass (2,400 mg/kg), and soil respiration (3,500 mg/kg). Despite changes in potential microbial activities and composition over the frozen, thaw, and refreeze period, the sensitivity of these endpoints to PHC did not change with liquid water or temperature. However, the variability associated with ecotoxicity data increased at low liquid water contents. As a consequence of this variability, highly replicated (n = 50) experiments are needed to quantify a 25% ecological impairment by PHCs in Antarctic soils at a 95% level of significance. Increases in biomass and respiration associated with changes in community composition suggest that PHC contamination in Antarctic soils may have irrevocable effects on the ecosystem.

  15. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinghuan; ZENG Jianhui; HE Mengchang

    2009-01-01

    Adsorption experiments were carried out to investigate the sorption behaviors of naphthalene and phenanthrene in six different soils and to determine the effects of temperature, linear alkylbenzene sulfonate (LAS) and cetylrimethyl ammonium bromide (CTAB) on sorption. The results show that for a given sorbent phenanthrene exhibited greater nonlinear and stronger sorption than naphthalene. There was a strong negative correlation for the Koc values with organic carbon content (foc). The increase of temperature was not favorable to sorption. Sorption decreased along with the increasing aqueous LAS concentration from 0 to 1000 mg/L. At low CTAB concentration (< 100 mg/L), the adsorption increased as CTAB hemimicelles formed on the soil surface. At high concentration, CTAB decreased the adsorption by occupying active hydrophobic adsorption sites and solubilization of naphthalene and phenanthrene.

  16. Space Weathering Effects in Lunar Soils: The Roles of Surface Exposure Time and Bulk Chemical Composition

    Science.gov (United States)

    Zhang, Shouliang; Keller, Lindsay P.

    2011-01-01

    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).

  17. Soil Surface Leak Detection From Carbon Storage Sites Using ∆(CO2:O2) Measurements

    Science.gov (United States)

    Alam, M. M.; Norman, A. L.; Layzell, D. B.

    2015-12-01

    The early detection and remediation of CO2 leaks from Carbon Capture and Storage (CCS) sites is essential for the safety and public support of the technology. A model that integrates gas diffusion, mass flow and biological processes in soils was developed and used to predict the ∆CO2 and ∆O2 concentration differential between the soil surface and the bulk atmosphere under a wide range of environmental conditions that include temperature, soil gas and water content, soil respiratory quotient and rate of O2 uptake, soil porosity and CO2 leakage rate. The results predicted that measurement of ∆(CO2:O2) measurements at the soil surface relative to air should be able to detect a CCS leak as low as 2 µmol/m2/sec. To test this hypothesis, a gas analysis system was designed and constructed. It should allow a series of experiments under controlled conditions to test all aspects of the model. It is hoped that the results from this work will ultimately lead to the development of a new instrument and protocol for the early detection of CO2 leaks from a geological storage sites.

  18. Degradation and Sorption of Imidacloprid in Dissimilar Surface and Subsurface Soils

    Science.gov (United States)

    Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. Once pesticides move past the surface soil layers, subsurface soil physical, chemical, and biological properties significantly affect pesticide fate and the potential for groundwater contam...

  19. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  20. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    Science.gov (United States)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  1. Effect of climate change on soil temperature in Swedish boreal forests.

    Science.gov (United States)

    Jungqvist, Gunnar; Oni, Stephen K; Teutschbein, Claudia; Futter, Martyn N

    2014-01-01

    Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.

  2. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  3. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  4. A Brightness-Temperature-Variance-Based Passive Microwave Algorithm for Monitoring Soil Freeze/Thaw State on the Tibetan Plateau

    Science.gov (United States)

    Han, M.; Yang, K.; Qin, J.; Jin, R.; Ma, Y.; Wen, J.; Chen, Y.; Zhao, L.; La, Z.; Tang, W.

    2014-12-01

    The land surface on the Tibetan Plateau experiences typical diurnal and seasonal freeze/thaw processes that play important roles in the regional water and energy exchanges, and recent passive microwave satellites provide opportunities to detect the soil state for the unique region. With the support of three soil moisture and temperature networks in the Tibetan Plateau, a dual-index microwave algorithm with AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) data is developed for the detection of soil surface freeze/thaw state. One index is the standard deviation index (SDI) of brightness temperature (TB), which is defined as the standard deviation of horizontally polarized brightness temperatures at all AMSR-E frequencies. It is the major index and is used to reflect the reduction of liquid water content after soils get frozen. The other index is the 36.5 GHz vertically-polarized brightness temperature, which is linearly correlated with ground temperature and thus is utilized to detect it. The threshold values of the two indices (SDI and the brightness temperature at 36.5 GHz vertically-polarized) are determined based on a part of in situ data from the network located in a semi-arid climate, and the algorithm was validated against other in situ data from this network. Further validations were conducted based on the other two networks located in different climates (semi-humid and arid, respectively). Results show that this algorithm has accuracy of more than 90% for the semi-humid and semi-arid regions, and misclassifications mainly occur at the transition period between unfrozen and frozen seasons. Nevertheless, the microwave signals have limited capability in identifying the soil surface freeze/thaw state in the arid region, because they can penetrate deep dry soils and thus embody the bulk information beneath the surface.

  5. Elevated CO2 and temperature increase soil C losses from a soy-maize ecosystem

    Science.gov (United States)

    Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for three years within the 9th-11th ...

  6. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  7. Computer Implementation of the Bounding Surface Plasticity Model for Cohesive Soils.

    Science.gov (United States)

    1983-12-01

    23 REFERENCES 1. Dafalias, Y.F., and L.R. Herrmann, "A Bounding Surface Soil Plasticity Model", Proceedings of the International Symposium of Soils...Herrmann, "Bounding Surface Formulatin of Soil Plasticity ", Chapter in Soil Mechanics - Transient and Cyclic Loads, John Wiley and Sons, Eds. O.C...Herrmann and Y.F. r)afalias, "User’s Manual for MODCAL-Bounding Surface Soil Plasticity Model Calibration and Prediction Code (Volume I)," Civil

  8. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation

    Directory of Open Access Journals (Sweden)

    X. K. Shi

    2009-02-01

    Full Text Available As the satellite microwave remote sensed brightness temperature is sensitive to land surface soil moisture (SM and SM is a basic output variable in model simulation, it is of great significance to use the brightness temperature data to improve SM numerical simulation. In this paper, the theory developed by Yan et al. (2004 about the relationship between satellite microwave remote sensing polarization index and SM was used to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System brightness temperature data. With consideration of land surface soil texture, surface roughness, vegetation optical thickness, and the AMSR-E monthly SM products, the regional daily land surface SM was estimated over the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM is lower than the ground measurements and the NCEP (American National Centers for Environmental Prediction reanalysis data at the Maqu Station (33.85° N, 102.57° E and the Tanglha Station (33.07° N, 91.94° E, but its regional distribution is reasonable and somewhat better than that from the daily AMSR-E SM product, and its temporal variation shows a quick response to the ground daily precipitations. Furthermore, in order to improve the simulating ability of the WRF (Weather Research and Forecasting model to land surface SM, the estimated SM was assimilated into the Noah land surface model by the Newtonian relaxation (NR method. The results indicate that, by fine tuning of the quality factor in NR method, the simulated SM values are improved most in desert area, followed by grassland, shrub and grass mixed zone. At temporal scale, Root Mean Square Error (RMSE values between simulated and observed SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and the Tanglha Station, respectively.

