WorldWideScience

Sample records for surface soil microsites

  1. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    Energy Technology Data Exchange (ETDEWEB)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  2. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    Science.gov (United States)

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  3. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  4. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  5. The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens.

    Science.gov (United States)

    Titus, J; Del Moral, R

    1998-03-01

    This study was designed to examine the role of vesicular-arbuscular mycorrhizae (VAM) and microsites on the growth of pioneer species. Flat, rill, near-rock, and dead lupine microsites were created in plots in barren areas of the Pumice Plain of Mount St. Helens. VAM propagules were added to the soil in half of the plots. Six pioneer species were planted into both VAM and non-VAM inoculated microsites. Plants in dead lupine microsites were greater in biomass than those in flat, rill, and near-rock microsites. Significant effects of VAM on plant biomass did not occur. Microsites continue to be important to plant colonization on the Pumice Plain, but VAM do not yet appear to play an important role. This may be due to limited nutrient availability and the facultatively mycotrophic nature of the colonizing plant species. It is unlikely that VAM play an important role in successional processes in newly emplaced nutrient-poor surfaces.

  6. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  7. Getting beyond hand-waving about microsites with numerical representations of trace gas production and consumption

    Science.gov (United States)

    Sihi, D.; Davidson, E. A.; Savage, K. E.; Liang, D.

    2017-12-01

    Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, that is further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked conceptually to explain unusual observations like consumption of atmospheric N2O (reduction) in upland soils that co-occur with CH4 uptake (oxidation). To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three greenhouse gases (GHGs) with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. Chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model. The area under a soil chamber is partitioned according to a bivariate lognormal probability distribution function of soil carbon (C) and moisture across a range of microsites, that leads to a distribution of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 that determines the distribution of microsites that produce or consume CH4 and N2O, such that a range of microsite concentrations occur both above and below ambient values for both GHGs. At lower mean soil moisture, some microsites of methanogenesis still occur, but most become sites of methanotrophy. Likewise, concentrations of below ambient N2O (hotspots of N2O reduction) occur in microsites with high C and high moisture (further accentuated at high temperature). Net consumption and production of CH4 and N2O is simulated within a chamber based on the sum of the distribution of soil microsites. Results demonstrate that it is numerically feasible for

  8. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    Directory of Open Access Journals (Sweden)

    Peter W Dunwiddie

    Full Text Available Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae. This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable

  9. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  10. Influence of climate and regeneration microsites on Pinus contorta invasion into an alpine ecosystem in New Zealand

    Directory of Open Access Journals (Sweden)

    Melanie A. Harsch

    2016-08-01

    Full Text Available In many regions, alien conifers have spread widely at lower elevations and are increasingly found colonizing alpine areas. Although studies have addressed conifer invasions at low elevations, little is known about the rates and constraints on spread into higher elevations. Here, we assess the relative importance of climate and the availability of regeneration microsites on the establishment of the alien species Pinus contorta into a high elevation site in New Zealand. Spread has occurred from two stands planted at the elevation of the native treeline (1347–1388 masl in the 1960s. Most stems established between 1350 and 1450 masl and P. contorta individuals were found up to 270 m above the original plantings. Although the population has increased by 180% in the last 20 years, population growth rate has been declining. Furthermore, comparisons with studies from other mountain ranges around the world and at low elevations in New Zealand suggest this is a relatively limited spread. Our results suggest that climate variation did not have a significant effect on establishment patterns, as opposed to availability of regeneration microsites. Soil and alpine mat microsites favoured establishment of P. contorta and, although these microsites did not appear to be saturated, microsite availability may be an important limiting factor for the spread of P. contorta. Thus management strategies should focus on preventing spread in addition to removing already established stems.

  11. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    Science.gov (United States)

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative

  12. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  13. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone

    Science.gov (United States)

    Wang, Guan; Li, Junran; Ravi, Sujith; Dukes, David; Gonzales, Howell B.; Sankey, Joel B.

    2018-01-01

    The rapid conversion of grasslands into shrublands has been observed in many arid and semiarid regions worldwide. Studies have shown that fire can provide certain forms of reversibility for shrub-grass transition due to resource homogenization and shrub mortality, especially in the early stages of shrub encroachment. Field-level post-fire soil resource redistribution has rarely been tested. Here we used prescribed fire in a shrubland-grassland transition zone in the northern Chihuahuan Desert to test the hypothesis that fire facilitates the remobilization of nutrient-enriched soil from shrub microsites to grass and bare microsites and thereby reduces the spatial heterogeneity of soil resources. Results show that the shrub microsites had the lowest water content compared to grass and bare microsites after fire, even when rain events occurred. Significant differences of total soil carbon (TC) and total soil nitrogen (TN) among the three microsites disappeared one year after the fire. The spatial autocorrelation distance increased from 1~2 m, approximately the mean size of an individual shrub canopy, to over 5 m one year after the fire for TC and TN. Patches of high soil C and N decomposed one year after the prescribed fire. Overall, fire stimulates the transfer of soil C and N from shrub microsites to nutrient-depleted grass and bare microsites. Such a redistribution of soil C and N, coupled with the reduced soil water content under the shrub canopies, suggests that fire might influence the competition between shrubs and grasses, leading to a higher grass, compared to shrub, coverage in this ecotone.

  14. Strong microsite control of seedling recruitment in tundra

    DEFF Research Database (Denmark)

    Graae, Bente J; Ejrnæs, Rasmus; Lang, Simone I

    2011-01-01

    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental......, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just...... at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined...

  15. Iron Redox Dynamics in Humid Tropical Forest Soils: Carbon Stabilization vs. Degradation?

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Hammel, K.

    2015-12-01

    Most terrestrial soils exhibit a patchwork of oxygen (O2) availability that varies over spatial scales of microsites to catenas to landscapes, and over temporal scales of minutes to seasons. Oxygen fluctuations often drive microbial iron (Fe) reduction and abiotic/biotic Fe oxidation at the microsite scale, contributing to anaerobic carbon (C) mineralization and changes in soil physical and chemical characteristics, especially the dissolution and precipitation of short-range ordered Fe phases thought to stabilize C. Thus, O2 fluctuations and Fe redox cycling may have multiple nuanced and opposing impacts on different soil C pools, illustrated by recent findings from Fe-rich Oxisols and Ultisols in the Luquillo Experimental Forest, Puerto Rico. Spatial patterns in surface soil C stocks at the landscape scale correlated strongly (R2 = 0.98) with concentrations of reduced Fe (Fe(II)), reflecting constitutive differences in reducing conditions within and among sites that promote C accumulation in mineral soil horizons. Similarly, turnover times of a decadal-cycling pool of mineral-associated organic matter increased with Fe(II) across a catena, possibly reflecting the role of anaerobic microsites in long-term C stabilization. However, two different indices of short-range order Fe showed highly significant opposing relationships (positive and negative) with spatial variation in soil C concentrations, possibly reflecting a dual role of Fe in driving C stabilization via co-precipitation, and C solubilization and loss following dissimilatory Fe reduction. Consistent with the field data, laboratory incubations demonstrated that redox fluctuations can increase the contribution of biochemically recalcitrant C (lignin) to soil respiration, whereas addition of short-range order Fe dramatically suppressed lignin mineralization but had no impact on bulk soil respiration. Thus, understanding spatial and temporal patterns of Fe redox cycling may provide insight into explaining the

  16. Modeling the Influence of Forest Structure on Microsite Habitat Use by Snowshoe Hares

    Directory of Open Access Journals (Sweden)

    Angela K. Fuller

    2013-01-01

    Full Text Available Snowshoe hare (Lepus americanus is an important prey species for many Carnivora and has strong influences on community structure and function in northern forests. An understanding of within-stand (microsite forest structural characteristics that promote high use by hares is important to provide forest management guidelines. We measured forest structural characteristics at the microsite-scale in north-central Maine and used an information-theoretic modeling approach to infer which characteristics were most strongly associated with use by hares during winter. We measured overwinter hare pellet density to model relationships among microsite-scale vegetation structure and hare use. Overwinter pellet density was positively associated with live stem cover (3 × coniferous saplings + deciduous saplings and negatively associated with overstory canopy closure; the two variables explained 71% of the variation in microsite use by hares. The highest pellet densities were in grids with canopy closure 22,000 stems/ha. Silvicultural practices that create dense areas of conifer and deciduous saplings should receive high within-stand use by hares in winter. These conditions can be achieved by promoting the release of advanced regeneration and reducing overstory cover to encourage establishment of shade-intolerant species; clearcutting is one such silvicultural prescription to achieve these conditions.

  17. Optimization of wind farm micro-siting for complex terrain using greedy algorithm

    International Nuclear Information System (INIS)

    Song, M.X.; Chen, K.; He, Z.Y.; Zhang, X.

    2014-01-01

    An optimization approach based on greedy algorithm for optimization of wind farm micro-siting is presented. The key of optimizing wind farm micro-siting is the fast and accurate evaluation of the wake flow interactions of wind turbines. The virtual particle model is employed for wake flow simulation of wind turbines, which makes the present method applicable for non-uniform flow fields on complex terrains. In previous bionic optimization method, within each step of the optimization process, only the power output of the turbine that is being located or relocated is considered. To aim at the overall power output of the wind farm comprehensively, a dependent region technique is introduced to improve the estimation of power output during the optimization procedure. With the technique, the wake flow influences can be reduced more efficiently during the optimization procedure. During the optimization process, the turbine that is being added will avoid being affected other turbines, and avoid affecting other turbine in the meantime. The results from the numerical calculations demonstrate that the present method is effective for wind farm micro-siting on complex terrain, and it produces better solutions in less time than the previous bionic method. - Highlights: • Greedy algorithm is applied to wind farm micro-siting problem. • The present method is effective for optimization on complex terrains. • Dependent region is suggested to improve the evaluation of wake influences. • The present method has better performance than the bionic method

  18. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    Science.gov (United States)

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by

  19. Influencia del microsite en la imagen de marca a través de experiencias significativas

    Directory of Open Access Journals (Sweden)

    Belinda de Frutos Torres

    2012-04-01

    Full Text Available Las empresas e instituciones, actualmente, son conscientes del potencial que ofrece internet como instrumento para mantener una relación activa con sus públicos de interés. Con este propósito diseñan estrategias de comunicación específicamente destinadas a que el usuario pueda establecer una relación interactiva con la marca. Una de las formas de estar presente en la red es a través del microsite que se perfilan como una solución para estrechar los lazos entre el usuario y la marca.El objetivo del estudio es valorar la influencia del microsite como herramienta de comunicación corporativa y su importancia en la construcción de la imagen de marca. Para ello se ha llevado a cabo un estudio empírico a partir de tres acciones de comunicación reales de tres marcas conocidas representativas de tres estrategias de comunicación. Las tres acciones se llevaron a cabo con microsites y fueron visitados y evaluados por una muestra de 41 personas. Los resultados muestran que la valoración global hacia el microsite puede explicarse en torno a tres dimensiones su grado de entretenimiento, su valor informativo y el agrado asociado. Se comprueba que la experiencia generada por el microsite es diferente dependiendo de la estrategia de comunicación utilizada y contribuye de forma distinta a explicar la actitud hacia la marca. Cada estrategia constituye una experiencia diferenciada para el usuario sin embargo la implicación del usuario con la categoría del producto obtiene un papel determinante en  la relación con la imagen de marca.

  20. A common-garden study of resource-island effects on a native and an exotic, annual grass after fire

    Science.gov (United States)

    Hoover, Amber N.; Germino, Matthew J.

    2012-01-01

    Plant-soil variation related to perennial-plant resource islands (coppices) interspersed with relatively bare interspaces is a major source of heterogeneity in desert rangelands. Our objective was to determine how native and exotic grasses vary on coppice mounds and interspaces (microsites) in unburned and burned sites and underlying factors that contribute to the variation in sagebrush-steppe rangelands of the Idaho National Lab, where interspaces typically have abiotic crusts. We asked how the exotic cheatgrass (Bromus tectorum L.) and native bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve) were distributed among the microsites and measured their abundances in three replicate wildfires and nearby unburned areas. We conducted a common-garden study in which soil cores from each burned microsite type were planted with seed of either species to determine microsite effects on establishment and growth of native and exotic grasses. We assessed soil physical properties in the common-garden study to determine the intrinsic properties of each microsite surface and the retention of microsite soil differences following transfer of soils to the garden, to plant growth, and to wetting/drying cycles. In the field study, only bluebunch wheatgrass density was greater on coppice mounds than interspaces, in both unburned and burned areas. In the common-garden experiment, there were microsite differences in soil physical properties, particularly in crust hardness and its relationship to moisture, but soil properties were unaffected by plant growth. Also in the experiment, both species had equal densities yet greater dry mass production on coppice-mound soils compared to interspace soils, suggesting microsite differences in growth but not establishment (likely related to crust weakening resulting from watering). Coppice-interspace patterning and specifically native-herb recovery on coppices is likely important for postfire resistance of this rangeland to cheatgrass.

  1. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Science.gov (United States)

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  2. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture 2115

    Science.gov (United States)

    Shrub encroachment into grasslands creates a mosaic of different soil microsites ranging from open spaces to well-developed shrub canopies, and it is unclear how this affects the spatial variability in soil respiration characteristics, such as the sensitivity to soil temperature and moisture. This i...

  3. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  4. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Directory of Open Access Journals (Sweden)

    Alexandra Erfmeier

    Full Text Available Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of

  5. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Science.gov (United States)

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  6. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  7. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  8. Effects of animal activity on the absorption rate of soils in the ...

    African Journals Online (AJOL)

    The rates of absorption into various microsites in Karoo soils were compared. The absorption of water by hard, bare intershrub soils was significantly increased by the presence of emergence holes of adult cicadas and near nest-mounds of the harvester ant Messor capensis. Both these insects play an important role in ...

  9. Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone, central Greater Caucasus Mountains, Georgia

    Science.gov (United States)

    Nicole M Hughes; Daniel M. Johnson; Maia Akhalkatsi; Otar Abdaladze

    2009-01-01

    Seedling establishment is an important factor dictating the altitudinal limits of treeline species. Factors that affect seedling mortality and survival, however, have yet to be fully characterized, especially for deciduous treeline species. Here we describe microsite characteristics of successfully established Betula litwinowii seedlings at the...

  10. Diurnal Freeze-Thaw Cycles Modify Winter Soil Respiration in a Desert Shrub-Land Ecosystem

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-07-01

    Full Text Available Winter soil respiration (Rs is becoming a significant component of annual carbon budgets with more warming in winter than summer. However, little is known about the controlling mechanisms of winter Rs in dryland. We made continuous measurements of Rs in four microsites (non-crust (BS, lichen (LC, moss (MC, and a mixture of moss and lichen (ML in a desert shrub-land ecosystem northern China, to investigate the causes of Rs dynamics in winter. The mean winter Rs ranged from 0.10 to 0.17 µmol CO2 m−2·s−1 across microsites, with the highest value in BS. Winter Q10 (known as the increase in respiration rate per 10 °C increase in temperature values (2.8–19 were much higher than those from the growing season (1.5. Rs and Q10 were greatly enhanced in freeze-thaw cycles compared to frozen days. Diurnal patterns of Rs between freeze-thaw and frozen days differed. Although the freeze-thaw period was relatively short, its cumulative Rs contributed significantly to winter Rs. The presence of biocrust might induce lower temperature, thus having fewer freeze-thaw cycles relative to bare soil, leading to the lower Rs for microsites with biocrusts. In conclusion, winter Rs in drylands was sensitive to soil temperature (Ts and Ts-induced freeze-thaw cycles. The temperature impact on Rs varied among soil cover types. Winter Rs in drylands may become more important as the climate is continuously getting warmer.

  11. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  12. Biogeomorphic and pedogenic impact of trees in three soil regions

    Science.gov (United States)

    Pawlik, Łukasz; Šamonil, Pavel

    2017-04-01

    Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary

  13. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  14. Influence of Acacia trees on soil nutrient levels in arid lands

    Science.gov (United States)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback

  15. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  16. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  17. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  18. Creating Flash advertising from concept to tracking-microsites, video ads and more

    CERN Document Server

    Fincanon, Jason

    2007-01-01

    Create awe-inspiring, mind-blowing Flash ads and microsites that engage consumers and demonstrate their worth to clients. The Hands-On Guide to Creating Flash Advertising delivers the nuts and bolts of the development process from initial design conception to ad completion. You'll learn the best practices for:* Mastering the myriad of ad specs, deadlines, quality and version control issues* Creating ads that balance campaign goals with design constraints* Preparing and building ads with team and QC standards* Using forms and data in ads without file bloat* File optimization techniques for swf

  19. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  20. Docere, delectare et movere. Teacher vision and student prism in the design and implementation of microsites with musical artistic contents

    Directory of Open Access Journals (Sweden)

    Felipe Gértrudix-Barrio

    2017-01-01

    Full Text Available In studies of Degree in Early Childhood Education, arts education they have great importance for the competence development of students. So, for its globalization and inclusive it becomes the main axis for the construction of knowledge from other areas. On its behalf, ICT is an essential tool that amplifies the creative essence that provides arts education (Gértrudix & Gértrudix, 2011. In this context, it presents an experience made during the first quarter of 2015-2016 course with students from Degree in Early Childhood Education of Faculty of Education of Toledo (UCLM. We have sought to analyze these Microsites making by students as evidence of learning and to know their teaching skills through classroom implementation of these microsites as proof of their functionality didactic. From a mixed methodology research, it has use the following tools as analysis: a a documentary analysis of the content and structure of the Microsites created by students b a SWOT analysis of the educational intervention carried out by students in the childhood classroom and c a questionnaire to determine the type of ICT tools used in the creation of digital music contents. From the results obtained a clear positive trend among students to the artistic elements emerges, and specially musicals. Thanks to its constant participation and involvement in the whole process of developing the content, students have achieved a remarkable level of competence in instrumental, interpersonal and systemic skills.

