WorldWideScience

Sample records for surface soil microsites

  1. X-ray microspectroscopy and chemical reactions in soil microsites.

    Science.gov (United States)

    Hesterberg, Dean; Duff, Martine C; Dixon, Joe B; Vepraskas, Michael J

    2011-01-01

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  2. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    Energy Technology Data Exchange (ETDEWEB)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  3. Short-Term Response of Soil Bacteria to Carbon Enrichment in Different Soil Microsites

    OpenAIRE

    Monard, C; Binet, F.; Vandenkoornhuyse, P.

    2008-01-01

    The response of bacteria in bulk soil and earthworm casts to carbon enrichment was studied by an RNA stable-isotope probing/terminal restriction fragment length polymorphism strategy with 13C-labeled glucose and acetate. Both the soil microsite status and the carbon enrichment selected rapidly for different active bacterial communities, which resulted in different degradation kinetics. Our study clearly illustrates the biases that are generated by adding C substrates to detect metabolically a...

  4. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  5. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  6. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  7. Thermodynamic and pedogenic differences between desert microsites

    Science.gov (United States)

    Young, Michael; Caldwell, Todd; Lin, Henry

    2014-05-01

    taken along transects radiating from canopies of perennial shrubs into bare interspaces of structured soils. We augmented these measurements with ground-penetrating radar (GPR), laboratory analyses, and (in some cases) soil trenches. The results showed higher saturated conductivity under canopies versus interspaces, regardless of surface age, with the largest differences observed on older, developed soils. Bulk density, soil structure grade, and silt and clay content increased significantly away from the canopy, and organic content decreased toward interspaces. Trends in soil properties, from canopies to interspaces, were found to be predictable to a distance of 1.35 +/- 0.32 times the canopy radius, regardless of the size or genus of the shrub. The microsite environments, which are separated by only 10s of cm, release energy and mass at different rates—the fluxes differ by microsite locations. They exist with different thermodynamic gradients, with larger upward fluxes to support shrubs under canopy microsites and larger downward fluxes in interspaces. Armoured against change in interspaces can explain progressive structural evolution of pedons, a paradoxically reduced water infiltration capacity, and a contraction of canopy volumes and ecosystem production in older soils. We use these gradients to illustrate the importance of microsite location when considering complex feedbacks that result through currently-observed, time-dependent processes of pedogenesis in arid regions of the desert southwest.

  8. Microsite and time since prescribed fire's influence on soil microbiology in a pinyon woodland

    Science.gov (United States)

    Benjamin M. Rau; Robert R. Blank; Tye Morgan

    2008-01-01

    Pinyon-juniper (Pinus monophylla Torr. & Frém.? Juniperus osteosperma Torr.) encroachment into sagebrush grasslands is a continuing problem in the Western United States. Prescribed burning has been suggested to slow woodland encroachment. We examined surface soil microbial community structure using Phospholipid Fatty Acid (PLFA...

  9. Non-Linear Responses to Precipitation and Shrub Encroachment in Semi-Arid Grassland: Isotopes and CO2 Fluxes Reveal Soil Microsite Alteration as Explanation

    Science.gov (United States)

    Cable, J. M.; Sun, W.; Ogle, K.; Williams, D. G.; Potts, D. L.; Scott, R. L.; Huxman, T. E.

    2006-12-01

    Responses of net ecosystem production (NEP) to growing season rainfall amount is non-linear over a gradient of woody-plant encroachment in semi-arid riparian grassland. NEP is positively correlated with growing season precipitation amount in the grassland, but is negatively correlated with precipitation amount in a former C4 grassland now occupied by large mesquite (Prosopis) individuals. NEP at sites with intermediate stages of mesquite encroachment have a complex, threshold response to precipitation amount. Mesquite encroachment creates patchy soil microsites and spatial variation in rooting depth and activity. We hypothesized that variation in soil microsite properties (e.g., temperature, labile carbon) and root activity affect soil CO2 efflux in such a way that explains the non-linearity in response of NEP to precipitation. We measured soil CO2 efflux during the dry pre-monsoon (early summer) and wet monsoon (mid summer) periods on old floodplain terraces along the San Pedro River in southeastern Arizona. We made intensive spatial and temporal measurements of soil CO2 flux in four microsites associated with woody-plant encroachment: inter-canopy space and beneath the canopies of grasses, medium mesquite, and large mesquite. We also measured the δ13C of soil-respired CO2, which provided insight into the contribution of different sources (e.g., roots vs. microbes) to soil CO2 efflux. Soil respiration was highest beneath large mesquite near the canopy center, and lowest beneath medium mesquite and in inter-canopy spaces. The δ13C data revealed that soil respiration was dominated by a C4 signal during the pre-monsoon, but it switched to being dominated by the C3 mesquite signal during the wet monsoon period. Respiration was most sensitive to precipitation inputs beneath the large mesquite, where labile carbon in the form of mesquite litter is readily available. Conversely, soil respiration was least sensitive to precipitation in the open, inter- canopy space

  10. Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites.

    Science.gov (United States)

    Walker, Jennifer K M; Jones, Melanie D

    2013-12-01

    Ectomycorrhizal fungal (EMF) communities vary among microhabitats, supporting a dominant role for deterministic processes in EMF community assemblage. EMF communities also differ between forest and clearcut environments, responding to this disturbance in a directional manner over time by returning to the species composition of the original forest. Accordingly, we examined EMF community composition on roots of spruce seedlings planted in three different microhabitats in forest and clearcut plots: decayed wood, mineral soil adjacent to downed wood, or control mineral soil, to determine the effect of retained downed wood on EMF communities over the medium and long term. If downed and decayed wood provide refuge habitat distinct from that of mineral soil, we would expect EMF communities on seedlings in woody habitats in clearcuts to be similar to those on seedlings planted in the adjacent forest. As expected, we found EMF species richness to be higher in forests than clearcuts (P ≤ 0.01), even though soil nutrient status did not differ greatly between the two plot types (P ≥ 0.05). Communities on forest seedlings were dominated by Tylospora spp., whereas those in clearcuts were dominated by Amphinema byssoides and Thelephora terrestris. Surprisingly, while substrate conditions varied among microsites (P ≤ 0.03), especially between decayed wood and mineral soil, EMF communities were not distinctly different among microhabitats. Our data suggest that niche partitioning by substrate does not occur among EMF species on very young seedlings in high elevation spruce-fir forests. Further, dispersal limitations shape EMF community assembly in clearcuts in these forests.

  11. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    Directory of Open Access Journals (Sweden)

    Peter W Dunwiddie

    Full Text Available Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae. This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable

  12. Movement and transformation of potassium in fertiliser micro-sites in latosol

    Science.gov (United States)

    He, Y. D.; Cui, X. B.; Wang, L. X.; Liu, Y. X.; Jing, T.; Wang, B. Z.

    2016-08-01

    A soil column method was used to analyse the characteristics of the movement and transformation of potassium (K) in a latosol. The internal temperature was maintained at 28 to 30 °C. The distances moved by the added K were 50 to 100 mm after 7 and 28 d, respectively. Potassium moved faster within 7 d during the incubation time of 28 d. The concentrations of water-extractable K, and exchangeable K, had significant negative linear relationships with distance from fertiliser placement in the region of K movement. In incubation time, water-extractable K and exchangeable K had significant effects on the concentration distributions for fertiliser micro-sites, but had no significant effects on non-exchangeable K. Most of K was still in an available form at fertiliser micro-sites after moving into the soil except that 4.22% to 11.19% of all applied K was fixed by soil.

  13. Influence of climate and regeneration microsites on Pinus contorta invasion into an alpine ecosystem in New Zealand

    Directory of Open Access Journals (Sweden)

    Melanie A. Harsch

    2016-08-01

    Full Text Available In many regions, alien conifers have spread widely at lower elevations and are increasingly found colonizing alpine areas. Although studies have addressed conifer invasions at low elevations, little is known about the rates and constraints on spread into higher elevations. Here, we assess the relative importance of climate and the availability of regeneration microsites on the establishment of the alien species Pinus contorta into a high elevation site in New Zealand. Spread has occurred from two stands planted at the elevation of the native treeline (1347–1388 masl in the 1960s. Most stems established between 1350 and 1450 masl and P. contorta individuals were found up to 270 m above the original plantings. Although the population has increased by 180% in the last 20 years, population growth rate has been declining. Furthermore, comparisons with studies from other mountain ranges around the world and at low elevations in New Zealand suggest this is a relatively limited spread. Our results suggest that climate variation did not have a significant effect on establishment patterns, as opposed to availability of regeneration microsites. Soil and alpine mat microsites favoured establishment of P. contorta and, although these microsites did not appear to be saturated, microsite availability may be an important limiting factor for the spread of P. contorta. Thus management strategies should focus on preventing spread in addition to removing already established stems.

  14. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p < 0.0001), consistent with fractionation from denitrification. However, δ(15)N of extracted NO3 (-) was often lower than bulk soil δ(15)N (by up to 24 ‰), indicative of fractionation during nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification.

  15. The microbiology of arable soil surfaces

    OpenAIRE

    Jeffery, Simon

    2007-01-01

    Whilst much is known about the physics and erosion of soil surfaces on a millimetre scale, little is known about the associated microbiology, particularly in temperate arable systems. The vast majority of research regarding microbial interactions at soil surfaces has concerned microbiotic crusts. However, such surface crusts take many years to form and then only in relatively undisturbed soil systems. Arable soil surfaces are subject to relatively extreme environmental conditio...

  16. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints.

  17. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Science.gov (United States)

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  18. Strong microsite control of seedling recruitment in tundra

    DEFF Research Database (Denmark)

    Graae, Bente J; Ejrnæs, Rasmus; Lang, Simone I

    2011-01-01

    , the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just......The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental...... at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined...

  19. World-wide association of timberline forest advance with microsite type along a precipitation gradient

    Science.gov (United States)

    Johnson, A. C.; Yeakley, A.

    2009-12-01

    Timberline forest advance associated with global climate change is occurring worldwide and is often associated with microsites. Microsites, controlled by topography, substrates, and plant cover, are localized regions dictating temperature, moisture, and solar radiation. These abiotic factors are integral to seedling survival. From a compilation of world-wide information on seedling regeneration on microsites at timberline, including our on-going research in the Pacific Northwest, we classified available literature into four microsite categories, related microsite category to annual precipitation, and used analysis of variance to detect statistical differences in microsite type and associated precipitation. We found statistical differences (p = 0.022) indicating the usefulness of understanding microsite/precipitation associations in detecting world-wide trends in timberline expansion. For example, wetter timberlines with downed wood, had regeneration associated with nurse logs, whereas on windy, drier landscapes, regeneration was typically associated with either leeward sides of tree clumps or on microsites protected from frost by overstory canopy. In our study of timberline expansion in the Pacific Northwest, we expect that such knowledge of microsite types associated with forest expansion will reveal a better understanding of mechanisms and rates of timberline forest advance during global warming.

  20. HONO fluxes from soil surfaces: an overview

    Science.gov (United States)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  1. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Directory of Open Access Journals (Sweden)

    Alexandra Erfmeier

    Full Text Available Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of

  2. The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest

    NARCIS (Netherlands)

    Vodde, F.; Jogiste, K.; Kubota, Y.; Kuuluvainen, T.; Koster, K.; Lukjanova, A.; Metslaid, M.; Yoshida, T.

    2011-01-01

    We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several fa

  3. The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest

    NARCIS (Netherlands)

    Vodde, F.; Jogiste, K.; Kubota, Y.; Kuuluvainen, T.; Koster, K.; Lukjanova, A.; Metslaid, M.; Yoshida, T.

    2011-01-01

    We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several

  4. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  5. Water repellency and soil moisture variations under Rosmarinus officinalis in a burned soil

    Science.gov (United States)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    Mediterranean semi-arid landscapes are characterised by the patchiness of the vegetation cover, in which variations in the distribution pattern of soil water repellency (SWR) can be of major importance for their hydrological and geomorphological effects in burned areas, and also for their ecological implications concerning to the re-establishment of their plant cover. Within a broader research framework, the present work studies the influence of Rosmarinus officinalis vegetated patches on SWR in burned and unburned soils and its relationship with the field soil moisture content (SMC). The results presented here are the first step analysing the spatial pattern of sink and source runoff areas in a burned hillslope. The study area is located in the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occurred in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12 ° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight at the nearest unburned area were selected. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for soil sampling (1 sample per zone at each microsite, n= 84, form the first 2 cm of the mineral A horizon) and field soil moisture measurements determined by means of the moisture meter HH2 with ThetaProbe sensor type ML2x (5 measurements per zone at each microsite, n= 420), which were taken one day after the first rainfall event after fire, when 11 mm were registered in the study area. Results showed that the largest repellency persistence (measured by means of the Water Drop Penetration Time test, WDPT) was found

  6. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  7. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil

    National Research Council Canada - National Science Library

    Turtola, Eila; Alakukku, Laura; Uusitalo, Risto; Kaseva, Antti

    2007-01-01

    Conservation tillage practices were tested against autumn mouldboard ploughing for differences in physical properties of soil, surface runoff, subsurface drainflow and soil erosion. The study (1991-2001...

  8. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  9. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  10. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils.

    Science.gov (United States)

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M

    2017-01-01

    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  11. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-07-01

    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  12. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field

    Science.gov (United States)

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.

    1998-01-01

    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  13. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen

    2015-12-01

    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  14. Inverse modeling of soil characteristics from surface soil moisture observations: potential and limitations

    Directory of Open Access Journals (Sweden)

    A. Loew

    2008-01-01

    Full Text Available Land surface models (LSM are widely used as scientific and operational tools to simulate mass and energy fluxes within the soil vegetation atmosphere continuum for numerous applications in meteorology, hydrology or for geobiochemistry studies. A reliable parameterization of these models is important to improve the simulation skills. Soil moisture is a key variable, linking the water and energy fluxes at the land surface. An appropriate parameterisation of soil hydraulic properties is crucial to obtain reliable simulation of soil water content from a LSM scheme. Parameter inversion techniques have been developed for that purpose to infer model parameters from soil moisture measurements at the local scale. On the other hand, remote sensing methods provide a unique opportunity to estimate surface soil moisture content at different spatial scales and with different temporal frequencies and accuracies. The present paper investigates the potential to use surface soil moisture information to infer soil hydraulic characteristics using uncertain observations. Different approaches to retrieve soil characteristics from surface soil moisture observations is evaluated and the impact on the accuracy of the model predictions is quantified. The results indicate that there is in general potential to improve land surface model parameterisations by assimilating surface soil moisture observations. However, a high accuracy in surface soil moisture estimates is required to obtain reliable estimates of soil characteristics.

  15. Gamma-ray computed tomography to characterize soil surface sealing

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F.Luiz F. E-mail: lfpires@cena.usp.br; Macedo, Jose R. de; Souza, Manoel D. de; Bacchi, Osny O.S.; Reichardt, Klaus

    2002-09-01

    The application of sewage sludge as a fertilizer on soils may cause compacted surface layers (surface sealing), which can promote changes on soil physical properties. The objective of this work was to study the use of gamma-ray computed tomography, as a diagnostic tool for the evaluation of this sealing process through the measurement of soil bulk density distribution of the soil surface layer of samples subjected to sewage sludge application. Tomographic images were taken with a first generation tomograph with a resolution of 1 mm. The image analysis opened the possibility to obtain soil bulk density profiles and average soil bulk densities of the surface layer and to detect the presence of soil surface sealing. The sealing crust thickness was estimated to be in the range of 2-4 mm.

  16. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  17. Reconstruction of ploughed soil surface with 3D fractal interpolation

    NARCIS (Netherlands)

    Liu, Y.; Lu, Z.; Hoogmoed, W.B.; Li, X.

    2014-01-01

    By using a laser profiler, the roughness of ploughed soil surface was obtained. 3D fractal interpolation method was used to interpolate several kinds of reduced measured surface data which were reduced from the original measured ploughed soil surface elevation data in different reduction rates. Also

  18. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  19. Changes in structural stability with soil surface degradation. Consequences for soil erosion processes

    OpenAIRE

    Darboux, Frédéric; Le Bissonnais, Yves

    2006-01-01

    Hydrological Science, section 39 - Soil Science Systems, section 23: Dryland hydrologySRef-ID: 1607-7962/gra/EGU06-A-07243; Erosion and sediment transport processes depend on the soil surface properties. Because of water flow and other processes (climate, agricultural practices, biological activity, etc.), the properties of the soil surface can undergo significant changes that affect erosion. As a consequence, understanding of the transport processes and improvement in soil erosion prediction...

  20. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  1. Modeling the Influence of Forest Structure on Microsite Habitat Use by Snowshoe Hares

    Directory of Open Access Journals (Sweden)

    Angela K. Fuller

    2013-01-01

    Full Text Available Snowshoe hare (Lepus americanus is an important prey species for many Carnivora and has strong influences on community structure and function in northern forests. An understanding of within-stand (microsite forest structural characteristics that promote high use by hares is important to provide forest management guidelines. We measured forest structural characteristics at the microsite-scale in north-central Maine and used an information-theoretic modeling approach to infer which characteristics were most strongly associated with use by hares during winter. We measured overwinter hare pellet density to model relationships among microsite-scale vegetation structure and hare use. Overwinter pellet density was positively associated with live stem cover (3 × coniferous saplings + deciduous saplings and negatively associated with overstory canopy closure; the two variables explained 71% of the variation in microsite use by hares. The highest pellet densities were in grids with canopy closure 22,000 stems/ha. Silvicultural practices that create dense areas of conifer and deciduous saplings should receive high within-stand use by hares in winter. These conditions can be achieved by promoting the release of advanced regeneration and reducing overstory cover to encourage establishment of shade-intolerant species; clearcutting is one such silvicultural prescription to achieve these conditions.

  2. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  3. Influencia del microsite en la imagen de marca a través de experiencias significativas

    Directory of Open Access Journals (Sweden)

    Belinda de Frutos Torres

    2012-04-01

    Full Text Available Las empresas e instituciones, actualmente, son conscientes del potencial que ofrece internet como instrumento para mantener una relación activa con sus públicos de interés. Con este propósito diseñan estrategias de comunicación específicamente destinadas a que el usuario pueda establecer una relación interactiva con la marca. Una de las formas de estar presente en la red es a través del microsite que se perfilan como una solución para estrechar los lazos entre el usuario y la marca.El objetivo del estudio es valorar la influencia del microsite como herramienta de comunicación corporativa y su importancia en la construcción de la imagen de marca. Para ello se ha llevado a cabo un estudio empírico a partir de tres acciones de comunicación reales de tres marcas conocidas representativas de tres estrategias de comunicación. Las tres acciones se llevaron a cabo con microsites y fueron visitados y evaluados por una muestra de 41 personas. Los resultados muestran que la valoración global hacia el microsite puede explicarse en torno a tres dimensiones su grado de entretenimiento, su valor informativo y el agrado asociado. Se comprueba que la experiencia generada por el microsite es diferente dependiendo de la estrategia de comunicación utilizada y contribuye de forma distinta a explicar la actitud hacia la marca. Cada estrategia constituye una experiencia diferenciada para el usuario sin embargo la implicación del usuario con la categoría del producto obtiene un papel determinante en  la relación con la imagen de marca.

  4. Surface Reactivity in Tropical Highly Weathered Soils and Implications for Rational Soil Management

    Institute of Scientific and Technical Information of China (English)

    R. MOREAU; J. PETARD

    2004-01-01

    Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper.Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.

  5. Effect of Nitrogen Fertilizers on Movement and Transformation of Phosphorus in an Acid Soil

    Institute of Scientific and Technical Information of China (English)

    DU Zhen-Yu; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2005-01-01

    The effects of two different nitrogen fertilizers (urea and NH4Cl) with monocalcium phosphate (MCP) on the movement and transformation of fertilizer P in soil microsites along with soil pH changes at different distances from the fertilizer application site were studied in an incubation experiment. A highly acidic red soil (Ultisol, pH 4.57) from south China with MCP fertilizer alone or in combination with NH4Cl or urea was added to the surface of soil cylinders and packed in wax blocks. After 7 and 28 days, the extraction and analysis of each 2 mm layer from the interface of the soil and fertilizer showed that added NH4Cl or urea did not change the movement distance of fertilizer P. However, P transformation was significantly affected (P < 0.05). After 7 days, at 0-8 mm distance from the fertilizer site the addition of urea significantly decreased the water-extractable P concentration; however, after 28 days the effect of N addition had disappeared. Also,at limited distances close to the fertilizer site NH4Cl application with MCP significantly increased acid-extractable P and available P, while with the addition of urea they significantly decreased. Compared with application of MCP alone,addition of urea significantly increased soil pH in fertilizer microsites, whereas the addition of NH4Cl significantly decreased soil pH.

  6. Reflectance anisotropy for characterising fine-scale changes in soil surface condition across different soil types

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in a reduction in soil productivity, an increased susceptibility to erosion and increased release of greenhouse gases. Soil surface roughness at the centimetre scale plays a fundamental role in affecting soil erosion and surface runoff pathways. A decline in surface roughness can also be used to infer soil degradation as soil aggregates are broken down through raindrop impact. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially-distributed information on soil surface condition. Remotely sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Furthermore, a growing recognition into the importance of the directional reflectance domain has led to an increasing number of satellites with multiple view angle (MVA) capabilities (e.g. MISR, CHRIS on Proba). This is potentially useful for monitoring soil degradation and susceptibility to erosion because changes in soil surface roughness, associated with the breakdown of macro-aggregates, have a measurable effect on directional reflectance factors. Consequently, field and laboratory data are required for an empirical understanding of soil directional reflectance characteristics, underpinning subsequent model development. This study assessed the extent to which a hyperspectral MVA approach (350-2500 nm) could detect fine-scale changes in soil crusting states across five different soil types. A series of soil crusting states were produced for all five soil types, using an artificial rainfall simulator. The controlled conditions allowed the production of a series of stages in the soil crusting process; showing progressively declining surface roughness values. Each soil state was then spatially characterised, using a laboratory laser device at 2 mm sample spacing, over a 10 x 10 cm area. Laser data

  7. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts

    Science.gov (United States)

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.

    2008-01-01

    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  8. Soil Surface Structure: A key factor for the degree of soil water repellency

    Science.gov (United States)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  9. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  10. Microsite-limited recruitment controls fern colonization of post-agricultural forests.

    Science.gov (United States)

    Flinn, Kathryn M

    2007-12-01

    Assessing the relative roles of dispersal limitation and environmental effects in population dynamics and community assembly is fundamental to understanding patterns of species distribution and diversity. In forests growing on abandoned agricultural lands, both legacies of vegetation disturbance and changes in the abiotic environment shape the diversity and composition of recovering communities. Here I specify how interactions among historical, environmental, and biological factors influence species distributions, focusing on three fern species with contrasting distributions across forests of different history in central New York, USA: Dryopteris carthusiana, Dryopteris intermedia, and Polystichum acrostichoides. Using population surveys, spore-trap and spore-bank studies, and a three-year field experiment, I compare demographic rates among species and between forest types to determine which life history stages limit colonization and which traits explain species distributions. Adult plants of all three species were larger and more likely to produce spores in post-agricultural forests than in adjacent, uncleared stands. Though lower population densities led to fewer spores in post-agricultural soils, spore availability still exceeded recruitment by four to five orders of magnitude. Sowing additional spores had relatively little effect, while microhabitat conditions had the greatest impact on establishment rates. Given similar microsites, the two forest types had equal rates of establishment, but some forest-floor features preferentially occupied by juvenile plants were less frequent in post-agricultural stands. The availability of suitable sites for establishment, created by small-scale heterogeneity on forest floors, thus limits both the growth of fern populations and the colonization of new habitats. In fact, reduced microtopographic variation in post-agricultural forests may represent a greater hindrance to plant establishment than changes in mean environmental

  11. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    Directory of Open Access Journals (Sweden)

    Shai Sela

    2014-08-01

    Full Text Available Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach that accounts explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the respective layers corresponding to both the ground validation probe and the radar beam’s typical effective penetration depth were considered. A cyclic pattern was found in which, as compared to an unsealed profile, the seal layer intensifies the bias in validation during rainfall events and substantially reduces it during subsequent drying periods. The analysis of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, the optimal time for soil sampling following a rainfall event is a few hours in the case of an unsealed system and a few days in the case of a sealed one. Surface sealing was found to increase the temporal stability of soil moisture. In both sealed and unsealed systems, the greatest temporal stability was observed at positions with moderate slope inclination. Soil porosity was the best predictor of soil moisture temporal stability, indicating that prior knowledge regarding the soil texture distribution is crucial for the application of remote sensing validation schemes.