  9. NH 3 soil and soil surface gas measurements in a triticale wheat field

    Science.gov (United States)

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  10. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.

    Science.gov (United States)

    Lohwacharin, J; Takizawa, S; Punyapalakul, P

    2015-10-01

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns.

  11. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  12. Station for spatially distributed measurements of soil moisture and ambient temperature

    Science.gov (United States)

    Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan

    2013-04-01

    Third generation of combined thermal and soil moisture standalone field station coded TMS3 with wireless communication is presented. The device combines three thermometers (MAXIM/DALLAS Semiconductor DS7505U with -55 to +125°C range and 0.0625°C resolution, 0.5°C precision in 0 to +70°C range and 2°C precision out of this range). Soil moisture measurement is performed based on time domain transmission (TDT) principle for the full range of soil moisture with 0.025% resolution within the full possible soil moisture span for the most typical conditions of dry to saturated soils with safe margins to enable measurements in freezing, hot or saline soils. Principal compact version is designed for temperature measurements approximately at heights -10, 0 and +15 cm relative to soil surface when installed vertically and soil moisture measurements between 0 and 12 cm below surface. Set of buriable/subsurface stations each with 2.2 meter extension cord with soil and surface temperature measurement provides possibility to scan vertical soil profile for soil moisture and temperature at desired depths. USB equipped station is designed for streamed direct data acquisition in laboratory use in 1s interval. Station is also equipped with the shock sensor indicating the manipulation. Presented version incorporates life time permanent data storage (0.5 million logs). Current sensor design aims towards improved durability in harsh outdoor environment with reliable functioning in wet conditions withstanding mechanical or electric shock destruction. Insertion into the soil is possible by pressing with the use of a simple plastic cover. Data are retrieved by contact portable pocket collector (second generation) or by RFID wireless communication for hundreds meter distance (third generation) in either star pattern of GSM hub to stations or lined up GSM to station to another station both in comprised data packets. This option will allow online data harvesting and real time process

  13. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl;

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...... is based on a SICK LMS111 laser range scanner....

  14. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    Science.gov (United States)

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (pcities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision

  15. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  16. A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data

    NARCIS (Netherlands)

    Jia, L.; Li, Z.L.; Menenti, M.; Su, Z.; Verhoef, W.; Wan, Z.

    2003-01-01

    An operational algorithm is proposed to retrieve soil and foliage component temperatures over heterogeneous land surface based on the analysis of bi-angular multi-spectral observations made by ATSR-2. Firstly, on the basis of the radiative transfer theory in a canopy, a model is developed to infer t

  17. Microwave brightness temperature and thermal inertia - towards synergistic method of high-resolution soil moisture retrieval

    Science.gov (United States)

    Lukowski, Mateusz; Usowicz, Boguslaw; Sagan, Joanna; Szlazak, Radoslaw; Gluba, Lukasz; Rojek, Edyta

    2017-04-01

    Soil moisture is an important parameter in many environmental studies, as it influences the exchange of water and energy at the interface between the land surface and the atmosphere. Accurate assessment of the soil moisture spatial and temporal variations is crucial for numerous studies; starting from a small scale of single field, then catchment, mesoscale basin, ocean conglomeration, finally ending at the global water cycle. Despite numerous advantages, such as fine accuracy (undisturbed by clouds or daytime conditions) and good temporal resolution, passive microwave remote sensing of soil moisture, e.g. SMOS and SMAP, are not applicable to a small scale - simply because of too coarse spatial resolution. On the contrary, thermal infrared-based methods of soil moisture retrieval have a good spatial resolution, but are often disturbed by clouds and vegetation interferences or night effects. The methods that base on point measurements, collected in situ by monitoring stations or during field campaigns, are sometimes called "ground truth" and may serve as a reference for remote sensing, of course after some up-scaling and approximation procedures that are, unfortunately, potential source of error. Presented research concern attempt to synergistic approach that join two remote sensing methods: passive microwave and thermal infrared, supported by in situ measurements. Microwave brightness temperature of soil was measured by ELBARA, the radiometer at 1.4 GHz frequency, installed at 6 meters high tower at Bubnow test site in Poland. Thermal inertia around the tower was modelled using the statistical-physical model whose inputs were: soil physical properties, its water content, albedo and surface temperatures measured by an infrared pyrometer, directed at the same footprint as ELBARA. The results coming from this method were compared to in situ data obtained during several field campaigns and by the stationary agrometeorological stations. The approach seems to be

  18. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  19. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  20. Fate and Disposition of Trichloroethylene in Surface Soils.

    Science.gov (United States)

    1984-01-01

    due to inges- tion of TCE has produced symptoms of gastrointestinal upset, narcosis , and occasional cardiac abnormalities. Reports indicate these...activity up to a point, while a decrease in temperature can curtail activity. Nitrogen is the key nutrient required to decompose organic matter. If the...soil is high in readily available nitrogen , then the microorganisms need no additional source. Conversely, sub- strates with low nitrogen content may

  1. Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert.

    Science.gov (United States)

    Waldon, H B; Jenkins, M B; Virginia, R A; Harding, E E

    1989-12-01

    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36 degrees C than at 26 degrees C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26 degrees C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth

  2. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State

    Science.gov (United States)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.

    2015-12-01

    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  3. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    DEFF Research Database (Denmark)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino;

    2010-01-01

    ) by covering the vegetation during the night (Warming treatment) and during rain events (Drought treatment). Soil CO2 effluxes were monitored in the treatments and compared to a control over a 3-year period. Along with soil respiration measurements, we recorded soil temperature at 5 cm depth by a soil...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...

  4. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed......; shaded and sunlit canopy and background, respectively. Given data on vegetation structure and density, the model estimates the fractions of the four components as well as the directional composite temperature in the view of a sensor, given the illumination and viewing geometry. The modeling results show...

  5. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  6. Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field

    NARCIS (Netherlands)

    Bryla, D.R.; Bouma, T.J.; Hartmond, U.; Eissenstat, D.M.