  1. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  2. La publicidad en la era digital: el microsite como factor estratégico de las campañas publicitarias on-line Advertising in the Digital Age: the Microsite as a Strategic Factor in On-line Advertising Campaigns

    Directory of Open Access Journals (Sweden)

    Carlos Fanjul Peyró

    2010-03-01

    Full Text Available El crecimiento exponencial e irreversible de la Web Social es un fenómeno innegable que está propiciando una serie de cambios en las fórmulas comunicacionales. Esa revolución de naturaleza global propone un nuevo modelo por completo democrático, en el que un usuario, sea cual sea su procedencia, status u ocupación, puede ser emisor y receptor de información a tiempo real. En esta coyuntura, la publicidad se ve obligada a redefinirse y adaptarse, teniendo que modificar sus estrategias y formatos para adecuarse al nuevo modelo. Las fórmulas tradicionales de elaboración de los mensajes comerciales no funcionan en el ámbito de Internet y su eficacia publicitaria es escasa. Sin embargo, la inversión en este medio crece año tras año, lo que demuestra la apuesta del mercado por las posibilidades comerciales de Internet. Este trabajo supone el estudio de un nuevo modelo publicitario en la Red: el microsite. Un formato que invita al usuario a vivir una experiencia sensorial a través del ordenador y que lanza mensajes comerciales de forma interactiva, sutil, pero contundente. Mediante el análisis de contenidos técnicos y semánticos de una muestra de estos espacios, se busca definir y destacar las principales características del microsite y reflexionar sobre el rol estratégico del mismo dentro de las campañas publicitarias on-line.The exponential and irreversible growth of the social web is an undeniable phenomenon that is provoking a series of changes in communication models. This global revolution proposes a new model that is completely democratic, in which a user, regardless of origin, status or occupation, can be the issuer and receiver of information in real time. This has forced advertising to redefine and adapt itself, modifying its strategies and formats in order to align to the new model. The traditional rules of elaborating commercial messages do not apply in the Internet environment, and their advertising efficiency is

  3. Seed and soil dynamics in shrubland ecosystems: proceedings; 2002 August 12-16; Laramie, WY

    Science.gov (United States)

    Ann L. Hild; Nancy L. Shaw; Susan E. Meyer; D. Terrance Booth; E. Durant McArthur

    2004-01-01

    The 38 papers in this proceedings are divided into six sections; the first includes an overview paper and documentation of the first Shrub Research Consortium Distinguished Service Award. The next four sections cluster papers on restoration and revegetation, soil and microsite requirements, germination and establishment of desired species, and community ecology of...

  4. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  5. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  6. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  7. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  8. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  9. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  10. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  11. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  12. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  13. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  14. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  16. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban

    2017-09-01

    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  17. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  18. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  19. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  20. Overcoming soil compaction in surface mine reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Sweigard, R.J. (University of Kentucky, Lexington, KY (USA). Dept. of Mining Engineering)

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig.

  1. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  2. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  3. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  4. A Research on Wind Farm Micro-sitting Optimization in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... that the CPSO method has a higher optimal value, and could be used to optimize the actual wind farm micro-sitting engineering projects.......Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... turbines’ park coordinates which subject to the boundary and minimum distance conditions between two wind turbines. A Cross Particle Swarm Optimization (CPSO) method is developed and applied to optimize the layout for a certain wind farm case. Compared with the uniform and experience method, results show...

  5. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  6. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  7. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  8. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  9. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  10. Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-01-01

    Full Text Available With the fast growth in the number and size of installed wind farms (WFs around the world, optimal wind turbines (WTs micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.

  11. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  12. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  13. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  14. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  15. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  16. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  17. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  18. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  19. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  20. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  1. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  2. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  3. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  4. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  5. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  6. Patterns of in-soil methane production and atmospheric emission among different land covers of a Lake Erie estuarine wetland

    Science.gov (United States)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.

    2017-12-01

    Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide

  7. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  9. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  10. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  11. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  12. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  13. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  14. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  15. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J.; Gerzabek, M.H.; Mueck, K.

    1994-03-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  16. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  17. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  18. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  19. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  20. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    International Nuclear Information System (INIS)

    Lubis, E.

    2011-01-01

    The distribution of 137 Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137 Cs distribution in the surface soil and the T f value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137 Cs activity in surface soil of SNS is 0.80 ± 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of 137 Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T f of 137 Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137 Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  1. Distribution of 137Cs In the Surface Soil of Serpong Nuclear Site

    Directory of Open Access Journals (Sweden)

    E. Lubis

    2011-08-01

    Full Text Available The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operation of G.A.Siwabessy Reactor until now is undetectable. The Tf of 137Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137Cs varies between cultivated and uncultivated soil and also with the soils with thick humus

  2. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  3. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  4. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  5. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  6. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  7. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  8. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  9. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Distribution of technetium-99 in surface soils

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2000-01-01

    Technetium-99 ( 99 Tc) is an important fission product which has been widely distributed in the environment as a result of fallout from nuclear weapons testing. In order to improve our understanding of the behavior of 99 Tc in the environment, it is essential that we obtain more reliable information on the levels, distribution and fate of 99 Tc in the environment. In this study, the concentration of global fallout 99 Tc, in several surface soil samples (0 - 20 cm) collected in Japan, were determined by ICP-MS (inductively coupled plasma mass spectroscopy). The range of 99 Tc in rice paddy field, upland field and other soils determined in this study were 0.006 - 0.11, 0.004 - 0.008 and 0.007 - 0.02 Bq kg -1 dry, respectively. 137 Cs was used as a comparative indicator for the source of 99 Tc, because the fission yields from 235 U and 239 Pu were about the same (ca. 6%) for the two isotopes, and the behavior and distribution of 137 Cs in the environment is reasonably well understood. The 137 Cs contents in rice paddy field, upland field and other soils range between 1.7 - 28, 1.4 - 9.2 and -1 dry, respectively. The activity ratios of 99 Tc/ 137 Cs in all soil samples were (0.6 - 5.9) x 10 -3 . Most of the measured ratios were one order of magnitude higher than the theoretical one obtained from fission. However, this ratio in soil, presumably depends on not only both the characteristic of radionuclides and the soil, but also on their contents after deposition to the earth's surface. (author)

  11. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris

    2006-01-01

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  12. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

    Science.gov (United States)

    Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana

    2016-12-15

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  14. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    Science.gov (United States)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire

  15. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    OpenAIRE

    Lubis, E

    2011-01-01

    The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operatio...

  16. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  17. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  18. Effects of artificial soil surface management on changes of ...

    African Journals Online (AJOL)

    Studies of size distribution, stability of the aggregates, and other soil properties are very important due to their influence on tilth, water infiltration, and nutrient dynamics and more importantly on accelerated erosion but are affected by soil surface management. Both chemical e.g. pH, organic carbon, (OC), exchangeable ...

  19. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  20. Distribution of {sup 137}Cs in the Surface Soil of Serpong Nuclear Site

    Energy Technology Data Exchange (ETDEWEB)

    Lubis, E., E-mail: erlub@batan.go.id [Center for Radioactive Waste Technology, National Nuclear Energy Agency, Serpong (Indonesia)

    2011-08-15

    The distribution of {sup 137}Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of {sup 137}Cs distribution in the surface soil and the T{sub f} value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the {sup 137}Cs activity in surface soil of SNS is 0.80 {+-} 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of {sup 137}Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T{sub f} of {sup 137}Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 {+-} 0.14, 0.84 {+-} 0.27 and 0.81 {+-} 0.11 respectively. The results show that value of the transfer factor of {sup 137}Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  1. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  2. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  3. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  4. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  5. Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP

    Directory of Open Access Journals (Sweden)

    Fatih Topaloğlu

    2018-01-01

    Full Text Available The parameters required for building a wind power plant have been calculated using the fuzzy logic method by means of Wind Atlas Analysis and Application Program (WAsP in this study. Overall objectives of the program include analysis of raw data, evaluation of wind and climate, construction of a wind atlas, and estimation of wind power potential. With the analysis performed in the application, the average wind velocity, average power density, energy potential from micrositing, capacity factor, unit cost price, and period of redemption have been calculated, which are needed by the project developer during the decision-making stage and intended to be used as the input unit in the fuzzy logic-based system designed. It is aimed at processing the parameters calculated by the designed fuzzy logic-based decision-making system at the rule base and generating a compatibility factor that will allow for making the final decision in building wind power plants.

  6. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  7. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  8. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating

    Directory of Open Access Journals (Sweden)

    Bin Hua

    2016-08-01

    Full Text Available Soil lead (Pb is well known as a threat to human health and ecosystem. Although relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms through natural weathering processes and thus pose significant human and environmental risks. In this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range soil can be stabilized through surface coating of phosphate-based materials. Results indicated that FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP test showed that FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and significantly reduce the Pb release from soil through in situ chemical stabilization, which could be potentially applicable as a cost-effective and environmental-sound technology for the remediation of Pb-contaminated shooting range soil.

  9. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  10. Effects of surface soil loss in South Eastern Nigeria: I. crop ...

    African Journals Online (AJOL)

    The widespread incidence of soil erosion in the tropics has been identified, though few studies have dealt with specific problems of decline in crop productivity associated with soil loss. An understanding of the influence of surface soil loss on crop yield is necessary in order to find out their effects on performance of crops.

  11. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  12. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  13. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2015-01-01

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14 C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  14. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  15. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  16. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  17. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Science.gov (United States)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  18. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  19. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  20. Monitoring Multidecadal satellite earth observation of soil moisture products through land surface reanalysis

    NARCIS (Netherlands)

    Albergel, C.; Dorigo, W.; Balsamo, G.; Sabatar, J; de Rosnay, P.; Isaksen, I; Brocca, L; de Jeu, R.A.M.; Wagner, W.

    2013-01-01

    Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim), is used to monitor at a global scale the consistency of a new microwave based multi-satellite surface soil moisture date set

  1. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    Science.gov (United States)

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil.

  2. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  3. The role of fire on soil mounds and surface roughness in the Mojave Desert

    Science.gov (United States)

    Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra

    2013-01-01

    A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.

  4. Activity Concentration for Surface Soil Samples Collected from Arrant, Qena, Egypt

    International Nuclear Information System (INIS)

    Harb, S.; Salahel Din, K.; Abbady, A.; Moustafa, M.

    2010-01-01

    Soil samples were collected from four regions from Armant area. Qena, Upper Egypt for measure their natural radioactivity concentrations due to Ra-226, Th-232 and K-40 radionuclides. Thirty-Four surface soil samples were analyzed by using low-level gamma-spectrometric analysis. The average activity concentration for Ra-226 in (Bq/kg) in the collected soil samples were found to be 27.3 ±3.2, 11.4±1.09, 10.6±1.2, and 11.4±1.02 while the average value for Th-232 were 15.1±1.4, 11.1±0.77, 10.8 ± 0.72 and 11.1 ± 0.8 (Bq/kg) for soil samples from North, South, West and East. The corresponding average values for K-40 were 521.4±16.8, 463±14.8, 488.9±15.6 and 344.5±10.7 (Bq/kg), respectively. Based on radionuclides concentration in surface soil samples the radiological effects can be assessed

  5. Effect of the grain size of the soil on the measured activity and variation in activity in surface and subsurface soil samples

    International Nuclear Information System (INIS)

    Sulaiti, H.A.; Rega, P.H.; Bradley, D.; Dahan, N.A.; Mugren, K.A.; Dosari, M.A.

    2014-01-01

    Correlation between grain size and activity concentrations of soils and concentrations of various radionuclides in surface and subsurface soils has been measured for samples taken in the State of Qatar by gamma-spectroscopy using a high purity germanium detector. From the obtained gamma-ray spectra, the activity concentrations of the 238U (226Ra) and /sup 232/ Th (/sup 228/ Ac) natural decay series, the long-lived naturally occurring radionuclide 40 K and the fission product radionuclide 137CS have been determined. Gamma dose rate, radium equivalent, radiation hazard index and annual effective dose rates have also been estimated from these data. In order to observe the effect of grain size on the radioactivity of soil, three grain sizes were used i.e., smaller than 0.5 mm; smaller than 1 mm and greater than 0.5 mm; and smaller than 2 mm and greater than 1 mm. The weighted activity concentrations of the 238U series nuclides in 0.5-2 mm grain size of sample numbers was found to vary from 2.5:f:0.2 to 28.5+-0.5 Bq/kg, whereas, the weighted activity concentration of 4 degree K varied from 21+-4 to 188+-10 Bq/kg. The weighted activity concentrations of 238U series and 4 degree K have been found to be higher in the finest grain size. However, for the 232Th series, the activity concentrations in the 1-2 mm grain size of one sample were found to be higher than in the 0.5-1 mm grain size. In the study of surface and subsurface soil samples, the activity concentration levels of 238 U series have been found to range from 15.9+-0.3 to 24.1+-0.9 Bq/kg, in the surface soil samples (0-5 cm) and 14.5+-0.3 to 23.6+-0.5 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 232Th series have been found to lie in the range 5.7+-0.2 to 13.7+-0.5 Bq/kg, in the surface soil samples (0-5 cm)and 4.1+-0.2 to 15.6+-0.3 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 4 degree K were in the range 150+-8 to 290+-17 Bq/kg, in the surface

  6. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  7. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  8. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  9. Effects of Climate Change and Organic Matter Amendments on the Fate of Soil Carbon and the Global Warming Potential of CO2, CH4, and N2O Emissions in an Upland Soil

    Science.gov (United States)

    Simmonds, M.; Muehe, E. M.; Fendorf, S. E.

    2017-12-01

    Our current understanding of the mechanisms driving carbon stabilization in soil organic matter (SOM) and its release to the atmosphere is insufficient for predicting the response of soil carbon dynamics to future climatic conditions. The persistence of SOM has been studied primarily within the context of biochemical, physical, and geochemical protection from decomposition. More recently, bioenergetic constraints on SOM decomposition due to oxygen limitations have been demonstrated in submerged soils. However, the relevance of anaerobic domains in upland soils is uncertain. To better understand how upland soils will respond to climate change, we conducted a 52-day incubation of an upland soil at constant soil moisture (field capacity) under varying air temperatures (32°C and 37°C), CO2 concentrations (398 and 850 ppmv), and soil organic carbon contents (1.3%, 2.4%). Overall, we observed a stimulatory effect of future climate (elevated temperature and CO2) and higher carbon inputs on net SOM mineralization rates (higher CO2, CH4 and N2O emissions). Importantly, CH4 emissions were observed in the soils with added plant residue, indicating anaerobic microsites are relevant in upland soils, and significantly impact microbial respiration pathways, rates of SOM mineralization, and the global warming potential of trace gas emissions. These findings have important implications for positive soil carbon-climate feedbacks, and warrant further investigation into representing anaerobic soil domains of upland soils in biogeochemical models.

  10. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  11. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  12. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  13. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  14. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    climatic data. The strategy takes profit of all work made on soil texture as a proxi of soil hydraulic through pedotransfer functions. It also takes into account the constraints in soil moisture variations after important precipitation events. Performances on soil moisture are assessed by considering both the soil moisture accuracy and the ability of detecting a soil moisture threshold. o The added value of soil moisture measurements. The aim is to evaluate to which extent we can improve soil moisture simulations by assimilating a few soil moisture measurements made in the surface layer (ploughed layers). We focus on such a layer since moisture can be derived from remote sensing observations or by using in situ sensors (capacitance sensor, TDR) with minimal effort. The validity of such measurements to represent the soil moisture at the field scale is analysed. It is shown that relative variations in soil moisture are much easier to obtain than an absolute characterisation of the soil moisture measurements. We evaluate the value of assimilating surface measurement in the TEC model and how we can deal with a measurement of relative soil moisture variations (in order to prevent a tedious calibration process). Again the performances of the approach are evaluated with the soil moisture accuracy and the ability of detecting a soil moisture threshold.

  15. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  16. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    International Nuclear Information System (INIS)

    Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S.

    2007-01-01

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total. - PAHs in surface soil of Tianjin were apportioned and coal combustion, vehicle exhaust, coke production, and biomass burning were found to be the major sources

  17. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  18. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  19. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    Science.gov (United States)

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  20. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Science.gov (United States)

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  1. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  2. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  3. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  4. The solonetzic process in surface soils and buried paleosols and its reflection in the mineralogical soil memory

    Science.gov (United States)

    Chizhikova, N. P.; Kovda, I. V.; Borisov, A. V.; Shishlina, N. I.

    2009-10-01

    The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.

  5. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  6. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    International Nuclear Information System (INIS)

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  7. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  8. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  9. Americium-241 in surface soil associated with the Hanford site and vicinity

    International Nuclear Information System (INIS)

    Price, K.R.; Gilbert, R.O.; Gano, K.A.

    1981-05-01

    Various kinds of surface soil samples were collected and analyzed for Americium-241 ( 241 Am) to examine the feasibility of improving soil sample data for the Hanford Surface Environmental Surveillance Program. Results do not indicate that a major improvement would occur if procedures were changed from the current practices. Conclusions from this study are somewhat tempered by the very low levels of 241 Am ( 241 Am in soil crust (0 to 1.0 cm deep) was greater than the corresponding subsurface layer (1.0 to 2.5 cm deep), and the average concentration of 241 Am in some onsite samples collected near the PUREX facility was greater than comparable samples collected 60 km upwind at an offsite location

  10. A compendium of results from long-range alpha detector soil surface monitoring: June 1992--May 1994

    International Nuclear Information System (INIS)

    Garner, S.E.; Bounds, J.A.; Allander, K.S.; Johnson, J.D.; MacArthur, D.W.; Caress, R.W.

    1994-11-01

    Soil surface monitors based on long-range alpha detector (LRAD) technology are being used to monitor alpha contamination at various sites in the Department of Energy complex. These monitors, the large soil-surface monitor (LSSM) and the small soil-surface monitor (SSSM), were used to help characterize sites at Fernald, Ohio, and active or inactive firing sites at Sandia National Laboratories and Los Alamos National Laboratory. Monitoring results are presented herein in chronological order

  11. Dryland photoautotrophic soil surface communities endangered by global change

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  12. Dryland photoautotrophic soil surface communities endangered by global change

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  13. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  14. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  15. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  16. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    Science.gov (United States)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  17. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  18. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  19. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  20. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  1. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  2. Effects of gravel mulch on emergence of galleta grass seedlings

    International Nuclear Information System (INIS)

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-03-01

    The Department of Energy Nevada Operations Office, Technology Development and Program Management Division, has identified the need to clean up several sites on the Nevada Test Site and Tonopah Test Range contaminated with surface plutonium. An important objective of the project identified as the Plutonium In Soils Integrated Demonstration is to develop technologies to stabilize and restore the disturbed sites after decontamination. Revegetation of these contaminated sites will be difficult due to their location in the arid Mojave and Great Basin Deserts. The major factors which will affect successful plant establishment and growth at these sites are limited and sporadic precipitation, limited soil water, extreme air and soil temperatures, limited topsoil, and herbivory . Research has shown that providing microsites for seed via mulching can aid in plant emergence and establishment. Since many of the soils at the sites slated for plutonium decontamination have a large percentage of gravel in the upper 10 cm of soil, the use of gravel as mulch could provide microsites for seed and stabilize soils during subsequent revegetation of the sites. In July 1992, EG ampersand G/EM Environmental Sciences Department initiated a greenhouse study to examine the possible benefits of gravel mulch. The specific objectives of this greenhouse study were to: (1) determine the effects seedling emergence and soil water, and (2) determine effects of irrigation rates on seedling emergence for gravel mulches and other conventional seedbed preparation techniques. A secondary objective was to determine the depth of gravel mulch that was optimal for seedling emergence. Results from this greenhouse study will assist in formulating specific reclamation plans for sites chosen for cleanup

  3. Optimization of sampling for the determination of the mean Radium-226 concentration in surface soil

    International Nuclear Information System (INIS)

    Williams, L.R.; Leggett, R.W.; Espegren, M.L.; Little, C.A.