  12. The effect of heterogeneity and surface roughness on soil hydrophobicity

    Science.gov (United States)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated

  13. SMAP Level 4 Surface and Root Zone Soil Moisture

    Science.gov (United States)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  14. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  15. On the compositional variability of metamorphic chlorites as an effect of the micro-site chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Raffaele; Zane, Antonella [Padua, Univ. (Italy). Dipt. di Mineralogia e Petrologia

    1997-12-31

    Chlorite is a widespread mineral in all metamorphic rock sequence with the exception of the upper part of the amphibolite facies and granulite. Its stability field is well known but the petrologic meaning of its compositional variability is still poorly understood. In this paper, the chemical variability of low grade metamorphic chlorites as an effect of the micro-site chemistry has been tested by means of 2169 microprobe analyses of selected chlorite flakes. The chemistry of studied chlorites turns out to be significantly scattered, as a function of the micro-site chemistry. As a general conclusion, the possible existence in the same thin section, of chlorite flakes having different composition is a serious drawback for geothermobarometry, at least in low grade metamorphic rocks.

  16. Influence of microsite disturbance on the establishment of two congeneric invasive thistles.

    Directory of Open Access Journals (Sweden)

    Emily S J Rauschert

    Full Text Available The successful establishment of invasive species has been shown to depend on aspects of the invaded community, such as gap characteristics. Biotic resistance may be particularly critical for stopping invaders at early life history stages, but new species can often invade following disturbances, which may create microsites with very different characteristics than are usually present. We examine the response of two invasive thistle species, Carduus nutans L. and C. acanthoides L., to three different microsite characteristics: disturbance type, size, and water availability. The two species initially responded differently to the type of disturbance: C. acanthoides had higher emergence and survival in plots with both above- and belowground disturbance, whereas C. nutans had better early performance in large microsites with above-ground disturbance only. Later in their life cycle, C. nutans performed better in plots that had been disturbed both above- and belowground, whereas C. acanthoides was largely unaffected by disturbance type. Increased emergence and survival, larger size and a higher proportion flowering were observed in larger gaps for both species throughout the life cycle. Watering had a negative impact on C. nutans emergence and fall survival and on C. acanthoides survival to the following summer. Overall, these results suggest that disturbance-generated microsite characteristics (disturbance type and size may have large impacts on establishment of these two Carduus species, which in turn may persist well beyond the initial stages of growth. Studying invader responses to disturbance can help us to understand under what circumstances they are likely to establish and create persistent problems; avoiding or ameliorating such situations will have significant management benefits.

  17. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  18. Sound absorption at the soil surface

    NARCIS (Netherlands)

    Janse, A.R.P.

    1969-01-01

    The properties of a soil structure may be examined in various manners. As well as a study of the stability, a knowledge of the geometry of the volume of air filled pores is often needed. The most common measurements, like those of porosity and flow resistance to gases do not permit a detailed

  19. Predicting root zone soil moisture using surface data

    Science.gov (United States)

    Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J.; Fiorentino, M.

    2012-04-01

    In recent years, much effort has been given to monitoring of soil moisture from satellite remote sensing. These tools represent an extraordinary source of information for hydrological applications, but they only provide information on near-surface soil moisture. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method derives from a simplified form of the soil water balance equation and for this reason all parameters adopted are physically consistent. The formulation provides a closed form of the relationship between the root zone soil moisture and the surface soil moisture with a limited number of parameters, such as: the ratio between the depth of the surface layer and the deeper layer, the water loss coefficient, and the field capacity. The method has been tested using modeled soil moisture obtained from the North American Land Data Assimilation System (NLDAS). The NLDAS is a multi-institution partnership aimed at developing a retrospective data set, using available atmospheric and land surface meteorological observations to compute the land surface hydrological budget. The NLDAS database was extremely useful for the scope of the present research since it provides simulated data over an extended area with different climatic and physical condition and moreover it provides soil moisture data averaged over different depths. In particular, we used values in the top 10 cm and 100 cm layers. One year of simulation was used to test the ability of the developed method to describe soil moisture fluctuation in the 100cm layer over the entire NLDAS domain. The method was adopted by calibrating one of its three parameters and defining the remaining two based on physical characteristics of the site (using the potential evapotranspiration and ratio between the first and the second soil layer depth). In general, the method performed better than

  20. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  1. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture

    Science.gov (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.

    2015-12-01

    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  2. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Science.gov (United States)

    Sugathan, Neena; Biju, V.; Renuka, G.

    2014-06-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59'E longitude and 8°29'N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  3. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka

    2014-07-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  4. Restoring the natural state of the soil surface by biocrusts

    Science.gov (United States)

    Zaady, Eli; Ungar, Eugene D.; Stavi, Ilan; Shuker, Shimshon; Knoll, Yaakov M.

    2017-04-01

    In arid and semi-arid areas, with mean annual precipitation of 70-200 mm, the dominant component of the ground cover is biocrusts composed of cyanobacteria, moss and lichens. Biocrusts play a role in stabilizing the soil surface, which reduces erosion by water and wind. Human disturbances, such as heavy vehicular traffic, earthworks, overgrazing and land mining destroy the soil surface and promote erosion. The aim of the study was to evaluate restoration of the soil surface by the return of a biocrust layer. We examined the impact of disturbances on the creation of a stable crust and on the rate of recovery. Biocrust disturbance was studied in two sites in the northern Negev. The nine treatments included different rates of biocrust inoculum application and NPK fertilization. Recovery rates of the biocrusts were monitored for five years using chemical, physical and bio-physiological tests which determined infiltration rate, soil surface resistance to pressure, shear force of the soil surface, levels of chlorophyll, organic matter and polysaccharide, NDVI and aggregate stability. The results show that untreated disturbed biocrusts present long-term damage and a very slow rate of recovery, which may take decades, while most of the treatments showed a faster recovery. In particular, NDVI, polysaccharide levels and aggregate stability showed steady improvements over the research period.

  5. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1992-01-01

    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  6. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  7. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    Science.gov (United States)

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (Psoil organic carbon concentration (r=0.838, Psoil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  8. Creating Flash advertising from concept to tracking-microsites, video ads and more

    CERN Document Server

    Fincanon, Jason

    2007-01-01

    Create awe-inspiring, mind-blowing Flash ads and microsites that engage consumers and demonstrate their worth to clients. The Hands-On Guide to Creating Flash Advertising delivers the nuts and bolts of the development process from initial design conception to ad completion. You'll learn the best practices for:* Mastering the myriad of ad specs, deadlines, quality and version control issues* Creating ads that balance campaign goals with design constraints* Preparing and building ads with team and QC standards* Using forms and data in ads without file bloat* File optimization techniques for swf

  9. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    Science.gov (United States)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume

  10. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    Science.gov (United States)

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  11. Denitrification 'hot spots' in soil following surface residue application

    Science.gov (United States)

    Kuntz, Marianne; Morley, Nicholas J.; Hallett, Paul D.; Watson, Christine; Baggs, Elizabeth M.

    2015-04-01

    The availability of organic C is an important driver for the production and reduction of the greenhouse gas nitrous oxide (N2O) during denitrification. Denitrification as a response to plant residue amendments to soil surfaces has been extensively researched. However, the nature of hotspot sites of N2O production and reduction within the soil profile, especially in relation to the location of applied residues, is unknown. In a laboratory experiment we investigated the relationship between denitrifier N2O surface fluxes and N2O production and reduction sites. Probes which equilibrate with the soil gas phase by diffusion were developed to quantify denitrification products and product ratios at 1-2 cm, 4.5-5.5 cm or 8-9 cm from the surface. 13C labelled barley straw was incorporated at rates of 0, 2 and 4 t ha-1 into the top 3 cm of soil and subsequently amended with 14NH415NO3. In a three week experiment the soil gas phase at the three depths was analysed for 15N-N2O, 15N-N2, 13C-CO2 and O2 concentrations. Additionally, cores were destructively sampled for mineral 15N as well as microbial C and dissolved C in the respective depths. 15N-N2O and CO2 surface fluxes peaked one day after N application, with residue application resulting in significantly higher 15N-N2O emission rates compared to the non-amended control. The timing of the 15N-N2O surface flux on day 1 was related to maximum 15N-N2O concentrations of 36.6 μg 15N L-1 within the pore space at 5 cm depth. Three days after fertilizer application 15N-N2O pore space concentrations had significantly increased to 193 μg 15N L-1 at 9 cm depth indicating denitrifier activity at greater depth. Denitrification below the soil surface could be explained by increased microbial activity, oxygen depletion with increasing depth and progressive downwards diffusion of fertilizer NO3-. However, C availability appeared to only affect denitrification in the surface layer in which the residue was incorporated. Our results provide

  12. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  13. Enhancement of chromate reduction in soils by surface modified biochar.

    Science.gov (United States)

    Mandal, Sanchita; Sarkar, Binoy; Bolan, Nanthi; Ok, Yong Sik; Naidu, Ravi

    2017-01-15

    Chromium (Cr) is one of the common metals present in the soils and may have an extremely deleterious environmental impact depending on its redox state. Among two common forms, trivalent Cr(III) is less toxic than hexavalent Cr(VI) in soils. Carbon (C) based materials including biochar could be used to alleviate Cr toxicity through converting Cr(VI) to Cr(III). Incubation experiments were conducted to examine Cr(VI) reduction in different soils (Soil 1: pH 7.5 and Soil 2: pH 5.5) with three manures from poultry (PM), cow (CM) and sheep (SM), three respective manure-derived biochars (PM biochar (PM-BC), CM biochar (CM-BC) and SM biochar (SM-BC)) and two modified biochars (modified PM-BC (PM-BC-M) and modified SM-BC (SM-BC-M)). Modified biochar was synthesized by incorporating chitosan and zerovalent iron (ZVI) during pyrolysis. Among biochars, highest Cr(VI) reduction was observed with PM-BC application (5%; w/w) (up to 88.12 mg kg(-1); 45% reduction) in Soil 2 (pH 5.5). The modified biochars enhanced Cr(VI) reduction by 55% (SM-BC-M) compared to manure (29%, SM) and manure-derived biochars (40% reduction, SM-BC). Among the modified biochars, SM-BC-M showed a higher Cr(VI) reduction rate (55%) than PM-BC-M (48%) in Soil 2. Various oxygen-containing surface functional groups such as phenolic, carboxyl, carbonyl, etc. on biochar surface might act as a proton donor for Cr(VI) reduction and subsequent Cr(III) adsorption. This study underpins the immense potential of modified biochar in remediation of Cr(VI) contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Soil surface sealing reverse or promote desertification?

    Science.gov (United States)

    Assouline, Shmuel; Thompson, Sally; Chen, Li; Svoray, Tal; Sela, Shai; Katul, Gabriel

    2016-04-01

    Vegetation cover in dry regions is a key variable determining desertification. Bare soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here, it is shown how physical crusts can act as either drivers of, or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research (LTER) site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  15. Vanadium Trineodecanoate Promoter for Fiberglass-Polyester Soil Surfacings.

    Science.gov (United States)

    1980-06-01

    surfaces for soils consists of a polyester resin, cumene hydroperoxide catalyst and a promoter solution containing a vanadium salt and N,N-dimethyl-p-tolui...4 Synthesis of Vanadium Trineodecanoate .. .... ......... 4 Reactions Using Various Reagents. ..... ........... 4 Analysis of Vanadium...polymer system consists of a polyester resin, a peroxide cata- lyst ( cumene hydroperoxide) and a two-part, premixed, promoter solution. The promoter

  16. Photodegradation of pesticides on plant and soil surfaces.

    Science.gov (United States)

    Katagi, Toshiyuki

    2004-01-01

    importance of an emission spectrum of the light source near its surface was clarified. Most photochemical information comes from photolysis in organic solvents or on glass surfaces and/or plant metabolism studies. Epicuticular waxes may be approximated by long-chain hydrocarbons as a very viscous liquid or solid, but the existing form of pesticide molecules in waxes is still obscure. Either coexistence of formulation agents or steric constraint in the rigid medium would cause a change of molecular excitation, deactivation, and photodegradation mechanisms, which should be further investigated to understand the dissipation profiles of a pesticide in or on crops in the field. A thin-layer system with a coat of epicuticular waxes extracted from leaves or isolated cuticles has been utilized as a model, but its application has been very limited. There appear to be gaps in our knowledge about the surface chemistry and photochemistry of pesticides in both rigid media and plant metabolism. Photodegradation studies, for example, by using these models to eliminate contribution from metabolic conversion as much as possible, should be extensively conducted in conjunction with wax chemistry, with the controlling factors being clarified. As with soil surfaces, the effects of atmospheric oxidants should also be investigated. Based on this knowledge, new methods of kinetic analysis or a device simulating the fate of pesticides on these surfaces could be more rationally developed. Concerning soil photolysis, detailed mechanistic analysis of the mobility and fate of pesticides together with volatilization from soil surfaces has been initiated and its spatial distribution with time has been simulated with reasonable precision on a laboratory scale. Although mechanistic analyses have been conducted on penetration of pesticides through cuticular waxes, its combination with photodegradation to simulate the real environment is awaiting further investigation.

  17. Degradation and Sorption of Imidacloprid in Dissimilar Surface and Subsurface Soils

    Science.gov (United States)

    Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. Once pesticides move past the surface soil layers, subsurface soil physical, chemical, and biological properties significantly affect pesticide fate and the potential for groundwater contam...

  18. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  19. Computer Implementation of the Bounding Surface Plasticity Model for Cohesive Soils.

    Science.gov (United States)

    1983-12-01

    23 REFERENCES 1. Dafalias, Y.F., and L.R. Herrmann, "A Bounding Surface Soil Plasticity Model", Proceedings of the International Symposium of Soils...Herrmann, "Bounding Surface Formulatin of Soil Plasticity ", Chapter in Soil Mechanics - Transient and Cyclic Loads, John Wiley and Sons, Eds. O.C...Herrmann and Y.F. r)afalias, "User’s Manual for MODCAL-Bounding Surface Soil Plasticity Model Calibration and Prediction Code (Volume I)," Civil

  20. NH 3 soil and soil surface gas measurements in a triticale wheat field

    Science.gov (United States)

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  1. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.

    Science.gov (United States)

    Lohwacharin, J; Takizawa, S; Punyapalakul, P

    2015-10-01

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns.

  2. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl;

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...... is based on a SICK LMS111 laser range scanner....

  3. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  4. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Gylling Mortensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U.S. [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  5. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State

    Science.gov (United States)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.

    2015-12-01

    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  6. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  7. Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-01-01

    Full Text Available With the fast growth in the number and size of installed wind farms (WFs around the world, optimal wind turbines (WTs micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.

  8. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-04-01

    Full Text Available Currently, no extensive global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This note describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  9. Biogeomorphic and pedogenic impact of trees in three soil regions

    Science.gov (United States)

    Pawlik, Łukasz; Šamonil, Pavel

    2017-04-01

    Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary

  10. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  11. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar.

    Science.gov (United States)

    Verhoest, Niko E C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M Susan; Mattia, Francesco

    2008-07-15

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  12. Describing soil surface microrelief by crossover length and fractal dimension

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2007-05-01

    Full Text Available Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models

  13. Assimilation of neural network soil moisture in land surface models

    Science.gov (United States)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias

    2017-04-01

    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests

  14. A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; ZHANG Weidong; QIU Chongjian

    2007-01-01

    A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.

  15. Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties

    Science.gov (United States)

    Thomas, A. D.; Dougill, A. J.

    2007-03-01

    Localised patterns of erosion and deposition in vegetated semi-arid rangelands have been shown to influence ecological change and biogeochemical cycles. In the flat, vegetated Kalahari rangelands of Southern Africa the factors regulating erodibility of the fine sand soils and the erosivity of wind regimes require further investigation. This paper reports on the spatial and temporal patterns of cyanobacterial soil crust cover from ten sites at five sampling locations in the semi-arid Kalahari and discusses the likely impact on factors regulating surface erodibility and erosivity. Cyanobacterial soil crust cover on Kalahari Sand varied between 11% and 95% of the ground surface and was higher than previously reported. Cover was inversely related to grazing with the lowest crust cover found close to boreholes and the highest in the Game Reserve and Wildlife Management Zone. In grazed areas, crusts form under the protective canopies of the thorny shrub Acacia mellifera. Fenced plot data showed that crusts recover quickly from disturbance, with a near complete surface crust cover forming within 15 months of disturbance. Crust development is restricted by burial by wind blown sediment and by raindrop impact. Crusts had significantly greater organic matter and total nitrogen compared to unconsolidated surfaces. Crusts also significantly increased the compressive strength of the surface (and thus decreased erodibility) and changed the surface roughness. Establishing exactly how these changes affect aeolian erosion requires further process-based studies. The proportion of shear velocity acting on the surface in this complex mixed bush-grass-crust environment will be the key to understanding how crusts affect erodibility.

  16. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  17. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li

    2013-01-01

    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  18. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  19. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  20. On the use of surface neutron-gamma gauges to estimate soil water content

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, T.T.; Cassaro, F.A.M.; Reichardt, K. E-mail: klaus@cena.usp.br; Bacchi, O.O.S.; Oliveira, J.C.M.; Timm, L.C

    2002-09-01

    Surface neutron-gamma gauges are handy instruments to measure soil water contents and bulk densities of surface layers. Although available for some decades, their optimal use is still not well established. This study is a contribution to improve their use, mainly in relation to calibration, and of the effect of soil dry bulk density on soil water content measurements.

  1. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    Science.gov (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  2. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  3. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2010-08-01

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  4. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  5. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2013-01-01

    and Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN......The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (model were...

  6. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  7. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  8. Docere, delectare et movere. Teacher vision and student prism in the design and implementation of microsites with musical artistic contents

    Directory of Open Access Journals (Sweden)

    Felipe Gértrudix-Barrio

    2017-01-01

    Full Text Available In studies of Degree in Early Childhood Education, arts education they have great importance for the competence development of students. So, for its globalization and inclusive it becomes the main axis for the construction of knowledge from other areas. On its behalf, ICT is an essential tool that amplifies the creative essence that provides arts education (Gértrudix & Gértrudix, 2011. In this context, it presents an experience made during the first quarter of 2015-2016 course with students from Degree in Early Childhood Education of Faculty of Education of Toledo (UCLM. We have sought to analyze these Microsites making by students as evidence of learning and to know their teaching skills through classroom implementation of these microsites as proof of their functionality didactic. From a mixed methodology research, it has use the following tools as analysis: a a documentary analysis of the content and structure of the Microsites created by students b a SWOT analysis of the educational intervention carried out by students in the childhood classroom and c a questionnaire to determine the type of ICT tools used in the creation of digital music contents. From the results obtained a clear positive trend among students to the artistic elements emerges, and specially musicals. Thanks to its constant participation and involvement in the whole process of developing the content, students have achieved a remarkable level of competence in instrumental, interpersonal and systemic skills.

  9. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction.

    Science.gov (United States)

    Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N

    2007-07-01

    The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diametersKd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in

  10. Wind farm micro-siting optimization using novel cell membrane approach

    Science.gov (United States)

    Huang, W.; Che, W. X.; Tan, R. S.; Li, M. X.; Liu, Q.

    2016-08-01

    Micro-siting aims to determine every wind turbine's position to reduce velocity deficits caused by the wake effect. The Novel CMO (cell membrane optimization) approach is proposed to overcome this weakness. It plays a vital role to utilize more wind resources while the type of wind turbine and the area to build a wind farm have been determined. The work is based on the Jensen wake model, and the hypothetical situations are the same as those used by the former researchers. There are three wind cases: constant speed with one direction, constant speed with variable directions and variable speeds with variable directions. The area of wind farm is assumed to be a plane 2km×2km square. The numbers of the wind turbines is 26, 19 and 15 in three cases respectively. Compared with Gene Algorithm introduced by G. Mosetti, CMO's results are acceptable and the velocity deficit is smaller, which results from that CMO's variables is continuous and can make the most of the area the wind turbines can be placed. Moreover, it performs well to avoid the local optimal solutions by dividing the searching particles into different types which move according to different rules.

  11. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  12. Soil surface morphology evolution under spatiallynon-uniform rainfall

    Science.gov (United States)

    Cheraghi, M.; Rinaldo, A.; Sander, G. C.; Barry, D. A.

    2016-12-01

    We evaluated the applicability of a large-scale river network evolution modelused to simulate morphological changes of a laboratory-scale landscape onwhich there were no visible rills. Previously, such models were used onlyat the landscape scale, or in laboratory experiments where rills form in thesoils surface. The flume-scale experiment (1-m × 2-m surface area) was de-signed to allow model calibration. Low-cohesive fine sand was placed in theflume while the slope and relief height were 5% and 25 cm, respectively.Non-uniform rainfall with an average intensity of 85 mmh -1 and a stan-dard deviation of 26% was applied to the sediment surface for 16 h. Highresolution Digital Elevation Models were captured at intervals during theexperiment. Estimates of the overland flow drainage network were derivedand, using these, the river network evolution model was numerically solvedand calibrated. A noticeable feature of the experiment was a steep transitionzone in soil elevation that migrated upstream during the experiment. Physi-cally, this zone indicates where the shear stress is sufficient to cause sediment1erosion. The model was calibrated during the first 4 h of experiment. Af-terwards, it predicted the subsequent 12 h of measured surface morphologychanges. Therefore, the applicability of the landscape evolution model wasextended for non-uniform rainfall and in absence of visible rills.Keywords:Numerical simulation, Particle Swarm Optimization, Sediment transport,River network evolution model.

  13. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  14. Intra-rainfall soil surface change detection using close-range photogrammetry

    Science.gov (United States)

    Bauer, Thomas; James, Michael R.; McShane, Gareth; Quinton, John N.; Strauss, Peter

    2015-04-01

    During precipitation events, the physical properties of soil surfaces change significantly. Such changes influence a large range of processes, e.g. surface runoff, soil erosion, water infiltration, soil-atmosphere interactions and plant growth. It has been proven that successive precipitation events change soil surfaces, but detailed studies on soil surface change within a single rainfall event do, to the best of our knowledge, not exist, due to a lack of suitable methods. However, recent developments in the use of photogrammetry are becoming a common tool in geoscience and can be utilized in soil surface detection. New concepts, developments in hardware and software allow a quick and user friendly calculation of surface models with close-range imagery and processing based on structure from motion (SfM) approaches. In this study we tested the potential of close range photogrammetry for detecting changes in soil surface topography within an artificial rainfall event. We used a photogrammetric approach to capture multiple images of the soil surface on two different soil types (loamy and sandy soil) under laboratory conditions while they were exposed to a 60 minute duration 47(60) mm hr-1 intensity rainfall event from a gravity driven rainfall simulator. The photographs were processed using Photoscan to produce point clouds which were then interpolated to produce DEM surfaces. Of the 126 surfaces produced during the rainfall event 125 were usable and able to demonstrate changes with a resolution of photogrammetry for surface detection within a precipitation event. The use of close-range photogrammetry opens new possibilities to monitor soil surfaces and could be developed for a range of other applications. Our results have the potential to lead to better understanding of infiltration, runoff, nutrient transport and soil erosion processes within precipitation event.

  15. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from Synthetic Aperture Radar 1959

    Science.gov (United States)

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unles...

  16. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2017-01-01

    Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which

  17. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  18. Characterization Investigation Study: Volume 3, Radiological survey of surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Solow, A.J.; Phoenix, D.R.

    1987-12-01

    The Feed Materials Production Center was constructed to produce high purity uranium metal for use at various Department of Energy facilities. The waste products from these operations include general uncontaminated scrap and refuse, contaminated and uncontaminated metal scrap, waste oils, low-level radioactive waste, co-contaminated wastes, mixed waste, toxic waste, sludges from water treatment, and fly ash from the steam plant. This material is estimated to total more than 350,000 cubic meters. Other wastes stored in this area include laboratory chemicals and other combustible materials in the burn pit; fine waste stream sediments in the clear well; fly ash and waste oils in the two fly ash areas; lime-alum sludges and boiler plant blowdown in the lime sludge ponds; and nonradioactive sanitary waste, construction rubble, and asbestos in the sanitary landfill. A systematic survey of the surface soils throughout the Waste Storage Area, associated on-site drainages, and the fly ash piles was conducted using a Field Instrument for Detecting Low-Energy Radiation (FIDLER). Uranium is the most prevalent radioactive element in surface soil; U-238 is the principal radionuclide, ranging from 2.2 to 1790 pCi/g in the general Waste Storage Area. The maximum values for the next highest activity concentrations in the same area were 972 pCi/g for Th-230 and 298 pCi/g for U-234. Elevated activity concentrations of Th-230 were found along the K-65 slurry line, the maximum at 3010 pCi/g. U-238 had the highest value of 761 pCi/g in the drainage just south of pit no. 5. The upper fly ash area had the highest radionuclide activity concentrations in the surface soils with the maximum values for U-238 at 8600 pCi/g, U-235 at 2190 pCi/g, U-234 at 11,400 pCi/g, Tc-99 at 594 pCi/g, Ra-226 at 279 pCi/g, and Th-230 at 164 pCi/g.