    2001-01-01

    In citrus, the majority of fine roots are distributed near the soil surface - a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant's below-ground respiratory costs,

  7. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation

    Science.gov (United States)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; Ricciuto, Daniel; Hanson, Paul J.; Luo, Yiqi

    2017-08-01

    Accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers, the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.

  8. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  9. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  10. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  11. The use of artificial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey

    OpenAIRE

    BİLGİLİ, Mehmet

    2014-01-01

    The objective of this paper was to develop an artificial neural network (ANN) model in order to predict monthly mean soil temperature for the present month by using various previous monthly mean meteorological variables. For this purpose, the measured soil temperature and other meteorological data between the years of 2000 and 2007 at Adana meteorological station were used. The soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the ground level by the Turkish State M...

  12. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  13. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  14. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  15. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  16. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  17. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  18. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  19. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar.

    Science.gov (United States)

    Verhoest, Niko E C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M Susan; Mattia, Francesco

    2008-07-15

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  20. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  1. An integrated model of soil-canopy spectral radiance observations, photosynthesis, fluorescence, temperature and energy balance

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, which is a vertical (1-D integrated radiative transfer and energy balance model. It calculates the radiation and the energy balance of a vegetated land surface at the level of single leaves as well as at canopy level, and the spectrum of the outgoing radiation in the viewing direction, at a high spectral resolution over the range from 0.4 to 50 μm, thus including the visible, near and shortwave infrared, as well as the thermal domain. A special routine is dedicated to the calculation of chlorophyll fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between surface temperatures, leaf chlorophyll fluorescence and radiative fluxes. Model simulations were evaluated against observations reported in the literature. The model may serve as a theoretical ground truth to derive relationships between observed spectra and physical processes at the land surface.

  2. Winter soil warming exacerbates the impacts of spring low temperature stress on wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, D.; Liu, Fulai

    2016-01-01

    The increase in global mean air temperature is likely to affect the soil temperatures in agricultural areas. This study aims to study the effects of winter soil warming on the responses of wheat to low temperature stress in spring. Wheat plants were grown under either normal or increased soil...... temperature by 2.5 °C for 82 days in winter. The physiological and yield responses of the plants to a 2-day low temperature stress (4/2 °C in the day/night) at jointing stage were investigated. After exposing to low spring temperature, the plants that had experienced winter soil warming showed lower leaf...... and root water potential, lower oxygen scavenging capacity and poor photosynthetic performance as compared with the plants grown under normal soil temperature during winter. WL plants had significantly lower sugar content in shoot than the CL plants, which might have contributed to their higher...

  3. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  4. Describing soil surface microrelief by crossover length and fractal dimension

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2007-05-01

    Full Text Available Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models

  5. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    NARCIS (Netherlands)

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in agro-ecosyst

  6. Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties

    Science.gov (United States)

    Thomas, A. D.; Dougill, A. J.

    2007-03-01

    Localised patterns of erosion and deposition in vegetated semi-arid rangelands have been shown to influence ecological change and biogeochemical cycles. In the flat, vegetated Kalahari rangelands of Southern Africa the factors regulating erodibility of the fine sand soils and the erosivity of wind regimes require further investigation. This paper reports on the spatial and temporal patterns of cyanobacterial soil crust cover from ten sites at five sampling locations in the semi-arid Kalahari and discusses the likely impact on factors regulating surface erodibility and erosivity. Cyanobacterial soil crust cover on Kalahari Sand varied between 11% and 95% of the ground surface and was higher than previously reported. Cover was inversely related to grazing with the lowest crust cover found close to boreholes and the highest in the Game Reserve and Wildlife Management Zone. In grazed areas, crusts form under the protective canopies of the thorny shrub Acacia mellifera. Fenced plot data showed that crusts recover quickly from disturbance, with a near complete surface crust cover forming within 15 months of disturbance. Crust development is restricted by burial by wind blown sediment and by raindrop impact. Crusts had significantly greater organic matter and total nitrogen compared to unconsolidated surfaces. Crusts also significantly increased the compressive strength of the surface (and thus decreased erodibility) and changed the surface roughness. Establishing exactly how these changes affect aeolian erosion requires further process-based studies. The proportion of shear velocity acting on the surface in this complex mixed bush-grass-crust environment will be the key to understanding how crusts affect erodibility.

  7. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  8. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    Science.gov (United States)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  9. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Heerdt, ter Gerard N.J.; Veen, Ciska G.F.; Putten, van der Wim H.; Bakker, Jan P.

    2017-01-01

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  10. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Ter Heerdt, Gerard N.J.; Veen, Ciska G.F.; Van der Putten, Wim H.; Bakker, Jan P.

    Abstract Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in

  11. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    ter Heerdt, Gerard N. J.; Veen, Ciska G.F.; van der Putten, Wim H.; Bakker, Jan P.

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  12. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  13. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  14. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li

    2013-01-01

    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  15. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  16. Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-hong; LI Pei-jun; GONG Zong-qiang; Oni Adeola A.

    2006-01-01

    The rates of photodegradation and photocatalysis of benzo [a]pyrene (BaP) on soil surfaces under UV light have been studied. Different parameters such as temperature, soil particle sizes, and soil depth responsible for photodegradation, catalyst loads and wavelength of UV irradiation blamed for photocatalysis have been monitored. The results obtained indicated that BaP photodegradation follows pseudo-first-order kinetics. BaP photodegradation was the fastest at 30℃. The rates of BaP photodegradation at different soil particle size followed the order: less than 1 mm>less than 0.45 mm>less than 0.25 mm. When the soil depth increased from 1 mm to 4 mm, the half-life increased from 13.23 d to 17.73 d. The additions of TiO2 or Fe2O3 accelerated the photodegradation of BaP, and the photocatalysis of BaP follows pseudo-first-order kinetics. Changes in catalyst loads of TiO2 (0.5%,1%, 2%, and 3% (wt)) or Fe2O3 (2%, 5%, 7%, and 10% (wt)) did not significantly affect the degradation rates. Both BaP photocatalysis in the presence of TiO2 and Fe2O3 were the fastest at 254 nm UV irradiation.

  17. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  18. Long-term CO2 injection and its impact on near-surface soil microbiology.

    Science.gov (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin

    2016-12-01

    Impacts of long-term CO2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO2 injection. CO2 concentrations within CO2-injected plots increased up to 23% during the injection period. No CO2 impacts on geochemistry were detected over time. In addition, CO2-exposed samples did not show significant changes in microbial CO2 and CH4 turnover rates compared to reference samples. Likewise, no significant CO2-induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO2-induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Long-term change in surface air temperature over Eurasian continent and possible contribution from land-surface conditions.

    Science.gov (United States)

    Kim, K.; Jeong, J. H.; Shim, T.