    1987-08-01

    This report describes a field experiment that identifies an optimal method for determination of compliance with the US Environmental Protection Agency's Ra-226 guidelines for soil. The primary goals were to establish practical levels of accuracy and precision in estimating the mean Ra-226 concentration of surface soil in a small contaminated region; to obtain empirical information on composite vs. individual soil sampling and on random vs. uniformly spaced sampling; and to examine the practicality of using gamma measurements in predicting the average surface radium concentration and in estimating the number of soil samples required to obtain a given level of accuracy and precision. Numerous soil samples were collected on each six sites known to be contaminated with uranium mill tailings. Three types of samples were collected on each site: 10-composite samples, 20-composite samples, and individual or post hole samples; 10-composite sampling is the method of choice because it yields a given level of accuracy and precision for the least cost. Gamma measurements can be used to reduce surface soil sampling on some sites. 2 refs., 5 figs., 7 tabs

  4. Spreading of 137 C in the Goiania urban area by resuspension and transport of surface soil

    International Nuclear Information System (INIS)

    Rio, Monica Pires do; Amaral, Eliana

    2002-01-01

    The resuspension of surface soil was considered the mechanism responsible by the spreading of 137 Cs after the Goiania accident, which affected an urban area of about 1 km 2 . Studies on the transport of 137 Cs associated to the surface soil were performed in a house located at 57 th Street, close to the main focus of contamination, from 05/89 to 07/00. Periodically, samples of surface soil and soil profile were collected at the house yards and street dust sampling at representative locations was performed in order to know the extension of the contamination in the city. The soil profile samples have shown the low mobility of 137 Cs in deep layers of the soil, although a slight long-term decrease of the 137 Cs activity concentration in the surface soil were observed. The 137 Cs activity concentration in the street dust samples also decrease with time, suggesting a natural dilution of the contamination in those samples; higher values were only found in few locations close to the foci of primary deposition and no additional spreading of the radionuclide is expected to occur from that area. Street dust sampling is a suitable method to assess the spreading of caesium in urban environment. (author)

  5. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    Science.gov (United States)

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  6. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    Science.gov (United States)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  7. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  8. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  9. Daily Based Morgan–Morgan–Finney (DMMF Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Directory of Open Access Journals (Sweden)

    Kwanghun Choi

    2017-04-01

    Full Text Available In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 . Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations.

  10. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model

    Science.gov (United States)

    Thomsen, L. M.; Baartman, J. E. M.; Barneveld, R. J.; Starkloff, T.; Stolte, J.

    2015-04-01

    Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow, and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods (such as roller chain and pinboard) and sensor methods (such as stereophotogrammetry and terrestrial laser scanning (TLS)). A novel depth-sensing technique, originating in the gaming industry, has recently become available for earth sciences: the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph at catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct seeding on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per square metre). In terms of costs and ease of use in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain overestimated the random roughness (RR) values and the model subsequently calculated less surface runoff than measured. In conclusion, the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.

  12. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  13. LPRM/TMI/TRMM L2 Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  14. Oxidation of FGD-CaSO{sub 3} and effect on soil chemical properties when applied to the soil surface

    Energy Technology Data Exchange (ETDEWEB)

    Liming Chen; Cliff Ramsier; Jerry Bigham; Brian Slater; David Kost; Yong Bok Lee; Warren A. Dick [Ohio State University, Wooster, OH (United States). School of Environment and Natural Resources

    2009-07-15

    Use of high-sulfur coal for power generation in the United States requires the removal of sulfur dioxide (SO{sub 2}) produced during burning in order to meet clean air regulations. If SO{sub 2} is removed from the flue gas using a wet scrubber without forced air oxidation, much of the S product created will be sulfite (SO{sub 3}{sup 2-}). Plants take up S in the form of sulfate (SO{sub 2}{sup 2-}). Sulfite may cause damage to plant roots, especially in acid soils. For agricultural uses, it is thought that SO{sub 4}{sup 2-} in flue gas desulfurization (FGD) products must first oxidize to SO{sub 4}{sup 2-} in soils before crops are planted. However, there is little information about the oxidation of SO{sub 3}{sup 2-} in FGD product to SO{sub 4}{sup 2-} under field conditions. An FGD-CaSO{sub 3} was applied at rates of 0, 1.12, and 3.36 Mg ha{sup -1} to the surface of an agricultural soil (Wooster silt loam, Oxyaquic Fragiudalf). The SO{sub 4}{sup 2-} in the surface soil (0-10 cm) was analyzed on days 3, 7, 17, 45, and 61. The distribution of SO{sub 4}{sup 2-} and Ca in the 0-90 cm soil layer was also determined on day 61. Results indicated that SO{sub 3}{sup 2-} in the FGD-CaSO{sub 3} rapidly oxidized to SO{sub 4}{sup 2-} on the field surface during the first week and much of the SO{sub 4}{sup 2-} and Ca moved downward into the 0-50 cm soil layer during the experimental period of two months. It is safe to grow plants in soil treated with FGD-CaSO{sub 3} if the application is made at least three days to several weeks before planting. 20 refs., 6 figs., 4 tabs.

  15. A comparison of different neutron probes calibration method for the soil surface and their radiation effect on the users

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, A; Razzouk, A K; Al-Ain, F [Atomic Energy commission , Damascus (Syrian Arab Republic). Dept of Radiation Agriculture

    1996-08-01

    In situ calibration curves were installed for the soil surface using different models of depth neutron probes and different adaptors. depth beutron probe readings increased with increasing the number of teflon plastic blocks deposited on the soil surface. The intercept of the straight line regression analysis decreased with increasing of teflon plastics blocks deposited on the soil surface in all sites. The least exposure was with depth probe with surface reflectors. This study proves the possibility of measuring the moisture content of the soil surface by using a depth probe with a block laid on the surface, without a danger of receiving the thresgold of radiation dose. (author). 10 Refs., 2 Figs., 8 Tabs.

  16. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  17. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques....... Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization...... the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O...

  18. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  19. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  20. Detecting buried radium contamination using soil-gas and surface-flux radon meaurements

    International Nuclear Information System (INIS)

    Karp, K.E.

    1988-06-01

    The Technical Measurements Center (TMC) has investigated the effectiveness of using radon soil-gas under surface-flux measurments to locate radium contamination that is buried sufficiently deep to be undetectable by surface gamma methods. At the first test site studied, an indication of a buried source was revealed by mapping anomalous surface-flux and soil-gas concentrations in the near surface overburden. The mapped radon anomalies were found to correspond in rough outline to the shape of the areal extent of the deposit as determined by borehole gamma-ray logs. The 5.9pCi/g radium deposit, buried 2 feet below the surface, went undetected by conventional surface gamma measurements. Similar results were obtained at the second test site where radon and conventional surface gamma measurements were taken in an area having radium concentrations ranging from 13.3 to 341.0 pCi/g at a depth of 4 feet below the surface. The radon methods were found to have a detection limit for buried radium lower than that of the surface gamma methods, as evidenced by the discovery of the 13.3 pCi/g deposit which went undetected by the surface gamma methods. 15 refs., 33 figs., 8 tabs

  1. [Distribution and sources of oxygen and sulfur heterocyclic aromatic compounds in surface soil of Beijing, China].

    Science.gov (United States)

    He, Guang-Xiu; Zhang, Zhi-Huan; Peng, Xu-Yang; Zhu, Lei; Lu, Ling

    2011-11-01

    62 surface soil samples were collected from different environmental function zones in Beijing. Sulfur and oxygen heterocyclic aromatic compounds were detected by GC/MS. The objectives of this study were to identify the composition and distribution of these compounds, and discuss their sources. The results showed that the oxygen and sulfur heterocyclic aromatic compounds in the surface soils mainly contained dibenzofuran, methyl- and C2-dibenzofuran series, dibenzothiophene, methyl-, C2- and C3-dibenzothiophene series and benzonaphthothiophene series. The composition and distribution of the oxygen and sulfur heterocyclic aromatic compounds in the surface soil samples varied in the different environmental function zones, of which some factories and the urban area received oxygen and sulfur heterocyclic aromatic compounds most seriously. In Beijing, the degree of contamination by oxygen and sulfur heterocyclic aromatic compounds in the north surface soil was higher than that in the south. There were preferable linear correlations between the concentration of dibenzofuran series and fluorene series, as well as the concentration of dibenzothiophene series and dibenzofuran series. The oxygen and sulfur heterocyclic aromatic compounds in the surface soil were mainly derived from combustion products of oil and coal and direct input of mineral oil, etc. There were some variations in pollution sources of different environmental function zones.

  2. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal

  3. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  4. Nonlinear estimation of weathering rate parameters for uranium in surface soil near a nuclear facility

    International Nuclear Information System (INIS)

    Killough, G.G.; Rope, S.K.; Shleien, B.; Voilleque, P.G.

    1999-01-01

    A dynamic mass-balance model has been calibrated by a nonlinear parameter estimation method, using time-series measurements of uranium in surface soil near the former Feed Materials Production Center (FMPC) near Fernald, Ohio, USA. The time-series data, taken at six locations near the site boundary since 1971, show a statistically significant downtrend of above-background uranium concentration in surface soil for all six locations. The dynamic model is based on first-order kinetics in a surface-soil compartment 10 cm in depth. Median estimates of weathering rate coefficients for insoluble uranium in this soil compartment range from about 0.065-0.14 year -1 , corresponding to mean transit times of about 7-15 years, depending on the location sampled. The model, calibrated by methods similar to those discussed in this paper, has been used to simulate surface soil kinetics of uranium for a dose reconstruction study. It was also applied, along with other data, to make confirmatory estimates of airborne releases of uranium from the FMPC between 1951 and 1988. Two soil-column models (one diffusive and one advective, the latter similar to a catenary first-order kinetic box model) were calibrated to profile data taken at one of the six locations in 1976. The temporal predictions of the advective model approximate the trend of the time series data for that location. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  6. [Influence of different types of surface on the diversity of soil fauna in Beijing Olympic Park].

    Science.gov (United States)

    Song, Ying-shi; Li, Xiao-wen; Li, Feng; Li, Hai-mei

    2015-04-01

    Soil fauna are impacted by urbanization. In order to explore the stress of different surface covers on diversity and community structure of soil fauna, we conducted this experiment in Beijing Olympic Park. In autumn of 2013, we used Baermann and Tullgren methods to study the diversity of soil fauna in the depth of 0-5 cm, 5-10 cm, 10-15 cm under four different land covers i.e. bared field (BF), totally impervious surface (TIS), partly impervious surface (PIS) and grassland (GL). The results showed that the total number of soil fauna in 100 cm3 was in order of GL (210) > PIS (193) > TIS (183) > BF (90), and the number of nematodes accounted for 72.0%-92.8% of the total number. On the vertical level, except for the TIS, the other three types of surface soil fauna had the surface gathered phenomenon. The Shannon diversity index and the Pielou evenness index of BF were lower, but the Simpson dominance index was higher than in the other land covers. The Shannon index and Margalef richness indes of GL were higher than those of the other land covers. The Shannon indexes of TIS and PIS were between the BF and GL. Except for the TIS and GL, the similarity indexes were between 0.4-0.5, indicating moderate non-similar characteristics. The diversity of soil fauna was significantly correlated with temperature, pH and available potassium.

  7. Radiative warming of the air observed near a bare-soil surface on calm clear nights

    International Nuclear Information System (INIS)

    Sang, N.; Kobayahsi, T.

    1999-01-01

    The radiative flux in the lowest three meters above a bare-soil surface was directly measured on calm nights with little cloud cover. Although divergence of upward radiative flux occurred above 1m, convergence was often observed between 0.2m and 1m all through the night. Almost the same results were obtained for the net flux except that the transitional height between divergence and convergence was some tens of centimeters, which means that radiative warming occurred just above the bare-soil surface during the night. This phenomenon can be explained by postulating that cold air is produced by conduction at the surface of small heat-insulated projections (HIPs) such as soil grains on the ground surface, while the ground releases the heat stored during the day by radiation through the pores between HIPs and warms the air immediately above the surface at night. This “HIP hypothesis” can also account for the so-called “raised minimum (RM)” phenomenon. (author)

  8. Polychlorinated biphenyls in surface soil in urban and background areas of Mongolia

    International Nuclear Information System (INIS)

    Mamontova, Elena A.; Mamontov, Alexander A.; Tarasova, Eugenia N.; Kuzmin, Mikhail I.; Ganchimeg, Darmaa; Khomutova, Marina Yu.; Gombosuren, Odontuya; Ganjuurjav, Erdenebayasgalan

    2013-01-01

    Polychlorinated biphenyls (PCBs) were measured in soil in some industrial towns (Ulaanbaatar, Suhbaatar, Erdenet, Darhan, Tsetserleg, Hovd, Ulaangom, Altay, Bayanhongor, Arvayheer, Saynshand, Choybalsan) and in background and rural areas of Mongolia. The average sum of all investigated PCB congeners in soil of Mongolia comes to 7.4 ng/g dry weight (DW) and varies from 0.53 ng/g DW till 114 ng/g DW. PCB levels in soil from towns are significantly higher than those in soil from background and rural areas. The PCB homological composition in soil sampled in highly-PCB-polluted sites is similar to the PCB homological pattern in Sovol and Aroclor 1254. Significant correlation between soil organic carbon and low chlorinated PCB both for towns and background sites was found. Significant differences in PCB means in soil in different natural zones were found. -- Highlights: •First study to measure PCBs in surface soil sampled throughout Mongolia. •The PCB patterns in polluted soil were similar to those in Sovol or Aroclor 1254. •Significant differences in PCB means in soil in different natural zones were found. -- Polychlorinated biphenyls were measured in soils throughout Mongolia

  9. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling

    International Nuclear Information System (INIS)

    Wang Xiaoping; Sheng Jiujiang; Gong Ping; Xue Yonggang; Yao Tandong; Jones, Kevin C.

    2012-01-01

    There are limited data on persistent organic pollutants (POPs) in the soils of the Tibetan Plateau. This paper presents data from a survey of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 40 background surface (0–5 cm) soils of the Tibetan Plateau. Soil concentrations (pg/g, dw) ranged as follows: DDTs, 13-7700; HCHs, 64-847; HCB, 24-564; sum of 15 PCBs, 75-1021; and sum of 9 PBDEs, below detection limit −27. Soil DDT, HCB, PCB and PBDE concentrations were strongly influenced by soil organic carbon content. HCH concentrations were clearly associated with the proximity to source regions in south Asia. The air–soil equilibrium status of POPs suggested the Tibetan soils may be partial “secondary sources” of HCB, low molecular weight PCBs and HCHs and will likely continue to be “sinks” for the less volatile DDE and DDT. - Highlights: ► Soil organic carbon content influence the spatial distribution of persistent organic pollutants. ► The Tibetan soil acts as “secondary sources” for HCB, low molecular weight PCBs and HCHs. ► The Tibetan soil will continue to be “sinks” for DDE and DDT. - Tibetan soils may be potential “secondary sources” of the HCB, low molecular weight PCBs and HCHs that are observed in air.

  10. Soils Developed on Geomorphic Surfaces in the Mountain Region of the State of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ademir Fontana

    2018-01-01

    Full Text Available ABSTRACT: The evaluation of soils in representative landscapes constitutes an opportunity to evaluate spatial distribution, discuss formation processes, and apply this knowledge to land use and management. In this sense, from the perspective of an environmentally diversified region, the aim of the present study is to evaluate the occurrence and understand the formation of soils in different geomorphic surfaces of a landscape from a mountain region in the state of Rio de Janeiro. The study was developed in the Pito Aceso microbasin in the municipality of Bom Jardim, composed of narrow valleys and a rugged mountain domain, with elevation between 640 and 1,270 m. In a representative landscape, the geomorphic surfaces were obtained from the slope segments and flow lines. On the geomorphic surfaces, soil profiles were described by their morphological properties, collected, and analyzed to describe the chemical and physical properties of each horizon. Geomorphological aspects and possible variations of the parent material directly affected pedogenesis and led to distinct soil classes in the landscape. Variation in the geomorphic surfaces directs the processes for soil formation under current conditions, as well as the preservation of polygenetic soils. Soils of lower development and with greater participation of the exchangeable cations were identified at the summit (talus deposit (Neossolo Litólico and Cambissolo Húmico and toeslope (colluvial-alluvial (Neossolo Flúvico, whereas more developed soils with lower nutrient content occur in the concave (Argissolos Vermelho and Amarelo and convex (Latossolo Amarelo backslope, except for the Argissolo Vermelho-Amarelo in the shoulder, which had high exchangeable cations contents.

  11. Environmental Radionuclides in Surface Soils of Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Luyen, T.V.; Binh, T.V.; Ngo, N.T.; Long, N.Q.; Bac, V.T.

    2012-01-01

    A database on 238 U, 232 Th, 40 K and 137 Cs in surface soils was established to provide inputs for the assessment of the collective dose to the population of Vietnam and to support soil erosion studies using 137 Cs as a tracer. A total of 292 soil samples were taken from undisturbed sites across the territory and the concentrations of radionuclides were determined by gamma spectrometry method. The multiple regression of 137 Cs inventories against characteristics of sampling locations allowed us to establish the distribution of 137 Cs deposition density and its relationship with latitude and annual rainfall. The 137 Cs deposition density increases northward and varies from 178 Bq m -2 to 1,920 Bq m -2 . High rainfall areas in the northern and central parts of the country have received considerable 137 Cs inputs exceeding 600 Bq m -2 , which is the maximum value that can be expected for Vietnam from the UNSCEAR global pattern. The mean activity concentrations of naturally occurring radionuclides 238 U, 232 Th and 40 K are 45, 59 and 401 Bq kg- 1 , respectively, which entail an average absorbed dose rate in air of 62 nGy h -1 , which is about 7% higher than the world average. (author)

  12. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

    2012-08-31

    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  13. Study on distribution and behavior of long-lived radionuclides in surface soil environment

    International Nuclear Information System (INIS)

    Morita, Shigemitsu; Watanabe, Hitoshi; Katagiri, Hiromi; Akatsu, Yasuo; Ishiguro, Hideharu

    1996-01-01

    Technetium-99 ( 99 Tc) and Neptunium-237 ( 237 Np) are important radionuclides for environmental assessment around nuclear fuel cycle facilities, because these have long-lives and relatively high mobility in the environment. Therefore, we have been studied the determination, distribution and behavior of such long-lived radionuclides in surface soil environment. A new analytical technique using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was applied to the determination of long-lived radionuclides in environmental samples. The determination method consists of dry ashing, anion exchange and solvent extraction to eliminate the interfering elements and ICP-MS measurement. The sensitivity of this method was 10 to 100,000 times higher, and the counting time was 300 to 100,000 times shorter than the conventional radioanalytical methods. The soil samples were collected at nine points and core soil sample was collected by an electric core sampler at one point. The core soil sample was divided into eight layers. The depth profiles showed that more than 90% of 99 Tc and 237 Np were retained in the surface layer up to 10cm in depth which contained much amount of organic materials. The results suggest that content of organic materials in soil is related to adsorption of 99 Tc and 237 Np onto soil. (author)

  14. Role of soil health in maintaining environmental sustainability of surface coal mining.

    Science.gov (United States)

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian

    2011-12-01

    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  15. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  16. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    Science.gov (United States)

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  17. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange

    International Nuclear Information System (INIS)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2014-01-01

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0–5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m 3 , which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air–soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs. Highlights: • The levels of PAHs in air and soil of the Tibetan Plateau were relatively lower than other background region of world. • The soil PAHs concentration decreased with the increase of elevation. • The Tibetan Plateau will likely remain as a sink for high molecular weight PAHs. • The Tibetan Plateau may become a potential “secondary source” for low molecular weight PAHs. -- The Tibetan soil will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs

  18. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  19. Predicting the size and elevation of future mountain forests: Scaling macroclimate to microclimate

    Science.gov (United States)

    Cory, S. T.; Smith, W. K.