  19. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland.

    Science.gov (United States)

    Eldridge, David J; Woodhouse, Jason N; Curlevski, Nathalie J A; Hayward, Matthew; Brown, Mark V; Neilan, Brett A

    2015-12-01

    Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance.

  20. Finite Element Analysis for Cohesive Soil, Stress and Consolidation Problems Using Bounding Surface Plasticity Theory.

    Science.gov (United States)

    1983-12-01

    Formulation of Soil Plasticity ," Chapter in Soils under Cyclic and Transient Loading, 3. Wiley and Sons, 0. C. Zienkiewiez and G. N. Pande, eds., 1982. 2...and . S. DeNatale, "Numerical ’-’. Implementation of a Bounding Surface Soil Plasticity Model," Proc. of theInt. Symp. on Num. Models in Geomech. , V2

  1. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Science.gov (United States)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  2. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts

    NARCIS (Netherlands)

    Jong, S.M. de; Addink, E.A.; Duijsing, D.; Beek, L.P.H. van

    2011-01-01

    Soil surface crusting and sealing are frequent but unfavorable processes in Mediterranean areas. Soil crust and seals form on bare soil subject to high-intensity rainfall, resulting in a hard, impenetrable layer that impedes infiltration and hampers the germination and establishment of plants. The a

  3. Calibration and validation of the COSMOS rover for surface soil moisture

    Science.gov (United States)

    The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...

  4. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  5. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  6. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  7. The use of physicochemical methods to detect organic food soils on stainless steel surfaces.

    Science.gov (United States)

    Whitehead, K A; Benson, P; Smith, L A; Verran, J

    2009-11-01

    Food processing surfaces fouled with organic material pose problems ranging from aesthetic appearance, equipment malfunction and product contamination. Despite the importance of organic soiling for subsequent product quality, little is known about the interaction between surfaces and organic soil components. A range of complex and defined food soils was applied to 304 stainless steel (SS) surfaces to determine the effect of type and concentration of soil on surface physicochemical parameters, viz surface hydrophobicity (DeltaG(iwi)), surface free energy (gamma(s)), Lifshitz van der Waals (gamma_LW(s)), Lewis acid base (gamma_AB(s)), electron acceptor (gamma_+(s) ) and electron donor (gamma_-(s) ) measurements. When compared to the control surface, changes in gamma_AB(s), gamma_+(s) and gamma_-(s) were indicative of surface soiling. However, soil composition and surface coverage were heterogeneous, resulting in complex data being generated from which trends could not be discerned. These results demonstrate that the retention of food soil produces changes in the physicochemical parameters of the surface that could be used to indicate the hygienic status of a surface.

  8. Role of soil health in maintaining environmental sustainability of surface coal mining.

    Science.gov (United States)

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian

    2011-12-01

    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  9. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...... the adverse impacts of urbanization on microclimate, soil processes and human health....

  10. High-resolution hydraulic parameter maps for surface soils in tropical South America

    Science.gov (United States)

    Marthews, T. R.; Quesada, C. A.; Galbraith, D. R.; Malhi, Y.; Mullins, C. E.; Hodnett, M. G.; Dharssi, I.

    2014-05-01

    Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded data sets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten-Mualem and van Genuchten-Burdine soil hydraulic models, which are widely used hydraulic sub-models in land surface models. This has been possible through interpolating soil measurements from several sources through the SOTERLAC soil and terrain data base and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20x higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally parameterised and that are not just based on soil texture. We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models.

  11. Development of a surface scanning soil analysis instrument.

    Science.gov (United States)

    Falahat, S; Köble, T; Schumann, O; Waring, C; Watt, G

    2012-07-01

    ANSTO is developing a nuclear field instrument for measurement of soil composition; particularly carbon. The instrument utilises the neutron activation approach with clear advantages over existing soil sampling and laboratory analysis. A field portable compact pulsed neutron generator and γ-ray detector are used for PGNAA and INS techniques simultaneously. Many elements can be quantified from a homogenised soil volume equivalent to the top soil layers. Results from first test experiments and current developments are reported.

  12. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Button, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen

    2015-06-14

    The goals of the project were: Determine applicability of transmission line method (TLM) to evaluate sheet resistance of soils on module glass;
    Evaluate various soils on glass for changes in surface resistance and their ability to promote potential-induced degradation with humidity (PID);
    Evaluate PID characteristics, rate, and leakage current increases on full-size mc-Si modules associated with a conductive soil on the surface.

  13. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  14. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems

    Science.gov (United States)

    Croft, H.; Anderson, K.

    2012-04-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM

  15. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    Indian Academy of Sciences (India)

    Ya-Feng Zhang; Xin-Ping Wang; Yan-Xia PAN; Rui Hu; Hao Zhang

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of ‘cool islands’ in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  16. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux * is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  17. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  18. Parasitic contamination of surface and deep soil in different areas of Sari in north of Iran

    Directory of Open Access Journals (Sweden)

    Hajar Ziaei Hezarjaribi

    2016-10-01

    Full Text Available Objective: To study the parasitic contamination of soil in selected areas of Sari, north of Iran. Methods: A cross-sectional study was conducted to identify all available parasites in surface and deep soil. In this study 580 soil samples (278 deep soil and 302 topsoil samples from 21 different locations were collected from pathways, parks, greenhouses, estates around the city, cemetery, main squares, farmlands, fenced gardens and seashores. Depending on the soil type, two samples were prepared, from surface and deep soil at the depth of 3 to 5 cm. After performing various stages of preparation, including cleaning and washing, smoothing and flotation, parasitic elements were examined microscopically and quantitative parasite counting was done using a McMaster slide. Results: The results showed that the highest rate of parasitic contamination was related to nematodes larvae (26.11%. Other contaminants such as Entamoeba and Acanthamoeba cysts, vacuolization Blastocystis hominis form, oocyte containing sporocysts, Toxascaris eggs, nematoda larvae, Hymenolepis eggs, Ascaris eggs, Fasciola eggs, hookworm eggs, Toxocara eggs, insects' larvae and other ciliated and flagellated organisms were also observed. The results of this study showed that the highest contamination was found in public garden (25.80% both in surface (29.30% and in deep soil (21.12%, while the lowest level of contamination was observed in seashore surface soil (4.90%. Conclusions: The results showed that soil can provide a potential medium for the spread of soil transmitted parasitic diseases in the environment; therefore, preventive programs are needed.

  19. Temporal Dynamics of Soil Moisture Variability at the Landscape Scale: Implications for Land Surface Models.

    Science.gov (United States)

    Montaldo, N.; Albertson, J. D.

    2001-12-01

    Meteorological and hydrological forecasting models share soil moisture as a critical boundary condition. Partitioning of received energy at the land surface depends directly on this variable, as does the partitioning of rainfall into its possible routes over and through the soil. In Land Surface Models (LSMs) the temporal dynamic of soil moisture spatial variability is a fundamental issue in large-scale flux predictions. From remote sensing observations soil moisture values are averaged in the horizontal over rather large regions (pixels). The averaging areas will be getting even larger as we move from aircraft mounted sensors to satellite mounting. These data are to be used ultimately to estimate spatial averages of other processes that depend on soil moisture, such as, runoff generation, drainage, evaporation, sensible heat fluxes, crop yield, microbial activity, etc. Consequently, the LSMs have to predict spatial averaged flux over large region from average values of the soil moisture. But soil moisture variances affect flux predictions, which depend nonlinearly on soil moisture, because many of the other processes possess distinct threshold aspects to their nonlinear dependence on soil moisture. Through application of well-developed Reynolds averaging rules from fluid mechanics to the equation of Richards and Darcy-Buckingham, we write a conservation equation for the horizontal variance of soil moisture. And, through closure arguments, we are able to describe the individual terms that produce and destroy spatial variance through time in terms of the mean soil moisture state and other observable system properties such as vegetation and soil properties variability. Finally, we calculate land surface fluxes from second order Taylor expansion, using our soil moisture variance closure model, and the other observable system properties. In this work, we demonstrate significant improvements in land surface large-scale flux predictions using the proposed soil moisture

  20. Temporal Dynamics of Soil Moisture Variability: Implications For Land Surface Models

    Science.gov (United States)

    Montaldo, N.; Albertson, J. D.

    Meteorological and hydrological forecasting models share soil moisture as a critical boundary condition. Partitioning of received energy at the land surface depends di- rectly on this variable, as does the partitioning of rainfall into its possible routes over and through the soil. In Land Surface Models (LSMs) the temporal dynamic of soil moisture spatial variability is a fundamental issue in large-scale flux predictions. From remote sensing observations soil moisture values are averaged in the horizontal over rather large regions (pixels). The averaging areas will be getting even larger as we move from aircraft mounted sensors to satellite mounting. These data are to be used ultimately to estimate spatial averages of other processes that depend on soil moisture, such as, runoff generation, drainage, evaporation, sensible heat fluxes, crop yield, mi- crobial activity, etc. Consequently, the LSMs have to predict spatial averaged flux over large region from average values of the soil moisture. But soil moisture variances af- fect flux predictions, which depend nonlinearly on soil moisture, because many of the other processes possess distinct threshold aspects to their nonlinear dependence on soil moisture. Through application of well-developed Reynolds averaging rules from fluid mechanics to the equation of Richards and Darcy-Buckingham, we write a con- servation equation for the horizontal variance of soil moisture. And, through closure arguments, we are able to describe the individual terms that produce and destroy spa- tial variance through time in terms of the mean soil moisture state and other observable system properties such as vegetation and soil properties variability. Finally, we calcu- late land surface fluxes from second order Taylor expansion, using our soil moisture variance closure model, and the other observable system properties. In this work, we demonstrate significant improvements in land surface large-scale flux predictions us- ing the proposed

  1. Leaching and Redistribution of Nutrients in Surface Layer of Red Soils in Southeast China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in Southeast China were studied with a lysimeter experiment under field conditions. Results showed that the leaching concentrated in the rainy season (from April to June). Generally, the leaching of soil nutrients from the surface layer of red soils was in the order of Ca > Mg > K > NO3-N. In fertilization treatment, the total amount of soil nutrients leached out of the surface layer in a red soil derived from granite was the highest in all soils. The uptake by grass decreased the leaching of fertilizer ions in surface layer, particularly for NO3-N. Soil total N and exchangeable K, Ca and Mg in the surface layer decreased with leaching and grass uptake during the 2 years without new fertilization of urea, Ca(H2PO4)2, KCl, CaCO3 and MgCO3. Ca moved from the application layer (0~5 cm) of fertilizer and accumulated in the 10~30 cm depth in the soils studied except that derived from Quaternary red clay. The deficiency of soil exchangeable K will become a serious degradation process facing the Southeast China.

  2. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  3. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  4. Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    2013-01-01

    Full Text Available Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus and soil colloids from dark brown forest soil (a good loam and saline-alkali soil (heavily degraded soil, we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P>0.05. These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc. by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P<0.05. These different responses sharply decreased element ratios (C : O, C : N, and C : Si in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  5. Ectomycorrhizal influence on particle size, surface structure, mineral crystallinity, functional groups, and elemental composition of soil colloids from different soil origins.

    Science.gov (United States)

    Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

    2013-01-01

    Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P > 0.05). These increased the amount of variable functional groups (O-H stretching and bending, C-H stretching, C=O stretching, etc.) by 3-26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40-300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12-35% decreases in most functional groups, 15-55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  6. Effective Saturated Hydraulic Conductivity for Representing Field-Scale Infiltration and Surface Soil Moisture in Heterogeneous Unsaturated Soils Subjected to Rainfall Events

    Directory of Open Access Journals (Sweden)

    Richa Ojha

    2017-02-01

    Full Text Available Spatial heterogeneity in soil properties has been a challenge for providing field-scale estimates of infiltration rates and surface soil moisture content over natural fields. In this study, we develop analytical expressions for effective saturated hydraulic conductivity for use with the Green-Ampt model to describe field-scale infiltration rates and evolution of surface soil moisture over unsaturated fields subjected to a rainfall event. The heterogeneity in soil properties is described by a log-normal distribution for surface saturated hydraulic conductivity. Comparisons between field-scale numerical and analytical simulation results for water movement in heterogeneous unsaturated soils show that the proposed expressions reproduce the evolution of surface soil moisture and infiltration rate with time. The analytical expressions hold promise for describing mean field infiltration rates and surface soil moisture evolution at field-scale over sandy loam and loamy sand soils.

  7. On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling

    Science.gov (United States)

    Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.

    2016-12-01

    Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product

  8. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  9. Cone model for two surface foundations on layered soil

    Institute of Scientific and Technical Information of China (English)

    Chen Wenhua

    2006-01-01

    In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis,while the cone model is proposed for analyzing the dynamic scattering stress wave field.The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.

  10. Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps.

    Science.gov (United States)

    Vacchiano, Giorgio; Stanchi, Silvia; Marinari, Giulia; Ascoli, Davide; Zanini, Ermanno; Motta, Renzo

    2014-02-15

    Regeneration of non fire-adapted conifers following crown fires on the European Alps is often delayed or unsuccessful. Fire may limit establishment by eliminating seed trees, altering soil properties, or modifying microsite and soil conditions via disturbance legacies. However, the effect of soil legacies on post-fire establishment has rarely been discussed. We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. Our aims were (1) to model fire intensity at the soil surface and topsoil heating along a gradient of increasing fire severities; (2) to assess the differences in soil properties along the fire severity gradient; (3) to model the effect of disturbance and soil legacies on the density of pine seedlings. We reconstructed fire behavior and soil heating with the First Order Fire Effects Model (FOFEM), tested the effect of fire severity on soils by nonparametric distributional tests, and modeled seedling density as a function of site, disturbance and soil legacies by fitting a GLM following a variable selection procedure. Topsoil heating differed markedly between the moderate and high severity fires, reaching temperatures high enough to strongly and permanently alter soil properties only in the latter. High fire severity resulted in decreased soil consistency and wet aggregate stability. Burned soils had lower organic matter and cations than those unburned. Pine seedlings favored low-fertility, eroded, and chemically poor sites. Establishment was facilitated by the presence of coarse woody debris, but hampered by increasing distance from the seed source. These results suggest that in dry, inner-alpine valleys, fire residuals and soil legacies interact in determining the success of Scots pine re-establishment. High severity fire can promote favorable soil conditions, but distance from the seed source and high evaporation rates of bare soils must be mitigated in order to ensure a successful restoration.

  11. Soil particle tracing using RFID tags for elucidating the behavior of radiocesium on bare soil surfaces in Fukushima

    Science.gov (United States)

    Manome, Ryo; Onda, Yuichi; Patin, Jeremy; Stefani, Chiara; Yoshimura, Kazuya; Parsons, Tony; Cooper, James

    2014-05-01

    Radioactive materials are generally associated with soil particles in terrestrial environment and therefore the better understanding soil erosion processes is expected to improve the mitigation of radioactive risks. Spatial variability in soil erosion has been one of critical issues for soil erosion management. This study attempts to track soil particle movement on soil surfaces by employing Radio Frequency Identification (RFID) tags for the better understanding radiocesium behavior. A RFID tag contains a specific electronically identifier and it permits tracing its movement by reading the identifier. In this study, we made artificial soil particles by coating the RFID tags with cement material. The particle diameters of the artificial soil particles approximately ranged from 3 to 5 mm. The artificial soil particles were distributed in a reticular pattern on a soil erosion plot (bare soil surface, 22.13 m length × 5 m width, 4.4° slope) in Kawamata town where radiocesium deposited because of the Fukushima Dai-ichi power plant accident. After their distribution on October 2012, we had read the identifiers of RFID tags and recorded their locations on the plot for 14 times by September 2013. Moving distance (MD) was calculated based on the difference of the location for each sampling date. The topographical changes on the plot were also monitored with a laser scanner to describe interrill erosion and rill erosion area on 11occasions. Median MD is 10.8cm for all the observations. Median MD on interrill and rill erosion areas were 9.8 cm and 20.7 cm, respectively. Seasonal variation in MD was observed; an extremely large MD was found in May 2013, at the first reading after the winter season. This large MD after winter suggests that snowmelt runoff was the dominant process which transported the soil particles. Comparing the MD with the observed amounts of rainfall, sediment and runoff on the plot, significant positive correlation were found if the data of May, 2013

  12. Homogenization of the soil surface following fire in semiarid grasslands

    Science.gov (United States)

    Carleton S. White

    2011-01-01

    Semiarid grasslands accumulate soil beneath plant "islands" that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting...

  13. Enhancing agricultural forecasting using SMOS surface soil moisture retrievals

    Science.gov (United States)

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  14. Spectral reflectance of surface soils - A statistical analysis

    Science.gov (United States)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  15. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  16. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  17. Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-01-06

    Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

  18. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  19. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    Science.gov (United States)

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (Psoils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.

  20. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    Science.gov (United States)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  1. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  2. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides.

  3. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model

    Science.gov (United States)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2012-12-01

    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil

  4. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Directory of Open Access Journals (Sweden)

    M. Zribi

    2011-01-01

    Full Text Available The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness, during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed.

  5. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  6. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  7. Sorption of a triazol derivative by soils: importance of surface acidity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H2O2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H2O2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.

  8. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    Science.gov (United States)

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  9. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    Science.gov (United States)

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  10. Cropping sequence and nitrogen fertilization impact on surface residue, soil carbon sequestration, and crop yields

    Science.gov (United States)

    Information is needed on the effect of management practices on soil C storage for obtaining C credit. The effects of tillage, cropping sequence, and N fertilization were evaluated on dryland crop and surface residue C and soil organic C (SOC) at the 0-120 cm depth in a Williams loam from 2006 to 201...

  11. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  12. Effect of Vegetation Patterns on SAR derived Surface Soil Moisture Distribution

    Science.gov (United States)

    Koyama, C. N.; Schneider, K.

    2012-12-01

    Soil moisture can be regarded as one of the important life sustaining entities on our planet. Among its various functions, the first is probably to enable the growth of vegetation on the land surface. Apart from this, water stored in soils plays many other important roles in the global water (and energy) cycle. In the past decades, radar imaging has proven its potential to quantitatively estimate the near surface water content of soils at high spatial resolutions. The use of active microwave data to measure surface soil moisture requires the consideration of several factors like e.g. soil texture, surface roughness, and vegetation. Among these factors, the presence of a vegetation cover is perhaps the major impediment to accurate quantitative retrievals of soil moisture. On the one hand, the vegetation has a disturbing effect on the radar reflectivity and thus causes errors in the soil moisture retrieval which is generally based on theoretical or experimental relationships between the dielectric properties of the soil surface and the radar backscattering coefficient. On the other hand, the spatial distribution of vegetation with e.g. different crop types with different transpiration coefficients and different phenological development, etc, can cause large variations in the plant water consumption and thus has a significant impact on the soil moisture patterns. We have developed methods to estimate the amount of biomass for different crop types and the underlying surface soil water content directly from polarimetric L-band SAR images. While the horizontally-transmit horizontally-receive co-polarization (hh) is most sensitive towards the dielectric soil properties, the horizontally-transmit vertically-receive cross-polarization (hv) is much more sensitive towards the backscattering from the vegetation canopy. In addition the polarimetric observables entropy (H), alpha angle (α), and the total reflected power (span), all of which are highly affected by the canopy

  13. New methods to quantify NH3 volatilization from fertilized surface soil with urea

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves

    2011-02-01

    Full Text Available Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1 Polyurethane foam (density 20 kg m-3 with phosphoric acid solution absorber (foam absorber, installed 1, 5, 10 and 20 cm above the soil surface; (2 Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface; (3 Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface; (4 Semi-open static collector; (5 15N balance (control. The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

  14. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    Science.gov (United States)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has

  15. Uncertainties of seasonal surface climate predictions induced by soil moisture biases in the La Plata Basin

    Science.gov (United States)

    Sorensson, Anna; Berbery, E. Hugo

    2015-04-01

    This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata Basin in South America. WRF/Noah model simulations covering multiple cases during a two-year period are designed to emphasize the conceptual nature of the simulations at the expense of statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for Savanna, Grassland and Cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with Evergreen Broadleaf Forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees during the dry season in cases when: (a) the soil is much wetter in the reanalysis than in the WRF/Noah equilibrium soil moisture, and (b) the memory of the initial value is long due to scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

  16. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  17. Analysis of surface soil moisture patterns in agricultural landscapes using empirical orthogonal functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2009-08-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable land test site within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm has been measured in an approx. 50×50 m grid at 14 and 17 dates (May 2007 to November 2008 in both test sites. To analyse spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to connect the pattern to related factors and processes. For the grassland test site, the analysis results in one significant spatial structure (first EOF, which explains about 57.5% of the spatial variability connected to soil properties and topography. The weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable land test site, the analysis yields two significant spatial structures, the first EOF, explaining 38.4% of the spatial variability, shows a highly significant correlation to soil properties, namely soil texture. The second EOF, explaining 28.3% of the spatial variability, is connected to differences in land management. The soil moisture in the arable land test site varies more during dry and wet periods on locations with low porosity.

  18. Definition and experimental determination of a soil-water retention surface

    OpenAIRE

    Salager, Simon; El Youssoufi, Moulay Saïd; Saix, Christian

    2010-01-01

    International audience; This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is ba...

  19. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  20. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    Directory of Open Access Journals (Sweden)

    X.-K. Guan

    2015-07-01

    Full Text Available Soil organic carbon (SOC plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L. and two locally adapted forage legumes, bush clover (Lespedeza davurica S. and milk vetch (Astragalus adsurgens Pall. on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0–2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha−1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha−1 under bare soil. The sequestration of SOC in the 1–2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  1. Prediction of Soil Erosion on Different Underlaying Surface in Construction Period of Xichang to Panzhihua Expressway

    Institute of Scientific and Technical Information of China (English)

    CHEN Tingfang; GUI Peng; CHEN Xingchang

    2007-01-01

    In order to investigate the behavior of soil erosion on the slope of the different underlaying surface during construction, the experiment with natural rainfall on Xichang-Panzhihua highway was conducted, to quantify the runoff and soil loss. The results show that: ①the main type of soil erosion is gully erosion, the amount of soil erosion caused by gully erosion is higher than that by surface erosion. ②The principal factor causing soil erosion on the slope of the embankment is individual amount of precipitation, the width of the embankment and rain intensity. ③ The principal factor causing soil erosion on the cutting slope is individual amount of precipitation, the width of the cutting slope and rain intensity. ④ The principal factor causing soil erosion on the slope of the dumped soil area is individual amount of precipitation, the width of the flat roof and rain intensity. There are well linear relationships between the amount of soil erosion and the principal factor, and their correlation coefficient are 0.935 7-0.999 8.

  2. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    Science.gov (United States)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  3. Inversion of dielectric constant and moisture of bare soil surface from backscattering coefficient

    Institute of Scientific and Technical Information of China (English)

    李宗谦; 冯孔豫

    1997-01-01

    An inverse method of dielectric constant and moisture of bare wet soil surface from backscattering coefficients is presented, which is based upon the small perturbation model of electromagnetic wave scattering from rough surfaces and the empirical and dielectric mixing models of wet soil. Some sets of curves which describe the relation between the moisture of soil and the ratio of like polarization backscattering coefficients σvv and σhh are obtained, and some principles on how to choose the incident frequencies and the incident angles of the electromagnetic wave are given Analysis and calculation show that the mam advantage of this inverse method is its efficiency and simplicity.

  4. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.

    Science.gov (United States)

    Barchanska, Hanna; Sajdak, Marcin; Szczypka, Kornelia; Swientek, Angelika; Tworek, Martyna; Kurek, Magdalena

    2017-01-01

    The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.

  5. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  6. Fixation of soil surface contamination using natural polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations.