    2015-12-01

    Summertime heat wave over Eurasia is induced by various climatic factors. As internal and external factors are changing under an abrupt climate change, the variability of heat waves exhibits radical changes. In this study, the long-term change in heat wave characteristics over Eurasia for the last several decades was examined and the impact of land-atmosphere interaction modulated by soil moisture variability on the change was investigated. Through the empirical orthogonal functions(EOF) analysis, the principle spatio-temporal pattern of Eurasian heat wave during July-August was objectively detected. The leading pattern (1st EOF mode) of the variability was found be an overall increase in heat waves over eastern Europe and east Asia (Mongol to northern part of China), which seems to be associated mainly with the global warming signal but with interannual variability as well. Through performing JULES(Joint UK Land Environment Simulator) land surface model simulation forced with observational atmospheric forcings, soil moisture and energy flux at surface were estimated, and the impacts of land-atmosphere interaction on the heat wave variability was investigated based on the estimated land surface variables and temperature observations. It is found that there is a distinct dry soil condition accompanying with East Asian heat waves. The dry condition leads to an increase in sensible heat flux from land surface to atmosphere and resulting near-surface warming, which is followed by warm-core high - a typical characteristics of a heatwave sustained by land-atmosphere interaction. This result is consistent with an distinct increase in heatwave in recent years. By using the hindcast of long-range prediction model of KMA, GloSea5, the seasonal predictability of heatwave was examined. GloSea5 reasonably well simulates the spatial pattern of Eurasian heatwaves variability found in observations but shows modest skill in simulating accurate year-to-year variability. This result

  20. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Yitong Jiang

    2015-04-01

    Full Text Available Urbanization-associated land use and land cover (LULC changes lead to modifications of surface microclimatic and hydrological conditions, including the formation of urban heat islands and changes in surface runoff pattern. The goal of the paper is to investigate the changes of biophysical variables due to urbanization induced LULC changes in Indianapolis, USA, from 2001 to 2006. The biophysical parameters analyzed included Land Surface Temperature (LST, fractional vegetation cover, Normalized Difference Water Index (NDWI, impervious fractions evaporative fraction, and soil moisture. Land cover classification and changes and impervious fractions were obtained from the National Land Cover Database of 2001 and 2006. The Temperature-Vegetation Index (TVX space was created to analyze how these satellite-derived biophysical parameters change during urbanization. The results showed that the general trend of pixel migration in response to the LULC changes was from the areas of low temperature, dense vegetation cover, and high surface moisture conditions to the areas of high temperature, sparse vegetation cover, and low surface moisture condition in the TVX space. Analyses of the T-soil moisture and T-NDWI spaces revealed similar changed patterns. The rate of change in LST, vegetation cover, and moisture varied with LULC type and percent imperviousness. Compared to conversion from cultivated to residential land, the change from forest to commercial land altered LST and moisture more intensively. Compared to the area changed from cultivated to residential, the area changed from forest to commercial altered 48% more in fractional vegetation cover, 71% more in LST, and 15% more in soil moisture Soil moisture and NDWI were both tested as measures of surface moisture in the urban areas. NDWI was proven to be a useful measure of vegetation liquid water and was more sensitive to the land cover changes comparing to soil moisture. From a change forest to

  1. Short-Term Effect of Feedstock and Pyrolysis Temperature on Biochar Characteristics, Soil and Crop Response in Temperate Soils

    DEFF Research Database (Denmark)

    Nelissen, Victoria; Ruysschaert, Greet; Müller-Stöver, Dorette Sophie

    2014-01-01

    At present, there is limited understanding of how biochar application to soil could be beneficial to crop growth in temperate regions and which biochar types are most suitable. Biochar’s (two feedstocks: willow, pine; three pyrolysis temperatures: 450 °C, 550 °C, 650 °C) effect on nitrogen (N......) availability, N use efficiency and crop yield was studied in northwestern European soils using a combined approach of process-based and agronomic experiments. Biochar labile carbon (C) fractions were determined and a phytotoxicity test, sorption experiment, N incubation experiment and two pot trials were...... conducted. Generally, biochar caused decreased soil NO3−availability and N use efficiency, and reduced biomass yields compared to a control soil. Soil NO3−concentrations were more reduced in the willow compared to the pine biochar treatments and the reduction increased with increasing pyrolysis temperatures...

  2. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  3. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  4. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  5. On the use of surface neutron-gamma gauges to estimate soil water content

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, T.T.; Cassaro, F.A.M.; Reichardt, K. E-mail: klaus@cena.usp.br; Bacchi, O.O.S.; Oliveira, J.C.M.; Timm, L.C

    2002-09-01

    Surface neutron-gamma gauges are handy instruments to measure soil water contents and bulk densities of surface layers. Although available for some decades, their optimal use is still not well established. This study is a contribution to improve their use, mainly in relation to calibration, and of the effect of soil dry bulk density on soil water content measurements.

  6. Genesis and Development of Soils along Different Geomorphic Surfaces in Kouh Birk Area, Mehrestan City

    Directory of Open Access Journals (Sweden)

    Mohammad Akbar Bahoorzahi

    2017-02-01

    Full Text Available Introduction: The optimum and sustainable use of soil is only possible with correct and complete understanding of its properties. The objectives of the present research were to study 1 genesis and development of soils related to different geomorphic surfaces in Kouh Birk Area (Mehrestan City, 2 Soil classification according to Soil Taxonomy (2014 and WRB (2014 systems, and 3 physicochemical properties, clay mineralogy and micromorphology of soils. Materials and Methods: Mean annual rainfall and soil temperature in the selected location are 153.46 mm and 19.6 oC, respectively. From geological point of view, the studied area is a part of west and south west zones and Flysch zone of east Iran. Soil temperature and moisture regimes of this part are thermic and aridic, respectively. Eight representative pedons on different surfaces including rock pediment, mantled pediment, Alluvial fan and Upper terraces were selected, sampled, and described. Routine physicochemical analyses, clay mineralogy, and micromorphological observations performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Four samples including Bt horizon of pedon 1, Bk1 horizon of pedon 4, By2 horizon of pedon 5 and Bk1 horizon of pedon 7 were selected for clay mineralogy investigations. Four slides including Mg saturated, Mg saturated treated with ethylene glycol, K saturated, and K saturated heated up to 550 oC were analyzed. A Brucker X-Ray diffractometer at 40 kV and 30 mA was used for XRD analyses. Undisturbed soil samples from Bt horizon of pedon 1, Bk2 horizon of pedon 2, Btn horizon of pedon 3, By2 horizon of pedon 5, Bk1 horizon of pedon 7, and By1 horizon of pedon 8 were selected for micromorphological observations. A vestapol resin with stearic acid and cobalt as hardener was used for soil impregnation. Bk-Pol petrographic microscope was used for micromorphology investigations. Results and Discussion: Due to

  7. The effect of temperature on the bioventing of soil contaminated with toluene and decane

    NARCIS (Netherlands)

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    1999-01-01

    The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC head

  8. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  9. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  10. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  11. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  12. Significance of frost action and surface soil characteristics to wind erosion at Rocky Flats, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Caine, N.