    2017-12-01

    Global climate change is predicted to alter continental scale macroclimate and regional mesoclimate. Yet, it is at the microclimate scale that organisms interact with their physiochemical environments. Thus, to predict future changes in the biota such as biodiversity and distribution patterns, a quantitative coupling between macro-, meso-, and microclimatic parameters must be developed. We are evaluating the impact of climate change on the size and elevational distribution of conifer mountain forests by determining the microclimate necessary for new seedling survival at the elevational boundaries of the forest. This initial life stage, only a few centimeters away from the soil surface, appears to be the bottleneck to treeline migration and the expansion or contraction of a conifer mountain forest. For example, survival at the alpine treeline is extremely rare and appears to be limited to facilitated microsites with low sky exposure. Yet, abundant mesoclimate data from standard weather stations have rarely been scaled to the microclimate level. Our research is focusing on an empirical downscaling approach linking microclimate measurements at favorable seedling microsites to the meso- and macro-climate levels. Specifically, mesoclimate values of air temperature, relative humidity, incident sunlight, and wind speed from NOAA NCEI weather stations can be extrapolated to the microsite level that is physiologically relevant for seedling survival. Data will be presented showing a strong correlation between incident sunlight measured at 2-m and seedling microclimate, despite large differences from seedling/microsite temperatures. Our downscaling approach will ultimately enable predictions of microclimate from the much more abundant mesoclimate data available from a variety of sources. Thus, scaling from macro- to meso- to microclimate will be possible, enabling predictions of climate change models to be translated to the microsite level. This linkage between measurement

  20. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    Science.gov (United States)

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.

  1. Soil-characterization and soil-amendment use on coal surface mine lands: An annotated bibliography. Information Circular/1991

    International Nuclear Information System (INIS)

    Norland, M.R.; Veith, D.L.

    1991-01-01

    The U.S. Bureau of Mines Report on United States and Canadian Literature pertaining to soil characterization and the use of soil amendments as a part of the reclamation process of coal surface-mined lands contains 1,280 references. The references were published during the 1977 to 1988 period. Each reference is evaluated by keywords, providing the reader with a means of rapidly sorting through the references to locate those articles with the coal mining regions and subjects of interest. All references are annotated

  2. Soil properties and clover establishment six years after surface application of calcium-rich by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ritchey, K.D.; Belesky, D.P.; Halvorson, J.J. [USDA ARS, Beaver, WV (US). Appalachian Farming Systems Research Center

    2004-12-01

    Calcium-rich soil amendments can improve plant growth by supplying Ca and reducing detrimental effects of soil acidity, but solubility and neutralizing capacity of Ca sources vary. Our objectives were to evaluate effects of calcitic dolomite and several coal combustion by-products on soil properties at various depths 6 yr after surface application and their influence on grass-clover herbage accumulation. Calcium and Mg soil amendments were surface-applied to an acidic grassland in 1993, and orchardgrass (Dactylis glomerata L.) and tall fescue (Lolium arundinaceum (Schreb.) Darbyshire) were oversown in 1994. In 1998, amendment treatment plots were split to accommodate sod seeding with red clover (Trifolium pratense L.) or white clover (T. repens L.) as well as a nonseeded control. No N fertilizer was applied after sod seeding. Six years after amendment application, reductions in soil Al and Mn and increases in Ca and pH from 4654 kg ha{sup -1} calcitic dolomite, 15 000 kg ha{sup -1} fluidized bed combustion residue, or 526 kg ha{sup -1} MgO amendment were greatest in the surface 2.5 cm while rates of gypsum as high as 32 000 kg ha{sup -1} left little residual effect except for decreases in Mg. Percentage clover in the sward tripled as pH increased from 4.3 to 5.0 while herbage mass increased 75% as clover percentage increased. Herbage mass was generally more closely correlated with properties of soil samples collected from the surface 2.5 cm than from deeper samples.

  3. The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question

    Science.gov (United States)

    Davidson, E. A.; Savage, K. E.; Sihi, D.

    2015-12-01

    Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.

  4. Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway

    International Nuclear Information System (INIS)

    Gjelsvik, Runhild; Steinnes, Eiliv

    2013-01-01

    In order to follow the turnover of 137 Cs in natural soils and estimate future trends in exposure of livestock, samples of natural surface soils were collected at 0–3 cm depth at 464 sites in 1995 and 463 sites in 2005 covering the country. In both cases the geographical pattern observed was similar to the original distribution from 1986, but the decline of 137 Cs activity in the surface soil was not the same everywhere. In 1995 the 137 Cs reduction since 1986 was found to be considerably greater in coastal areas than farther inland. The main reason for this appears to be the much greater deposition of marine cations such as Mg 2+ and Na + in the coastal areas, replacing Cs ions fixed on soil particle surfaces. This cation exchange appeared to be particularly strong near the southern coast where deposition of NH 4 + from transboundary air pollution is evident in addition to the marine cations. During 1995–2005 the 137 Cs decline in the surface soil was more uniform over the country than in the preceding 10-year period but still significantly higher in coastal areas than inland. Differences in precipitation chemistry may have influenced the uptake of 137 Cs in terrestrial food chains. -- Highlights: • We investigated the decline of 137 Cs in natural surface soil in Norway in 1986–2005. • The reduction of 137 Cs in soil was greater in coastal areas then farther inland. • Deposition of marine cations were replacing Cs ions fixed on soil particle surfaces. • In areas with nitrogen compounds NH 4 + cation may compete with Cs + cation

  5. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  6. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  7. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    Science.gov (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  8. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Directory of Open Access Journals (Sweden)

    Antonio I Arroyo

    Full Text Available Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain. Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the

  9. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Science.gov (United States)

    Arroyo, Antonio I; Pueyo, Yolanda; Giner, M Luz; Foronda, Ana; Sanchez-Navarrete, Pedro; Saiz, Hugo; Alados, Concepción L

    2018-01-01

    Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain). Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community) beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC) to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic) and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the significance of

  10. Genesis and Development of Soils along Different Geomorphic Surfaces in Kouh Birk Area, Mehrestan City

    Directory of Open Access Journals (Sweden)

    Mohammad Akbar Bahoorzahi

    2017-02-01

    Full Text Available Introduction: The optimum and sustainable use of soil is only possible with correct and complete understanding of its properties. The objectives of the present research were to study 1 genesis and development of soils related to different geomorphic surfaces in Kouh Birk Area (Mehrestan City, 2 Soil classification according to Soil Taxonomy (2014 and WRB (2014 systems, and 3 physicochemical properties, clay mineralogy and micromorphology of soils. Materials and Methods: Mean annual rainfall and soil temperature in the selected location are 153.46 mm and 19.6 oC, respectively. From geological point of view, the studied area is a part of west and south west zones and Flysch zone of east Iran. Soil temperature and moisture regimes of this part are thermic and aridic, respectively. Eight representative pedons on different surfaces including rock pediment, mantled pediment, Alluvial fan and Upper terraces were selected, sampled, and described. Routine physicochemical analyses, clay mineralogy, and micromorphological observations performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Four samples including Bt horizon of pedon 1, Bk1 horizon of pedon 4, By2 horizon of pedon 5 and Bk1 horizon of pedon 7 were selected for clay mineralogy investigations. Four slides including Mg saturated, Mg saturated treated with ethylene glycol, K saturated, and K saturated heated up to 550 oC were analyzed. A Brucker X-Ray diffractometer at 40 kV and 30 mA was used for XRD analyses. Undisturbed soil samples from Bt horizon of pedon 1, Bk2 horizon of pedon 2, Btn horizon of pedon 3, By2 horizon of pedon 5, Bk1 horizon of pedon 7, and By1 horizon of pedon 8 were selected for micromorphological observations. A vestapol resin with stearic acid and cobalt as hardener was used for soil impregnation. Bk-Pol petrographic microscope was used for micromorphology investigations. Results and Discussion: Due to

  11. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  12. Landfill: Comparison of pedogenesis between sites of Eucalyptus camaldulensis Dehnh plantation and naturalized herbaceus vegetation

    OpenAIRE

    Lanfranco, J. W.; Marlats, R. M.; Baridon, E.

    1999-01-01

    The purpose of this work was compared different levels of pedogenetics process between sites with Eucalyptus camaldulensis plantation and naturalized grass. The trial was installed on landfill soil cover in Villa Domínico, Buenos Aires Province, Argentine, CEAMSE, 34°40’S,50’’; 58°18’45’’W; 4m osl. At five age of trees and forteen of the Landfill was realized the following determination: 1- Physical and Chemicals caracterization of own microsite tree and analogical microsite without trees inf...

  13. A decision-making process on cleanup of contaminated surface soil

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1996-01-01

    This study presents principles for determining derived intervention levels (DILs) for surface soil cleanup. The people concerned were divided into major three groups: residents, responsible parties, and cleanup workers; it was considered that each group has different interests. The DILs for soil cleanup were determined from the viewpoints of these three groups: safety of residence, advantages of the countermeasures, and safety of cleanup activities, respectively. An example process for determination of the DILs in accordance with the principles was also presented for a site contaminated by 137 Cs. This decision-making frame is expected to be applicable to other contaminants. (author)

  14. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    Science.gov (United States)

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  15. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  16. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  17. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  18. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada

    Science.gov (United States)

    Bodhinayake, Waduwawatte; Si, Bing Cheng

    2004-10-01

    Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near-saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double-ring and tension infiltrometers at -0.3, -0.7, -1.5 and -2.2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field-saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at -0.3 kPa pressure head, inverse capillary length scale () and water-conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p 1.36 × 10-4 m in diameter in the three land uses. Land use modified near-saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage.

  19. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  20. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    Science.gov (United States)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  1. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    Science.gov (United States)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  2. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  3. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Kerr, C.; Osprey, M.; Zhang, Z.L.; Duff, E.I.; Lilly, A.; Nolan, A.; Hudson, G.; Towers, W.; Bell, J.; Coull, M.; McKenzie, C.

    2013-01-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0–5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. -- Highlights: •Concentrations of selected organic pollutants in Scottish soils were determined. •Concentrations were highly variable. •There were few effects of soil or vegetation type, soil carbon, pH or altitude. •Distance from cities was not an important determinant of concentrations. •Atmospheric deposition and soil organic carbon content may affect concentrations. -- Soil concentrations of anthropogenic persistent organic pollutants are not clearly related to soil type or pH, vegetation, altitude, or distance from pollutant sources

  4. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    Science.gov (United States)

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  5. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  6. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    This study investigated lead concentrations in < 250 μm and < 75 μm of deposited dust and< 2000 μm, < 250 μm, and < 75 μm of surface soils at undeveloped residential lands leased to auto-mechanic artisans for a minimum of ten years and estimated exposure risk for children that will reside on the polluted lands after the ...

  7. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  8. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    Science.gov (United States)

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  9. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    Science.gov (United States)

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  10. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  11. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  12. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  13. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-12-01

    Full Text Available The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  14. A field evaluation of soil moisture modelling with the Soil, Vegetation, and Snow (SVS) land surface model using evapotranspiration observations as forcing data

    Science.gov (United States)

    Maheu, Audrey; Anctil, François; Gaborit, Étienne; Fortin, Vincent; Nadeau, Daniel F.; Therrien, René

    2018-03-01

    To address certain limitations with their current operational model, Environment and Climate Change Canada recently developed the Soil, Vegetation, and Snow (SVS) land surface model and the representation of subsurface hydrological processes was targeted as an area for improvement. The objective of this study is to evaluate the ability of HydroSVS, the component of SVS responsible for the vertical redistribution of water, to simulate soil moisture under snow-free conditions when using flux-tower observations of evapotranspiration as forcing data. We assessed (1) model fidelity by comparing soil moisture modelled with HydroSVS to point-scale measurements of volumetric soil water content and (2) model complexity by comparing the performance of HydroSVS to that of HydroGeoSphere, a state-of-the-art integrated surface and subsurface hydrologic model. To do this, we performed one-dimensional soil column simulations at four sites of the AmeriFlux network. Results indicate that under Mediterranean and temperate climates, HydroSVS satisfactorily simulated soil moisture (Nash-Sutcliffe efficiency between 0.26 and 0.70; R2 ≥ 0.80), with a performance comparable to HydroGeoSphere (Nash-Sutcliffe efficiency ≥0.60; R2 ≥ 0.80). However, HydroSVS performed weakly under a semiarid climate while HydroGeoSphere performed relatively well. By decoupling the magnitude and sourcing of evapotranspiration, this study proposes a powerful diagnostic tool to evaluate the representation of subsurface hydrological processes in land surface models. Overall, this study highlights the potential of SVS for hydrological applications.

  15. Research on the Influence of Soil Structure and Amendments on Surface Water Quality from Cervenia Village, Teleorman County

    Directory of Open Access Journals (Sweden)

    Dana Popa

    2011-10-01

    Full Text Available This study is part of a research project on the influence of agro-livestock activities on surface water quality inTeleorman County. The paper presents structure, quality and measures to prevent and combat soil erosion in relationto agro-livestock activities in this area. The research has been done in the whole locality, and took soil samples todetermine the type and soil texture and soil supply status with major nutrients (N, P, K. Based on these results andknowing the soil amendaments at Cervenia village level, recommendations were made about avoiding the risks ofpollution of surface water by nitrates from agricultural and livestock activities.

  16. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  17. Soil bioengineering methods for abandoned mine land surface drainage channels

    Energy Technology Data Exchange (ETDEWEB)

    Sotir, R.B.; Simms, A.P.; Sweigard, R.J.; Hammer, P.; Graves, D.H.; Adkins, M. [Robbin B. Sotir & Associates, Marietta, GA (USA)

    1999-07-01

    Research to determine the suitability of soil bioengineering for slope stabilization at abandoned surface mining sites is described. The technology uses live woody plant material as a structural component, in this case live fascine with coir erosion control fabric made from coconut. A large water collection pond draining to nine channels on the slope below was constructed as a test site. The pond has drainage channels for testing at low, intermediate, and steep slope grades. Each group of three channels is composed of one riprap rock channel, one gabion channel, and one soil bioengineering channel. The channels will be tested summer 1999. 11 refs., 5 figs., 2 tabs., 8 photos.

  18. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  19. Towards the development of multifunctional molecular indicators combining soil biogeochemical and microbiological variables to predict the ecological integrity of silvicultural practices.

    Science.gov (United States)

    Peck, Vincent; Quiza, Liliana; Buffet, Jean-Philippe; Khdhiri, Mondher; Durand, Audrey-Anne; Paquette, Alain; Thiffault, Nelson; Messier, Christian; Beaulieu, Nadyre; Guertin, Claude; Constant, Philippe

    2016-05-01

    The impact of mechanical site preparation (MSP) on soil biogeochemical structure in young larch plantations was investigated. Soil samples were collected in replicated plots comprising simple trenching, double trenching, mounding and inverting site preparation. Unlogged natural mixed forest areas were used as a reference. Analysis of soil nutrients, abundance of bacteria and gas exchanges unveiled no significant difference among the plots. However, inverting site preparation resulted in higher variations of gas exchanges when compared with trenching, mounding and unlogged natural forest. A combination of the biological and physicochemical variables was used to define a multifunctional classification of the soil samples into four distinct groups categorized as a function of their deviation from baseline ecological conditions. According to this classification model, simple trenching was the approach that represented the lowest ecological risk potential at the microsite level. No relationship was observed between MSP method and soil bacterial community structure as assessed by high-throughput sequencing of bacterial 16S rRNA gene; however, indicator genotypes were identified for each multifunctional soil class. This is the first identification of multifunctional molecular indicators for baseline and disturbed ecological conditions in soil, demonstrating the potential of applied microbial ecology to guide silvicultural practices and ecological risk assessment. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  1. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    Science.gov (United States)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2018-02-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  2. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  3. New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces

    International Nuclear Information System (INIS)

    Walia, S.; Dureja, P.; Mukerjee, S.K.