  7. Parasitic contamination of surface and deep soil in different areas of Sari in north of Iran

    Institute of Scientific and Technical Information of China (English)

    Hajar Ziaei Hezarjaribi; Ahmad Daryani; Nastaran Amani Kelarijani; Mina Eskandari Shahraki; Beheshteh Haghparast Kenari; Mohammad Saaid Dayer; Najla Hamidianfar; Fatemeh Ghaffarifar

    2016-01-01

    Objective:To study the parasitic contamination of soil in selected areas of Sari, north of Iran. Methods: A cross-sectional study was conducted to identify all available parasites in surface and deep soil. In this study 580 soil samples (278 deep soil and 302 topsoil samples) from 21 different locations were collected from pathways, parks, greenhouses, estates around the city, cemetery, main squares, farmlands, fenced gardens and seashores. Depending on the soil type, two samples were prepared, from surface and deep soil at the depth of 3 to 5 cm. After performing various stages of preparation, including cleaning and washing, smoothing and flotation, parasitic elements were examined microscopically and quantitative parasite counting was done using a McMaster slide. Results:The results showed that the highest rate of parasitic contamination was related to nematodes larvae (26.11%). Other contaminants such asEntamoeba andAcanthamoeba cysts, vacuolizationBlastocystis hominis form, oocyte containing sporocysts,Toxascaris eggs, nematoda larvae,Hymenolepis eggs,Ascaris eggs,Fasciola eggs, hookworm eggs,Toxocara eggs, insects' larvae and other ciliated and flagellated organisms were also observed. The results of this study showed that the highest contamination was found in public garden (25.80%) both in surface (29.30%) and in deep soil (21.12%), while the lowest level of contamination was observed in seashore surface soil (4.90%). Conclusions:The results showed that soil can provide a potential medium for the spread of soil transmitted parasitic diseases in the environment; therefore, preventive programs are needed.

  8. Characterization of MASDs of surface soils in north China and its influence on estimating dust emission

    Institute of Scientific and Technical Information of China (English)

    MEI Fanmin; ZHANG Xiaoye; LU Huayu; SHEN Zhenxing; WANG Yaqiang

    2004-01-01

    The micro-aggregated size distribution (MASD) of surface soil is an important parameter for modelling dust emission. However,there is no dataset of MASDs of all surface soil types in north China.The MASDs are here presented,measured by dry sieving,for typical surface soil samples,including sandy soil,gravelly sand soil,gravelly loam soil,loam soil and silt loam soil,collected from sandy deserts,Gobi deserts,oases,farmlands in steppe regions and steppe areas in north China.The MASDs of various surface soil types exhibit a combination of several log-normal distributions of five separated sizes with mean mass median diameters (MMDs) of 90,210,390,600 and 980 цm,respectively,and mean standard deviations (SDs) of 1.25,1.40,1.25,1.35 and 1.25 respectively. The log-normal distributions correspond to very fine sand,fine sand,medium sand,coarse sand and very coarse sand population.On the basis of characterization of the retrieved MASDs of various surface soil types in north China,dust emission fluxes are modelled by a dust production model (DPM model).It is shown that dust emission has been significantly influenced by MASDs.Fine sand and very fine sand are always associated with the highest dust emission fluxes. Emission fluxes of the medium sand, gravelly sand soil,gravelly loam soil and loam soil are lower than those of very fine sand and fine sand,but larger than those of the coarse sand.The differences in dust emission fluxes vary among the different soil types from 101 to 103 цg·m-2·s-1.Dust emission fluxes from sandy deserts and farmlands covered with sand sheets in north China rang from 101 to 104 цg·m-2·s-1 while those from Gobi deserts,farmlands and steppes with gravelly desertification range from 101 to 102 цg·m-2· s-1.The modelled results indicate that deserts and farmlands with sand are the major dust sources in north China.

  9. Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill

    Directory of Open Access Journals (Sweden)

    Maarit Niemi

    2014-08-01

    Full Text Available A landfill site in southern Finland was converted into urban green space by covering it with a layer of fresh forest humus transferred from nearby construction sites. The aim was to develop the 70 m high artificial hill into a recreational area with high biodiversity of flora and fauna. Forest humus was used as a source of organic matter, plant roots, seeds, soil fauna and microorganisms in order to enable rapid regeneration of diverse vegetation and soil biological functions. In this study we report the results of three years of monitoring of soil enzyme activity and plant species compositional patterns. Monthly soil samples were taken each year between June and September from four sites on the hill and from two standing reference forests using three replicate plots. Activities of 10 different enzymes, soil organic matter (SOM content, moisture, pH and temperature of the surface layer were monitored. Abundances of vascular plant species were surveyed on the same four hill sites between late May and early September, three times a season in 2004 and 2005. Although the addition of organic soil considerably increased soil enzyme activities (per dw, the activities at the covered hill sites were far lower than in the reference forests. Temporal changes and differences between sites were analysed in more detail per soil organic matter (SOM in order to reveal differences in the quality of SOM. All the sites had a characteristic enzyme activity pattern and two hill sites showed clear temporal changes. The enzyme activities in uncovered topsoil increased, whereas the activities at the covered Middle site decreased, when compared with other sites at the same time. The different trend between Middle and North sites in enzyme activities may reflect differences in humus material transferred to these sites, but difference in the succession of vegetation affects enzyme activities strongly. Middle yielded higher β-sitosterol content in 2004, as an indication

  10. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  11. Soil surface searching and transport of Euphorbia characias seeds by ants

    Science.gov (United States)

    Espadaler, Xavier; Gómez, Crisanto

    The intensity of exploring the soil surface by ants was studied for the four species involved in the dispersal and predation of seeds of the West-Mediterranean myrmecochorous plant Euphorbia characias. During the dehiscence period (June) the whole soil surface is sccanned in 43 minutes. Not all ants that find a seed take it to the nest. For the four ant species studied ( Pheidole pallidula, Aphaenogaster senilis, Tapinoma nigerrimum, Messor barbarus) the proportion of ants that finally take the seed is 67.6%. In spite of this, the high level of soil surface searching explains the rather short time that seeds remain on the soil before being removed. The presence of an elaiosome is a key element in the outcome of the ant-seed interaction: a seed with elaiosome has a seven-fold increase in probability of being taken to the nest if found by a non-granivorous ant. The predator-avoidance hypothesis for myrmecochory is supported.

  12. Temporal observations of surface soil moisture using a passive microwave sensor

    Science.gov (United States)

    Jackson, T. J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas.

  13. Dynamic visco-plastic memorial nested yield surface model of soil

    Institute of Scientific and Technical Information of China (English)

    Haiyang ZHUANG; Guoxing CHEN; Dinghua ZHU

    2008-01-01

    Under cyclic loadings, the plastic strain of soft soil will take place under very small shear strain. So the viscoplastic model is appropriate to be used to model the dynamic characteristics of soft soil. Based on the principles of geotechnical plastic mechanics, the incremental visco-plastic memorial nested yield surface model is developed by using the field theory of nonlinear isotropic materials and the theory of kinematical hardening modulus. At the end of anyone time increment, the inverted loading surface, the damaged surface and the initial loading surface which is tangent with the inside of inverted loading surface are memorized respectively. The kinematical behavior of yield surface is defined by using these three surfaces. The developed model in this paper is successfully implemented in ABAQUS using FORTRAN subroutine. The predicted stress-strain relationships of soft soil are compared with the test results given by dynamic triaxial tests. It is proved that the cyclic undrained stress-strain relation of soils can be fairly simulated by the model. At last, the nonlinear earthquake response of a representative soft site in Nanjing city is calculated with the dynamic behavior of soils modeled by the new developed model. The results are accordant to the earthquake response of soft site given by other scholars.

  14. Modeling spatial and seasonal soil moisture in a semi arid hillslope: The impact of integrating soil surface seal parameters

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2010-05-01

    Modeling hillslope hydrology and the complex and coupled reaction of runoff processes to rainfall, lies in the focus of a growing number of research studies. The ability to characterize and understand the mechanisms underlying the complex hillslope soil moisture patterns, which trigger spatially variable non linear runoff initiation, still remains a current hydrological challenge especially in ungauged catchments. In humid climates, connectivity of transient moisture patches was suggested as a unifying concept for studying thresholds for subsurface flow and redistribution of soil moisture at the hillslope scale. In semiarid areas, however, transient moisture patches control also the differentiation between evaporation and surface runoff and the ability to identify a unifying concept controlling the large variability of soil moisture at the hillslope scale remains an open research gap. At the LTER Lehavim site in the center of Israel (31020' N, 34045' E) a typical hillslope (0.115 km2) was chosen offering different aspects and a classic geomorphologic banding. The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline (1989) equations describing the change in hydraulic parameters resulting from soil seal formation were applied. Two simple indices were developed to describe local evaporation values and contribution of water from rock outcrops to the soil

  15. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan C.; van de Giesen, Nick

    2016-11-01

    Surface heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology, and climate change studies, but in situ observations are costly and difficult. It has been demonstrated that surface heat fluxes can be estimated from assimilation of land surface temperature (LST). One approach is to estimate a neutral bulk heat transfer coefficient (CHN) to scale the sum of turbulent heat fluxes, and an evaporative fraction (EF) that represents the partitioning between fluxes. Here the newly developed particle batch smoother (PBS) is implemented. The PBS makes no assumptions about the prior distributions and is therefore well-suited for non-Gaussian processes. It is also particularly advantageous for parameter estimation by tracking the entire prior distribution of parameters using Monte Carlo sampling. To improve the flux estimation on wet or densely vegetated surfaces, a simple soil moisture scheme is introduced to further constrain EF, and soil moisture observations are assimilated simultaneously. This methodology is implemented with the FIFE 1987 and 1988 data sets. Validation against observed fluxes indicates that assimilating LST using the PBS significantly improves the flux estimates at both daily and half-hourly timescales. When soil moisture is assimilated, the estimated EFs become more accurate, particularly when the surface heat flux partitioning is energy-limited. The feasibility of extending the methodology to use remote sensing observations is tested by limiting the number of LST observations. Results show that flux estimates are greatly improved after assimilating soil moisture, particularly when LST observations are sparse.

  16. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Cheng, Jie; Leng, Pei

    2017-04-01

    The collection 6 (C6) MODIS land surface temperature (LST) product is publicly available for the user community. Compared to the collection 5 (C5) MODIS LST product, the C6 MODIS LST product has been refined over bare soil pixels. Assessing the accuracy of the C6 MODIS LST product will help to facilitate the use of the LST product in various applications. In this study, we present a cross-satellite comparison to evaluate the accuracy of the C6 MODIS LST product (MOD11_L2) over bare soil surfaces under various atmospheric and surface conditions using the ASTER LST product as a reference. For comparison, the C5 MODIS LST product was also used in the analysis. The absolute biases (0.2-1.5 K) of the differences between the C6 MODIS LST and ASTER LST over bare soil surfaces are approximately two times less than those (0.6-3.8 K) of the differences between the C5 MODIS LST and ASTER LST. Furthermore, the RMSEs (0.7-2.3 K) over bare soil surfaces for the C6 MODIS LST are significantly smaller than those (0.9-4.2 K) for the C5 MODIS LST. These results indicate that the accuracy of the C6 MODIS LST product is much better than that of the C5 MODIS LST product. We recommend that the user community employs the C6 MODIS LST product in their applications.

  17. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source.

    Science.gov (United States)

    Wang, De-Gao; Yang, Meng; Jia, Hong-Liang; Zhou, Lei; Li, Yi-Fan

    2009-02-01

    Street dust and surface soil samples in urban areas of Dalian, a coastal city in Liaoning Province, China, were collected and analyzed for 25 polycyclic aromatic hydrocarbons (PAHs). The concentrations, distribution, and sources of PAHs in dust and soil were determined. The concentrations of total PAHs in street dust ranged between 1890 and 17,070 ng/g (dry weight), with an average of 7460 ng/g, whereas the concentrations of total PAHs in surface soil varied greatly, from 650 to 28,900 ng/g, with a mean value of 6440 ng/g. Statistical paired t-test confirmed that total PAH concentrations have no significant difference between street dust and surface soil. Mean PAH concentrations in two type samples were much higher at industrial sites than at business/residential or garden sites. PAHs were dominated by higher molecular weight PAH (4- to 6-ring) homologues, which accounted for about 73% and 72% of total PAHs in street dust and surface soil, respectively. Principal component analysis was used in source apportionment of PAHs in dust and soil. Pyrogenic and petrogenic sources contributed 70% and 22.4% of total PAHs in street dusts, and fossil fuel (coal and petroleum) and biomass combustion accounted for 64.4% and 5.6% of total PAHs in pyrogenic sources, respectively. In surface soil, total PAHs were dominated by pyrogenic sources. The diagnostic ratios of benz[a]anthracene/chrysene confirmed that PAHs in street dust and surface soil of a Dalian urban zone might come mostly from the emission of local sources.

  18. Microscope Image of a Martian Soil Surface Sample

    Science.gov (United States)

    2008-01-01

    This is the closest view of the material underneath NASA's Phoenix Mars Lander. This sample was taken from the top centimeter of the Martian soil, and this image from the lander's Optical Microscope demonstrates its overall composition. The soil is mostly composed of fine orange particles, and also contains larger grains, about a tenth of a millimeter in diameter, and of various colors. The soil is sticky, keeping together as a slab of material on the supporting substrate even though the substrate is tilted to the vertical. The fine orange grains are at or below the resolution of the Optical Microscope. Mixed into the soil is a small amount&mdashabout 0.5 percent&mdashof white grains, possibly of a salt. The larger grains range from black to almost transparent in appearance. At the bottom of the image, the shadows of the Atomic Force Microscope (AFM) beams are visible. This image is 1 millimeter x 2 millimeters. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  19. Plant and soil modifications by continuous surface effluent application

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Levien, R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. of Solos; Mohrdieck, F.G.; Rodrigues, N.R. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao; Flores, A.I.P.

    1993-12-31

    In order to study the effects on soil and plants of the liquid effluent generated by a the Integrated Liquid Effluent Treatment System of a large Brazilian petrochemical complex, a field study was conducted in four areas which received the effluent and compared to control sites. This work presents some results of this study. 12 refs., 1 fig., 3 tabs.

  20. Variations in FASST Predictions of Soil Surface Temperatures

    Science.gov (United States)

    2006-04-01

    technical reviews of the manuscript. Rachel Jordan’s comments on Appendix B improved its usefulness to modelers of soil state. Margo Burgess of the...Crushed stone 1.82 0–8 0.51 A-13 Crushed shale and limestone screenings 1.76 0–8 A-16 Red-brown fine silty sand with fine to medium gravel

  1. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  2. Retrieval of Surface and Subsurface Moisture of Bare Soil Using Simulated Annealing

    Science.gov (United States)

    Tabatabaeenejad, A.; Moghaddam, M.

    2009-12-01

    Soil moisture is of fundamental importance to many hydrological and biological processes. Soil moisture information is vital to understanding the cycling of water, energy, and carbon in the Earth system. Knowledge of soil moisture is critical to agencies concerned with weather and climate, runoff potential and flood control, soil erosion, reservoir management, water quality, agricultural productivity, drought monitoring, and human health. The need to monitor the soil moisture on a global scale has motivated missions such as Soil Moisture Active and Passive (SMAP) [1]. Rough surface scattering models and remote sensing retrieval algorithms are essential in study of the soil moisture, because soil can be represented as a rough surface structure. Effects of soil moisture on the backscattered field have been studied since the 1960s, but soil moisture estimation remains a challenging problem and there is still a need for more accurate and more efficient inversion algorithms. It has been shown that the simulated annealing method is a powerful tool for inversion of the model parameters of rough surface structures [2]. The sensitivity of this method to measurement noise has also been investigated assuming a two-layer structure characterized by the layers dielectric constants, layer thickness, and statistical properties of the rough interfaces [2]. However, since the moisture profile varies with depth, it is sometimes necessary to model the rough surface as a layered structure with a rough interface on top and a stratified structure below where each layer is assumed to have a constant volumetric moisture content. In this work, we discretize the soil structure into several layers of constant moisture content to examine the effect of subsurface profile on the backscattering coefficient. We will show that while the moisture profile could vary in deeper layers, these layers do not affect the scattered electromagnetic field significantly. Therefore, we can use just a few layers

  3. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    Science.gov (United States)

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore

    2017-04-01

    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  4. Controls on Soil Respiration in a High Elevation Alpine System and the Implications For Soil Carbon Storage in a Changing Climate

    Science.gov (United States)

    Schliemann, S. A.

    2015-12-01

    The alpine ecosystem is a dynamic network of heterogeneous soil and vegetation patches. Microsite characteristics are controlled by site geomorphology, underlying bedrock, and landscape position. These microsite characteristics create a complex mosaic of soil moisture and temperature regimes across the landscape. To investigate the relative influences of soil moisture and soil temperature on soil respiration in these varied microsites, 12 study sites were established in June of 2015 in Rocky Mountain National Park, Colorado. Sites were distributed across 3 plots with distinct vegetation and soil regimes: 1) Conifer forest at the upper limit of the tree line 2) Tundra characterized by shallow soil and minimal vegetation consisting of herbs and lichen 3) Tundra characterized by organic-rich, deep soil and abundant vegetation consisting of grasses and sedges. Soil respiration, soil temperature, and soil moisture were measured weekly throughout the snow-free period of 2015. Soil moisture was negatively correlated with soil respiration and soil temperature was positively correlated with soil respiration across the study sites (p <0.001). Soil respiration rates were significantly different from one another in all plots and were highest in the forest plot (maximum 9.6 μmol/ m2/sec) and much lower in the two tundra plots (< 4.5 μmol/ m2/sec) (p < 0.001). These data suggest that as the alpine climate warms, an increase in soil temperature and a longer snow-free period may result in an overall increase in the rate of soil respiration, which could alter the soil carbon pool. In addition, as temperatures rise, the tree line may migrate to a higher elevation. The results of this study suggest that with such a movement, the soil respiration rate will also increase. However the net change in soil organic matter in the newly established forest would not only depend on the soil respiration rate, but on the overall capacity of the new forest soil to retain carbon, especially

  5. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment.

    Science.gov (United States)

    Wolters, André; Steffens, Markus

    2005-08-15

    Among the processes affecting transport and degradation of antibiotics released to the environment during application of manure and slurry to agricultural land, photochemical transformations are of particular interest. Drying-out of the top soil layer under field conditions enables sorption of surface-applied antibiotics to soil dust, thus facilitating direct, indirect, and sensitized photodegradation at the soil/atmosphere interface. For studying various photochemical transformation processes of sulfadiazine, a photovolatility chamber designed in accordance with the requirements of the USEPA Guideline and 161-3 was used. Application of 14C-labeled sulfadiazine enabled complete mass balances and allowed for investigating the impact of various surfaces (glass and soil dust) and environmental factors, i.e., irradiation and atmospheric ozone, on photodegradation and volatilization. Volatilization was shown to be a negligible process. Even after increasing the air temperature up to 35 degrees C only minor amounts of sulfadiazine and transformation products (0.01-0.28% of applied radioactivity) volatilized. Due to direct and indirect photodegradation, the highest extent of mineralization to 14CO2 (3.9%), the formation of degradation products and of nonextractable soil residues was measured in irradiated soil dust experiments using ozone concentrations of 200 ppb. However, even in the dark significant mineralization was observed when ozone was present, indicating ozone-controlled transformation of sulfadiazine to occur at the soil surface.

  6. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.

    Science.gov (United States)

    Simpson, Catherine R; Nelson, Shad D; Stratmann, Jerry E; Ajwa, Husein A

    2010-06-01

    Metam-sodium (MS, sodium methyldithiocarbamate) has been identified as a promising alternative chemical to replace methyl bromide (MeBr) in soil preplant fumigation. One degradation product of MS in soil is the volatile gas methyl isothiocyanate (MITC) which controls soilborne pests. Inconsistent results associated with MS usage indicate that there is a need to determine cultural practices that increase pest control efficacy. Sealing the soil surface with water after MS application may be a sound method to reduce volatilization loss of MITC from soils and increase the contact time necessary for MITC to control pests. The objective of this research was to develop a preliminary soil surface water application amount that would potentially inhibit the off-gassing rate of MITC. Off-gassing rate was consistently reduced with increasing water seal application. The application of a 2.5-3.8 cm water seal provided significantly lower (71-74% reduction in MITC volatilization) total fumigant loss compared with no water seal. The most favorable reduction in MITC off-gassing was observed in the 2.5 cm water seal. This suggests that volatilization of MITC-generating compounds can be highly suppressed using adequate surface irrigation following chemical application in this soil type (sandy clay loam), based on preliminary bench-scale soil column studies. .

  7. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2011-09-01

    Full Text Available Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one having shallow groundwater – to the same meteorological forcing, and inspected their different responses regarding surface soil moisture, temperature and energy balance. We found that the two profiles differed in the absorbed and emitted amounts of energy, in portioning out the available energy and in heat fluency within the soil. We conclude that shallow groundwater areas reflect less shortwave radiation due to their lower albedo and therefore they get higher magnitude of net radiation. When potential evaporation demand is high enough, a large portion of the energy received by these areas is spent on evaporation. This makes the latent heat flux predominant, and leaves less energy to heat the soil. Consequently, this induces lower magnitudes of both sensible and ground heat fluxes. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. In view of remote sensors' capability of detecting shallow groundwater effect, we conclude that this effect can be sufficiently clear to be sensed if at least one of two conditions is met: high potential evaporation and big contrast in air temperature between day and night. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  8. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  9. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies.

    Science.gov (United States)

    Franzetti, Andrea; Caredda, Paolo; Ruggeri, Claudio; La Colla, Paolo; Tamburini, Elena; Papacchini, Maddalena; Bestetti, Giuseppina

    2009-05-01

    A wide range of structurally different surface active compounds (SACs) is synthesised by many prokaryotic and eukaryotic microorganisms. Due to their properties, microbial SACs have been exploited in environmental remediation techniques. From a diesel-contaminated soil, we isolated the Gordonia sp. strain BS29 which extensively grows on aliphatic hydrocarbons and produces two different types of SACs: extracellular bioemulsans and cell-bound biosurfactants. The aim of this work was to evaluate the potential applications of the strain BS29 and its SACs in the following environmental technologies: bioremediation of soils contaminated by aliphatic and aromatic hydrocarbons, and washing of soils contaminated by crude oil, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Microcosm bioremediation experiments were carried out with soils contaminated by aliphatic hydrocarbons or PAHs, while batch soil washing experiments were carried out with soils contaminated by crude oil, PAHs or heavy metals. Bioremediation results showed that the BS29 bioemulsans are able to slightly enhance the biodegradation of recalcitrant branched hydrocarbons. On the other hand, we obtained the best results in soil washing of hydrocarbons. The BS29 bioemulsans effectively remove crude oil and PAHs from soil. Particularly, crude oil removal by BS29 bioemulsans is comparable to the rhamnolipid one in the same experimental conditions showing that the BS29 bioemulsans are promising washing agents for remediation of hydrocarbon-contaminated soils.

  10. Improved shape hardening function for bounding surface model for cohesive soils

    Directory of Open Access Journals (Sweden)

    Andrés Nieto-Leal

    2014-08-01

    Full Text Available A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.

  11. Surface energy balance closure in an arid region: role of soil and heat flux

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.; Berkowicz, S.M.

    2004-01-01

    The large soil heat fluxes in hot desert regions are very important in energy balance studies. Surface energy balance (SEB) observations, however, reveal that there is an imbalance in Surface flux measurements and that it is difficult to isolate those flux measurements causing the imbalance errors.

  12. Improved shape hardening function for bounding surface model for cohesive soils

    Institute of Scientific and Technical Information of China (English)

    Andrés Nieto-Leal; Victor N.Kaliakin

    2014-01-01

    A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.

  13. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  14. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes

    Institute of Scientific and Technical Information of China (English)

    YongSheng Wu; Hasi Erdun; RuiPing Yin; Xin Zhang; Jie Ren; Jian Wang; XiuMin Tian; ZeKun Li; HengLu Miao

    2013-01-01

    Biological soil crusts are widely distributed in arid and semi-arid regions, whose formation and development have an important impact on the restoration process of the desert ecosystem. In order to explore the relationship between surface airflow and development characteristics of biological soil crusts, we studied surface airflow pattern and development characteristics of biological soil crusts on the fixed dune profile through field observation. Results indicate that the speed of near-surface airflow is the lowest at the foot of windward slope and the highest at the crest, showing an increasing trend from the foot to the crest. At the leeward side, although near-surface airflow increases slightly at the lower part of the slope after an initial sudden decrease at upper part of the slope, its overall trend decreases from the crest. Wind velocity variation coefficient varied at different heights over each observation site. The thickness, shear strength of biological soil crusts and percentage of fine particles at crusts layer decreased from the slope foot to the upper part, showing that biological soil crusts are less developed in high wind speed areas and well developed in low wind speed areas. It can be seen that there is a close relationship between the distribution of biological soil crusts in different parts of the dunes and changes in airflow due to geomorphologic variation.