    1978-09-01

    This study of the potential links between soil freezing and wind erosion was conducted at Rocky Flats during 4 winters. Most of the study has involved the conditions leading to the growth of segregation ice in the surface soil and the ground heave which that produces. This occurs about 15 times in the average winter at Rocky Flats, always on a diurnal cycle. Such frost action is preferentially distributed in time and space and cannot be estimated from air temperatures alone. November and March are the months of most frequent frost heave, and then only in the days following precipitation or snowmelt. The most marked frost effects are found on exposed interfluve and hillcrest situations, where there are patches of bare soil. Almost no effects are found on the valley floors. Soil disturbance by segregation ice leads to a marked decrease in soil bulk density, and presumably in soil strength though this change has not been quantitatively defined. However, this does not lead to wind erosion of the soil at the study site because that surface is more influenced by the vegetation cover than by the soil characteristics.

  13. [Effect of temperature on kinetic of soil urease inhibited by Hg].

    Science.gov (United States)

    Yang, Chun-Lu; Sun, Tie-Heng; He, Wen-Xiang; Song, Xue-Ying

    2007-02-01

    Urease kinetics inhibited by Hg in two meadow burozem, fertilized by different ways and two phaeozem soils with different organic matter content was investigated at different temperatures. The results showed that the urease activity and kinetic parameter V(max) and V(max)/K(m) were higher in soils with high organic matter content than that in soils with low organic matter among the same soil type. It indicated that organic matter had great adsorption capacity to urease. Soil urease V(max) and V(max)/K(m) in phaeozem were generally higher than that in meadow organic matter had great adsorption capacity to urease. Soil urease V(max) and V(max)/K(m) in phaeozem were generally higher than that in meadow burozem, but urease activity and K(m) were not comparable among different soil types. K(m) depended on not only the organic matter content of soils, but also fertilization ways. As incubating temperature increased, urease activity, V(max) and V(max)/K(m) value enhanced under the optical catalysis temperature. Hg behaved as uncompetitive inhibitor to soil urease in this experiment. The negative effect that Hg inhibited urease activity, K(m), V(max) and V(max)/K(m) increased with temperature increasing, indicated that the protective capacity of soil on urease decreased with the temperature increasing.

  14. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  15. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  16. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Science.gov (United States)

    Porada, Philipp; Ekici, Altug; Beer, Christian

    2016-09-01

    Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg). The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will be the basis for an improved

  17. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2010-08-01

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  18. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    Science.gov (United States)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  19. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  20. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  1. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  2. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  3. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  4. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  5. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    2 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 3University of ... Keywords: Urban growth, urban heat Island, land surface temperatures, satellite remote sensing .... observed target includes green vegetation or not.

  6. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  7. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  8. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  9. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  10. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  11. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  12. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  13. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  14. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  15. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  16. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  17. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    Science.gov (United States)

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-01

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  18. Towards the implementation of L-band Soil Moisture Brightness Temperatures in the Canadian Land Data Assimilation System (CaLDAS)

    Science.gov (United States)

    Carrera, Marco; Bilodeau, Bernard; Russell, Albert; Wang, Xihong; Belair, Stephane

    2016-04-01

    The Canadian Land Data Assimilation System (CaLDAS) currently runs in Environment Canada (EC) operations and provides the initial conditions for soil moisture and soil temperature to the High-Resolution Regional Deterministic Prediction System (HRDPS). Errors in screen-level temperature and dew-point temperature are used to analyze soil moisture and soil temperature. The observational gap in soil moisture is being alleviated by significant advances in remote sensing technologies specifically dedicated to the measurement of soil moisture. The Soil Moisture and Ocean Salinity (SMOS) satellite was launched by the European Space Agency (ESA) in November 2009 and has been providing global coverage of near-surface soil moisture every 3 days. In January 2015, the Soil Moisture Active Passive (SMAP) satellite was launched by NASA, and similar to SMOS, is equipped with a passive radiometer measuring the soil emission in the highly sensitive L-band frequency. The land-surface modeling component within CaLDAS has been coupled to the CMEM (Community Microwave Emission Modeling Platform) microwave radiative transfer model to allow for the assimilation of L-band brightness temperatures (TB). This study reports upon a series of pre-operational experiments exploring how best to combine the traditional screen-level variables with the more direct measurements of soil moisture provided by SMOS and SMAP for a better analysis of the soil moisture state. The study period will be the warm season periods for 2014 and 2015 over North America. Analyzed soil moistures will be compared against in-situ monitoring networks, but the principal focus will be upon the impacts in numerical weather prediction (NWP) mode. EC's Regional Deterministic Prediction System (RDPS), with 10 km grid spacing, is the principal NWP guidance used by Meteorological Service of Canada forecasters in the 1-2 day range. CaLDAS will be run assimilating different configurations of screen-level data and SMOS/SMAP TBs to

  19. Mechanisms influencing surface soil CO2 efflux in respect to elevation and vegetation gradients in a complex watershed

    Science.gov (United States)

    Atkins, J. W.; Epstein, H. E.; Welsch, D. L.

    2011-12-01

    Topographically complex watersheds exert spatial and temporal variations in the distribution of soil water due to horizontal flows. The redistribution of soil water has profound effects on biogeochemical cycles. Of keen interest is the impact this lateral redistribution has on carbon cycling and surface soil carbon efflux. We are currently employing a plot based study across an elevation gradient (950-1150 m) in the Weimer Run watershed located near Davis, West Virginia to evaluate carbon and water cycling dynamics. At each of three different elevation levels (high, middle, low) are three sites. At each site are three 4 m2 plots, each underneath a different vegetation cover type (open, closed tree canopy, shrub canopy), for a total of 27 plots across all elevations. At each plot, surface CO2 efflux, soil temperature, PAR, air temperature and volumetric soil water content at 0-12 cm are measured weekly during the growing season. Measurements of Leaf Area Index (LAI) and soil nutrient concentrations (NH4+, NO3-) have also been conducted for each plot. Each plot also has gas wells at both 5 and 20 cm to measure CO2 concentrations below the soil surface. Data collected from June through October, 2010, indicate a stronger control on soil CO2 efflux exerted by vegetation cover type than by elevation gradient. The impact of vegetation cover type on soil CO2 efflux increases with elevation. Based on data collected weekly from June through October, 2010, there is no significant relationship between surface soil CO2 efflux and the three elevation levels within our gradient (p = 0.47). However, a significant statistical relationship between surface soil CO2 efflux and vegetation type (p = impact that vegetation cover, elevation and micrometeorological controls exert on soil CO2 efflux is vital for accurate model inputs and carbon budgets.class="jpg" border=0 width=600px src="/meetings/fm11/program/tables/B33F-0525_T1.jpg"> * All values in columns represent means for