    1988-01-01

    The organophosphate insecticide chlorpyrifos was irradiated under different photochemical conditions and the products characterized by gas chromatography, mass spectrometry, and NMR spectroscopy. Irradiation of chlorpyrifos in hexane yielded dechlorinated photoproducts and cleavage products. In methanol, besides these products, chlorpyrifos gave oxons. Several new photoproducts, the formation of which apparently occurs by the displacement of 5-chloro by a methoxy substituent in the pyridyl moiety. The possibility of formation of such products on glass, soil, and leaf surfaces under the influence of UV and solar simulated light have also been explored and many new products presumably formed due to simultaneous photo-dechlorination, oxidation and hydrolytic processes were detected. Photodegradation of chlorpyrifos was rapid on a soil surface but comparatively slow on glass and leaf surfaces

  4. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  5. The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization

    Science.gov (United States)

    Cohen, Sagy; Willgoose, Garry; Hancock, Greg

    2009-09-01

    Hillslope surface armouring and weathering processes have received little attention in geomorphologic and hydrologic models due to their complexity and the uncertainty associated with them. Their importance, however, in a wide range of spatial processes is well recognized. A physically based armouring and weathering computer model (ARMOUR) has previously been used to successfully simulate the effect of these processes on erosion and soil grading at a hillslope scale. This model is, however, computationally complex and cannot realistically be applied over large areas or over long periods of time. A simplified process conceptualization approach is presented (named mARM) which uses a novel approach of modeling physical processes using transition matrices, which is orders of magnitude faster. We describe in detail the modeling framework. We calibrate and evaluate the model against ARMOUR simulations and show it matches ARMOUR for a range of conditions. The computational efficiency of mARM allowed us to easily examine time- and space-varying relationships between erosion and physical weathering rates at the hillslope scale. For erosion-dominated slopes the surface coarsens over time, while for weathering domination the surface fines over time. When erosion and weathering are comparable in scale a slope can be weathering-dominated upslope (where runoff and therefore erosion is low) and armouring-dominated downslope. In all cases, for a constant gradient slope the surface armour coarsens downslope as a result of a balance between erosion and weathering. Thus even for weathering-dominated slopes the surface grading catena is dependent on armouring through the balance between weathering and armouring. We also observed that for many slopes the surface initially armours but, after some period of time (space- and rate-dependent), weathering begins to dominate and the surface subsequently fines. Depending on the relative magnitude of armouring and weathering the final

  6. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    Science.gov (United States)

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  7. Natural radioactivity and external dose assessment of surface soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N. Q.; Hien, P. D.; Luyen, T. V.; Hoang, D. V.; Hiep, H. T.; Quang, N. H.; Long, N. Q.; Nhan, D. D.; Binh, N. T.; Hai, P. S.; Ngo, N. T.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduced from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADRs obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it is used as a building material. (authors)

  8. Natural Radioactivity and External Dose Assessment of Surface Soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N.Q.; Hien, P.D.; Hoang, D.V.; Quang, N.H.; Long, N.Q.; Binh, N.T.; Hai, P.S.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduces from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADR obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it used as a building material. (author)

  9. Fire-induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility.

    Science.gov (United States)

    Mayor, A G; Valdecantos, A; Vallejo, V R; Keizer, J J; Bloem, J; Baeza, J; González-Pelayo, O; Machado, A I; de Ruiter, P C

    2016-12-15

    Since the mid of the last century, fire recurrence has increased in the Iberian Peninsula and in the overall Mediterranean basin due to changes in land use and climate. The warmer and drier climate projected for this region will further increase the risk of wildfire occurrence and recurrence. Although the impact of wildfires on soil nutrient content in this region has been extensively studied, still few works have assessed this impact on the basis of fire recurrence. This study assesses the changes in soil organic C and nutrient status of mineral soils in two Southern European areas, Várzea (Northern Portugal) and Valencia (Eastern Spain), affected by different levels of fire recurrence and where short fire intervals have promoted a transition from pine woodlands to shrublands. At the short-term (fire recurrence (one to four fires). At the long-term (>5years), a decline in overall soil fertility with fire recurrence was also observed, with a drop between pine woodlands (one fire) and shrublands (two and three fires), particularly in the soil microsites between shrubs. Our results suggest that the current trend of increasing fire recurrence in Southern Europe may result in losses or alterations of soil organic matter, particularly when fire promotes a transition from pine woodland to shrubland. The results also point to labile organic matter fractions in the intershrub spaces as potential early warning indicators for shifts in soil fertility in response to fire recurrence. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  11. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  12. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  13. Effect of heavy metals on soil mineral surfaces and bioretention pond performance

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2009-12-01

    Haibo Zhang and Mira S. Olson Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 As urban stormwater runoff flows across impervious surfaces, it collects and accumulates pollutants that are detrimental to the quality of local receiving water bodies. Heavy metal pollution, such as copper, lead and zinc, has been a concern in urban stormwater runoff. In addition, the presence of bacteria in stormwater has been frequently reported. The co-existence of both heavy metals and bacteria in stormwater and their complex interactions determine their transport and removal through bioretention pond. Stormwater runoff was sampled from a bioretention pond in Philadelphia, PA. The concentration of copper, lead and zinc were measured as 0.086ppm, 0.083ppm and 0.365ppm, respectively. Batch experiments were conducted with solutions of pure copper, lead and zinc, and with a synthetic stormwater solution amended with copper, lead and zinc. The solution was buffered to pH 7, within the range of the observed stormwater pH. In pure heavy metal solutions, the sorption of copper, lead and zinc onto soil are 96%, 99% and 85%, respectively. In synthetic stormwater containing nutrients and all three metals, the sorption of lead is 97%, while copper and zinc decrease to 29% and 71%, respectively. Mineralogy of a soil sample taken from the bioretention pond was analyzed using a scanning electron microscope (SEM) and compared before and after sorption experiments. Sorption and complexation of heavy metals is likely to change the mineralogy of soil particle surfaces, which will affect the attachment of bacteria and therefore its transport through soil. This study will benefit long-term predictions of the performance of bioretention ponds for urban stormwater runoff treatment. Keyword: Heavy metal pollution, sorption, surface complexation, urban stormwater runoff, bioretention pond

  14. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Directory of Open Access Journals (Sweden)

    M. Zribi

    2011-01-01

    Full Text Available The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness, during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed.

  15. Nitrous oxide emissions from forested and harvested ecosystems in northeastern Nova Scotia

    International Nuclear Information System (INIS)

    Kavanaugh, K.; Kellman, L.; Beltrami, H.

    2005-01-01

    Although studies have shown that deforestation alters the emissions of nitrous oxides (N 2 O) from forest soils in tropical environments, little is known about the northern temperate and boreal forests. This study monitored the N 2 O soil emissions from two 3 year old harvested and intact forest pairs of contrasting soil texture. The study was conducted through the late summer to early fall period in the Acadian forest of Atlantic Canada in order to quantify N 2 O emissions associated with each landuse type, and to determine the factors controlling these emissions. The suitability of a photoacoustic gas monitor (PGM) for in situ field measurements of this gas was also evaluated. Each site was equipped with 11 permanent collars for surface flux measurements designed to capture the microsite variability. Subsurface soil gas samplers were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. A nonsteady-state vented surface flux chamber coupled to the PGM was used to regularly measure the surface fluxes in order to quantify the soil-atmosphere N 2 O exchanges. The important zones of N 2 O production in the profile were identified by less frequent measurements of subsurface gas concentrations. Soil nitrogen, soil bulk density, and soil pH were measured at each site. Preliminary results reveal that spatial and temporal variability in surface emissions are very high and that there is a difference in the magnitude of fluxes between harvested and intact forest pairs

  16. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  17. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    Science.gov (United States)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  18. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  19. LPRM/AMSR-E/Aqua Daily L3 Ascending Surface Soil Moisture, Ancillary Params, and QC V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  20. LPRM/AMSR-E/Aqua Daily L3 Descending Surface Soil Moisture, Ancillary Params, and QC V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  1. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  2. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  4. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  5. Unexpectedly high soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers

    Science.gov (United States)

    Bae, J.; Ryu, Y.

    2017-12-01

    The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.

  6. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  7. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  8. A New Method of Environmental Assessment and Monitoring of Cu, Zn, As, and Pb Pollution in Surface Soil Using Terricolous Fruticose Lichens

    Directory of Open Access Journals (Sweden)

    Yuri Sueoka

    2016-12-01

    Full Text Available Levels of trace element pollution in surface soil can be estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties, such as grain size and mineral composition, on elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens growing at abandoned mine sites and unpolluted areas in southwest Japan and their substrata were analyzed using inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry to clarify the relationships between Cu, Zn, As, and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good biomonitors of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As, and Pb concentrations at each sampling region detected almost all of the Cu, Zn, and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn, and As pollution in surface soils.

  9. Heavy metal pollution of surface soil in Thrace region (Turkey)

    International Nuclear Information System (INIS)

    Goskun, Mahmut; Goskun, Munevver; Steinnes, E.; Eidhammer Sjobakk, T.; Frontas'eva, M.V.; Demkina, S.V.

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of Cu, Zn, Ni, Cd, Cr, Pb, and As were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology

  10. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  11. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  12. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    Science.gov (United States)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  14. Quantifying 12/13CH4 migration and fate following sub-surface release to an agricultural soil

    International Nuclear Information System (INIS)

    Shaw, G.; Atkinson, B.; Meredith, W.; Snape, C.; Steven, M.; Hoch, A.; Lever, D.

    2014-01-01

    Following gas generation in a Geological Disposal Facility (GDF), 14 C-containing gases could migrate through the geosphere, eventually diffusing into soils at the Earth's surface. This paper reports summary results from laboratory and field experiments to obtain information on the probable rates of a) diffusive transport and b) oxidation of 12/13 CH 4 (as a surrogate for 14 CH 4) in a typical agricultural soil in the UK. Rates of CH 4 oxidation were generally low in the field and undisturbed soil columns, though a re-packed column of homogenised topsoil oxidised ambient atmospheric CH 4 20× faster than an undisturbed soil column. In contrast to low observed rates of CH 4 oxidation, the effective diffusion of CH 4 through the soil was rapid. Isotopically labelled CH 4 injected at a depth of 45 cm in the field diffused to the surface and exited the soil over a time period ranging from 8 to 24 h. The rate of CH 4 diffusion through the soil was increased by the presence of ryegrass roots which increased soil porosity and decreased water content. δ 13 C values for laboratory column soils after labelled CH 4 injection experiments showed no sign of residual 13 C, despite the extremely high δ 13 C values of the injected 12/13 CH 4 . If laboratory observations are confirmed by measurements in field samples it can be concluded that the majority of 14 CH 4 from a GDF which enters a soil with low methanotrophic activity will be lost to the free atmosphere after diffusing rapidly through the soil column

  15. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  16. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  17. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  18. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    Science.gov (United States)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively

  19. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  20. Suitability of natural soils for foundations for surface facilities at the prospective Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ho, D.M.; Sayre, R.L.; Wu, C.L.

    1986-11-01

    In this report, the natural soils at the Yucca Mountain site are evaluated for the purpose of assessing the suitability of the soils for the foundations of the surface facilities at the prospective repository. The areas being considered for locating the surface facilities are situated on an alluvial plain at the base of Yucca Mountain. Preliminary parameters for foundation design have been developed on the basis of limited field and laboratory study of soils at four test pit locations conducted during May and June 1984. Preliminary recommendations for construction are also included in this report. The gravel-sand alluvial deposits were found to be in a dense to very dense state, which is suitable for foundations of the surface facilities. The design parameters described in this report have been developed for conceptual design, but need to be verified before final design

  1. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  2. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  3. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki

    2012-01-01

    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  4. Removal of radioactive cesium from surface soils solidified using polyion complex. Rapid communication for decontamination test at Iitate-mura in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Naganawa, Hirochika; Yanase, Nobuyuki; Mitamura, Hisayoshi; Nagano, Tetsushi; Yoshida, Zenko; Kumazawa, Noriyuki; Saitoh, Hiroshi; Kashima, Kaoru; Fukuda, Tatsuya; Tanaka, Shun-ichi

    2011-01-01

    We tried the decontamination of surface soils for three types of agricultural land at Nagadoro district of Iitate-mura (village) in Fukushima Prefecture, which is highly contaminated by deposits of radionuclides from the plume released from the Fukushima Daiichi nuclear power plant. The decontamination method consisted of the peeling of surface soils solidified using a polyion complex, which was formed from a salt solution of polycations and polyanions. Two types of polyion complex solution were applied to an upland field in a plastic greenhouse, a pasture, and a paddy field. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. (author)

  5. Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem

    International Nuclear Information System (INIS)

    Cruz, Cristina; Bio, Ana M.F.; Jullioti, Aldo; Tavares, Alice; Dias, Teresa; Martins-Loucao, Maria Amelia

    2008-01-01

    Heterogeneity and dynamics of eight soil surface characteristics essential for plants-ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates-were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics. - In Mediterranean-type ecosystems ammonium is present in the soil throughout the year and its concentration is dependent on plant cover

  6. Long-term CO2 injection and its impact on near-surface soil microbiology.

    Science.gov (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin

    2016-12-01

    Impacts of long-term CO 2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO 2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO 2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO 2 injection. CO 2 concentrations within CO 2 -injected plots increased up to 23% during the injection period. No CO 2 impacts on geochemistry were detected over time. In addition, CO 2 -exposed samples did not show significant changes in microbial CO 2 and CH 4 turnover rates compared to reference samples. Likewise, no significant CO 2 -induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO 2 -induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture

  8. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Czech Academy of Sciences Publication Activity Database

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  9. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients

    Science.gov (United States)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.

    2017-08-01

    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  10. Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    Directory of Open Access Journals (Sweden)

    Jesús Álvarez-Mozos

    2009-01-01

    Full Text Available Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values.

  11. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  12. Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff

    OpenAIRE

    Ramos,Júlio César; Bertol,Ildegardis; Barbosa,Fabrício Tondello; Bertól,Camilo; Mafra,Álvaro Luiz; Miquelluti,David José; Mecabô Júnior,José

    2016-01-01

    ABSTRACT Water erosion and contamination of water resources are influenced by concentration and diameter of sediments in runoff. This study aimed to quantify runoff velocity and concentration and the D50 index of sediments in runoff under different soil surface managements, in the following treatments: i) cropped systems: no-tilled soil covered by ryegrass (Lolium multiflorum Lam.) residue, with high soil cover and minimal roughness (HCR); no tilled soil covered by vetch (Vicia sativa L.) res...

  13. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  14. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  15. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  16. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  17. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    Science.gov (United States)

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd

  18. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  19. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER

    Directory of Open Access Journals (Sweden)

    S. G. Wang

    2011-05-01

    Full Text Available Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl and the difference in backscattering coefficient (Δσ from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  20. Petroleum Hydrocarbon Pollution in Soil and Surface Water by Public Oil Fields in Wonocolo Sub-district, Indonesia

    Directory of Open Access Journals (Sweden)

    Gina Lova Sari

    2018-03-01

    Full Text Available Public crude oil fields in Wonocolo sub-district were active from 1942 until now and have inadequately operated. The aims of this research were to measure the level of total petroleum hydrocarbon (TPH pollution and their distribution in soil and surface water at the Wonocolo public crude oil fields. Twelve composite soil samples were collected from uncontaminated and contaminated sites of old well (OW, transportation line (T, and refinery area (R at the depths of 0–30 cm, 30–60 cm, and 60–90 cm. The composite surface water sample was obtained from two points with different distances from the river side. TPH from soil and surface water samples were extracted using soxhlet and gravimetric method. Quantification of TPH was performed using Fourier Transform Infrared (FT-IR Spectrometer. From the results of this study, it was concluded that soils and surface water are contaminated by TPH of 119.80–107,190 µg/g and 211,025.73 µg/L, respectively. TPH is clearly located in the upper of 0–30 cm depth at OW, T, and R sites (52,328.14–107,189.63 µg/g. These concentrations exceeded the soil quality standard of TPH and classified as category A for human hazard risk. The findings from this study show that there are considerable health risks which are potentially poisonous to humans in the local area. We recommend that remediation could be conducted using biological methods to reduce TPH pollution level.

  1. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  3. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    Science.gov (United States)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios

  4. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  5. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  6. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  7. Hydro-mechanical paths within unsaturated compacted soil framed through water retention surfaces

    Directory of Open Access Journals (Sweden)

    Pelizzari Benjamin

    2016-01-01

    Full Text Available Compaction is a key issue of modern earthworks... From sustainable development, a need arise of using materials for compaction under given conditions that would normally be avoid due to unpredictable pathologies. The application of compaction on fine grained soils, without a change of gravimetric water content, lead to very important modifications of the void ratio and hence suction. Therefore the hydro-mechanical behaviour of fine grained soil need to be rendered around three variables: suction, void ratio, saturation degree or water content. The barring capacity of the soil is assessed through Penetrometers (In-situ manual penetrometer, CBR in order to assess gains through compaction. The three states variables are then assessed for in situ and frame through water retention surfaces, realized from Proctor tests, in which compaction effect and path could be described.

  8. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    International Nuclear Information System (INIS)

    Hai, C.; Yuan, X.; Jiang, H.; Zhou, R.; Wang, J.; Liu, B.; Ye, Y.; Du, P.

    2010-01-01

    Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30 x 30 cm 2 to 10 x 10 cm 2 . The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  9. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    Full Text Available The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  10. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757

  11. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  12. Quantifying postfire aeolian sediment transport using rare earth element tracers

    Science.gov (United States)

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  13. Demography of some non-native isopods (Crustacea, Isopoda, Oniscidea in a Mid-Atlantic forest, USA

    Directory of Open Access Journals (Sweden)

    Elisabeth Hornung

    2015-07-01

    Full Text Available Introduced species dominate the terrestrial isopod fauna in most inland habitats of North America, including urban landscapes. These non-native species are often very abundant and thus potentially play a significant role in detritus processing. We monitored isopod assemblages in an urban forest for a year to examine the relationship between surface activity and abiotic environmental factors, and to analyze reproductive characteristics that might contribute to their successful establishment. Using pitfall trap samples we recorded five species, two of which, Trachelipus rathkii and Cylisticus convexus, were highly abundant. We determined size, sex and reproductive state of each individual. Surface activity of both species reflected variability in abiotic stress factors for isopods, such as soil moisture and soil temperature. Early spring the main trigger was soil temperature while later in the season increasing temperature and decreasing soil moisture jointly affected population dynamics. Activity significantly correlated with soil moisture. The temporal pattern of sex ratios supported the secondary sex ratio hypothesis. Males dominated the samples on the onset of the mating season in search of females. The pattern was reversed as females searched for suitable microsites for their offspring. Size independent fecundity decreased as conditions became more stressful late in the season.

  14. Area G perimeter surface-soil and single-stage water sampling. Environmental surveillance for fiscal year 95. Progress report

    International Nuclear Information System (INIS)

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area

  15. Runoff losses of excreted chlortetracycline, sulfamethazine, and tylosin from surface-applied and soil-incorporated beef cattle feedlot manure.

    Science.gov (United States)

    Amarakoon, Inoka D; Zvomuya, Francis; Cessna, Allan J; Degenhardt, Dani; Larney, Francis J; McAllister, Tim A

    2014-03-01

    Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 μg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 μg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 μg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 μg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  17. Influence of soil on St3 surface spectroscopic characteristics under cathode protection conditions

    International Nuclear Information System (INIS)

    Kuznetsova, E.G.; Lazorenko-Manevich, R.M.; Sokolova, L.A.; Remezkova, L.V.

    1992-01-01

    Using electroreflection spectra it is shown, that St3 surface following long holding in cold clay without cathode protection is less heterogeneous relative to water absorption, than surface of initial specimens, as well as, of specimens holded in wet clay. This variation of distribution of adsorption centres by heats of water absorption results from stable absorption of surface-and-active components of clayed soil and is accompanied by increase of St3 corrosion stability. Long-term cathode polarization reduces initial distribution and decreases corrosion stability of St3

  18. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  19. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

    Science.gov (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.

    2017-01-01

    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  20. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.

    Science.gov (United States)

    Yates, S R

    2009-01-01

    An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.

  1. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  2. GEOEPIDERM – AN ECOLOGICAL CONCEPT THAT INTEGRATES SOIL COVER WITH ASSOCIATED LAND SURFACE COMPONENTS

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2008-10-01

    Full Text Available Based on the new concept of the “Epiderm of the Earth” introduced by the 2006 edition of the WRB-SR, the idea of “geoepiderm” has been developed. Besides its holistic meaning, by including both soil and non-soil materials found in the first 2 meters of the land surface, the term “geoepiderm” has a strong ecological sense, by suggesting similarity with the skin of the living organisms, as such, this concept is fully concordant with that of “Gaia” (Living Earth developed by James Lovelock. According to the main pedo-ecological characteristics of the soil and not soil coverings from the earth surface, ten kinds (classes of ‘geoepiderms” have been identified:1 – Protoderma (Entiderma– the primitive (emerging geoepiderm (mainly non-soil materials; five main subtypes: a Regoderma, b Leptoderma, c Areniderma, d Fluviderma and e Gleyoderma, were identified;2 – Cryoderma (Geliderma – geoepiderm of cold, mainly artic and subartic, regions with mean annual soil temperature <00C (often with perennial frozen subsoil - permafrost:3 – Arididerma – geoepiderm of arid regions and salt affected lands with limited or scarce available moisture; two subtypes: a Desertiderma, b Saliderma4 – Inceptiderma (or Juvenilederma – with 2 subtypes: a Cambiderma – a young (incipiently developed geoepiderm and b Andiderma, geoepiderm developed in volcanic materials;5 – Euderma – nutrient rich geoepiderm with two main subtypes: a Cherniderma (or Molliderma and b Luviderma (or Alfiderma;6 – Oligoderma – geoepiderm with low macro-nutrient and weatherable minerals content with 2 subtypes: a Podziderma (or Spodiderma and b Acriderma (or Ultiderma;7 – Ferriderma (Oxiderma or Senilederma – geoepiderm strongly weathered and with iron and aluminium hydroxides enrichment and low weatherable minerals reserve;8 – Vertiderma (Contractilederma – Contractile geoepiderm, developed from swelling clays;9 – Histoderma (Organiderma

  3. Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

    OpenAIRE

    Abdulfatah Faraj Aboufayed

    2013-01-01

    Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96...