  15. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing

    Science.gov (United States)

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried

    1997-01-01

    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  16. Distribution of 137Cs In the Surface Soil of Serpong Nuclear Site

    Directory of Open Access Journals (Sweden)

    E. Lubis

    2011-08-01

    Full Text Available The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operation of G.A.Siwabessy Reactor until now is undetectable. The Tf of 137Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137Cs varies between cultivated and uncultivated soil and also with the soils with thick humus

  17. Fate and Disposition of Trichloroethylene in Surface Soils.

    Science.gov (United States)

    1984-01-01

    due to inges- tion of TCE has produced symptoms of gastrointestinal upset, narcosis , and occasional cardiac abnormalities. Reports indicate these...activity up to a point, while a decrease in temperature can curtail activity. Nitrogen is the key nutrient required to decompose organic matter. If the...soil is high in readily available nitrogen , then the microorganisms need no additional source. Conversely, sub- strates with low nitrogen content may

  18. RDX in Plant Tissue: Leading to Humification in Surface Soils

    Science.gov (United States)

    2013-01-01

    aromatics in plant tissue may control or alter plant-related transformations and photodegradation. Bio - available carbon from decaying plant tissue may be...TR-13-4 39 Agronomists have shown that high-organic-matter soils reduce the efficacy of the herbicide 2-chloro-4-ethylamino-6-isopropylamino-1,3,5...resulting in the formation of nitroamine and formaldehyde (Hawari et al. 2000). These intermediates can then be further bio -transformed to either

  19. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    Science.gov (United States)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  20. Development of a land surface model with coupled snow and frozen soil physics

    Science.gov (United States)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  1. A Comprehensive Laboratory Study to Improve Ground Truth Calibration of Remotely Sensed Near-Surface Soil Moisture

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Sheng, W.; Jones, S. B.

    2016-12-01

    Optical satellite and airborne remote sensing (RS) have been widely applied for characterization of large-scale surface soil moisture distributions. However, despite the excellent spatial resolution of RS data, the electromagnetic radiation within the optical bands (400-2500 nm) penetrates the soil profile only to a depth of a few millimeters; hence obtained moisture estimates are limited to the soil surface region. Furthermore, moisture sensor networks employed for ground truth calibration of RS observations commonly exhibit very limited spatial resolution, which consequently leads to significant discrepancies between RS and ground truth observations. To better understand the relationship between surface and near-surface soil moisture, we employed a benchtop hyperspectral line-scan imaging system to generate high resolution surface reflectance maps during evaporation from soil columns filled with source soils covering a wide textural range and instrumented with a novel time domain reflectometry (TDR) sensor array that allows monitoring of near surface moisture at 0.5-cm resolution. A recently developed physical model for surface soil moisture predictions from shortwave infrared reflectance was applied to estimate surface soil moisture from surface reflectance and to explore the relationship between surface and near-surface moisture distributions during soil drying. Preliminary results are very promising and their applicability for ground truth calibration of RS observations will be discussed.

  2. Assessing soil surface roughness decay during simulated rainfall by multifractal analysis

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2008-06-01

    Full Text Available Understanding and describing the spatial characteristics of soil surface microrelief are required for modelling overland flow and erosion. We employed the multifractal approach to characterize topographical point elevation data sets acquired by high resolution laser scanning for assessing the effect of simulated rainfall on microrelief decay. Three soil surfaces with different initial states or composition and rather smooth were prepared on microplots and subjected to successive events of simulated rainfall. Soil roughness was measured on a 2×2 mm2 grid, initially, i.e. before rain, and after each simulated storm, yielding a total of thirteen data sets for three rainfall sequences. The vertical microrelief component as described by the statistical index random roughness (RR exhibited minor changes under rainfall in two out of three study cases, which was due to the imposed wet initial state constraining aggregate breakdown. The effect of cumulative rainfall on microrelief decay was also assessed by multifractal analysis performed with the box-count algorithm. Generalized dimension, Dq, spectra allowed characterization of the spatial variation of soil surface microrelief measured at the microplot scale. These Dq spectra were also sensitive to temporal changes in soil surface microrelief, so that in all the three study rain sequences, the initial soil surface and the surfaces disturbed by successive storms displayed great differences in their degree of multifractality. Therefore, Multifractal parameters best discriminate between successive soil stages under a given rain sequence. Decline of RR and multifractal parameters showed little or no association.

  3. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    Science.gov (United States)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale

  4. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils.

    Science.gov (United States)

    Rhind, S M; Kyle, C E; Kerr, C; Osprey, M; Zhang, Z L; Duff, E I; Lilly, A; Nolan, A; Hudson, G; Towers, W; Bell, J; Coull, M; McKenzie, C

    2013-11-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0-5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Study on ozone treatment of soil for agricultural application of surface dielectric barrier discharge

    Science.gov (United States)

    Nagatomo, Takuya; Abiru, Tomoya; Mitsugi, Fumiaki; Ebihara, Kenji; Nagahama, Kazuhiro

    2016-01-01

    Recently, application of plasma technologies to the agricultural field has attracted much interest because residual pesticides and excessive nitrogen oxides contained in plants, soil, and groundwater have become a serious issue worldwide. Since almost all of the atmospheric discharge plasma generates ozone, the effects of ozone are among the key factors for their agricultural applications. We have proposed the use of ozone generated using surface barrier discharge plasma for soil disinfection or sterilization. In this work, the ozone consumption coefficient and diffusion coefficient in soil were measured by the ultraviolet absorption method. The pH(H2O) and amount of nitrogen nutrient in soil after ozone diffusion treatment were studied and plant growth was observed simultaneously. The effect of ozone treatment on the amount of DNA in soil was also investigated and compared with that determined from the obtained ozone consumption coefficient.

  6. Oxidation of FGD-CaSO{sub 3} and effect on soil chemical properties when applied to the soil surface

    Energy Technology Data Exchange (ETDEWEB)

    Liming Chen; Cliff Ramsier; Jerry Bigham; Brian Slater; David Kost; Yong Bok Lee; Warren A. Dick [Ohio State University, Wooster, OH (United States). School of Environment and Natural Resources

    2009-07-15

    Use of high-sulfur coal for power generation in the United States requires the removal of sulfur dioxide (SO{sub 2}) produced during burning in order to meet clean air regulations. If SO{sub 2} is removed from the flue gas using a wet scrubber without forced air oxidation, much of the S product created will be sulfite (SO{sub 3}{sup 2-}). Plants take up S in the form of sulfate (SO{sub 2}{sup 2-}). Sulfite may cause damage to plant roots, especially in acid soils. For agricultural uses, it is thought that SO{sub 4}{sup 2-} in flue gas desulfurization (FGD) products must first oxidize to SO{sub 4}{sup 2-} in soils before crops are planted. However, there is little information about the oxidation of SO{sub 3}{sup 2-} in FGD product to SO{sub 4}{sup 2-} under field conditions. An FGD-CaSO{sub 3} was applied at rates of 0, 1.12, and 3.36 Mg ha{sup -1} to the surface of an agricultural soil (Wooster silt loam, Oxyaquic Fragiudalf). The SO{sub 4}{sup 2-} in the surface soil (0-10 cm) was analyzed on days 3, 7, 17, 45, and 61. The distribution of SO{sub 4}{sup 2-} and Ca in the 0-90 cm soil layer was also determined on day 61. Results indicated that SO{sub 3}{sup 2-} in the FGD-CaSO{sub 3} rapidly oxidized to SO{sub 4}{sup 2-} on the field surface during the first week and much of the SO{sub 4}{sup 2-} and Ca moved downward into the 0-50 cm soil layer during the experimental period of two months. It is safe to grow plants in soil treated with FGD-CaSO{sub 3} if the application is made at least three days to several weeks before planting. 20 refs., 6 figs., 4 tabs.

  7. [Distribution and sources of oxygen and sulfur heterocyclic aromatic compounds in surface soil of Beijing, China].

    Science.gov (United States)

    He, Guang-Xiu; Zhang, Zhi-Huan; Peng, Xu-Yang; Zhu, Lei; Lu, Ling

    2011-11-01

    62 surface soil samples were collected from different environmental function zones in Beijing. Sulfur and oxygen heterocyclic aromatic compounds were detected by GC/MS. The objectives of this study were to identify the composition and distribution of these compounds, and discuss their sources. The results showed that the oxygen and sulfur heterocyclic aromatic compounds in the surface soils mainly contained dibenzofuran, methyl- and C2-dibenzofuran series, dibenzothiophene, methyl-, C2- and C3-dibenzothiophene series and benzonaphthothiophene series. The composition and distribution of the oxygen and sulfur heterocyclic aromatic compounds in the surface soil samples varied in the different environmental function zones, of which some factories and the urban area received oxygen and sulfur heterocyclic aromatic compounds most seriously. In Beijing, the degree of contamination by oxygen and sulfur heterocyclic aromatic compounds in the north surface soil was higher than that in the south. There were preferable linear correlations between the concentration of dibenzofuran series and fluorene series, as well as the concentration of dibenzothiophene series and dibenzofuran series. The oxygen and sulfur heterocyclic aromatic compounds in the surface soil were mainly derived from combustion products of oil and coal and direct input of mineral oil, etc. There were some variations in pollution sources of different environmental function zones.

  8. [Distribution Characteristics and Source Identification of Organochlorine Pesticides in Surface Soil in Karst Underground River Basin].

    Science.gov (United States)

    Xie, Zheng-lan; Sun, Yu-chuan; Zhang, Mei; Yu, Qin; Xu, Xin

    2016-03-15

    Six typical surface soil samples were taken in Laolongdong underground river basin, and 20 OCPs were analyzed by gas chromatography equipped with micro-⁶³Ni electron capture detector. The purpose of this study was to investigate the distribution, composition and source of organochlorine pesticides ( OCPs) in the surface soil of Laolongdong underground river basin, and to further evaluate the pollution level. The results showed that 20 OCPs were inordinately detected in the soil samples and the detection rate of 16 OCPs (except for p,p'-DDE, cis-Chlordane, trans-Chlordane, dieldrin) was 100%. Moreover, the CHLs and DDTs were the main contaminants, and there were obvious differences in the concentrations of organochlorine pesticides between different sampling points. The concentration range of total OCPs was 5.57-2,618.57 ng · g⁻¹ with a mean of 467.28 ng · g⁻¹. Compared with other regions both at home and abroad, the concentrations of HCHs and DDTs in the surface soil samples of the studied area were arranged from high to middle levels. The total concentrations of OCPs, HCHs, DDTs and CHLs had a similar variation tendency in spatial distribution, upstream > midstream > downstream, and the concentrations of OCPs in upstream were obviously higher than those in midstream and downstream. Source analysis indicated that the HCHs mainly came from the use of lindane. DDTs in soil came from not only the early residues but also recently illegal use of industrial DDTs and the input of dicofol. In addition, chlordan was mainly from the early residues and atmospheric deposition. Compared with the Environmental Quality Standard for Soils of China and Netherlands, the level of OCPs in Xinli vilage soil was categorized as highly polluted, but the levels of OCPs in Longjing bay, Xia spit, and Zhao courtyard soils were classified as slightly polluted, while the Longjing adjacency and gaozhong temple soils belonged to unpolluted ones.

  9. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Speciation of heavy metals in soil subsamplesexperimentally loaded with Pb, Cd, Cu and Zn in orthogonal designwas investigated by sequential extraction, and operationallydefined as water-soluble and exchangeable(SE), weakly specificadsorbed(WSA), Fe and Mn oxides-bound(OX) and organic-bound(ORG).The results show that speciation of heavy metals in the soilsubsamples depended on their kinds. About 90% of Cd and 75% of Znexisted in soil subsamples in the SE fraction. Lead and Cu existedin soil subsamples as SE, WSA and OX fractions simultaneously,although SE was still the major fraction. Organic-bound heavymetals were not clearly apparent in all the soil subsamples. Theconcentration of some heavy metal speciation in soil subsamplesshowed good correlation with ionic impulsion of soil, especiallyfor the SE fraction. Continuous saturation of soil subsamples with0.20 mol/L NH4Cl, which is the first step for determination of thenegative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. Itwas found that the percentage desorption of heavy metals from soilsubsamples depended greatly on pH, the composition and originalheavy metal content of the soil subsamples. However, most of theheavy metals in the soil subsamples were still retained aftermultiple saturation. Compared with the parent soil, the negativesurface charge of soil subsamples loaded with heavy metals did notshow differ significantly from that of the parent one bystatistical analysis. Heavy metals existed in the soil subsamplesmainly as exchangeable and precipitated simultaneously.

  10. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  11. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  12. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing

    Institute of Scientific and Technical Information of China (English)

    CHIRENDE; Benard; SIMALENGA; Timothy; Emmanuel

    2010-01-01

    Past researches have shown that the non-smooth body surfaces of soil burrowing animals help to reduce soil resistance. In this research, this concept of bionic non-smooth surface was applied to disc ploughs and an experiment was conducted in an indoor soil bin to find out the effects of different bionic units on reducing soil resistance to disc ploughing. Horizontal force acting on the disc plough during soil deformation was measured using a 5 kN sensor. Convex and concave bionic units were used and the material used for making convex ones is ultra high molecular weight polyethylene (UHMWPE) which is hydrophobic. From the experiment results, higher or deeper bionic units always resulted in less soil resistance. Convex bionic units gave the highest resistance reduction reaching a maximum of 19% reduction (from 1715.36 N to 1383.65 N) compared to concave bi-onic units. Also, samples with a bionic unit density of 30% gave the highest resistance reduction compared to the other two, which were either plain or had 10% density. In conclusion, the concept of bionic non-smooth units can be applied to disc ploughs in order to reduce soil resistance.

  13. Surface-Correlated Nanophase Iron Metal in Lunar Soils: Petrography and Space Weathering Effects

    Science.gov (United States)

    Keller, Lindsay P.; Wentworth, Susan J.; McKay, David S.

    1998-01-01

    Space weathering is a term used to include all of the processes that act on material exposed at the surface of a planetary or small body. In the case of the Moon, it includes a variety of processes that formed the lunar regolith, caused the maturation of lunar soils, and formed patina on rock surfaces. The processes include micrometeorite impact and reworking, implantation of solar wind and flare particles, radiation damage and chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputtering erosion and deposition. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Understanding these effects is critical in order to fully integrate the lunar sample collection with remotely sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, Galileo). Our objective is to determine the origin of space weathering effects in lunar soils through combined electron microscopy and microspectrophotometry techniques applied to individual soil particles from lunar soils. It has been demonstrated that it is the finest size fraction (lunar soils that dominates the optical properties of the bulk soils.

  14. Proton Dissociation from Surfaces of Variable Charge Soil and Minerals

    Institute of Scientific and Technical Information of China (English)

    LUYA-HAI; HUANGCHANG-YONG; 等

    1994-01-01

    Experiments on proton dissociation from the surfaces of goethite,amorphous Al oxide.kaolinite and latosol were carried out,showing amphoteric behavior with reacions of proton dissociation-association on the surfaces and buffering capacity in such a sequence as amorphous Al oxide>latosol>kaolinite>goethite.Dissociation constants of surface proton,pKsa are significantly correlated with surface charge density,which has been proved with an elecrochemical model.The intrinsic constants of proton dissociation,Ksa(int),gained by eptrapolation to zero charge conditions of plots of pKsa against σ0,could be used to estimate the acidity strength of variable charge surfaces,The value of pKsa(int) is 8.08 for goethite,1.2 for a morphous Al oxide,6.62 for kaolinite and 5.32 for latosol.

  15. 10Be inventories in Alpine soils and their potential for dating land surfaces

    Science.gov (United States)

    Egli, Markus; Brandová, Dagmar; Böhlert, Ralph; Favilli, Filippo; Kubik, Peter W.

    2010-07-01

    To exploit natural sedimentary archives and geomorphic landforms it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. This paper explores the applicability of soil dating using the inventory of meteoric 10Be in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or the surface exposure determination using in situ produced 10Be). Consequently, a direct comparison of the ages of the soils using meteoric 10Be and other dating techniques was made possible. The estimation of 10Be deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric 10Be deposition rates as a function of the annual precipitation rate, b) a constant 10Be input for the Central Alps, and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the 10Be inventory in soils and on scenario a) for the 10Be input agreed reasonably well with the age using surface exposure or radiocarbon dating. The ages obtained from soils using scenario b) produced ages that were mostly too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the 10Be inventory and 10Be deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The calculated erosion rates using these scenarios seemed to be plausible with values in the range of 0-57 mm/ky. The dating of soils using 10Be has

  16. 10Be inventories in Alpine soils and their potentiality for dating land surfaces

    Science.gov (United States)

    Egli, Markus; Brandová, Dagmar; Böhlert, Ralph; Favilli, Filippo; Kubik, Peter W.

    2010-05-01

    To exploit natural archives and geomorphic objects it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. We explored the applicability of soil dating using the inventory of meteoric Be-10 in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or surface exposure dating using in situ produced Be-10). Consequently, a direct comparison of the ages of the soils using meteoric Be-10 and other dating techniques was made possible. The estimation of Be-10 deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric Be-10 deposition rates as a function of the annual precipitation rate, b) a constant Be-10 input for the Central Alps and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the Be-10 inventory in soils and on scenario a) for the Be-10 input agreed reasonably well with the expected age (obtained from surface exposure or radiocarbon dating). The ages obtained from soils using scenario b) produced mostly ages that were too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the Be-10 inventory and Be-10 deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The estimated erosion rates are in a reasonable range. The dating of soils using Be-10 has several potential error sources. Analytical errors as well as errors

  17. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

    Science.gov (United States)

    De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.

    2016-12-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  18. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Directory of Open Access Journals (Sweden)

    W. Sun

    2015-07-01

    Full Text Available Soil exchange of carbonyl sulfide (COS is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments, but not explicitly resolved diffusion in the soil column. We developed a 1-D diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP, OK, USA and an oak woodland (Stunt Ranch Reserve, CA, USA. The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled, and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  19. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Science.gov (United States)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-10-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  20. The influence of surface reflectance anisotropy on estimation of soil properties

    Science.gov (United States)

    Bartholomeus, Harm; Roosjen, Peter; Clevers, Jan

    2014-05-01

    The spatial variation in soil properties is an important factor for agricultural management. Unmanned airborne vehicles (UAV's) equipped with a hyperspectral mapping system may provide these data, but anisotropic reflectance effects may have an influence on the derived soil properties. Besides influencing the reflectance, angular observations may deliver added information about soil properties. We investigated the anisotropic behavior of 59 soil samples with a large variation in soil composition, by measuring their reflectance (350-2500 nm) over 92 different angles using a robot-based laboratory goniometer system. The results show that the anisotropic behavior of the soils influences the measured reflectance significantly, which limits the accurate prediction of soil properties (OM and clay especially). However, prediction accuracies of OM increase when spectra are measured under specific angles. Prediction accuracies further increase when a combination of observation angles is being used. Apart from that, using UAV's the wavelength range is limited to about 1000 nm. In general, this will decrease the model performance, but our results show that this effect can largely be compensated by combining multiple observation angles. Altogether, we demonstrate that surface anisotropy influences the prediction of soil properties negatively. This effect can be reduced by combining spectra acquired under different angles. Moreover, predictions can be improved if combinations of different observation angles are used.

  1. Nutrient Availability in the Surface Horizons of Four Tropical Agricultural Soils in Mali

    Directory of Open Access Journals (Sweden)

    Verloo, MG.

    2002-01-01

    Full Text Available Studies of nutrient availability are important for the understanding and the estimation of soil fertility in areas like West Africa, where low nutrient availability is still one of the major constraints for food production. Physico-chemical soil analyses were used to assess the fertility status of the surface horizon samples of four Malian agricultural soils, (Bougouni, Kangaba, Baguinéda and Gao abbreviated as Bgni, Kgba, Bgda and Gao. Soil texture was sandy loam for Bgni and Kgba, sandy clay loam for Bgda and loamy sand for Gao. Soil pH values varied from moderately acid for Bgda to neutral for the other sites. Organic carbon ranged from very low (for Gao or low (for Bgni and Bgda to medium (for Kgba. Total N, P and CEC were low for the four soils. Available contents of Fe and Mn in all soils, except Gao, were higher than the critical levels while available Cu and Zn contents (except in Kgba were below or close to it. Results indicated that Kgba soil had a better macronutrient status for plant growth than the other sites.

  2. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  3. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  5. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  6. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    OpenAIRE

    2012-01-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using

  7. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    OpenAIRE

    2012-01-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using <...

  8. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  9. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  10. Mapping surface soil moisture using an aircraft-based passive microwave instrument: algorithm and example

    Science.gov (United States)

    Jackson, T. J.; Le Vine, David E.

    1996-10-01

    Microwave remote sensing at L-band (21 cm wavelength) can provide a direct measurement of the surface soil moisture for a range of cover conditions and within reasonable error bounds. Surface soil moisture observations are rare and, therefore, the use of these data in hydrology and other disciplines has not been fully explored or developed. Without satellite-based observing systems, the only way to collect these data in large-scale studies is with an aircraft platform. Recently, aircraft systems such as the push broom microwave radiometer (PBMR) and the electronically scanned thinned array radiometer (ESTAR) have been developed to facilitate such investigations. In addition, field experiments have attempted to collect the passive microwave data as part of an integrated set of hydrologic data. One of the most ambitious of these investigations was the Washita'92 experiment. Preliminary analysis of these data has shown that the microwave observations are indicative of deterministic spatial and temporal variations in the surface soil moisture. Users of these data should be aware of a number of issues related to using aircraft-based systems and practical approaches to applying soil moisture estimation algorithms to large data sets. This paper outlines the process of mapping surface soil moisture from an aircraft-based passive microwave radiometer system for the Washita'92 experiment.

  11. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-12-01

    Full Text Available This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%, this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  12. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    Science.gov (United States)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  13. Influence of vegetation, soil and antecedent soil moisture on the variability of surface runoff coefficients at the plot scale in the eastern alps

    Science.gov (United States)

    Chifflard, P.; Kohl, B.; Markart, G.; Kirnbauer, R.

    2009-04-01

    Modelling the runoff of a catchment in a high spatial resolution, you need to know the potential of a single plot to generate surface runoff. The portion of surface runoff is highly significant for storm runoff events, accordingly, it mainly forms the hydrograph. In this study, the influence of vegetation, soil features and antecedent soil moisture on generating surface runoff at the plot scale have been analysed. To achieve an appropriate fit of the plots, a plot sizes between 50 and 400 m² were chosen. The rainfall intensities ranged between 10 mm/h and 100 mm/h. Based on 260 rain simulations with a transportable sprinkling instrumentation on representative plots in the eastern Alps (Austria, Italy, Germany), including investigations on land-use, vegetation cover and soil physical characteristics, various soil-vegetation complexes and their surface runoff processes have been be analysed. Additionally, we investigated flow paths, travel distance, infiltration hindrance, flow resistance and overland flow velocity. The soil water status was monitored by using TDR-probes, which had been installed in two profiles within the plot in different depths ranging from 5 cm to 40 cm. For every sprinkling experiment, a surface runoff coefficient was calculated as the ratio between total rainfall amount and surface runoff. With this substantial dataset, the regression analysis was used to examine the influence of the hydrological key factors as soil, vegetation and initial soil moisture condition on the distribution functions of the surface runoff coefficient. The first results show that the vegetation cover is very important for the surface runoff. If initial soils are covered by alpine or sub-alpine pioneering vegetation surface runoff can be found very scarce. If these initial soils are covered i.e. by subalpine nardus grasslands the surface runoff coefficients range from 0.1 up to 0.8. On the other hand it can be shown that soils with a high bulk density mainly generate

  14. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    Science.gov (United States)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, σ {}(z) ={}σ c0{}+Σ 1n[σ n{}(z){}+anz + bnz2] and dσ /dz = Σ 1n[dσ n(z) /dz{} {}+{}Frn(z)] where σ c0 and σ n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both σ n(z) and Frn(z) are related to soil structure. They determine the form of σ {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the

  15. Landscape position and surface curvature effects on soils developed in the Palouse area, Washington

    Science.gov (United States)

    Girgin, Burhan N.; Frazier, Bruce E.