  20. On the separate retrieval of soil and vegetation temperatures from ATSR data

    Institute of Scientific and Technical Information of China (English)

    LI; Zhaoliang

    2001-01-01

    [1]Kimes, D. S., Idso, S. B., Pinter, P. J. Et al., View angle effects in the radiometric measurement of plant canopy temperature, Remote Sensing of Environment, 1980, 10: 273.[2]Kimes, D. S., Kirchner, J. A., Directional radiometric measurements of row-crop temperatures, International Journal of Remote Sensing, 1983, 4(2): 299.[3]Nielsen, D. C., Clawson, K.L., Blad, B.L., Effect of solar azimuth and infrared thermometer view direction on measured soybean canopy temperature, Agronomy Journal, 1984, 607-610[4]Lagouarde, J.P., Kerr, Y., Brunet, Y., An experimental study of angular effects on surface temperature for various plant canopies and bare soils, Agricultural and Forest Meteorology, 1995, 77: 167.[5]McGuire, M. J., Smith, J. A., Balick, L. K., Modeling directional thermal radiance from a forest canopy, Remote Sensing of Environment, 1989, 27: 169.[6]Kimes, D. S., Smith, J. A., Link, L.E., Thermal IR exitance model of a plant canopy, Applied Optics, 1981, 20(4): 623[7]Kimes, D. S., Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques, Remote Sensing of Environment, 1983, 13: 33.[8]Otterman, J., Brakke, T. W., Susskind, J., A model for inferring canopy and underlying soil temperatures from multi-directional measurements, Boundary-Layer Meteorology, 1992, 61: 81.[9]Fran?ois, C., Ottlé, C., Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared: application on the retrieval of soil and foliage temperatures using two directional measurements, International Journal of Remote Sensing, 1997, 18(12): 2587.[10]Lhomme, J.P., Monteny, B., Amadou, M., Estimating sensible heat flux from radiometric temperature over sparse millet, Agricultural and Forest Meteorology, 1994, 68: 79.[11]Norman, J.M., Kustas, W.P., Humes, K.S., A two source approach for estimating soil and vegetation energy fluxes from

  1. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  2. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  3. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  4. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  5. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    Science.gov (United States)

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere.

  6. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P organic carbon in the limestone soil from forest land (SL) under the variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P soil organic carbon in both temperature treatments, which implied that controlling DOC production was an important way for the temperature influence of SOC mineralization. During the incubation

  7. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2013-01-01

    and Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN......The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (model were...

  8. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  9. A new interpolation method for Antarctic surface temperature

    Institute of Scientific and Technical Information of China (English)

    Yetang Wang; Shugui Hou

    2009-01-01

    We propose a new methodology for the spatial interpolation of annual mean temperature into a regular grid with a geographic resolution of 0.01° for Antarctica by applying a recent compilation of the Antarctic temperature data.A multiple linear regression model of the dependence of temperature on some geographic parameters (i.e.,latitude,longitude,and elevation) is proposed empirically,and the kriging method is used to determine the spatial distribution of regional and local deviations from the temperature calculated from the multiple linear regression model.The modeled value and residual grids are combined to derive a high-resolution map of surface air temperature.The performance of our new methodology is superior to a variety of benchmark methods (e.g.,inverse distance weighting,kriging,and spline methods) via cross-validation techniques.Our simulation resembles well with those distinct spatial features of surface temperature,such as the decrease in annual mean surface temperature with increasing latitude and the distance away from the coast line;and it also reveals the complex topographic effects on the spatial distribution of surface temperature.

  10. Soil respiration responses to variation in temperature and moisture availability under woody plants and grasses

    Science.gov (United States)

    Pravalprukskul, P.; Pavao-Zuckerman, M.; Barron-Gafford, G. A.

    2011-12-01

    Woody plant encroachment into grasslands, such as in the southwestern US, is thought to have altered regional carbon fluxes due to the differences in structure and function between grasses and woody plants. It is unknown how climate change predictions for such areas, particularly warmer temperatures and fewer but larger precipitation events, might further acerbate our ability to estimate flux dynamics. Soil respiration, a key flux affecting ecosystem carbon balance, has been increasingly studied, but the exact effects of temperature and precipitation changes on flux rates have not been fully determined, particularly their interactive effects. The goal of this study was to compare soil respiration responses to different temperatures in soils under native southwestern mesquites and grasses undergoing a precipitation pulse, whilst removing other confounding factors, such as soil history, through the controlled environments within Biosphere 2. Mesquites and grasses were transplanted into ground basalt within two environments maintained at a 4°C temperature difference, the projected temperature increase from climate change. Post-transplant soil samples were incubated between 10 and 40°C to determine the temperature sensitivities of soils from each microhabitat within a month of this transplant. A single-peak, best-fit model for grass soils suggested a weak temperature sensitivity, while mesquite soils showed little to no sensitivity. Additionally, all plants underwent a drought treatment prior to the precipitation event, and soil respiration rates were tracked over several days using the collar technique. This portion of the study allowed for an estimation of the sensitivity of soil respiration to precipitation pulses under a variety of antecedent moisture conditions. Initial results illustrate that soils under mesquites tend to respire significantly more than soil under grasses or in bare soils over the course of a precipitation event. Together, these results suggest

  11. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  12. Variations Trend of Soil Temperature at Deep Layers in Xining from 1961 to 2010

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhan-feng; ZHANG; Huan-ping; WANG; Qing-chun

    2012-01-01

    [Objective] The aim was to analyze the changes trend of mean earth temperature at 0.8, 1.6 and 3.2 m deep to the ground in Xining from 1961 to 2010. [Method] Using the data of monthly mean soil temperatures at 0.8,1.6 and 3.2 m in Xining from 1961 to 2010, the linear trend, climatic anomalous and climate abrupt of deep soil temperature during recent 50 years were analyzed by using of linear trend analysis, accumulated variance and signal noise ratio methods. [Result] In terms of linear trend, the annual mean soil temperatures at 0.8 m in recent 50 years, as well as 1.6 and 3.2 m in recent 45 years displayed a weak increasing trend in Xining. Comparing with the average air temperature in the same period, the rising range of deep soil temperature is obvious less. The average soil temperatures at 0.8 m was the highest in 1980s, but it was the lowest in the 1960s. In spring, autumn and winter in the 1980s, the average soil temperature was a little higher than many other years at 1.6 m. In four seasons in the 1980s, the average soil temperature was obvious higher at 3.2 m. The annual soil temperatures at 0.8 m were anomalous warm in 1991, and from 1987 to 1992, as well as in 1994, 2007 and 2009. The annual soil temperatures at 3.2 m were anomalous warm. In the 1990s, there were four years which were anomalous warm at 3.2 m, as well as five years at 0.8 m and five years at 1.6 m. [Conclusion] The study provided theoretical basis for the development of climate changes in Xining.