  4. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  5. [Concentrations and Component Profiles PAHs in Surface Soils and Wheat Grains from the Cornfields Close to the Steel Smelting Industry in Handan, Hebei Province].

    Science.gov (United States)

    Wu, Di; Wang, Yi-long; Liu, Wei-jian; Chen, Yuan-chen; Fu, Xiao-fang; Tao, Shu; Liu, Wen-xin

    2016-02-15

    In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).

  6. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  7. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  8. Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occurring native, Malcolmia littorea.

    Science.gov (United States)

    Novoa, Ana; González, Luís; Moravcová, Lenka; Pyšek, Petr

    2012-01-01

    The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter. We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth. The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects.

  9. Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occurring native, Malcolmia littorea.

    Directory of Open Access Journals (Sweden)

    Ana Novoa

    Full Text Available BACKGROUND: The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter. PRINCIPAL FINDINGS: We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth. CONCLUSIONS: The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future

  10. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  11. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  12. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  13. A Surface Soil Radioactivity Mapping Has Been Carried Out at Muria Peninsula, Central Java

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Nasrun-Syamsul; Supardjo-AS; Djodi-R-Mappa; Kurnia-Setyawan W

    2004-01-01

    The air of this mapping is to gain exposure dose value of the soil surface of Muria Peninsula. Central Java, in the area of 75 km radius from Ujung Lemah Abang. Lemah Abang is the proposed site of the first indonesian nuclear Power Plant. A radioactivity data obtained in 1995/1996 to 1998/1999 researches has been used for input data. For further analysis, a conversation factor multiplication is applied. This conversation factor is obtained from linear regression equation of the relationship between radioactivity and exposure values gained from re-measured randomly 44 points which are representative for high, medium, and low radiation areas obtained in 1995/1996 to 1998/1999 activities and it taking soil samples. The conversation data result is being constructed of the Surface Exposure Dose Map of Muria Peninsula. Those data show that the exposure dose of northern slope of Muria Volcano is relatively higher than that of southern slope, it means be harmonizing to the soil sample radioactivity values. The maximum radioactivity value of the soil samples is 3,56.10 -2 Bq/gram (α radiation), 8,22.10 -1 Bq/gram (β radiation) and 6,20.10 -1 Bq/gram (γ radiation) and the minimum values are 4,44 10 -3 Bq/gram (α radiation), 1,50. 10 -1 Bq/gram (β radiation) and 4,09. 10 -2 Bq/gram (γ radiation). (author)

  14. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    Science.gov (United States)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  15. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil.

    Science.gov (United States)

    Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S

    2018-05-01

    The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. CHEMICAL SOIL ATTRIBUTES AS AFFECTED BY LIME AND GYPSUM SURFACE APPLICATION

    Directory of Open Access Journals (Sweden)

    A. Mantovani

    2017-10-01

    Full Text Available The gypsum is a soil condition end it has to function contribute to the elimination or reduction of aluminum in the soil in depth. Still, it can contribute to the distribution of nutrients in the soil profile more uniformly and thus increasing the productivity of crops. This study aimed to evaluate the influence of gypsum application, with and without lime, on soil chemical properties and soybean yield, in a no-till system. The experiment was carried in Campos Novos, Santa Catarina State, Brazil, with a randomized block design and split plot design with four replications, the main portion was distributed gypsum doses (1000, 2000, 4000 and 6000 kg ha-1 without incorporation, and the split plot (with and without lime and the liming was 2,000 kg ha-1. We evaluated the performance of components and productivity of soybeans. It was also analyzed the soil pH and Ca, Mg, S and Al at 0-20 and 20-40 cm. The application of gypsum at the rates tested surface with and without lime did not affect the yield components and soybean productivity. At 0-20 cm soil depth lime application increased soil pH by 0.3 units on the average rates of gypsum, but in the 20-40 cm layer was not found effect of lime and gypsum in pH ground due to the short time between application and evaluation. In areas with and without lime contents of Ca and S in the two layers evaluated increased with increasing rates of gypsum, since Mg has difference with the lime application on a 0-20 cm to dose 4000 kg ha-1 and the lime in the gypsum rates and Al decreased with increasing dose gypsum average in the 20-40 cm layer depth. The application of gypsum and limestone softened the negative effects of soil acidity and the increase mainly of calcium and sulfur at 0-20 cm, with less efficient effects in the 20-40 cm layer due to the soil is clayey and the period between the implementation and evaluation be 120 days.

  17. Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints

    Science.gov (United States)

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Sassine, Lara; Cary, Lise; Bruguier, Olivier; Verdoux, Patrick

    2018-03-01

    One decade after closure of the Salsigne mine (SW France), As contamination persisted in surface water, groundwater and soil near and down-gradient from the reclaimed ore processing site (OPS). We assess the fate of As and other associated chalcophilic MTEs, and their transport in the surface-water/groundwater/soil continuum down-gradient from the reclaimed OPS, using Sr-isotopic fingerprinting. The Sr-isotope ratio was used as a tracer of transfer processes in this hydro-geosystem and was combined to sequential extraction of soil samples to evaluate the impact of contaminated soil on the underlying phreatic groundwater. The contrast in Sr isotope compositions of the different soil fractions reflects several Sr sources in the soil. In the complex hydro-geosystem around the OPS, the transport of As and MTEs is affected by a succession of factors, such as (1) Existence of a reducing zone in the aquifer below the reclaimed OPS, where groundwater shows relatively high As and MTEs contents, (2) Groundwater discharge into the stream near the reclaimed OPS causing an increase in As and MTE concentrations in surface water; (3) Partial co-precipitation of As with Fe-oxyhydroxides, contributing to some attenuation of As contents in surface water; (4) Infiltration of contaminated stream water into the unconfined aquifer down-gradient from the reclaimed OPS; (5) Accumulation of As and MTEs in soil irrigated with contaminated stream- and groundwater; (6) Release of As and MTEs from labile soil fractions to underlying the groundwater.

  18. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  19. Impact of Surface Soil Moisture Variations on Radar Altimetry Echoes at Ku and Ka Bands in Semi-Arid Areas

    Directory of Open Access Journals (Sweden)

    Christophe Fatras

    2018-04-01

    Full Text Available Radar altimetry provides information on the topography of the Earth surface. It is commonly used for the monitoring not only sea surface height but also ice sheets topography and inland water levels. The radar altimetry backscattering coefficient, which depends on surface roughness and water content, can be related to surface properties such as surface soil moisture content. In this study, the influence of surface soil moisture on the radar altimetry echo and backscattering coefficient is analyzed over semi-arid areas. A semi-empirical model of the soil’s complex dielectric permittivity that takes into account that small-scale roughness and large-scale topography was developed to simulate the radar echoes. It was validated using waveforms acquired at Ku and Ka-bands by ENVISAT RA-2 and SARAL AltiKa respectively over several sites in Mali. Correlation coefficients ranging from 0.66 to 0.94 at Ku-band and from 0.27 to 0.96 at Ka-band were found. The increase in surface soil moisture from 0.02 to 0.4 (i.e., the typical range of variations in semi-arid areas increase the backscattering from 10 to 15 dB between the core of the dry and the maximum of the rainy seasons.

  20. Residential surface soil guidance values applied worldwide to the original 2001 Stockholm Convention POP pesticides.

    Science.gov (United States)

    Jennings, Aaron A; Li, Zijian

    2015-09-01

    Surface soil contamination is a worldwide problem. Many regulatory jurisdictions attempt to control human exposures with regulatory guidance values (RGVs) that specify a soil's maximum allowable concentration. Pesticides are important soil contaminants because of their intentional toxicity and widespread surface soil application. Worldwide, at least 174 regulatory jurisdictions from 54 United Nations member states have published more than 19,400 pesticide RGVs for at least 739 chemically unique pesticides. This manuscript examines the variability of the guidance values that are applied worldwide to the original 2001 Stockholm Convention persistent organic pollutants (POP) pesticides (Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Mirex, and Toxaphene) for which at least 1667 RGVs have been promulgated. Results indicate that the spans of the RGVs applied to each of these pesticides vary from 6.1 orders of magnitude for Toxaphene to 10.0 orders of magnitude for Mirex. The distribution of values across these value spans resembles the distribution of lognormal random variables, but also contain non-random value clusters. Approximately 40% of all the POP RGVs fall within uncertainty bounds computed from the U.S. Environmental Protection Agency (USEPA) RGV cancer risk model. Another 22% of the values fall within uncertainty bounds computed from the USEPA's non-cancer risk model, but the cancer risk calculations yield the binding (lowest) value for all POP pesticides except Endrin. The results presented emphasize the continued need to rationalize the RGVs applied worldwide to important soil contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  2. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  3. Comparative availability of cesium and strontium for plant absorption from amended Rupert surface soil and associated subsoil: influence of growth conditions

    International Nuclear Information System (INIS)

    Cataldo, D.A.

    1979-03-01

    Studies were undertaken to determine the plant availability of 134 Cs and 85 Sr amended to Rupert surface soil and an associated subsoil. Concentration ratios for cheatgrass (Bromus tectorum) and tumbleweed (Salsola kali) grown on 134 Cs amended Rupert soil were 0.15 and 0.28, respectively; values for amended subsoils were 0.074 and 0.13, respectively. Rupert surface soil and subsoil amended with 85 Sr gave concentration ratios of 15 and 7, respectively, for both tumbleweed and cheatgrass. While pot size (1 vs 4 kg) had a market effect on concentration ratios, values for greenhouses and growth chamber grown plants were generally similar. Aging of both Rupert surface soil and subsoils for 1 to 30 days prior to planting had a pronounced effect on the availability of 134 Cs for uptake by plants, but no effect on 85 Sr uptake

  4. Water content determination of soil surface in an intensive apple orchard

    Science.gov (United States)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  5. Be-7 as a tracer for short-term soil surface changes - opportunities and limitations

    Science.gov (United States)

    Baumgart, Philipp

    2013-04-01

    Within the last 20 years the cosmogenic nuclide Beryllium-7 was successfully established as a suitable tracer element to detect soil surface changes with a high accuracy. Particularly soil erosion rates from single precipitation events are in the focus of different studies due to the short radioactive half-life of the Be-7 isotope. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling down to 2 mm increments. But some important challenging limitations require particular attention, starting from sampling up to the final data evaluation. E.g. these are the realisation of the fine increment soil collection, the limiting amount of measurable samples per campaign due to the short radioactive half-life and the specific requirements for the detector measurements. Both, the high potential and the challenging limitations are presented as well as future perspectives of that tracer method.

  6. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  8. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  9. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    Science.gov (United States)

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  10. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-16

    As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

  11. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  12. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  13. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Johar, Saffuwan [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Sahdan, Mohd Zainizan [Microelectronics and Nanotechnology Centre (MiNT-SRC), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia)

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  14. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-01-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si 2+ and Al 2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail

  15. A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model

    Directory of Open Access Journals (Sweden)

    F. Hossain

    2004-01-01

    Full Text Available This study presents a simple and efficient scheme for Bayesian estimation of uncertainty in soil moisture simulation by a Land Surface Model (LSM. The scheme is assessed within a Monte Carlo (MC simulation framework based on the Generalized Likelihood Uncertainty Estimation (GLUE methodology. A primary limitation of using the GLUE method is the prohibitive computational burden imposed by uniform random sampling of the model's parameter distributions. Sampling is improved in the proposed scheme by stochastic modeling of the parameters' response surface that recognizes the non-linear deterministic behavior between soil moisture and land surface parameters. Uncertainty in soil moisture simulation (model output is approximated through a Hermite polynomial chaos expansion of normal random variables that represent the model's parameter (model input uncertainty. The unknown coefficients of the polynomial are calculated using limited number of model simulation runs. The calibrated polynomial is then used as a fast-running proxy to the slower-running LSM to predict the degree of representativeness of a randomly sampled model parameter set. An evaluation of the scheme's efficiency in sampling is made through comparison with the fully random MC sampling (the norm for GLUE and the nearest-neighborhood sampling technique. The scheme was able to reduce computational burden of random MC sampling for GLUE in the ranges of 10%-70%. The scheme was also found to be about 10% more efficient than the nearest-neighborhood sampling method in predicting a sampled parameter set's degree of representativeness. The GLUE based on the proposed sampling scheme did not alter the essential features of the uncertainty structure in soil moisture simulation. The scheme can potentially make GLUE uncertainty estimation for any LSM more efficient as it does not impose any additional structural or distributional assumptions.

  16. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  17. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  18. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    Science.gov (United States)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation

  19. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  20. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  1. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    Science.gov (United States)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  2. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Jones, S; Hunt, H

    2009-01-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  3. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  4. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  5. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  6. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  7. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    Science.gov (United States)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The

  8. Steady as a rock: Biogeomorphic influence of nurse rocks and slope processes on kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i)

    Science.gov (United States)

    Pérez, Francisco L.

    2017-10-01

    This study examines biogeomorphic interactions between nurse rocks, slope processes, and 300 kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i). Research objectives were to: assess the association of kūpaoa with substrates upslope and downslope of plants, and proximity to the closest rock uphill; contrast shrub/substrate relationships with site frequency of sediment types; measure surface soil shear-strength and compressibility on 50 paired locations near boulders; and investigate the aggregation characteristics and spatial patterns of kūpaoa in relation to rock and substrate variation. Data analyzed came from three 100-plant surveys at 3 sites: a plant census at 2720-2975 m altitude, and wandering-quarter transects (WQTs) across two areas (2610-2710 m); ground sediment cover was estimated along four phototransects on these sites. Data for the three 100-plant surveys included substrate type-outcrops, blocks, cobbles, pebbles, exposed soil, organic litter-upslope from each plant, and distance to the largest rock upslope. The two surveys examined along WQTs included substrate type found downslope from kūpaoa, plant height, plant diameters across and along the slope, and distance between successively censused plants. Most plants grew downslope of nurse rocks; > 74% were adjacent to blocks or outcrops, and > 17% near cobbles. Plants showed avoidance for finer substrates; only 5.3% and 2.7% grew on/near bare soils and pebbles, respectively. About 92% of kūpaoa were ≤ 10 cm downslope of rocks; > 89% grew ≤ 2 cm away, and 83% in direct contact with a rock. Some seedlings also grew on pukiawe (Leptecophylla tameiameiae) nurse plants. Several stable rock microsites protected plants from disturbance by slope processes causing debris shift. Site sediments were significantly finer than substrates near plants; shrubs grew preferentially adjacent to boulders > 20 cm wide, which were more common near plants than across sites. Soils downslope of 50

  9. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    Science.gov (United States)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil

  10. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    Science.gov (United States)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  11. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  12. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    International Nuclear Information System (INIS)

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-01-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0±2.3 to 64.6±11.7 mg/kg Pb, 78.4±18.4 to 265.6±63.2 mg/kg Zn, and 0.8±0.13 to 1.40±0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas

  13. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured ... and the influence of solar elevation angle and cloud cover are also investigated. .... ters are important factors in climate modelling and.

  14. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  15. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  16. Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief

    Directory of Open Access Journals (Sweden)

    R. García Moreno

    2010-08-01

    Full Text Available Soil surface roughness (SSR expresses soil susceptibility to wind and water erosion and plays an important role in the development and the maintenance of soil biota. Several methods have been developed to characterise SSR based on different methods of acquiring data. Because the main problems related to these methods involve the use and handling of equipment in the field, the present study aims to fill the need for a method for measuring SSR that is more reliable, low-cost and convenient in the field than traditional field methods. Shadow analysis, which interprets micro-topographic shadows, is based on the principle that there is a direct relationship between the soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. SSR was calculated with shadows analysis in the laboratory using hemispheres of different diameter with a diverse distribution of known altitudes and a surface area of 1 m2.

    Data obtained from the shadow analysis were compared to data obtained with the chain method and simulation of the micro-relief. The results show a relationship among the SSR calculated using the different methods. To further improve the method, shadow analysis was used to measure the SSR in a sandy clay loam field using different tillage tools (chisel, tiller and roller and in a control of 4 m2 surface plots divided into subplots of 1 m2. The measurements were compared to the data obtained using the chain set and pin meter methods. The SSR measured was the highest when the chisel was used, followed by the tiller and the roller, and finally the control, for each of the three methods. Shadow analysis is shown to be a reliable method that does not disturb the measured surface, is easy to handle and analyse, and shortens the time involved in field operations by a factor ranging from 4 to 20 compared to well known techniques such as the chain set and pin meter methods.

  17. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  18. Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture

    Directory of Open Access Journals (Sweden)

    Akhilesh S. Nair

    2016-11-01

    Full Text Available In the present study, soil moisture assimilation is conducted over the Indian subcontinent, using the Noah Land Surface Model (LSM and the Soil Moisture Operational Products System (SMOPS observations by utilizing the Ensemble Kalman Filter. The study is conducted in two stages involving assimilation of soil moisture and simulation of brightness temperature (Tb using radiative transfer scheme. The results of data assimilation in the form of simulated Surface Soil Moisture (SSM maps are evaluated for the Indian summer monsoonal months of June, July, August, September (JJAS using the Land Parameter Retrieval Model (LPRM AMSR-E soil moisture as reference. Results of comparative analysis using the Global land Data Assimilation System (GLDAS SSM is also discussed over India. Data assimilation using SMOPS soil moisture shows improved prediction over the Indian subcontinent, with an average correlation of 0.96 and average root mean square difference (RMSD of 0.0303 m3/m3. The results are promising in comparison with the GLDAS SSM, which has an average correlation of 0.93 and average RMSD of 0.0481 m3/m3. In the second stage of the study, the assimilated soil moisture is used to simulate X-band brightness temperature (Tb at an incidence angle of 55° using the Community Microwave Emission Model (CMEM Radiative transfer Model (RTM. This is aimed to study the sensitivity of the parameterization scheme on Tb simulation over the Indian subcontinent. The result of Tb simulation shows that the CMEM parameterization scheme strongly influences the simulated top of atmosphere (TOA brightness temperature. Furthermore, the Tb simulations from Wang dielectric model and Kirdyashev vegetation model shows better similarity with the actual AMSR-E Tb over the study region.