    1996-11-01

    The Palouse region of eastern Washington is characterized by complex rolling hills with high erosion susceptibility. Various aspect and slope classes along with different soil types also create complex patterns in soil fertility and crop productivity. Division of fields into different units and addressing each unit as a separate management zone has been gaining importance in recent years. Landscape modeling is one of the tools that helps define management zones based on the spatial variability of the soil and topographic characteristics. In addition to comprehensive models, there is an increasing demand for simpler techniques to assist planners with field scale, day-to-day land management. The objective of this study was to develop a simple landscape model within a geographical information systems (GIS) framework to evaluate the effects of spatial variability of topographic factors on soil genesis. For this purpose, a commercial wheat farm was chosen as the research site and a digital elevation model (DEM) of the site was prepared. Landscape parameters such as slope, aspect and tangential curvature were calculated. GIS overlay of these values were georeferenced and combined with other data layers such as soil maps and air photos. Soil samples were collected on three different transects and representative pits were opened for further evaluation of soil properties. Depth to E horizon was measured for all sampling locations. Results indicate that spatial distribution of E horizon can be estimated by surface curvature, slope and aspect. Study also shows that contrasting soils that are in close proximity to each other, too close to be separated on conventional soil maps, can be detected with the help of landscape parameters. Big map units that extend over several hillslope positions can be further divided into smaller units to receive separate agricultural management based on soil, water relationships defined by these landscape parameters.

  16. STIR Proposal For Research Area 2.1.2 Surface Energy Balance: Transient Soil Density Impacts Land Surface Characteristics and Characterization

    Science.gov (United States)

    2015-12-22

    SECURITY CLASSIFICATION OF: Soil density is commonly treated as static in studies on land surface property dynamics. Magnitudes of errors associated...properties, and ii) evaluate impact of changing soil density on surface energy balance and heat and water transfer. Six soil properties were...ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT

  17. A new elliptic-parabolic yield surface model revised by an adaptive criterion for granular soils

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An adaptive criterion for shear yielding as well as shear failure of soils is proposed in this paper to address the fact that most criteria,including the Mohr-Coulomb criterion,the Lade criterion and the Matsuoka-Nakai criterion,cannot agree well with the experimental results when the value of the intermediate principal stress parameter is too big.The new criterion can adjust an adaptive parameter based on the experimental results in order to make the theoretical calculations fit the test results more accurately.The original elliptic-parabolic yield surface model can capture both soil contraction and dilation behaviors.However,it normally over-predicts the soil strength due to its application of the Extended Mises criterion.A new elliptic-parabolic yield surface mode is presented in this paper,which introduces the adaptive criterion in three-dimensional principal stress space.The new model can well model the stress-strain behavior of soils under general stress conditions.Compared to the original model which can only simulate soil behavior under triaxial compression conditions,the new model can simulate soil behaviors under both triaxial compression conditions and general stress conditions.

  18. Space Weathering Effects in Lunar Soils: The Roles of Surface Exposure Time and Bulk Chemical Composition

    Science.gov (United States)

    Zhang, Shouliang; Keller, Lindsay P.

    2011-01-01

    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).

  19. Soil Surface Leak Detection From Carbon Storage Sites Using ∆(CO2:O2) Measurements

    Science.gov (United States)

    Alam, M. M.; Norman, A. L.; Layzell, D. B.

    2015-12-01

    The early detection and remediation of CO2 leaks from Carbon Capture and Storage (CCS) sites is essential for the safety and public support of the technology. A model that integrates gas diffusion, mass flow and biological processes in soils was developed and used to predict the ∆CO2 and ∆O2 concentration differential between the soil surface and the bulk atmosphere under a wide range of environmental conditions that include temperature, soil gas and water content, soil respiratory quotient and rate of O2 uptake, soil porosity and CO2 leakage rate. The results predicted that measurement of ∆(CO2:O2) measurements at the soil surface relative to air should be able to detect a CCS leak as low as 2 µmol/m2/sec. To test this hypothesis, a gas analysis system was designed and constructed. It should allow a series of experiments under controlled conditions to test all aspects of the model. It is hoped that the results from this work will ultimately lead to the development of a new instrument and protocol for the early detection of CO2 leaks from a geological storage sites.

  20. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    Science.gov (United States)

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  1. Non-destructive image analysis of soil surface porosity and bulk density dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F., E-mail: lfpires@uepg.b [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Cassaro, F.A.M. [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Bacchi, O.O.S.; Reichardt, K. [Laboratory of Soil Physics, Center for Nuclear Energy in Agriculture, USP/CENA, C.P. 96, C.E.P. 13.400-970, Piracicaba, SP (Brazil)

    2011-04-15

    A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey soil samples with surface compaction submitted to wetting and drying (W-D) cycles. The obtained results indicate that W-D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about 6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the thickness of the compacted region that in our case was of about 8.19 mm. This last information is very important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis showed that the compacted region remained at the surface samples, even after the application of the W-D cycles. -- Research highlights: {yields} Gamma-ray tomography allowed non-destructive analysis of soil bulk density and porosity changes. {yields} Soil porosity increased about 10% with the wetting and drying cycles. {yields} Soil bulk density in the compacted region decreased about 6% with the wetting and drying cycles. {yields} Detailed bulk density and porosity analysis changes were obtained for layers of 1.17 mm.

  2. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  3. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-06-01

    Full Text Available The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively. When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  4. Bacteria-mineral interactions in soil and their effect on particle surface properties

    Science.gov (United States)

    Miltner, Anja; Achtenhagen, Jan; Goebel, Marc-Oliver; Bachmann, Jörg; Kästner, Matthias

    2015-04-01

    Interactions between bacteria or their residues and mineral surfaces play an important role for soil processes and properties. It is well known that bacteria tend to grow attached to surfaces and that they get more hydrophobic when grown under stress conditions. In addition, bacterial and fungal biomass residues have recently been shown to contribute to soil organic matter formation. The attachment of bacteria or their residues to soil minerals can be expected to modify the surface properties of these particles, in particular the wettability. We hypothesize that the extent of the effect depends on the surface properties of the bacteria, which change depending on environmental conditions. As the wettability of soil particles is crucial for the distribution and the availability of water, we investigated the effect of both living cells and bacterial residues (cell envelope fragments and cytosol) on the wettability of model mineral particles in a simplified laboratory system. We grew Pseudomonas putida cells in mineral medium either without (unstressed) or with additional 1.5 M NaCl (osmotically stressed). After 2 h of incubation, the cells were disintegrated by ultrasonic treatment. Different amounts of either intact cells, cell envelope fragments or cytosol (each corresponding to 108, 109, or 1010 cells per gram of mineral) were mixed with quartz sand, quartz silt or kaolinite. The bacteria-mineral associations were air-dried for 2 hours and analyzed for their contact angle. We found that the surfaces of osmotically stressed cells were more hydrophobic than the surfaces of unstressed cells and that the bacteria-mineral associations had higher contact angles than the pure minerals. A rather low surface coverage (~10%) of the mineral surfaces by bacteria was sufficient to increase the contact angle significantly, and the different wettabilities of stressed and unstressed cells were reflected in the contact angles of the bacteria-mineral associations. The increases in

  5. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  6. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank.

    Science.gov (United States)

    Swaileh, K M; Hussein, R M; Abu-Elhaj, S

    2004-07-01

    Concentrations of heavy metals (Pb, Cd, Cu, Zn, Fe, Mn, Ni, and Cr) were investigated in roadside surface soil and the common perennial herb inula (Inula viscosa L., Compositae). Samples were collected at different distances (0-200 m) perpendicular to a main road that connects two main cities in the West Bank. Average concentrations of metals in soil samples were: Pb, 87.4; Cd, 0.27; Cu, 60.4; Zn, 82.2; Fe, 15,700; Mn, 224; Ni, 18.9; and Cr, 42.4 microg x g(-1). In plant leaves, concentrations were: Pb, 7.25; Cd, 0.10; Cu, 10.6; Zn, 47.6; Fe, 730; Mn, 140; Ni, 4.87; and Cr, 7.03 microg x g(-1). Roadside contamination was obvious by the significant negative correlations between concentrations of metals in soil and plant samples and distance from road edge. Only cadmium concentrations in soil and plant samples were not associated with roadside pollution. Roadside contamination in plants and soil did not extend much beyond a 20 m distance from road. I. viscosa reflected roadside contamination better than soil and their metal concentrations showed much less fluctuations than those in soil samples. Washing plant leaves decreased Pb and Fe concentrations significantly, indicating a significant aerial deposition of both. I. viscosa can be considered as a good biomonitor for roadside metal pollution.

  7. Controlling factors of surface soil moisture temporal stability at watershed scale

    Science.gov (United States)

    Wei, Lingna; Chen, Xi; Dong, Jianzhi; Gao, Man

    2016-04-01

    Soil moisture plays a significant role in the land surface-atmosphere interactions. Temporal stability was frequently used for estimating areal mean soil moisture using limited number of point measurements. This study investigated the factors that determine soil moisture temporal stability using simulated high spatial resolution soil moisture data at watershed scale. Results show locations under dominate vegetation cover and with low topographic wetness index (TI) values are likely to provide reasonable areal mean soil moisture estimates. We demonstrated that including the information of vegetation cover and TI can effectively reduce the number of the sampling locations that required for determining the representative point. The length of sampling period is also shown to be important in correctly determining the representative point. When 10 sampling points were used, a sampling period of approximately 300 days can provide robust areal mean soil moisture estimates of the entire study period of 9 years. The presented study may be useful for improving our skills in applying the temporal stability method for areal mean soil moisture estimating, and hence remote sensing product validation.

  8. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    Science.gov (United States)

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  9. Elevated soil CO2 efflux at the boundaries between impervious surfaces and urban greenspaces

    Science.gov (United States)

    Wu, XiaoGang; Hu, Dan; Ma, ShengLi; Zhang, Xia; Guo, Zhen; Gaston, Kevin J.

    2016-09-01

    Impervious surfaces and greenspaces have significant impacts on ecological processes and ecosystem services in urban areas. However, there have been no systematic studies of how the interaction between the two forms of land cover, and especially their edge effects, influence ecosystem properties. This has made it difficult to evaluate the effectiveness of urban greenspace design in meeting environmental goals. In this study, we investigated edge effects on soil carbon dioxide (CO2) fluxes in Beijing and found that soil CO2 flux rates were averagely 73% higher 10 cm inwards from the edge of greenspaces. Distance, soil temperature, moisture, and their interaction significantly influenced soil CO2 flux rates. The magnitude and distance of edge effects differed among impervious structure types. Current greening policy and design should be adjusted to avoid the carbon sequestration service of greenspaces being limited by their fragmentation.

  10. Phosphorus transport with runoff of simulated rainfall from purple-soil cropland of different surface conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; ZHANG Jin-zhong; ZHU Bo; ZHOU Pei; MIAO Chi-yuan; WANG Tao

    2008-01-01

    We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces, respectively. Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min, a downfall of 0.90 mm/min, and a rainstorm of 1.86 mm/min. Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity, the slope and surface conditions of cropland. The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff, but has little influence on runoff process at the same sloping degree. Vegetated soil has a smaller phosphorous loss, particularly much less in the particulate form. A heavier rainfall flushes away more phosphorous. Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous. Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could, if not controlled properly, deteriorate the water quality of the Three Gorges Reservoir.

  11. Measurement of light polarization characteristics from an oil-polluted soil surface in near-infrared bands

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan; SHENG LianXi; LIKe; ZHAO NaiZhuo; ZHAO YunSheng

    2009-01-01

    Oil pollution can be monitored by infrared remote sensing technology. In this work, the degree of pola-rization (DOP) was established as a quantitative index of oil pollution. The crude oil and the local typical surface soil from the Songyuan oil field in Jilin province were collected. Some soil samples with four levels of oil content and three levels of water content were prepared and measured. The DOP of the polluted soil and the clean soil in the field was also measured at 180° relative viewing azimuth angle, and 10°, 30° and 50° viewing zenith angles. It was found that with rising soil oil content, the DOP of the reflected light on the soil surface increased when the soil water content was low, and decreased when the soil water content was high.

  12. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  13. SURFACE RUNOFF AND SOIL ORGANIC MATTER AVAILABILITY IN BAMBOO-BASED AGROFORESTRY IN LOMBOK TIMUR DISTRICT

    Directory of Open Access Journals (Sweden)

    Cecep Handoko

    2012-12-01

    Full Text Available Bamboo-based agroforestry is suitable for soils which are poor in nutrient. The characteristics of bamboo and the rapid closure of  its canopy improve soil cover, soil nutrient availability and soil moisture  content,  and  prevent  erosion  by reducing surface runoff. The  research was aimed at determining the factors that influenced surface runoff and the availability of soil organic matter (SOM in the bamboo-based agroforestry in East Lombok. Research was done from March 2010 to March 2011 in Lenek Daya village, Aikmel sub-district, East Lombok district. The research plots were located on slopes of 0-15o, 30-45o, and 45-65o; with bamboo canopy closures of 0-25%, 25-50%, 50-75%, and over 75%. The research involving 12 plots, each in 4 x 12 m size. Measurements included surface runoff, bamboo canopy closure, weeds and bamboo leaves litter weight, rainfall depth and duration, dissolved sediment, and soil physical and chemical properties as well as SOM. Correlation and multiple linear regression tests were used in data analysis. The results of the regression tests showed a change in surface runoff which was influenced by changes in bamboo canopy closure, rain duration, rain intensity and soil sand fraction, each by -0.019, 0.418, 0.049 and -0.065 respectively. Rain duration was the highest influencing variable, whereas bamboo canopy closure significantly decreased surface runoff. Bamboo canopy closure had no correlation with the increase of SOM. But, the increase of SOM had correlation with the increase of  soil cation exchange capacity (CEC. The positive impact of  bamboo canopy closure  on  Regosol soil fertility in  bamboo-based  agroforestry land  was determined  by  land management intensity which could increase the availability of SOM and decrease phosphorus element loss due to leaching of nutrient.

  14. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.

  15. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation.The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data assimilation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in consideration of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process,while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heterogeneity and soil water thawing and freezing. With the improvement of soil moisture simulation,the soil temperature-simulated precision can be also improved to some extent.

  16. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    Science.gov (United States)

    Helas, G.; Andreae, M. O.

    2008-10-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  17. Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain–snow transition zone

    OpenAIRE

    P. R. Kormos; Marks, D.; Williams, C J; H. P. Marshall; P. Aishlin; D. G. Chandler; J. P. McNamara

    2014-01-01

    A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain–snow transition zone. This type of data set is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow (ROS) events. Surface so...

  18. Soil development and sampling strategies for the returned Martian surface samples

    Science.gov (United States)

    Gibson, Everett K.

    1988-01-01

    Sampling of the Martian surface materials should be based on the experience gained from the study of soils and rocks collected in cold, dry environments, i.e., dry valleys of Antarctica. Previous studies have suggested that some of our best terrestrial analogs of the Martian soils are represented by those found in the polar deserts of Antarctica. Special sampling considerations must be taken into account when obtaining these samples because they represent at least five distinct types of materials. Weathering of planetary regolith materials occurs from both chemical and physical interactions of the planet's surface materials with the atmosphere and, if present, the hydrosphere and biosphere along with extraplanetary objects which may produce the original surface materials and produce secondary materials that are product of equilibrium between the atmosphere and study weathering processes and regolith development occurring on Martian-like surfaces, simulation studies must be carried out in materials in the field.

  19. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  20. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S. [Peking University, Beijing (China)

    2007-05-15

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.

  1. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  2. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    Science.gov (United States)

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  3. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  4. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    Andreae, M. O.; G. Helas

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  5. System reliability analysis of layered soil slopes using fully specified slip surfaces and genetic algorithms

    OpenAIRE

    Zeng, Peng; Jiménez Rodríguez, Rafael; Jurado Piña, Rafael

    2015-01-01

    This paper presents a new approach to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes and to compute their system probability of failure, Pf,s. Spencer's method is used to compute the factors of safety of trial slip surfaces, and the First Order Reliability Method (FORM) is employed to efficiently evaluate their reliability. A custom-designed Genetic Algorithm (GA) is developed to search all the RSSs in only one GA optimization. Taking advantage of the ...

  6. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion

    NARCIS (Netherlands)

    Spekken, Mark; Bruin, De Sytze; Molin, José Paulo; Sparovek, Gerd

    2016-01-01

    Soil erosion in arable fields is intensified on irregular surfaces. Although machine and crop-row patterns following terrain contours reduce runoff and increase water infiltration, these contours are almost never parallel while machine operations always are. In this work, a method is presented to

  7. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  8. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alexander

    2015-01-01

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60°C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when...

  9. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  10. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    Science.gov (United States)

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  11. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture

    NARCIS (Netherlands)

    Dorigo, W.A.; Jeu, de R.A.M.; Chung, D.; Parinussa, R.M.; Liu, Y.; Wagner, W.; Fernandez-Prieto, D.

    2012-01-01

    [1] Global trends in a new multi-satellite surface soil moisture dataset were analyzed for the period 1988–2010. 27% of the area covered by the dataset showed significant trends (p = 0.05). Of these, 73% were negative and 27% positive. Subtle drying trends were found in the Southern US, central Sout

  12. Interactions between metal ions and biogeo-surfaces in soil and water

    NARCIS (Netherlands)

    Weng, L.

    2002-01-01

    To provide the basis for an improved quantitative risk assessment of heavy metals in the environment, the interactions between the metal ions and the biogeo-surfaces in soil and water were studied using both experimental and modelling approaches.The Donnan membrane technique was developed and optimi

  13. Nighttime exchange processes near the soil surface of a maize canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; van Boxel, J.H.; Nieveen, J.

    1996-01-01

    The exchange process in the lower region of a maize canopy is analyzed for two nights. It appears that during calm nights a free convection state develops in the lower region of the canopy. Convective heat is released at the soil's surface and transported directly to the higher portion of the

  14. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  15. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  16. Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration

    Science.gov (United States)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2017-06-01

    At very high resolution scale (i.e. grid cells of 1 km2), land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs) made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES) were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.

  17. Temporal and spatial development of surface soil conditions at two created riverine marshes.

    Science.gov (United States)

    Anderson, Christopher J; Mitsch, William J; Nairn, Robert W

    2005-01-01

    The amount of time it takes for created wetlands to develop soils comparable to natural wetlands is relatively unknown. Surface soil changes over time were evaluated in two created wetlands (approximately 1 ha each) at the Olentangy River Wetland Research Park in Columbus, Ohio. The two wetlands were constructed in 1993 to be identical in size and geomorphology, and maintained to have the same hydrology. The only initial difference between the wetlands was that one was planted with native macrophytes while the other was not. In May 2004, soil samples were collected (10 yr and 2 mo after the wetlands were flooded) and compared to samples collected in 1993 (after the wetlands were excavated but before flooding) and 1995 (18 mo after the wetlands were flooded). In all three years, soils were split into surface (0-8 cm) and subsurface (8-16 cm) depths and analyzed for soil organic matter, total C, total P, available P, exchangeable cations, and pH. Soils in the two wetlands have changed substantially through sedimentation and organic accretion. Between 1993 and 1995, soils were most influenced by the deposition of senescent macroalgae, the mobilization of soluble nutrients, and the precipitation of CaCO(3). Between 1995 and 2004, soil parameters were influenced more by the deposition of organic matter from colonized macrophyte communities. Mean percent organic matter at the surface increased from 5.3 +/- 0.1% in 1993, 6.1 +/- 0.2% in 1995, to 9.5 +/- 0.2% in 2004. Mean total P increased from 493 +/- 18 microg g(-1) in 1993, 600 +/- 23 microg g(-1) in 1995, to 724 +/- 20 microg g(-1) in 2004. Spatial analyses of percent organic matter (a commonly used indicator of hydric soil condition) at both wetlands in 1993, 1995, and 2004 showed that soil conditions have become increasingly more variable. High spatial structure (autocorrelation) between data points was detected in 1993 and 2004, with data in 2004 exhibiting a much higher overall variance and narrower range of

  18. Mapping Surface Soil Moisture With Synthetic Aperture Radar Data and Basin Indexes

    Science.gov (United States)

    Yilmaz, M.; Sorman, A.; Sorman, U.

    2008-12-01

    The soil moisture condition of a watershed plays a significant role in separation of infiltration and surface runoff, and hence is a key parameter for the majority of physical hydrological models. Due to the large difference in dielectric constants of dry soil and water, microwave remote sensing (particularly the commonly available synthetic aperture radar) is a potential tool for such studies. The main aim of this study is to compute a distributed soil moisture map of a catchment, which can be input to a hydrological model. For this purpose, nine field trips are performed and point surface soil moisture values are collected with a Time Domain Reflectometer. The field studies, which are carried out on a small catchment in western Anatolia, are planned to match radar image acquisitions and accomplished over a water year. First, the Dubois Model, a physical backscatter model is utilized in the reverse order to compute soil surface roughness values. This is accomplished for the field study dates which have two radar image acquisitions and with sparse vegetation cover. Then the first relationship of this study, between observed radar backscatter values and computed roughness values, is established with a correlation coefficient of 0.78. For bare soil surfaces, local incidence angle, soil moisture and roughness are the most dominant parameters effecting radar backscatter. After computing the incidence angle map of the study area, the second relationship, between observed radar backscatter values and the three governing parameters, is determined with a correlation coefficient of 0.87. The third and the last relationship of the study is estimated between the measured point soil moisture values and two basin indexes; topographic and solar radiation. In the last part of the study, the established three relationships, which are derived for point moisture measurements, are used to compute the soil moisture map of the whole catchment. This process is handled separately for the

  19. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  20. The effect of surface cover and soil devastation on infiltration rate in steep forest plantations

    Science.gov (United States)

    Onda, Y.; Hiraoka, M.; Kato, H.; Gomi, T.; Miyata, S.; Mizugaki, S.

    2008-12-01

    The Japanese cypress (Hinoki; Chamaecyparis obtusa) is a major commercial tree species in Japan, and without thinning of high-density stands, canopy closure prevents development of understory vegetation. Therefore there is a concern for overlandflow and sediment yield due to infiltration rate lowering. We developed a light-weight rainfall simulator based on the design of Meyer and Harmon (1979). A flat fan Veejet 80150 spraying nozzle (Spraying systems Co., USA) is mounted on the manifold at 2.13 m high from the plot surface. The nozzle oscillates so that the spray fan sweeps across the targeting 1 m x 1 m plot. The Veejet 80150 spraying nozzle produces large raindrops larger than 2 mm in diameter, and can simulate the high raindrop kinetic energy of natural throughfall. A targeted rainfall rate is 180 mm/h. About 30 sprinkling experiments have been conducted on 35-degree hillslopes with varying surface cover in 5 locations in Japan. We obtained the minimum infiltration rate of 14 mm/h where the surface cover is very little. The infiltration rates were plotted against the total understory vegetation and dry weight of total surface cover including litter. The infiltration rate increased with the increasing total surface cover, and generally higher regression coefficient was found for the case of the total surface cover. In some cases, high infiltration rates were obtained where surface cover is low. Two possible explanations can be made; 1) surface soil (especially fine particles) has been washed away, where soil is mostly composed of gravel and the percentage of fine fraction is low, or 2) because of long-term soil loss by raindrop detachment, remaining soil looks like "ghanging"h between exposed fine root networks of Japanese cypress, where soil bulk density is significantly lower than other site. Therefore the infiltration rate in the devastated Japanese cypress plantations is not only controlled by loss of surface vegetation by low light condition, but soil

  1. Rapid selection of a representative monitoring location of soil water content for irrigation scheduling using surface moisture-density gauge

    Science.gov (United States)

    Mubarak, Ibrahim; Janat, Mussadak; Makhlouf, Mohsen; Hamdan, Altayeb

    2016-10-01

    Establishing a representative monitoring location of soil water content is important for agricultural water management. One of the challenges is to develop a field protocol for determining such a location with minimum costs. In this paper, we use the concept of time stability in soil water content to examine whether using a short term monitoring period is sufficient to identify a representative site of soil water content and, therefore, irrigation scheduling. Surface moisture-density gauge was used as a means for measuring soil water content. Variations of soil water content in space and time were studied using geostatistical tools. Measuring soil water content was made at 30 locations as nodes of a 6×8 m grid, six times during the growing season. A representative location for average soil water content estimation was allocated at the beginning of a season, and thereafter it was validated. Results indicated that the spatial pattern of soil water content was strongly temporally stable, explained by the relationship between soil water content and fine soil texture. Two field surveys of soil water content, conducted before and after the 1st irrigation, could be sufficient to allocate a representative location of soil water content, and for adequate irrigation scheduling of the whole field. Surface moisture-density gauge was found to be efficient for characterising time stability of soil water content under irrigated field conditions.