  13. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  14. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Understanding the spatial variation of Land Surface Temperature. (LST), will be ... positive correlation between mean of surface emissivity with date and ... deviation of 1.92 of LST and coefficient determinant R2 (0.46) show a ... (LST), as the prime and basic physical parameter of the earth's ..... thorough review of the paper.

  15. Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia

    Science.gov (United States)

    Goncharova, O. Yu.; Matyshak, G. V.; Bobrik, A. A.; Moskalenko, N. G.; Ponomareva, O. E.

    2015-12-01

    Soil temperature regimes were studied in three ecosystems of the north of Western Siberia in the zone of isolated permafrost: the forest ecosystem with gleyic loamy sandy podzol (Stagnic Albic Podzol), the flat-topped peat mound ecosystem with humus-impregnated loamy sandy to light loamy peat cryozem (Histic Oxyaquic Turbic Cryosol (Arenic)), and the peat mound (palsa) ecosystem with oligotrophic destructive permafrost-affected peat soil (Cryic Histosol). Annual temperature measurements in the soil profiles demonstrated that these soils function under different temperature regimes: very cold permafrost regime and cold nonpermafrost regime. The following annual temperature characteristics proved to be informative for the studied soils: sums of above-zero temperatures at the depths of 10 and 20 cm, the maximum depth of penetration of temperatures above 10°C, and the number of days with daily soil temperatures above (or below) 0°C at the depth of 20 cm. On the studied territory, the insulating effect of the snow cover in winter was at least two times more pronounced than the insulating effect of the vegetation cover in summer. Cryogenic soils of the studied region are characterized by the high buffering towards changing climatic parameters. This is explained by the presence of the litter and peat horizons with a very low thermal diffusivity and by the presence of permafrost at a relatively shallow depth with temperature gradients preventing penetration of heat to the permafrost table.

  16. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  17. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction.

    Science.gov (United States)

    Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N

    2007-07-01

    The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diametersKd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in

  18. Disentangling the drivers of soil organic matter decay as temperature changes by integrating reductionist systems with soil data

    Science.gov (United States)

    Billings, Sharon; Ballantyne, Ford, IV; Min, Kyungjin; Lehmeier, Christoph; Ziegler, Susan

    2014-05-01

    Accurately predicting decomposition rates of soil organic matter (SOM) as temperature increases is critical for projecting future atmospheric [CO2]. SOM decay is catalyzed by exo-enzymes (EEs) produced by microorganisms and secreted into the soil. Microbes take up liberated resources for metabolic processes and release diverse compounds, including CO2. Historically, investigations of the influence of temperature on heterotrophic CO2 release have focused on CO2 response, including its isotopic composition; recent studies also assess EE activity and microbial community composition. However, it is difficult to generalize from such studies how temperature will influence SOM decay and CO2 release because the responses of EEs, microbial resource demand, biomass production rates, and respiration rates are not parsed. Quantifying the individual temperature responses of all of these processes in unaltered soil is not tractable. However, we can use experimentally simplified systems to quantify fundamental biochemical and physiological responses to temperature and compare these results to those from environmental samples. For example, we can quantify the degree to which EE kinetics in isolation induce changes in availability of microbially assimilable resources as temperature changes and calculate associated changes in relative availability of assimilable carbon and nitrogen (C:N flow ratio), in isolation from altered microbial resource demand or uptake. We also can assess EE activity and CO2 release at different temperatures in diverse soils, integrating temperature responses of EE kinetics and microbial communities. Discrepancies in the temperature responses between real soils and isolated enzyme-substrate reactions can reveal how adaptive responses of microbial communities influence the temperature responses of soil heterotrophic CO2 release. We have shown in purified reactions that C:N flow ratios increase with temperature at pH 4.5, but decline between pH 6.5 and 8.5. If

  19. The predictable influence of soil temperature and barometric pressure changes on vapor intrusion

    Science.gov (United States)

    Barnes, David L.; McRae, Mary F.

    2017-02-01

    Intrusion of volatile organic compounds in the gas phase has impacted many buildings in many different locations. Various building and environmental factors such as buoyancy of heated air and changes in barometric pressure can influence indoor air concentrations due to vapor intrusion in these buildings resulting in seasonal and daily variability. One environmental factor that previous research has not adequately addressed is soil temperature. In this study we present two northern region study sites where the seasonal trends in indoor air VOC concentrations positively correlate with soil temperature, and short-term (days) variations are associated with barometric pressure changes. We present simple and multivariate linear relationships of indoor air concentrations as a function of soil temperature and barometric pressure. Results from this study show that small changes in soil temperature can result in relatively large changes in indoor air VOC concentrations where the gas phase VOCs are sourced from non-aqueous phase liquids contained in the soil. We use the results from this study to show that a five degree Celsius increase in soil temperature, a variation in soil temperature that is possible in many climatic regions, results in a two-fold increase in indoor air VOC concentrations. Additionally, analysis provides insight into how building ventilation, diffusion, and the relative rate of soil-gas flow across the slab both from the subsurface into the building and from the building into the subsurface impact short term variations in concentrations. With these results we are able to provide monitoring recommendations for practitioners.

  20. Evaluation of the Performance of HYDRUS-2D in Simulating Effects of Shading and Irrigation on Soil Water Content and Temperature

    Science.gov (United States)

    Fares, A.; Simunek, J.; Parsons, L. R.; van Genuchten, T. M.; Wheaton, T. A.; Morgan, K. T.

    2001-12-01

    Citrus root systems are exposed to different thermal and hydrologic conditions as a result of tree canopy shading and undertree microirrigation. Because microsprinklers wet only part of the soil surface and are located under the tree, roots under the canopy usually receive more water than those outside the tree canopy. The combined effects of different soil temperature and water input on water redistribution under field conditions have not been fully studied in Florida sandy soils. The objective of this study was to investigate shading and irrigation effects on spatial distribution of water content and soil temperature at different soil depths. Real-time capacitance probe systems (EnviroSCAN, SENTEK, Ltd. South Australia) and thermocouples were used to monitor soil water content and temperature at depths of 0, 10, 20, 40, 80 and 150 cm. Weather parameters were monitored simultaneously at the same location. HYDRUS-2D, a two dimensional computer package for simulating movement of water, heat, and multiple solutes in variably saturated media, was used to simulate water flow and heat transport under such conditions. The predicted water contents and soil temperatures compared favorably with their corresponding observed parameters. Shading substantially influenced hydraulic and thermal regimes of the system as shown by both predicted and measured water content and soil temperature. In addition to its accuracy in simulating this system, HYDRUS-2D helped to improve the analysis of this research project.