  19. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  20. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood; Jadoon, Khan; Vanderborght, Jan P.; Lambot, Sé bastien; Vereecken, Harry

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor

  1. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region.

    Science.gov (United States)

    Yang, Qidong; Zuo, Hongchao; Li, Weidong

    2016-01-01

    Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large.

  2. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  3. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    Science.gov (United States)

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  4. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    Science.gov (United States)

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  5. Adsorption of arsenate on soils. Part 1: Laboratory batch experiments using 16 Chinese soils with different physiochemical properties

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    Laboratory batch experiments were carried out to study the adsorption of arsenate on 16 Chinese soils with different physicochemical properties. Wide differences in arsenate adsorption were observed, and the Jiangxi and Hubei soils were more effective sorbents for arsenate than other soils. The Langmuir one-surface and two-surface equations were used to model the arsenate adsorption data. Except for the Jiangxi and Hubei soils, the Langmuir one-surface equation gave reasonably good fits to the arsenate adsorption data. However, the Langmuir two-surface equation generally provided a better fit than the Langmuir one-surface equation. For soils with relative high organic matter (OM), dissolved organic carbon (DOC) or extractable phosphate, the Langmuir one-surface and two-surface equations described the adsorption isotherms similarly. In contrast, for soils with relatively low contents of OM, DOC or extractable phosphate, the Langmuir two-surface equation gave the better fit to the arsenate adsorption data. - The Langmuir two-surface equation fits arsenate adsorption onto soils

  6. Assimilation of the ESA CCI Soil Moisture ACTIVE and PASSIVE Product into the SURFEX Land Surface Model using the Ensemble Transform Kalman Filter

    Science.gov (United States)

    Blyverket, J.; Hamer, P.; Bertino, L.; Lahoz, W. A.

    2017-12-01

    The European Space Agency Climate Change Initiative for soil moisture (ESA CCI SM) was initiated in 2012 for a period of six years, the objective for this period was to produce the most complete and consistent global soil moisture data record based on both active and passive sensors. The ESA CCI SM products consist of three surface soil moisture datasets: The ACTIVE product and the PASSIVE product were created by fusing scatterometer and radiometer soil moisture data, respectively. The COMBINED product is a blended product based on the former two datasets. In this study we assimilate globally both the ACTIVE and PASSIVE product at a 25 km spatial resolution. The different satellite platforms have different overpass times, an observation is mapped to the hours 00.00, 06.00, 12.00 or 18.00 if it falls within a 3 hour window centred at these times. We use the SURFEX land surface model with the ISBA diffusion scheme for the soil hydrology. For the assimilation routine we apply the Ensemble Transform Kalman Filter (ETKF). The land surface model is driven by perturbed MERRA-2 atmospheric forcing data, which has a temporal resolution of one hour and is mapped to the SURFEX model grid. Bias between the land surface model and the ESA CCI product is removed by cumulative distribution function (CDF) matching. This work is a step towards creating a global root zone soil moisture product from the most comprehensive satellite surface soil moisture product available. As a first step we consider the period from 2010 - 2016. This allows for comparison against other global root zone soil moisture products (SMAP Level 4, which is independent of the ESA CCI SM product).

  7. Effects of Topography and Surface Soil Cover on Erosion for Mining Reclamation: The Experimental Spoil Heap at El Machorro Mine (Central Spain)

    OpenAIRE

    Martín Moreno, Cristina; Martín Duque, J. F.; Nicolau, J. M.; Hernando, N.; Sanz, M. A.; Sánchez Castillo, L.

    2013-01-01

    Mining reclamation tries to reduce environmental impacts, including accelerated runoff, erosion and sediment load in the nearby fluvial networks and their ecosystems. This study compares the effects of topography and surface soil cover on erosion on man-made slopes coming from surface mining reclamation in Central Spain. Two topographic profiles, linear and concave, with two surface soil covers, subsoil and topsoil, were monitored for two hydrologic years. Sediment load, rill development and ...

  8. Bermudagrass Management in the Southern Piedmont U.S. IV. Soil Surface Nitrogen Pools

    Directory of Open Access Journals (Sweden)

    Alan J. Franzluebbers

    2001-01-01

    Full Text Available The fate of nitrogen (N applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer on surface residue and soil N pools during the first 5 years of ̒Coastal̓ bermudagrass (Cynodon dactylon [L.] Pers. management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g ‧ kg–1‧ year–11 greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76–82% than under ungrazed systems (35–71%. As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g ‧ m–2 ‧ year–1. Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.

  9. The method of determining surface water erosion influence on agricultural valorization of soils with usage of geoprocessing techniques and spatial information systems

    Directory of Open Access Journals (Sweden)

    Prus Barbara

    2016-12-01

    Full Text Available The aim of the paper is to propose methodical solutions concerning synthetic agricultural analysis of production space which consists in combined (synthetic – in spatial and statistical contexts – analysis and evaluation of quality and farming utility of soils in connection with soils erosive risk level. The paper is aimed at presentation of methodology useful in such type of analyses as well as demonstration to what extent the areas of farming production space being subject to restrictive protection are exposed to destructive effect of surface water erosion. Own factor (HDSP.E was suggested, which is a high degree synthesis of soil protection in connection with degrees of surface water erosion risk. The proposed methodology was used for detailed spatial analyses performed for Tomice – the Małopolska rural commune (case study. The area model elaborated for the proposed methodology’s purpose faced with soils mechanical composition allowed to make a model of surface water erosion in five-grade scale. Synthetic evaluation (product of spatial objects on numerous thematic layers of quality and farming utility of soils and also zones of surface water erosion risk allowed to assign spatial distribution of HDSP.E factor (abbreviation of high degree of soil protection combined with erosion. The analyses enabled to determine proportional contribution of the most valuable resources of farming production space that are subject to soil erosion negative phenomenon. Geoprocessing techniques used for the analyses of environmental elements of farming production space were applied in the paper. The analysis of spatial distribution of researched phenomena was elaborated in Quantum GIS programme.

  10. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment

    NARCIS (Netherlands)

    Bento, Célia P.M.; Commelin, Meindert C.; Baartman, Jantiene E.M.; Yang, Xiaomei; Peters, Piet; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2018-01-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall

  11. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alexander

    2015-01-01

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60°C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when ...

  12. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surf...

  13. Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: A multivariate perspective.

    Science.gov (United States)

    S. B. Cox; M. R. Willig; F. N. Scatena

    2002-01-01

    We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...

  14. Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea.

    Science.gov (United States)

    Jung, Raae; Ahn, Young Sang

    2017-08-01

    This study aimed to determine mercury concentrations in tree rings and surface soils at distances of 4, 26 and 40 km from a fertilizer plant located in Yeosu City, Korea. Mercury concentrations in all tree rings were low prior to the establishment of the plant in 1977 and became elevated thereafter. The highest average mercury concentration in the tree rings was 11.96 ng g -1 at the Yeosu site located nearest to the plant, with the lowest average mercury concentration of 4.45 ng g -1 at the Suncheon site furthest away from the plant. In addition, the highest mercury content in the surface soil was 108.51 ng cm -3 at the Yeosu site, whereas the lowest mercury content in the surface soil was 31.47 ng cm -3 at the Suncheon site. The mercury levels decreased gradually with increasing distance from the plant.

  15. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  16. The influence of surface and incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. II. Root growth and agronomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lucerne (Medicago sativa. L) root elongation in acid soils amended by gypsiferous coal combustion by-products was investigated in a glasshouse study. Lime, fluidised bed boiler ash (FBA), and flue gas desulfurisation gypsum (FGDG) were mixed into the surface 50 mm of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil column, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. Lucerne was grown on each column after it was leached with 400 mm of water. Whereas the lime treatment had no effect on root elongation in the acidic subsurface of the Patua soil, the FBA and FGDG treatments significantly improved lucerne root penetration into the subsurface soil. This was due to the `self liming effect` induced by sulfate adsorption. In contrast, topsoil incorporated amendments did not influence root penetration into the acidic subsurface of the Kaawa soil, which is dominated by permanently charged clay minerals. The `self-liming erect` caused by gypsum application is not a sustainable practice. Lime should be applied to neutralise the topsoil acidity, when gypsum is used as subsurface soil acidity ameliorant. FBA, which contains both lime and gypsum, can meet these requirements.

  17. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  18. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  19. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    Science.gov (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  20. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  1. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal

    Science.gov (United States)

    Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; Sambou, B.; Diop, C.; Mougin, E.

    2017-05-01

    The alternating between dry and wet seasons and the consecutive microbial responses to soil water content in semiarid ecosystems has significant consequences on nitrogen exchanges with the atmosphere. Three field campaigns were carried out in a semi arid sahelian rangeland in Dahra (Ferlo, Senegal), two at the beginning of the wet season in July 2012 and July 2013, and the third one in November 2013 at the end of the wet season. The ammonia emission potentials of the soil ranged from 271 to 6628, indicating the soil capacity to emit NH3. The ammonia compensation point in the soil ranged between 7 and 150 ppb, with soil temperatures between 32 and 37 °C. Ammonia exchange fluctuated between emission and deposition (from -0.1-1.3 ng N.m-2 s-1), depending on meteorology, ambient NH3 concentration (5-11 ppb) and compensation point mixing ratios. N2O fluxes are supposed to be lower than NO fluxes in semi arid ecosystems, but in Dahra N2O fluxes (5.5 ± 1.3 ng N m-2 s-1 in July 2013, and 3.2 ± 1.7 ng N m-2 s-1 in November 2013) were similar to NO fluxes (5.7 ± 3.1 ng N m-2 s-1 in July 2012, 5.1 ± 2.1 ng N m-2 s-1 in July 2013, and 4.0 ± 2.2 ngN m-2 s-1 in November 2013). Possible reasons are the influence of soil moisture below the surface (where N2O is produced) after the beginning of the wet season, the potential aerobic denitrification in microsites, the nitrifier denitrification, and nitrification processes. The presence of litter and standing straw, and their decomposition dominated N compounds emissions in November 2013, whereas emissions in July 2012 and 2013, when the herbaceous strata was sparse, were dominated by microbial processes in the soil. CO2 respiration fluxes were high in the beginning (107 ± 26 mg m-2 h-1 in July 2013) and low in the end of the wet season (32 ± 5 mg m-2 h-1 in November 2013), when autotrophic and heterotrophic activity is reduced due to low soil moisture conditions These results confirm that contrasted ecosystem conditions due

  2. Pesticide volatilization from soil and plant surfaces: Measurements at different scales versus model predictions

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, A.

    2003-07-01

    Simulation of pesticide volatilization from plant and soil surfaces as an integral component of pesticide fate models is of utmost importance, especially as part of the PEC (predicted environmental concentrations) models used in the registration procedures for pesticides. Experimentally determined volatilization rates at different scales were compared to model predictions to improve recent approaches included in European registration models. To assess the influence of crucial factors affecting volatilization under well-defined conditions, a laboratory chamber was set-up and validated. Aerodynamic conditions were adjusted to fulfill the requirements of the German guideline on assessing pesticide volatilization for registration purposes. At the semi-field scale, volatilization rates were determined in a wind-tunnel study after soil surface application of pesticides to gleyic cambisol. The following descending order of cumulative volatilization was observed: chlorpyrifos > parathion-methyl > terbuthylazine > fenpropimorph. Parameterization of the models PEARL (pesticide emission assessment at regional and local scales) and PELMO (pesticide leaching model) was performed to mirror the experimental boundary conditions. (orig.)

  3. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  4. Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China.

    Science.gov (United States)

    Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai

    2015-07-01

    The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed.

  5. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch-Saurashtra: Implication for hydrocarbon prospects

    Science.gov (United States)

    Rao, P. Lakshmi Srinivasa; Madhavi, T.; Srinu, D.; Kalpana, M. S.; Patil, D. J.; Dayal, A. M.

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch-Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through n-butane and the observed concentrations (in ppb) vary from: methane (C1) from 4-291, ethane (C2) from 0-84, propane (C3) from 0-37, i-butane (iC4) from 0-5 and n-butane (nC4) from 0-4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between -42.9‰ to -13.3‰ (Pee Dee Belemnite - PDB) and -21.2‰ to -12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  6. Natural forest expansion on reclaimed coal mines in Northern Spain: the role of native shrubs as suitable microsites.

    Science.gov (United States)

    Alday, Josu G; Zaldívar, Pilar; Torroba-Balmori, Paloma; Fernández-Santos, Belén; Martínez-Ruiz, Carolina

    2016-07-01

    The characterization of suitable microsites for tree seedling establishment and growth is one of the most important tasks to achieve the restoration of native forest using natural processes in disturbed sites. For that, we assessed the natural Quercus petraea forest expansion in a 20-year-old reclaimed open-cast mine under sub-Mediterranean climate in northern Spain, monitoring seedling survival, growth, and recruitment during 5 years in three contrasting environments (undisturbed forest, mine edge, and mine center). Seedling density and proportion of dead branches decreased greatly from undisturbed forest towards the center of the mine. There was a positive effect of shrubs on Q. petraea seedling establishment in both mine environments, which increase as the environment undergoes more stress (from the mine edge to the center of the mine), and it was produced by different shrub structural features in each mine environment. Seedling survival reduction through time in three environments did not lead to a density reduction because there was a yearly recruitment of new seedlings. Seedling survival, annual growth, and height through time were greater in mine sites than in the undisturbed forest. The successful colonization patterns and positive neighbor effect of shrubs on natural seedlings establishment found in this study during the first years support the use of shrubs as ecosystem engineers to increase heterogeneity in micro-environmental conditions on reclaimed mine sites, which improves late-successional Quercus species establishment.

  7. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    Doubková, M.

    2012-01-01

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  8. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  9. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    Science.gov (United States)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  10. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    Science.gov (United States)

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  11. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities.

    Science.gov (United States)

    Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J

    2016-04-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  13. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  14. AMSR-E/Aqua surface soil moisture (LPRM) L3 1 day 25 km x 25 km ascending V002 (LPRM_AMSRE_A_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — AMSR-E/Aqua surface soil moisture (LPRM) L3 1 day 25 km x 25 km ascending V002 is a Level 3 (gridded) data set. Its land surface parameters, surface soil moisture,...

  15. Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils

    Science.gov (United States)

    Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf

    2010-05-01

    Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.

  16. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    International Nuclear Information System (INIS)

    Richard, M.; Le Mogne, Th.; Perret-Liaudet, A.; Rauwel, G.; Criquelion, J.; De Barros, M.I.; Cetre, J.C.; Martin, J.M.

    2005-01-01

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed

  17. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  18. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  19. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  20. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  2. Bright patches on chernozems - from space to surface and soil properties

    Science.gov (United States)

    Smetanova, Anna; Burian, Libor; Holec, Juraj; Minár, Jozef

    2016-04-01

    located in areas with slope gradient between 3 and 6°, which is consider as the higher slope in this part of the hilly land. In 1949 the distribution of bright patches was more strongly related to higher slope gradient, the convex forms of profile curvature, and upslope position than in 2004. In the studied catchment, 34 soil profiles were described in the bright patches (identified in 2004), and 73% of them were situated on the convex forms of profile curvature. The most of the profiles were eroded (88%), the mean soil loss was 0.36 m (in the comparison with the reference soil profile), and in 55% of described soil profiles the entire mollic horizon was removed. The typical surface horizon contained 2.3% of humus and 21% of carbonates. The soil profiles were further compared with these situated in the areas neighbouring with the bright patches, and soil profiles on two valley cross-sections, in order to understand the soil redistribution in the catchment, and describe the differences between the bright and black patches in the chernozem landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  3. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  4. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia

    Science.gov (United States)

    Mardiana-Jansar, K.; Ismail, B. S.

    2014-09-01

    Levels of glyphosate and its main metabolite were determined in surface water, soil and sediment samples from an oil palm plantation area located at Tasik Chini, Pahang, Malaysia. The optimization analytical method has been developed for the determination of glyphosate herbicide and its metabolite amino-methyl-phosphonic acid (AMPA) in surface waters to a level of 0.1μg/L, while in sediments and soils to a level of 0.5μg/g with a good linearity in the calibration range of 1-100μg/L. The procedure involves a pre-columnderivatization step with 9-fluorenyl-methyl-chloroformate (FMOC-Cl) yielding highly fluorescent derivatives of the analytes which can be determined by HPLC with fluorescence detection. In the field, levels of glyphosate in surface waters ranges from not detected to 1.0mg/L, while in soils and sediments were from not detected to 6.0mg/kg. For AMPA, the residues in surface waters were between not detected to 2.0mg/L, while in soil and sediment samples were from not detected to 5mg/kg. This variation of glyphosate and AMPA levels depended directly on time of pesticide application and the season.

  5. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  6. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.

    2014-10-01

    Evapotranspiration has been recognized as one of the most uncertain term in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs simulations of evapotranspiration are assessed at local scale over a 12 year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamic of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key soil parameters which drive the simulation of evapotranspiration, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. The simulations achieved with the standard values of these parameters are compared to those achieved with the in situ values. The portability of the ISBA pedotransfer functions is evaluated over a typical Mediterranean crop site. Various in situ estimates of the soil parameters are considered and distinct parametrization strategies are tested to represent the evapotranspiration dynamic over the crop succession. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24% over 12 years. The bias in daily daytime evapotranspiration is -0.24 mm day-1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated which explains most of the evapotranspiration underestimation. The overestimation of the soil moisture at wilting point causes the underestimation of

  7. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  8. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    Science.gov (United States)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  10. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  11. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  12. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  13. Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway

    International Nuclear Information System (INIS)

    Haugland, Toril; Ottesen, Rolf Tore; Volden, Tore

    2008-01-01

    Surface soil (0-2 cm) quality in 87 day care centres in the city of Bergen, Norway has been studied. Approximately 45% of the day care centres contained Pb and PAH values above recommended action levels. There are clear variations between different areas of the city. The old central part of the city hosts most of the contaminated day care centres. In suburban areas most of the day care centres have Pb and PAH concentrations below action levels. City fires, gas work emission, lead-based paint, and traffic are probably important anthropogenic contamination sources, together with uncontrolled transportation of soil from contaminated to clean areas. Geological or other natural sources are probably not an important contributor to the high levels of lead and PAH. - Surface soil in 45% of the studied day care centres was contaminated by lead and PAH

  14. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    Science.gov (United States)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  17. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    Science.gov (United States)

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (I geo ), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Acoustic Determination of Near-Surface Soil Properties

    Science.gov (United States)

    2008-12-01

    requiring geostatistical analysis, while nearby others are spatially independent. In studies involving many different soil properties and chemistry ...Am 116(6), p. 3354-3369. Kravchenko, N., C.W. Boast, D.G. Bullock, 1991. Fractal analysis of soil spatial variability. Agronomy Journal 91

  19. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway

  20. Effects of vegetation and soil-surface cover treatments on the hydrologic behavior of low-level waste trench caps

    International Nuclear Information System (INIS)

    Lopez, E.A.; Barnes, F.J.; Antonio, E.J.