  2. Multifactor analysis and simulation of the surface runoff and soil infiltration at different slope gradients

    Science.gov (United States)

    Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.

    2017-08-01

    The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.

  3. Residential surface soil guidance values applied worldwide to the original 2001 Stockholm Convention POP pesticides.

    Science.gov (United States)

    Jennings, Aaron A; Li, Zijian

    2015-09-01

    Surface soil contamination is a worldwide problem. Many regulatory jurisdictions attempt to control human exposures with regulatory guidance values (RGVs) that specify a soil's maximum allowable concentration. Pesticides are important soil contaminants because of their intentional toxicity and widespread surface soil application. Worldwide, at least 174 regulatory jurisdictions from 54 United Nations member states have published more than 19,400 pesticide RGVs for at least 739 chemically unique pesticides. This manuscript examines the variability of the guidance values that are applied worldwide to the original 2001 Stockholm Convention persistent organic pollutants (POP) pesticides (Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Mirex, and Toxaphene) for which at least 1667 RGVs have been promulgated. Results indicate that the spans of the RGVs applied to each of these pesticides vary from 6.1 orders of magnitude for Toxaphene to 10.0 orders of magnitude for Mirex. The distribution of values across these value spans resembles the distribution of lognormal random variables, but also contain non-random value clusters. Approximately 40% of all the POP RGVs fall within uncertainty bounds computed from the U.S. Environmental Protection Agency (USEPA) RGV cancer risk model. Another 22% of the values fall within uncertainty bounds computed from the USEPA's non-cancer risk model, but the cancer risk calculations yield the binding (lowest) value for all POP pesticides except Endrin. The results presented emphasize the continued need to rationalize the RGVs applied worldwide to important soil contaminants.

  4. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock

    Indian Academy of Sciences (India)

    G K Reddy; T Seshunarayana; Rajeev Menon; P Senthil Kumar

    2010-10-01

    Fracture and fault networks are conduits that facilitate groundwater movement in hard-rock terrains.Soil-gas helium emanometry has been utilized in Wailapally watershed,near Hyderabad in southern India,for the detection of fracture and fault zones in a granite basement terrain having a thin regolith.Based on satellite imagery and geologic mapping,three sites were selected for detailed investigation.High spatial resolution soil-gas samples were collected at every one meter at a depth of <1.5m along 100 m long profiles (3 in number).In addition,deep shear-wave images were also obtained using the multichannel analysis of surface waves.The study clearly indicates several soil-gas helium anomalies (above 200 ppb)along the pro files,where the shear-wave velocity images also show many near-surface vertical low velocity zones.We thus interpret that the soil-gas helium anomalous zones and the vertical low-velocity zones are probable traces of fault/fracture zones that could be efficient natural recharge zones and potential groundwater conduits.The result obtained from this study demonstrates the efficacy of an integrated approach of soil-gas helium and the seismic methods for mapping groundwater resource zones in granite/gneiss provinces.

  5. Daytime and nighttime groundwater contributions to soils with different surface conditions

    Science.gov (United States)

    Xing, Xuguang; Ma, Xiaoyi; Shi, Wenjuan

    2015-12-01

    Contributions of groundwater to the soil-water balance play an important role in areas with shallow water tables. The characteristics of daytime and nighttime water flux using non-weighing lysimeters were studied from June to September 2012 and 2013 in the extremely arid Xinjiang Uyghur Autonomous Region in northwestern China. The study consisted of nine treatments: three surface conditions, bare soil and cotton plants, each with water tables at depths of 1.0, 1.5, and 2.0 m; and plastic mulch with a water table at 1.5 m but with three percentages of open areas (POAs) in the plastic. The groundwater supply coefficient (SC) and the groundwater contribution (GC) generally varied with surface conditions. Both SC and GC decreased in the bare-soil and cotton treatments with increasing depth of the groundwater. Both SC and GC increased in the plastic-mulch treatment with increasing POA. Average nighttime GCs in the bare-soil treatments in July and August (the midsummer months) were 50.8-60.8 and 53.2-65.3 %, respectively, of the total daily contributions. Average nighttime GCs in the cotton treatments in July and August were 51.4-60.2 and 51.5-58.1 %, respectively, of the total daily contributions. The average GCs in June and September, however, were lower at night than during the daytime. Soil temperature may thus play a more important role than air temperature in the upflow of groundwater.

  6. The dust emission law in the wind erosion process on soil surface

    Institute of Scientific and Technical Information of China (English)

    XING Mao; GUO LieJin

    2009-01-01

    The dust emission models to date cannot describe the relation between the transport rate of different sized grains and their grain size composition in soil surface, so Aeolian grain transport on a soil-like bed composed of fine sand and silt powder was measured in a wind tunnel. Six types of soil-like beds with different silt fractions have been tested in this experiment. The mass flux profiles of silt dust and sand grains are much different due to their different motion modes. Analysis of the vertical distribution of the powder and sand grains reveals that for a given soil bed, the ratio of the horizontal dust flux to the horizontal sand flux is directly proportional to their mass ratio in the bed. The dust flux is closely linked to the sand flux by the bombardment mechanism. For a given wind velocity and grain size of the bed, the slopes of the vertical mass flux profiles of sand grains larger than 100 μm are nearly equal in a log-linear plot and the ratio between the fraction of transport rate of each size group to the whole transport rate and the mass fraction of each size group in the bed is a constant only dependent on grain size. With this law, the transport rate of dust and different sized grains can be related with the grain size composition in the soil surface.

  7. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  8. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  9. Dynamic surface soil components of land and vegetation types in Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-04-01

    Full Text Available Land and vegetation are important components of soil and provides many benefits to surface soil including protection against erosion, climate change impact and unacceptable degradation of soil particles. Visual Soil Assessment was used as a mechanism to assess and classify the land and vegetation types of some agricultural sites in Kebbi State, Nigeria. The aim was to get better understanding of the environmental soil function for sustainable crop production in dryland and fadama areas of the State. The assessment was able to put together combinations of different vegetation types and land age classes. It is valued that the land age classes possessed the characteristics of Holocene-natural, Holocene-anthropogeomorphic, Holocene-young-natural, young-anthropogeomorphic, very-young anthropogeomorphic and very-young natural. However, the vegetation types could be related to evergreen forest, short medium forest (scattered clustered, dwarf vegetation (scattered isolated, grass vegetation, thick vegetation, stony-grass vegetation (scattered sparse and short-length vegetation. The assessment provides an improve understanding of the current status of land and vegetation conditions of the study area and suggested regular soil management for sustainable crop production in the State.

  10. Microwave processing of lunar soil for supporting longer-term surface exploration of the Moon

    Science.gov (United States)

    Srivastava, V.; Lim, S.; Anand, M.

    2016-11-01

    The future of human space exploration will inevitably involve longer-term stays and possibly permanent settlement on the surfaces of other planetary bodies. It will, therefore, be advantageous or perhaps even necessary to utilise local resources for building an infrastructure for human habitation on the destination planetary body. In this context human lunar exploration is the next obvious step. Lunar soil is regarded as an ideal feedstock for lunar construction materials. However, significant gaps remain in our knowledge and understanding of certain chemical and physical properties of lunar soil, which need to be better understood in order to develop appropriate construction techniques and materials for lunar applications. This article reviews our current understanding of the dielectric behaviour of lunar soil in the microwave spectrum, which is increasingly recognised as an important topic of research in the Space Architecture field. Although the coupling between the lunar soil and microwave energy is already recognised, considerable challenges must be overcome before microwave processing could be used as a main fabrication method for producing robust structures on the Moon. We also review the existing literature on the microwave processing of lunar soil and identify three key research areas where future efforts are needed to make significant advances in understanding the potential of microwave processing of lunar soil for construction purposes.

  11. Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert.

    Science.gov (United States)

    Waldon, H B; Jenkins, M B; Virginia, R A; Harding, E E

    1989-12-01

    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36 degrees C than at 26 degrees C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26 degrees C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth

  12. Bermudagrass Management in the Southern Piedmont U.S. IV. Soil Surface Nitrogen Pools

    Directory of Open Access Journals (Sweden)

    Alan J. Franzluebbers

    2001-01-01

    Full Text Available The fate of nitrogen (N applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer on surface residue and soil N pools during the first 5 years of ̒Coastal̓ bermudagrass (Cynodon dactylon [L.] Pers. management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g ‧ kg–1‧ year–11 greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76–82% than under ungrazed systems (35–71%. As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g ‧ m–2 ‧ year–1. Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.

  13. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    Science.gov (United States)

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  14. a Method to Correct Yield Surface Drift in Soil Plasticity Under Mixed Control and Explicit Integration

    Science.gov (United States)

    Mattsson, Hans; Axelsson, Kennet; Klisinski, Marek

    1997-03-01

    When applying an explicit integration algorithm in e.g. soil plasticity, the predicted stress point at the end of an elastoplastic increment of loading might not be situated on the updated current yield surface. This so-called yield surface drift could generally be held under control by using small integration steps. Another possibility, when circumstances might demand larger steps, is to adopt a drift correction method. In this paper, a drift correction method for mixed control in soil plasticity, under drained as well as undrained conditions, is proposed. By simulating triaxial tests in a Constitutive Driver, the capability and efficiency of this correction method, under different choices of implementation, have been analysed. It was concluded that the proposed drift correction method, for quite marginal additional computational cost, was able to correct successfully for yield surface drift giving results in close agreement to those obtained with a very large number of integration steps.

  15. Using a scoop to derive soil mechanical parameters on the surface of Mars

    Science.gov (United States)

    Kargl, Günter; Poganski, Joshua; Kömle, Norbert I.; Schweiger, Helmut; Macher, Wolfgang

    2016-04-01

    We will report on the possibility of using the scoop attached to the instrument deployment arm to perform soil mechanical experiments directly on the surface of Mars. The Phoenix mission flown 2009 had an instrument deployment arm which was also used to sample surface material indo instruments mounted on the lander deck. The flight spare of this arm will again be flown to Mars on board the InSight mission. Although, the primary purpose of the arm and the attached scoop was not soil mechanical investigations it was already demonstrated by the Phoenix mission that the arm can be used to perform auxiliary investigations of the surface materials. We will report on modelling efforts using a Discrete Element Software package to demonstrate that simple soil mechanical experiments can be used to derive essential material parameters like e.g. angle of repose and others. This is of particular interest since it would be possible to implement experiments using the hardware of the InSight mission. PIC Cross section cut through a trench dug out by the scoop and the pile of the deposed material which both can be used to derive soil mechanical parameters.

  16. Soil Organic Carbon Stocks in Terrestrial Ecosystems of China: Revised Estimation on Three-Dimensional Surfaces

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2016-10-01

    Full Text Available The estimation of soil organic carbon (SOC stock in terrestrial ecosystems of China is of particular importance because it exerts a major influence on worldwide terrestrial carbon (C storage and global climate change. Map-based estimates of SOC stocks conducted in previous studies have typically been applied on planimetric areas, which led to the underestimation of SOC stock. In the present study, SOC stock in China was estimated using a revised method on three-dimensional (3-D surfaces, which considered the undulation of the landforms. Data were collected from the 1:4 M China Soil Map and a search work from the Second Soil Survey in China. Results indicated that the SOC stocks were 28.8 Pg C and 88.5 Pg C in soils at depths of 0–20 cm and 0–100 cm, corresponding to significant increases of 5.66% and 5.44%, respectively. Regression analysis revealed that the SOC stock accumulated with the increase of areas on 3-D surfaces. These results provide more reasonable estimates and new references about SOC stocks in terrestrial ecosystems of China. The method of estimation on 3-D surfaces has scientific meaning to promote the development of new approaches to estimate accurate SOC stocks.

  17. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Science.gov (United States)

    Liu, J.; Suo, X. M.; Zhou, S. S.; Meng, S. Q.; Chen, S. S.; Mu, H. P.

    2016-12-01

    The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT) is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI) method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  18. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics

    Science.gov (United States)

    Willenbring, Jane K.; von Blanckenburg, Friedhelm

    2010-01-01

    Rainfall scavenges meteoric cosmogenic 10Be from the atmosphere. 10Be falls to the Earth's surface, where it binds tightly to sediment particles in non-acidic soils over the life-span of those soils. As such, meteoric 10Be has the potential to be an excellent geochemical tracer of erosion and stability of surfaces in a diverse range of natural settings. Meteoric 10Be has great potential as a recorder of first-order erosion rates and soil residence times. Even though this tracer was first developed in the late 1980s and showed great promise as a geomorphic tool, it was sidelined in the past two decades with the rise of the "sister nuclide", in situ10Be, which is produced at a known rate inside quartz minerals. Since these early days, substantial progress has been made in several areas that now shed new light on the applicability of the meteoric variety of this cosmogenic nuclide. Here, we revisit the potential of this tracer and we summarize the progress: (1) the atmospheric production and fallout is now described by numeric models, and agrees with present-day measurements and paleo-archives such as from rain and ice cores; (2) short-term fluctuations in solar modulation of cosmic rays or in the delivery of 10Be are averaged out over the time scale soils accumulate; (3) in many cases, the delivery of 10Be is not dependent on the amount of precipitation; (4) we explore where 10Be is retained in soils and sediment; (5) we suggest a law to account for the strong grain-size dependence that controls adsorption and the measured nuclide concentrations; and (6) we present a set of algebraic expressions that allows calculation of both soil or sediment ages and erosion rates from the inventory of meteoric 10Be distributed through a vertical soil column. The mathematical description is greatly simplified if the accumulation of 10Be is at a steady state with its export through erosion. In this case, a surface sample allows for the calculation of an erosion rate. Explored

  19. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    Science.gov (United States)

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  20. Genesis and Development of Soils along Different Geomorphic Surfaces in Kouh Birk Area, Mehrestan City

    Directory of Open Access Journals (Sweden)

    Mohammad Akbar Bahoorzahi

    2017-02-01

    Full Text Available Introduction: The optimum and sustainable use of soil is only possible with correct and complete understanding of its properties. The objectives of the present research were to study 1 genesis and development of soils related to different geomorphic surfaces in Kouh Birk Area (Mehrestan City, 2 Soil classification according to Soil Taxonomy (2014 and WRB (2014 systems, and 3 physicochemical properties, clay mineralogy and micromorphology of soils. Materials and Methods: Mean annual rainfall and soil temperature in the selected location are 153.46 mm and 19.6 oC, respectively. From geological point of view, the studied area is a part of west and south west zones and Flysch zone of east Iran. Soil temperature and moisture regimes of this part are thermic and aridic, respectively. Eight representative pedons on different surfaces including rock pediment, mantled pediment, Alluvial fan and Upper terraces were selected, sampled, and described. Routine physicochemical analyses, clay mineralogy, and micromorphological observations performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Four samples including Bt horizon of pedon 1, Bk1 horizon of pedon 4, By2 horizon of pedon 5 and Bk1 horizon of pedon 7 were selected for clay mineralogy investigations. Four slides including Mg saturated, Mg saturated treated with ethylene glycol, K saturated, and K saturated heated up to 550 oC were analyzed. A Brucker X-Ray diffractometer at 40 kV and 30 mA was used for XRD analyses. Undisturbed soil samples from Bt horizon of pedon 1, Bk2 horizon of pedon 2, Btn horizon of pedon 3, By2 horizon of pedon 5, Bk1 horizon of pedon 7, and By1 horizon of pedon 8 were selected for micromorphological observations. A vestapol resin with stearic acid and cobalt as hardener was used for soil impregnation. Bk-Pol petrographic microscope was used for micromorphology investigations. Results and Discussion: Due to

  1. Stable carbon isotope characteristics of different plant species and surface soil in arid regions

    Institute of Scientific and Technical Information of China (English)

    Jianying MA; Wei SUN; Huiwen ZHANG; Dunsheng XIA; Chengbang AN; Fahu CHEN

    2009-01-01

    The stable carbon isotope composition in surface soil organic matter (δ13Csoil) contains integrative information on the carbon isotope composition of the standing terrestrial plants (δ13Cleaf). In order to obtain valuable vegetation information from the δ13C of terrestrial sediment, it is necessary to understand the relationship between the δ13C value in modem surface soil and the standing vegetation. In this paper, we studied the δ13C value in modem surface soil organic matter and standing vegetation in arid areas in China, Australia and the United States. The isotopic discrepancy between δ13Csoil andδ13Cleaf of the standing dominant vegetation was examined in those different arid regions. The results show that the δ13Csoil values were consistently enriched compared to the δ13Cleaf. The δ13Cleaf values were positively correlated with δ13Csoil, which suggests that the interference of microorganisms and hydrophytes on the isotopic composition of surface soil organic matter during soil organic matter formation could be ignored in arid regions. The averaged discrepancy between δ13Csoil and δ13Cleaf is about 1.71%0 in Tamarix L. in the Tarim Basin in China, 1.50 ‰ in Eucalytus near Orange in Australia and 1.22 ‰ in Artemisia in Saratoga in the United States, which are different from the results of other studies. The results indicate that the discrepancies in the δ13C value between surface soil organic matter and standing vegetation were highly influenced by the differences in geophysical location and the dominant species of the studied ecosystems. We suggest that caution should be taken when organic matter δ13C in terrestrial sediment is used to extract paleovegetation information (C3/C4 vegetation composition), as the δ13C in soil organic matter is not only determined by the ratio of C3/C4 species, but also profoundly affected by climate change induced variation in the δ13C in dominant species.

  2. Development, calibration, and performance of a novel biocrust wetness probe (BWP) measuring the water content of biological soil crusts and surface soils

    Science.gov (United States)

    Weber, Bettina; Berkemeier, Thomas; Ruckteschler, Nina; Caesar, Jennifer; Ritter, Holger; Heintz, Henno; Brass, Henning

    2015-04-01

    The surface layer of soils as transition zone between pedosphere and atmosphere plays a crucial role in exchange processes of nutrients, atmospheric gases and water. In arid and semiarid regions, this uppermost soil layer is commonly colonized by biological soil crusts (biocrusts), which cover about 46 million km2 worldwide being highly relevant in the global terrestrial carbon and nitrogen cycles. Their water status is of major concern, as activity of these poikilohydric organisms is directly controlled by their water content. On-site analyses of both bare and crusted soils thus are urgently needed to correctly model exchange processes of water, nutrients and trace gases at the soil surface. In this study we present the biocrust wetness probe (BWP), which is the first low-cost sensor to reliably measure the water content within biocrusts or the uppermost 5 mm of the substrate. Using a weak alternating current, the electrical conductivity is assessed and an automatic calibration routine allows calculating the water content and precipitation equivalent of the surface layer over time. During one year of continuous field measurements, 60 BWPs were installed in different types of biocrusts and bare soil to measure at 5-minute intervals in the Succulent Karroo, South Africa. All sensors worked reliably and responded immediately and individually upon precipitation events. Upon completion of field measurements, soil and biocrust samples were collected from all measurement spots to compile calibration curves in the lab. In most soil and biocrust samples the water content rose linearly with increasing electrical conductivity values and only for few samples an exponential relationship was observed. Measurements revealed characteristic differences in biocrust and soil wetness patterns, which affect both the water regime and physiological processes in desert regions. Thus BWPs turned out to be well suited sensors for spatio-temporal monitoring of soil water content, allowing

  3. Comparative Study on Response Surfaces for Reliability Analysis of Spatially Variable Soil Slope

    Institute of Scientific and Technical Information of China (English)

    李亮; 褚雪松

    2015-01-01

    This paper focuses on the performance of the second-order polynomial-based response surfaces on the reliability of spatially variable soil slope. A single response surface constructed to approximate the slope system failure performance functionG(X) (called single RS) and multiple response surfaces constructed on finite number of slip surfaces (called multiple RS) are developed, respectively. Single RS and multiple RS are applied to evaluate the system failure probability pf for a cohesive soil slope together with Monte Carlo simulation (MCS). It is found thatpf calculated by single RS deviates significantly from that obtained by searching a large number of potential slip surfaces, and this deviation becomes insignificant with the decrease of the number of random variables or the increase of the scale of fluctuation. In other words, single RS cannot approximateG(X) with reasonable accuracy. The value ofpf from multiple response surfaces fits well with that obtained by searching a large number of potential slip surfaces. That is, multiple RS can estimateG(X) with reasonable accuracy.

  4. Climatological evaluation of some fluxes of the surface energy and soil water balances over France

    Directory of Open Access Journals (Sweden)

    E. M. Choisnel

    Full Text Available This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951–1980. From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.

  5. Hydro-mechanical paths within unsaturated compacted soil framed through water retention surfaces

    Directory of Open Access Journals (Sweden)

    Pelizzari Benjamin

    2016-01-01

    Full Text Available Compaction is a key issue of modern earthworks... From sustainable development, a need arise of using materials for compaction under given conditions that would normally be avoid due to unpredictable pathologies. The application of compaction on fine grained soils, without a change of gravimetric water content, lead to very important modifications of the void ratio and hence suction. Therefore the hydro-mechanical behaviour of fine grained soil need to be rendered around three variables: suction, void ratio, saturation degree or water content. The barring capacity of the soil is assessed through Penetrometers (In-situ manual penetrometer, CBR in order to assess gains through compaction. The three states variables are then assessed for in situ and frame through water retention surfaces, realized from Proctor tests, in which compaction effect and path could be described.

  6. Statistical assessment of soil surface roughness for environmental applications using photogrammetric imaging techniques

    Science.gov (United States)

    Marzahn, Philip; Rieke-Zapp, Dirk; Ludwig, Ralf

    2010-05-01

    Micro scale soil surface roughness is a crucial parameter in many environmental applications. Recent soil erosion studies have shown the impact of micro topography on soil erosion rates as well as overland flow generation due to soil crusting effects. Besides the above mentioned, it is widely recognized that the backscattered signal in SAR remote sensing is strongly influenced by soil surface roughness and by regular higher order tillage patterns. However, there is an ambiguity in the appropriate measurement technique and scale for roughness studies and SAR backscatter model parametrization. While different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscatter. In the presented study, we computed high resolution digital elevation models (DEM) using a consumer grade digital camera in the frame of photogrammetric imaging techniques to represent soil micro topography from different soil surfaces (ploughed, harrowed, seedbed and crusted) . The retrieved DEMs showed sufficient accuracy, with an RMSE of a 1.64 mm compared to high accurate reference points,. For roughness characterization, we calculated different roughness indices (RMS height (s), autocorrelation length (l), tortuosity index (TB)). In an extensive statistical investigation we show the behaviour of the roughness indices for different acquisition sizes. Compared to results from profile measurements taken from literature and profiles generated out of the dataset, results indicate,that by using a three dimensional measuring device, the calculated roughness indices are more robust against outliers and even saturate faster with increasing acquisition size. Dependent on the roughness condition, the calculated values for the RMS-height saturate for ploughed fields at 2.3 m, for harrowed fields at 2.0 m and for crusted fields at 1.2 m. Results also

  7. Comparisons of computer-controlled chamber measurements for soil-skin adherence from aluminum and carpet surfaces.

    Science.gov (United States)

    Ferguson, Alesia; Bursac, Zoran; Coleman, Sheire; Johnson, Wayne

    2009-04-01

    A computer-controlled mechanical chamber was used to control the contact between carpet and aluminum sheet samples laden with soil, and human cadaver skin and cotton sheet samples for the measurement of mass soil transfer. The contact parameters of pressure (10-50 kPa) and time (10-50s) were varied for 768 experiments of mass soil transfer, where two soil types (play sand and lawn soil) and two soil particle sizes (soil mass transfer to cadaver skin was higher than mean transfer to cotton sheets for both carpet and aluminum transfers, and also generally higher pressure was associated with larger amounts of soil transfer for all contact scenarios. The mean soil adherence from carpet was 0.37+/-0.4 mg/cm(2), while the mean soil adherence from aluminum was 0.42+/-0.6 mg/cm(2). For aluminum, smaller soil particle size was associated with more transfer (p=0.0349), while for carpet, larger soil size was associated with more transfer (pSoil type was significant but only for aluminum surface, where sand was associated with higher adherence (psoils and dust present in indoor environments.

  8. Surface and downhole shear wave seismic methods for thick soil site investigations

    Science.gov (United States)

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  9. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling

    Science.gov (United States)

    Menut, Laurent; PéRez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, StéPhane

    2013-06-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  10. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  11. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  12. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  13. Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

    2014-01-01

    Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

  14. In-situ soil composition and moisture measurement by surface neutron activation analysis

    Science.gov (United States)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  15. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  16. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    Science.gov (United States)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  17. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  18. Spatial distribution of lead concentrations in urban surface soils of New Orleans, Louisiana USA.