  1. Soil organic matter mineralization of permafrost peat lands and sensitivity to temperature and lack of oxygen

    Science.gov (United States)

    Lamprecht, Richard E.; Diáková, Kateřina; Voigt, Carolina; Šantrůčková, Hana; Martikainen, Pertti; Biasi, Christina

    2017-04-01

    Globally, a significant pool of soil organic carbon (SOC) (Tarnocai et al. 2009) is stored in arctic peatlands where extensive permafrost prevents the decomposition of old soil organic matter (SOM). Vulnerability of ancient organic depositions in changing environment becomes a considerable issue in future climate models. Palsa mires, a typical cryogenic peatland type in subarctic tundra, are not only an important SOC pool but also have been reported as a source of nitrous oxide (N2O) (Marushchak et al. 2011). Microbial SOM mineralization and its sensitivity to changing environmental conditions are crucial to understand future C losses and greenhouse gas (GHG) fluxes in this abundant landform of subarctic region. The purpose of this experiment was to determine potential SOM mineralization in different layers of deep soil cores from an Arctic peatland. First, we aimed to define a response of C losses and GHG exchange rates to temperature and aerobic/anaerobic conditions in different peat layers down to the permafrost and beyond. Secondly, we sought for relations among SOM mineralization, nutrient availability and parameters of indigenous microbial community. Finally, we attempted to link the potential SOM mineralization of the different peat layers with surface GHG fluxes from a proceeding study conducted with the same, intact soil cores. Five deep peat soil cores were separated into five layers (0 20, 20 40, 40 60 cm, permafrost interface and permafrost layer). Homogenized peat was incubated in a factorial set-up of three temperatures (4, 10, and 16 °C) under aerobic and anaerobic conditions. At the beginning and the end of the total 5.5-months incubation period, we determined C and N availability, microbial biomass and potential activities of extracellular enzymes. Heterotrophic respiration (CO2), methane (CH4) and nitrous oxide (N2O) emissions were monitored weekly at the initial phase and biweekly later during the incubation. First results show that C-loss from

  2. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  3. Soil surface morphology evolution under spatiallynon-uniform rainfall

    Science.gov (United States)

    Cheraghi, M.; Rinaldo, A.; Sander, G. C.; Barry, D. A.

    2016-12-01

    We evaluated the applicability of a large-scale river network evolution modelused to simulate morphological changes of a laboratory-scale landscape onwhich there were no visible rills. Previously, such models were used onlyat the landscape scale, or in laboratory experiments where rills form in thesoils surface. The flume-scale experiment (1-m × 2-m surface area) was de-signed to allow model calibration. Low-cohesive fine sand was placed in theflume while the slope and relief height were 5% and 25 cm, respectively.Non-uniform rainfall with an average intensity of 85 mmh -1 and a stan-dard deviation of 26% was applied to the sediment surface for 16 h. Highresolution Digital Elevation Models were captured at intervals during theexperiment. Estimates of the overland flow drainage network were derivedand, using these, the river network evolution model was numerically solvedand calibrated. A noticeable feature of the experiment was a steep transitionzone in soil elevation that migrated upstream during the experiment. Physi-cally, this zone indicates where the shear stress is sufficient to cause sediment1erosion. The model was calibrated during the first 4 h of experiment. Af-terwards, it predicted the subsequent 12 h of measured surface morphologychanges. Therefore, the applicability of the landscape evolution model wasextended for non-uniform rainfall and in absence of visible rills.Keywords:Numerical simulation, Particle Swarm Optimization, Sediment transport,River network evolution model.

  4. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  5. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out...... to investigate the effects of the ashes on soil microbiological and chemical properties and on the response of the three crops. The ash treatments were compared with a control treatment that received only nitrogen, magnesium, and sulphur (CO) and a fully fertilized control (COPK). Soil microbial parameters were...

  6. Soil moisture, temperature, and carbon substrate influences on soil respiration in a piñon-juniper woodland

    Science.gov (United States)

    Berryman, E.; Marshall, J. D.; Rahn, T.; Litvak, M. E.

    2010-12-01

    Arid and semi-arid ecosystems may be more vulnerable to climate change than mesic systems, having potentially large consequences for ecosystem carbon balance of the US southwest. Specifically, piñon-juniper woodlands cover much of the land area in the SW US, and they have experienced widespread piñon mortality in the past ten years. The impact of this mortality on carbon cycling in these ecosystems has yet to be fully examined. Of particular current interest is how soil temperature, soil moisture, and substrate availability interact to influence short-term variability of soil respiration rates. In this study, we examined the dependence of soil respiration on recent piñon photosynthate, temperature, and moisture in a piñon-juniper woodland in central New Mexico. We utilized phloem-girdling to study the importance of recently-fixed photosynthate as substrate for respiration, and we treated the stable carbon isotope ratio of soil respiration as indicative of different substrate sources contributing to soil respiration. Due to the presence of C3, C4, and CAM photosynthetic pathways in the ecosystem, we were able to infer changing contribution of different sources to soil respiration. We found that soil-respired δ13C depended on both soil moisture and lagged precipitation, although in dissimilar manners, suggesting different mechanisms are triggered by rainfall events compared to elevated soil moisture. C3-source respiration responded quickly to precipitation events. Over a ten-day period following girdling of piñon trees, soil-respired δ13C did not significantly change compared to a reference plot. There were also distinct differences in carbon isotope signatures and temporal patterns of such signatures of soil respiration collected in open spaces compared to underneath piñon canopies, emphasizing the importance of considering spatial variability when sampling soil-respired CO2 in patchy ecosystems. Overall, we found little evidence that soil respiration in

  7. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor

    National Research Council Canada - National Science Library

    Wu, B M; Subbarao, K V

    2008-01-01

    ... S. sclerotiorum isolates tested. Carpogenic germination of the two species was compared under a variety of temperature, soil moisture, burial depths, and short periods of high temperature and low soil moisture...

  8. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  9. Barefoot on Hot Ground: Formation Temperatures of Plio-Pleistocene Soil Carbonates in East Africa Based on the Clumped Isotope in Carbonate (Δ47) Thermometer

    Science.gov (United States)

    Passey, B. H.; Eiler, J. M.; Levin, N. E.; Cerling, T. E.

    2008-12-01

    We utilize the carbonate clumped isotope thermometer to investigate paleoenvironm