    1988-01-01

    Preliminary results are presented on a three-year field study at Los Alamos National Laboratory to evaluate the influence of different low-level radioactive waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on a decommissioned waste site. Total runoff and soil loss from each plot is measured after each precipitation event. Soil moisture is measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Continued monitoring of the study site will provide data that will be used to analyze complex interactions between independent variables such rainfall amount and intensity, antecedent soil moisture, and soil and vegetation factors, as they influence water balance, and soil erosion. 18 refs., 2 figs., 3 tabs

  1. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  2. Cesium-137 spatial activity in surface soils near and surrounding the Guri Reservoir (Venezuela)

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Cordoves, P.R.

    2005-01-01

    The 137 Cs activities (Bq x kg -1 ) were determined in more than ninety soil samples between 2 and 5 cm depths surrounding and near the Guri Reservoir (state of Bolivar, Venezuela). The measurements were performed by high-resolution gamma-ray spectroscopy, employing Soil-6 as a comparator. In general, the values of the 137 Cs activities were about double on the west side of the reservoir than on the east side, the environmental parameters were similar on both sides, but the soils were very different, they were untisols on the western side and entisols on the eastern one. The soils were highly mineralized and on the western side they were above rich iron deposits. Many of the sampling sites on the eastern side were annually covered with water, when the reservoir was at high levels. The anomalously high 137 Cs values, southeast of the reservoir were found in a small area that had very different environmental characteristics and can be explained by the direct deposition of the fallout by the clouds on the vegetation and surface, since this area is in a dense cloud forest. (author)

  3. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2010-10-01

    Full Text Available Most of the indices currently employed for assessing soil surface micro-topography, such as random roughness (RR, are merely descriptors of its vertical component. Recently, multifractal analysis provided a new insight for describing the spatial configuration of soil surface roughness. The main objective of this study was to test the ability of multifractal parameters to assess in field conditions the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. In addition, we evaluated the potential of the joint use of multifractal indices plus RR to improve predictions of water storage in depressions of the soil surface (MDS. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plough, chisel plough, disc harrow + disc level, disc plough + disc level and chisel plough + disc level were tested. In each treatment soil surface micro-topography was measured four times, with increasing amounts of natural rainfall, using a pin meter. The sampling scheme was a square grid with 25 × 25 mm point spacing and the plot size was 1350 × 1350 mm (≈1.8 m2, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. MDS was estimated from grid elevation data with a depression-filling algorithm. Multifractal analysis was performed for experimental data sets as well as for oriented and random surface conditions obtained from the former by removing slope and slope plus tillage marks, respectively. All the investigated microplots exhibited multifractal behaviour, irrespective of surface condition, but the degree of multifractality showed wide differences between them. Multifractal parameters provided valuable information for characterizing the spatial features of soil micro-topography as they were able to

  4. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Science.gov (United States)

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  5. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  6. Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau

    Science.gov (United States)

    Zhao, Hong; Zeng, Yijian; Lv, Shaoning; Su, Zhongbo

    2018-06-01

    Soil information (e.g., soil texture and porosity) from existing soil datasets over the Tibetan Plateau (TP) is claimed to be inadequate and even inaccurate for determining soil hydraulic properties (SHP) and soil thermal properties (STP), hampering the understanding of the land surface process over TP. As the soil varies across three dominant climate zones (i.e., arid, semi-arid and subhumid) over the TP, the associated SHP and STP are expected to vary correspondingly. To obtain an explicit insight into the soil hydrothermal properties over the TP, in situ and laboratory measurements of over 30 soil property profiles were obtained across the climate zones. Results show that porosity and SHP and STP differ across the climate zones and strongly depend on soil texture. In particular, it is proposed that gravel impact on porosity and SHP and STP are both considered in the arid zone and in deep layers of the semi-arid zone. Parameterization schemes for porosity, SHP and STP are investigated and compared with measurements taken. To determine the SHP, including soil water retention curves (SWRCs) and hydraulic conductivities, the pedotransfer functions (PTFs) developed by Cosby et al. (1984) (for the Clapp-Hornberger model) and the continuous PTFs given by Wösten et al. (1999) (for the Van Genuchten-Mualem model) are recommended. The STP parameterization scheme proposed by Farouki (1981) based on the model of De Vries (1963) performed better across the TP than other schemes. Using the parameterization schemes mentioned above, the uncertainties of five existing regional and global soil datasets and their derived SHP and STP over the TP are quantified through comparison with in situ and laboratory measurements. The measured soil physical properties dataset is available at https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0" target="_blank">https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0.

  7. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    Lo Curzio, S.

    2009-01-01

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area [it

  8. Escoamento superficial em diferentes sistemas de manejo em um Nitossolo Háplico típico Surface runoff in different soil management systems on Typic Hapudox soil

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2008-06-01

    Full Text Available O preparo mecânico do solo influencia o seu manejo e danifica a estrutura, diminui a porosidade e a infiltração de água e aumenta o escoamento superficial. Utilizando-se simulador de chuvas, estudaram-se os tratamentos, preparo convencional (PC; semeadura direta em resíduo queimado (SQ; semeadura direta em resíduo dessecado (SD; e semeadura direta tradicional em resíduo dessecado (ST, cultivados, além de um preparo convencional sem cultivo do solo (SC - testemunha e de um campo nativo (CN, em um Nitossolo Háplico no Planalto Sul Catarinense, entre março de 2001 e fevereiro de 2004, com o objetivo de quantificar o escoamento superficial. Ao milho e feijão se aplicaram três testes de chuva em cada um e à soja cinco testes. Quantificaram-se os tempos de início (TI e pico (TP de enxurrada, a taxa constante (TE e o volume de enxurrada (VE e o coeficiente C da Equação Racional. Os TI, TP e TE, coeficiente C e VE, foram influenciados pelo preparo e cultivo do solo. O TI e o TP foram menores nos tratamentos PC e SC, enquanto a TE, o coeficiente C e o VE, também foram menores, mas nos tratamentos SD e ST. A TE variou de 18 mm h-1 na ST a 44 mm h-1 no SC, enquanto o coeficiente C variou de 0,29 na ST a 0,71 no SC. A variação do VE foi de 106 m³ ha-1 na ST a 434 m³ ha-1 no SC, na média dos cultivos.Soil tillage influences soil management and damages structure, reduces the porosity and water infiltration and increases surface runoff. A rotating-boom rainfall simulator was used to investigate the treatments: conventional tillage (CT, no-tillage in burn residue (NB, no-tillage in desiccated residue (ND, and traditional no-tillage in desiccated residue (NT, both cropped, as well as conventional tillage without crop (bare soil - BS, and native pasture treatment (NP, in a Typic Hapludox soil, in the Southern Plateau of Santa Catarina State, Brazil, from March, 2001 to February, 2004, with the objective of quantifying surface runoff. Three

  9. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  10. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  11. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  12. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  13. Characterization of light gaseous hydrocarbons of the surface soils of Krishna-Godavari basin, India.

    Science.gov (United States)

    Lakshmi, M; Rasheed, M A; Madhavi, T; Kalpana, M S; Patil, D J; Dayal, A M

    2012-01-01

    Several techniques are used for the exploration of hydrocarbons, of which; the geochemical techniques involving the microbiological technique use the principle of detecting the light hydrocarbon seepage activities for indication of sub-surface petroleum accumulations. Asurvey was carried out to characterize the light gaseous hydrocarbons seeping in oil and gas fields of Krishna-Godavari basin ofAndhra Pradesh. Aset of 50 sub-soil samples were collected at depths of about 3 m for geochemical analyses and 1m for microbiological analysis. The microbial prospecting studies showed the presence of high bacterial population for methane 2.5 x 10(2) to 6.0 x 10(6) cfu g(-1), propane 1x10(2) to 8.0 x 10(6) cfu g(-1) in soil samples. The adsorbed soil gas analysis showed the presence of moderate to low concentrations of methane (26 to 139 ppb), ethane (0 to 17 ppb), propane (0 to 8 ppb), butane (0 to 5 ppb) and pentane (0 to 2 ppb) in the soil samples of the study area. Carbon isotope analysis for methane ('13C1) ranging from -36.6 to -22.7 per hundred Pee Dee Belemnite (PDB) suggests these gases are of thermogenic origin. Geo-microbial prospecting method coupled with adsorbed soil gas and carbon isotope ratio analysis have thus shown good correlation with existing oil/gas fields of Krishna-Godavari basin.

  14. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  15. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil

    KAUST Repository

    Amazirh, Abdelhakim; Merlin, Olivier; Er-Raki, Salah; Gao, Qi; Rivalland, Vincent; Malbeteau, Yoann; Khabba, Said; Escorihuela, Maria José

    2018-01-01

    Radar data have been used to retrieve and monitor the surface soil moisture (SM) changes in various conditions. However, the calibration of radar models whether empirically or physically-based, is still subject to large uncertainties especially

  16. Microwave remote sensing of temporal variations of brightness temperature and near-surface soil water content during a watershed-scale field experiment, and its application to the estimation of soil physical properties

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Jackson, T.J.; Ahuja, L.R.

    1998-01-01

    Passive microwave airborne remote sensing was employed to collect daily brightness temperature (T(B)) and near-surface (0-5 cm depth) soil water content (referred to as 'soil water content') data during June 10-18, 1992, in the Little Washita watershed, Oklahoma. A comparison of multitemporal data with the soils data revealed a direct correlation between changes in T(B) and soil water content, and soil texture. Regression relationships were developed for the ratio of percent sand to percent clay (RSC) and effective saturated hydraulic conductivity (K(sat)) in terms of T(B) and soil water content change. Validation of results indicated that both RSC and K(sat) can be estimated with adequate accuracy. The relationships are valid for the region with small variation of soil organic matter content, soils with fewer macropores, and limiting experimental conditions. However, the findings have potential to employ microwave remote sensing for obtaining quick estimates of soil properties over large areas

  17. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    Directory of Open Access Journals (Sweden)

    Haribala Bai

    2017-03-01

    Full Text Available The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS. The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  18. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  19. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the

  20. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence

  1. Preliminary studies on photolysis of polychlorinated dibenzo-p-dioxins on soils surface

    Energy Technology Data Exchange (ETDEWEB)

    Kobara, Y.; Ishihara, S.; Ohtsu, K.; Horio, T.; Endo, S.

    2002-07-01

    samples to UV light emitted by Hg-lamps. The photo characteristics of these lamps were not similar to sunlight. So, it is difficult to predict photolysis of PCDDs/PCDFs in the environment. Photolysis by sunlight is potentially an important process for transformation of higher chlorinated compounds, especially OCDD (relatively lower toxic) to lower chlorinated compounds (relatively higher toxic) or to the other degradation products. However, little data are available concerning the photolysis of PCDDs on soil surface by sunlight. Therefore, the objective of this study is to design the photochemical apparatus for equipped with the solar simulator to evaluate the photolysis of PCDDs/PCDFs on soil surfaces. The apparatus is similar to the spectral characteristics of solar radiation especially the wavelength region of about 280 to 400 nm. (Author)

  2. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    Science.gov (United States)

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  3. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to

  4. Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia

    Directory of Open Access Journals (Sweden)

    Y. Igarashi

    2011-07-01

    Full Text Available Recent climate change, especially during the 2000s, may be the primary reason for the expansion of the Asian dust source region. The change in the dust source region was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s, but there are no current direct sources for anthropogenic radionuclides in the air (before the Fukushima nuclear power plant accident in 2011. Radionuclides in the atmosphere are therefore carried mainly by wind-blown dust from surface soil, that is, aeolian dust. Asian dust carries traces of 90Sr, 137Cs, and other anthropogenic radionuclides; the heaviest deposition occurs in spring and has been recorded in Japan since the early 1990s. The composition of anthropogenic radionuclides in atmospheric depositions would be affected by a change in the dust source. Previous studies of atmospheric deposition at long-term monitoring sites (e.g. in Tsukuba, Japan have detected changes in the 137Cs/90Sr ratio and in the specific activity of the radionuclides. These changes in the composition of observed atmospheric depositions are supposed to reflect changes in the climatic conditions of the dust source region. To investigate this dust source change, we conducted a field survey of radionuclides (90Sr and 137Cs in surface soil samples in September 2007 in the eastern and southern regions of Mongolia, where dust storms have occurred more frequently since 2000. The specific activities of both radionuclides as well as the 137Cs/90Sr ratio in the surface soil were well correlated with annual average precipitation in the Mongolian desert-steppe zone. Higher specific activities and a higher 137Cs/90Sr ratio were found in grassland regions that experienced greater

  5. Mineralisation of low concentrations of organic compounds and microbial biomass in surface and vadose zone soils from the Swan Coastal Plain, Western Australia

    International Nuclear Information System (INIS)

    Franzmann, P. D.; Zappia, L. R.; Patterson, B. M.; Rayner, J.L.; Davis, G. B.

    1998-01-01

    Mineralisation rates for ring-labelled 14 C-atrazine, benzene, and toluene were determined for a number of Swan Coastal Plain soils which had not been previously in contact with these contaminants. Microbial biomass was estimated by phospholipid techniques in soil samples from the same sites. Mineralisation rates for the volatile aromatic hydrocarbons in the thin (up to 30 cm) surface soils (23.4-42.6 μmol/kg . day when fitted to zeroth-order rate kinetics) were appreciably faster than the mineralisation rates measured in soils collected from a depth of 1 m (0.11-3.0 μmol/kg per day). The pesticide atrazine was degraded slowly, with degradation rates in surface soils ranging from 1.22x10 -3 to 2.78x10 -4 μmol/kg . day, and those in soils at 1 m ranging from 5. 13x10 -4 to 3.1610 -4 μmol/kg per day. When mineralisation data were fitted to first-order kinetics then half-lives for atrazine mineralisation ranged from about 1 year in surface soils to 3.1-5.1 years in soils at 1 m. These rates were comparable to atrazine mineralisation rates measured in soils that had not been previously in contact with atrazine, as reported by others. The extent of mineralisation of the organic compounds v. time generally fitted better to zeroth-order kinetics than to first-order kinetics. Confidence in the determination of the mineralisation rate at slow rates of mineralisation was low (r 2 as low as 0.2 in plots of the extent of mineralisation v. time in zeroth-order and first-order plots for samples that showed slow mineralisation). Biomass, expressed as stationary phase Escherichia coli equivalents (SPEE), ranged from 1.4 x10 7 to 1x2x10 8 SPEE/g dry weight for surface soils, and from 8.6x10 5 to 7.3x10 6 SPEE/g dry weight for soils at 1 m. The phospholipids extracted from surface soils tended to contain higher proportions of unsaturated and hydroxy fatty acids than soils at 1 m, which contained higher relative concentrations of branched fatty acids, which is consistent with the

  6. Utilization of peatlands as possible land resource for low-input agriculture: cultivation of Vaccinium species as an example

    Science.gov (United States)

    Tonutare, Tonu; Rodima, Ako; Rannik, Kaire; Shanskiy, Merrit

    2013-04-01

    The best way of soil protection is its sustainable and expedient use, which secures soils ecological functioning. Recent years, by exploitation of peat soils for their different use, has raised important issues concerning their input to global climate change as important source of greenhouse gases (GHG) emitters. The dynamics of GHG are determined by different factors as: site specific conditions including hydrology, soil type, vegetation, area management, including meteorological and climatic conditions. Therefore, in this current paper we are presenting the study results were we estimated CO2, CH4 and N2O emissions from exhausted cultivated peatland with Vaccinium species and determined the soil chemical composition. For comparision a virgin state peatland was observed. The main goals of the paper are: (1) to present the experimental results of greenhouse gases generation and peat chemical composition (antioxidant activity of peat, C/N ratio, fiber content, water extractable phenolics) relationships on different microsites either on natural plant cover or Vaccinium species cultivation area on exhausted milled peat area; (2) to discuss how peat soil quality contributes to greenhouse gases emission; (3) and what kind of relationship reveals between low input agricultural system in which Vaccinium species are cultivated on exhausted milled peat area. The study are is located in nearby Ilmatsalu (58°23'N, 26°31'E) in South Estonia, inside of which the three microsites are determined. Microsites are different from each other by exploitation and plant cover type. 1). Natural plant cover, 2). Cultivated area with Vaccinium angustifolium x V. corymbosum, 3). Cultivated area with Vaccinium angustifolium. The determined soil type according to WRB was Fibri Dystric Histosol. The main part of study focuses on the analyses of greenhouse gases. For this purpose the closed chamber method was used. The greenhouse gas samples were collected from spring to autumn 2011 throughout

  7. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions.

    Science.gov (United States)

    Fernández-Baca, Cristina P; Truhlar, Allison M; Omar, Amir-Eldin H; Rahm, Brian G; Walter, M Todd; Richardson, Ruth E

    2018-05-31

    Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH 4 ) and nitrous oxide (N 2 O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH 4 and N 2 O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH 4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N 2 O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH 4 emissions (mcrA:pmoA, p  0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N 2 O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH 4 flux and N 2 O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH 4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system. Copyright © 2018 Elsevier B

  8. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    Science.gov (United States)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of

  9. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  10. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  11. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  12. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance.

  13. Spatial distribution of lead concentrations in urban surface soils of New Orleans, Louisiana USA.

    Science.gov (United States)

    Abel, Michael T; Suedel, Burton; Presley, Steven M; Rainwater, Thomas R; Austin, Galen P; Cox, Stephen B; McDaniel, Les N; Rigdon, Richard; Goebel, Timothy; Zartman, Richard; Leftwich, Blair D; Anderson, Todd A; Kendall, Ronald J; Cobb, George P

    2010-10-01

    Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health. Additional studies on New Orleans floodwaters revealed similar constituents as well as compounds commonly found in gasoline. More recently, it has been revealed that lead (Pb), arsenic, and vanadium are found intermittently throughout the city at concentrations greater than the human health soil screening levels (HHSSLs) of 400, 22 (non-cancer endpoint) and 390 μg/g, respectively. Of these, Pb appears to present the greatest exposure hazard to humans as a result of its extensive distribution in city soils. In this study, we spatially evaluated Pb concentrations across greater New Orleans surface soils. We established 128 sampling sites throughout New Orleans at approximately half-mile intervals. A soil sample was collected at each site and analyzed for Pb by ICP-AES. Soils from 19 (15%) of the sites had Pb concentrations exceeding the HHSSL threshold of 400 μg/g. It was determined that the highest concentrations of Pb were found in the south and west portions of the city. Pb concentrations found throughout New Orleans in this study were then incorporated into a geographic information system to create a spatial distribution model that can be further used to predict Pb exposure to humans in the city.

  14. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  15. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  16. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  17. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    International Nuclear Information System (INIS)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs

  18. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Science.gov (United States)

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  19. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandra B Wolf

    Full Text Available The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus and a motile rod-shaped bacterium (Bacillus weihenstephanensis to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions. These data, combined with information on bacterial motility (expansion potential across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  20. Prescribed fires effects on physico-chemical properties and quantity of runoff and soil erosion in a Mediterranean forest

    Science.gov (United States)

    Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge

    2017-04-01

    Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.