    Science.gov (United States)

    Abel, Michael T; Suedel, Burton; Presley, Steven M; Rainwater, Thomas R; Austin, Galen P; Cox, Stephen B; McDaniel, Les N; Rigdon, Richard; Goebel, Timothy; Zartman, Richard; Leftwich, Blair D; Anderson, Todd A; Kendall, Ronald J; Cobb, George P

    2010-10-01

    Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health. Additional studies on New Orleans floodwaters revealed similar constituents as well as compounds commonly found in gasoline. More recently, it has been revealed that lead (Pb), arsenic, and vanadium are found intermittently throughout the city at concentrations greater than the human health soil screening levels (HHSSLs) of 400, 22 (non-cancer endpoint) and 390 μg/g, respectively. Of these, Pb appears to present the greatest exposure hazard to humans as a result of its extensive distribution in city soils. In this study, we spatially evaluated Pb concentrations across greater New Orleans surface soils. We established 128 sampling sites throughout New Orleans at approximately half-mile intervals. A soil sample was collected at each site and analyzed for Pb by ICP-AES. Soils from 19 (15%) of the sites had Pb concentrations exceeding the HHSSL threshold of 400 μg/g. It was determined that the highest concentrations of Pb were found in the south and west portions of the city. Pb concentrations found throughout New Orleans in this study were then incorporated into a geographic information system to create a spatial distribution model that can be further used to predict Pb exposure to humans in the city.

  19. Spatial Scaling Assessment of Surface Soil Moisture Estimations Using Remotely Sensed Data for Precision Agriculture

    Science.gov (United States)

    Hassan Esfahani, L.; Torres-Rua, A. F.; Jensen, A.; McKee, M.

    2014-12-01

    Airborne and Landsat remote sensing are promising technologies for measuring the response of agricultural crops to variations in several agricultural inputs and environmental conditions. Of particular significance to precision agriculture is surface soil moisture, a key component of the soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface and affects vegetation health. Its estimation using the spectral reflectance of agricultural fields could be of value to agricultural management decisions. While top soil moisture can be estimated using radiometric information from aircraft or satellites and data mining techniques, comparison of results from two different aerial platforms might be complicated because of the differences in spatial scales (high resolution of approximately 0.15m versus coarser resolutions of 30m). This paper presents a combined modeling and scale-based approach to evaluate the impact of spatial scaling in the estimation of surface soil moisture content derived from remote sensing data. Data from Landsat 7 ETM+, Landsat 8 OLI and AggieAirTM aerial imagery are utilized. AggieAirTM is an airborne remote sensing platform developed by Utah State University that includes an autonomous Unmanned Aerial System (UAS) which captures radiometric information at visual, near-infrared, and thermal wavebands at spatial resolutions of 0.15 m or smaller for the optical cameras and about 0.6 m or smaller for the thermal infrared camera. Top soil moisture maps for AggieAir and Landsat are developed and statistically compared at different scales to determine the impact in terms of quantitative predictive capability and feasibility of applicability of results in improving in field management.

  20. Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-hong; LI Pei-jun; GONG Zong-qiang; Oni Adeola A.

    2006-01-01

    The rates of photodegradation and photocatalysis of benzo [a]pyrene (BaP) on soil surfaces under UV light have been studied. Different parameters such as temperature, soil particle sizes, and soil depth responsible for photodegradation, catalyst loads and wavelength of UV irradiation blamed for photocatalysis have been monitored. The results obtained indicated that BaP photodegradation follows pseudo-first-order kinetics. BaP photodegradation was the fastest at 30℃. The rates of BaP photodegradation at different soil particle size followed the order: less than 1 mm>less than 0.45 mm>less than 0.25 mm. When the soil depth increased from 1 mm to 4 mm, the half-life increased from 13.23 d to 17.73 d. The additions of TiO2 or Fe2O3 accelerated the photodegradation of BaP, and the photocatalysis of BaP follows pseudo-first-order kinetics. Changes in catalyst loads of TiO2 (0.5%,1%, 2%, and 3% (wt)) or Fe2O3 (2%, 5%, 7%, and 10% (wt)) did not significantly affect the degradation rates. Both BaP photocatalysis in the presence of TiO2 and Fe2O3 were the fastest at 254 nm UV irradiation.

  1. The influence of soil type, vegetation cover and soil moisture on spin up behaviour of a land surface model in a monsoonal region

    Science.gov (United States)

    Bhattacharya, Anwesha; Mandal, Manabottam

    2015-04-01

    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline one dimensional Noah land surface model is integrated recursively for three years to assess its spin-up behavior at different sites over the Indian Monsoon domain. Several numerical experiments are performed to investigate the impact of soil category, vegetation cover, initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with the dominant soil and vegetation covers of this region, different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized at different rain conditions (no rain; infrequent rain; continuous rain) and different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is seen that the spin-up behavior of the model depends on the soil type and vegetation cover with soil characteristics having the larger influence. Over India, the model has the longest spin-up in the case of simulations with loamy soil covered with mixed-shrub. It is noted that the model has a significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. This observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized just before the Monsoon. Model initialized during the Monsoon rain episodes has a longer spin-up than that initialized in any other season. Furthermore, it is seen that the model has a shorter spin-up if it reaches the equilibrium state predominantly via drying process and could be as low as two months under quasi-equilibrium condition depending on

  2. Organic carbon and nutrients (N, P in surface soil horizons in a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-03-01

    Full Text Available Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC, total nitrogen (Ntot, and total phosphorus (Ptot in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non-glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, Ntot, and Ptot. This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity, and especially location of seabird nesting colony. The highest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, Ntot, and Ptot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of Ntot, Ptot, and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, Ntot, and Ptot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.

  3. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  4. Long-term CO2 injection and its impact on near-surface soil microbiology.

    Science.gov (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin

    2016-12-01

    Impacts of long-term CO2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO2 injection. CO2 concentrations within CO2-injected plots increased up to 23% during the injection period. No CO2 impacts on geochemistry were detected over time. In addition, CO2-exposed samples did not show significant changes in microbial CO2 and CH4 turnover rates compared to reference samples. Likewise, no significant CO2-induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO2-induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Integration of multi-sensor data to measure soil surface changes

    Science.gov (United States)

    Eltner, Anette; Schneider, Danilo

    2016-04-01

    Digital elevation models (DEM) of high resolution and accuracy covering a suitable sized area of interest can be a promising approach to help understanding the processes of soil erosion. Thereby, the plot under investigation should remain undisturbed. The fragile marl landscape in Andalusia (Spain) is especially prone to soil detachment and transport with unique sediment connectivity characteristics due to the soil properties and climatic conditions. A 600 m² field plot is established and monitored during three field campaigns (Sep. 2013, Nov. 2013 and Feb. 2014). Unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are suitable tools to generate high resolution topography data that describe soil surface changes at large field plots. Thereby, the advantages of both methods are utilised in a synergetic manner. On the one hand, TLS data is assumed to comprise a higher reliability regarding consistent error behaviour than DEMs derived from overlapping UAV images. Therefore, global errors (e.g. dome effect) and local errors (e.g. DEM blunders due to erroneous image matching) within the UAV data are assessed with the DEMs produced by TLS. Furthermore, TLS point clouds allow for fast and reliable filtering of vegetation spots, which is not as straightforward within the UAV data due to known image matching problems in areas displaying plant cover. On the other hand, systematic DEM errors linked to TLS are detected and possibly corrected utilising the DEMs reconstructed from overlapping UAV images. Furthermore, TLS point clouds are filtered corresponding to the degree of point quality, which is estimated from parameters of the scan geometry (i.e. incidence angle and footprint size). This is especially relevant for this study because the area of interest is located at gentle hillslopes that are prone to soil erosion. Thus, the view of the scanning device onto the surface results in an adverse angle, which is solely slightly improved by the

  6. Effect of the overconsolidation ratio of soils in surface settlements due to tunneling

    Institute of Scientific and Technical Information of China (English)

    Ludmila Strokova

    2013-01-01

    Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions based on field studies, and very few analytical studies have been carried out. The available analytical solutions are not sufficient to include complex ground conditions;hence, a comprehensive analytical solution coupled with numerical modeling is necessary to model the effect of surface subsidence due to tunneling. This paper presents the results of modeling of surface settlements due to tunneling using the finite element method. The effect of the overconsolidation ratio of soils expressed in terms of the co-efficient of earth pressure at rest (K0) on surface subsidence due to tunneling is investigated. It is demonstrated that surface settlements appear to be sensitive to K0 values, and for geotechnical calculations pertaining to overconsolidated sand and clay soil, K0 values of 0.6 and 0.8, respectively, are proposed.

  7. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm

    Science.gov (United States)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.

    2016-04-01

    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  8. Spatial Variability Some Physical and Chemical Prpperties Soil surface In Dasht-e-Tabriz Different Landforms

    Science.gov (United States)

    Foroughifar, Hamed; Asghar Jafarzadeh, Ali; Torabi, Hosien; Aliasgharzad, Naser; Toomanian, Norair

    2010-05-01

    Spatial distribution of soil properties at the field and watershed scale(region scale) affect yield potential, hydrologic responses , and transport of herbicides and No3 to surface or groundwater.The present study aim was to evaluate some physical and chemical properties spatial variability and frequency distribution within and between landforms of Dash-e-Tabriz in the northwest of Iran.For this evaluation 98 samples from soils surface of layer according to grid sampling design and with 500-1000 meters distance based on soils variability were selected and analysed.Landforms were hill, piedmont plain, plain, river alluvial plain and lowland.The study of soil variables frequency distribution showed that Bd, CEC, Caco3, pH,clay and silt follow normal distribution ,which to study their variation one can use parametric statistical method.Variables such as MWD, N(total), SAR, EC, P(available) and sand showed log-normal distribution,that for their variation study,should first be transformed to a logarithmic scale.The variables frequency distribution increase within landforms,which in lowland, hill, and river alluvial plain they showed normal distribution and only EC in piedmont plain and sand, OC and N(total) in plain had log-normal distributions.The results indicate significantly differences of soil properties distribution among landforms,which clay ,pH, EC ,SAR and MWD, CEC, Bd, N(total), OC, P(available), sand, silt were strongly and moderately spatial dependent respectively and Caco3 had no spatial dependence and it is following nugget model.These results indicate that strong spatial dependence due to the effects of intrinsic factors such as parent material, relief and soil types. Also soil properties variations result from variation in depositional environments and or differences in pedogenic or hydrologic processes for different landform positions,and so it can be affected by the flood irrigation,fertilizeir addition,high watertable level or agriculture practices

  9. Measuring Probabilistic Dependences at Multiple Scales Between Soil Type and Surface Morphology

    Science.gov (United States)

    Slatton, K. C.; Krekeler, C.; Cohen, M.; McKee, K. A.

    2005-12-01

    Accurate prediction of basin-scale hydrologic behavior is constrained by uncertainty in estimating soil hydraulic behavior. Extreme variability in hydraulic conductivity has been observed (>5 orders of magnitude) over relatively small areas, and studies that have examined the effects of heterogeneity on integrated hydrologic responses have observed substantial errors when structural variability is ignored. This has prompted spatially explicit representations of soil attributes in hydrologic and water quality models (e.g. TOPMODEL) that present significant parameterization constraints at high resolution. Our hypothesis is that elevation data (coarse and fine grain) can serve as a proximate predictor of soil hydraulic properties. We present an information-theoretic method to systematically rank the information contributions, with respect to soil properties (primarily texture), of several surficial and landcover structure features obtained from data at both coarse (~30m) and fine (~1m) spatial scales using a probabilistic measure known as mutual information. The method makes no a priori assumptions about the relative importance of features, thus allowing feature ranking to respond to variations in terrain and landcover. The study site is located in the riparian corridor of an urban watershed (Hogtown Creek) in the city of Gainesville, Florida. It is a surficially closed basin in the St. John's River Water Management District in Northeastern Florida. The area is low-relief and contains mixed land use (natural forested areas and urban development). Topographic data from the USGS National Elevation Dataset (NED) and the NASA Shuttle Radar Topography Mission (SRTM), along with approximate stream locations from the USGS National Hydrography Dataset, are used to generate spatially distributed coarse-scale features regarding surface morphology and drainage. Airborne Laser Swath Mapping (ALSM) data are also used to generate features relating to under-canopy topography and

  10. Longevity of Sclerotinia sclerotiorum sclerotia on the soil surface under field conditions

    Directory of Open Access Journals (Sweden)

    Ricardo Brustolin

    2016-06-01

    Full Text Available ABSTRACT The longevity of Sclerotinia sclerotiorum sclerotia was quantified in an experiment carried out in the field. Sclerotia naturally formed in soybean plants in an infested commercial field were collected in a grain-cleaning machine and those present in the stem pith, with c.a. 8 mm in length and 1.9 mm in diameter were selected. Fifty sclerotia were kept inside a white nylon mesh (0.25mm screen bag (25 x 25cm. Eighty bags were laid on the soil surface-simulating no till farming. At monthly intervals, four bags were taken and brought to the laboratory. Sclerotia were washed with tap water and surface desinfested with sodium hypochlorite and exposed to germinate on sterilized moist river sand in a growth chamber at 15oC and 12h photoperiod. After 12 months, sclerotia kept on the soil surface, lost their viability. It may be concluded that under no till, crop rotation with nonsusceptible crops, can reduce the sclerotia bank in the soil.

  11. Assessment of soil surface roughness characteristics at field-scale for soil erosion studies using microwave remote sensing data

    Science.gov (United States)

    Marzahn, Philip; Ludwig, Ralf

    2013-04-01

    Soil surface roughness (SSR) is a crucial parameter in the assessment and modelling of soil erosion in agricultural landscapes. Still, in recent modelling efforts, roughness is usually treated as a static parameter, leading to strong simplification and data uncertainty in the description of these physical processes and the derivation of hydrological quantities. However, this simplification is not only due to the lack of theoretical process knowledge, but rather refers to the lack of appropriate roughness input data, as it is very complex to measure roughness under natural conditions. To overcome the current limitations, the performance of microwave remote sensing acquisitions is investigated to derive SSR dynamics for a whole vegetation period over several agricultural fields. As the backscattered signal of an incident microwave shows an inherent dependency from the geometric properties, e.g. the roughness conditions, of an illuminated scene, microwave remote sensing imagery shows a good potential to derive SSR for soil erosion studies sufficiently. The proposed approach utilizes airborne PolSAR data, acquired at C- and L-Band (e.g. 5.6 GHz and 1.3 GHz) for the derivation of four potential roughness estimators. In addition an extensive ground truth database of photogrammetrically measured roughness samples is used to validate the results. To characterize the in-field measurements the RMS-height s - which is the standard deviation of the heights to a reference height - was chosen. Using the best fit approach, a highly accurate assessment of SSR at field-scale could be achieved by deriving s using a linear model from the real part of the circular coherence (Re[ρRRLL]). In this presentation, we show the database of the proposed approach acquired in the framework of the AgriSAR 2006 campaign funded by the European Space Agency, ESA, as well as methods and results of the proposed approach. In addition we will discuss the results in context of soil erosion research and

  12. Research of Micro-sitting Methods for Canyon Wind Power Project%高原峡谷风电场微观选址方法研究

    Institute of Scientific and Technical Information of China (English)

    任腊春; 钟滔; 李良县

    2015-01-01

    着重分析了高原峡谷风电场风速相关性、风速切变、湍流强度、风能资源分布等主要风况特性,提出了高原峡谷风电场微观选址流程和方法,分析研究了高原峡谷风电场微观选址可能的影响因素并给出了风电机组与影响因素的最小建议安全距离,形成了有效的设计方法和经验。结合实际工程案例分析结果验证该设计方法基本可行,可为同类风电场微观选址设计提供借鉴参考。%The wind energy characteristics, such as wind speed correlation, wind shear turbulence intensity and wind power distribution, are analyzed for plateau canyon wind farm. The process and method of micro-sitting for canyon wind power project is proposed, the restriction factors of WTGS layout are analyzed and the recommended distance between the position of WTGS and affected objects is given. The availability and feasibility of the design method for the micro-sitting of canyon wind farm is proved by project cases. The method and experiences can provide references for the micro-sitting design of similar wind farms.

  13. Aggregation of surface mine soil by interaction between VAM fungi and lignin degradation products of lespedeza

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, F.M. (USDA Forest Service, Berea, KY (USA). Northeastern Forest Experiment Station, Forestry Sciences Laboratory)

    1984-01-01

    The external mycelium of a vesicular-arbuscular mycorrhizal (VAM) fungus was effective in aggregating a sandy loam minesoil. The polysaccharide nature of the soil binding agent on hyphal surfaces and on the surfaces of sand particles in contact with the hyphae within the aggregate was demonstrated with the periodic acid-Schiff reagent staining reaction. A possible stabilizing mechanism for macroaggregates was proposed that involves a coupling reaction between glucosamines in the hyphal walls of the fungus with phenolic compounds released during lignin degradation of sericea lespedeza root tissue. 28 refs.

  14. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration

    Science.gov (United States)

    Wang, J.; Parolari, A.; Huang, S. Y.

    2014-12-01

    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  15. Water content determination of soil surface in an intensive apple orchard

    Science.gov (United States)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  16. Push broom microwave radiometer observations of surface soil moisture in Monsoon '90

    Science.gov (United States)

    Schmugge, T.; Jackson, T. J.; Kustas, W. P.; Roberts, R.; Parry, R.; Goodrich, D. C.; Amer, S. A.; Weltz, M. A.

    1994-05-01

    The push broom microwave radiometer (PBMR) was flown on six flights of the NASA C-130 to map the surface soil moisture over the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed in southeastern Arizona. The PBMR operates at a wavelength of 21 cm and has four horizontally polarized beams which cover a swath of 1.2 times the aircraft altitude. By flying a series of parallel flight lines it was possible to map the microwave brightness temperature (TB), and thus the soil moisture, over a large area. In this case the area was approximately 8 by 20 km. The moisture conditions ranged from very dry, 15%, after a heavy rain. The rain amounts ranged from less than 10 mm to more than 50 mm over the area mapped with the PBMR. With the PBMR we were able to observe the spatial variations of the rain amounts and the temporal variation as the soil dried. The TB values were registered to a Universal Transverse Mercator grid so that they could be compared to the rain gage readings and to the ground measurements of soil moisture in the 0- to 5-cm layer. The decreases in TB were well correlated with the rainfall amounts, R2 = 0.9, and the comparison of Tg with soil moisture was also good with an R2 of about 0.8. For the latter, there was some dependence of the relation on location, which may be due to soil or vegetation variations over the area mapped. The application of these data to runoff forecasts and flux estimates will be discussed.

  17. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  18. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    Science.gov (United States)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH

  19. Using Rare Earth Element (REE) tracers to identify preferential micro-sites of post-fire aeolian erosion

    Science.gov (United States)

    Van Pelt, R.; Zobeck, T. M.; Barnes, M. A.; Baddock, M.; D'Odorico, P.

    2011-12-01

    Plant communities in desert environments are spatially anisotropic. Nutrient islands develop below shrub canopies and in the bases of bunch grasses that enhance plant growth and reinforce the spatial anisotropy. Catastrophic disturbance that removes the vegetation such as fire or drought can result in the release of the trapped sediment which becomes redistributed over the landscape by wind and water. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem at the Sevilleta National Wildlife Refuge in central New Mexico in an effort to study this process. We delineated three 0.5 m by 6 m plots of desert grassland and three plots of desert grassland-shrubland ecotone. Nitric acid was used to dissolve the REE oxides (Eu2O3, Dy2O3, and Pr6O11) which were then diluted in distilled water to a target concentration of 1 g REE l-1 and applied to the surface at a rate of 4 l m-2. From laboratory column studies using soil collected at the site, we estimated that this would penetrate the surface to a depth of 2.5 cm resulting in a sediment REE concentration of approximately 100 mg kg-1. Eu was applied to bare surfaces between vegetation characterized as sand with a surface covering of gravel, Pr was applied under grass clumps, and Dy was applied under Creosote Bush (Larrea tridentata (DC.). Two replicate 0.25 m2 areas of each surface type were also tagged to obtain a sample of tagged surface sediment for analysis. The area containing the plots was burned by U.S. Fish and Wildlife personnel on April 14, 2010. During the next two days, two grassland plots and two grassland-shrubland ecotone plots were tested by placing a portable boundary layer field wind tunnel over the plots and blowing them with 12 m s-1 wind for 10 minutes during which time a paired set of entrained sediment samples were captured at the outlet of the wind tunnel. This period was followed by a 30 minute test in which clean quartz sand

  20. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  1. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  2. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    G. Helas

    2008-08-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  3. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  4. Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. Catchment soil depths and surface texture from 57 points are presented along with soil moisture, snow cover, weather data, and associated hy...

  5. 7Be:A Geochemical Tracer for Seasonal Erosion of Surface Soil in Watershed of Lake Hongfeng,Guizahou ,China

    Institute of Scientific and Technical Information of China (English)

    BAIZHANGUO; P.H.SANTSCHI; 等

    1996-01-01

    7Be penetrative depth in undisturbed surface soil is within 4mm.7Be activity shows exponential decrease with soil depth,which is expressed as a diffusion process.7Be penetrative depth in undisturbed surface soil is apparently deeper in the fall (0.22-0.37g cm-1) than in the spring (0.11-0.28g cm-2) at the same site;Whereas,7Be apparent activity at the top of surface soil is higher in the spring (0.3-2.2Bq g-1)than in the fall (0.2-0.5Bqg-1) at the same site,The 7Be inventory(189-544Bq m-2)changes with both locations and seasons.Although the 7Be flux to the earth's surface increases with amount of precipitation,its maximum inventory in the soil profiles decreases to 30%-40% after the rainy period.Calculated by the diffusion equation,the erosion and accumulation rates of soil particles are agreeable with the observation in situ,Which shows that the rates in fall are 1.5 times those in spring.The eroded soil particles almost all have been removed on the tablelands rathel than transported into the drainage system.This indicates that the soil erosion process in the karst region is only partial transportation within a short distance.

  6. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  7. Bright patches on chernozems - from space to surface and soil properties

    Science.gov (United States)

    Smetanova, Anna; Burian, Libor; Holec, Juraj; Minár, Jozef

    2016-04-01

    located in areas with slope gradient between 3 and 6°, which is consider as the higher slope in this part of the hilly land. In 1949 the distribution of bright patches was more strongly related to higher slope gradient, the convex forms of profile curvature, and upslope position than in 2004. In the studied catchment, 34 soil profiles were described in the bright patches (identified in 2004), and 73% of them were situated on the convex forms of profile curvature. The most of the profiles were eroded (88%), the mean soil loss was 0.36 m (in the comparison with the reference soil profile), and in 55% of described soil profiles the entire mollic horizon was removed. The typical surface horizon contained 2.3% of humus and 21% of carbonates. The soil profiles were further compared with these situated in the areas neighbouring with the bright patches, and soil profiles on two valley cross-sections, in order to understand the soil redistribution in the catchment, and describe the differences between the bright and black patches in the chernozem landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  8. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  9. Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area

    Directory of Open Access Journals (Sweden)

    Pei Leng

    2015-04-01

    Full Text Available Based on a novel bare surface soil moisture (SSM retrieval model developed from the synergistic use of the diurnal cycles of land surface temperature (LST and net surface shortwave radiation (NSSR (Leng et al. 2014. “Bare Surface Soil Moisture Retrieval from the Synergistic Use of Optical and Thermal Infrared Data”. International Journal of Remote Sensing 35: 988–1003., this paper mainly investigated the model’s capability to estimate SSM using geostationary satellite observations over vegetated area. Results from the simulated data primarily indicated that the previous bare SSM retrieval model is capable of estimating SSM in the low vegetation cover condition with fractional vegetation cover (FVC ranging from 0 to 0.3. In total, the simulated data from the Common Land Model (CoLM on 151 cloud-free days at three FLUXNET sites that with different climate patterns were used to describe SSM estimates with different underlying surfaces. The results showed a strong correlation between the estimated SSM and the simulated values, with a mean Root Mean Square Error (RMSE of 0.028 m3·m−3 and a coefficient of determination (R2 of 0.869. Moreover, diurnal cycles of LST and NSSR derived from the Meteosat Second Generation (MSG satellite data on 59 cloud-free days were utilized to estimate SSM in the REMEDHUS soil moisture network (Spain. In particular, determination of the model coefficients synchronously using satellite observations and SSM measurements was explored in detail in the cases where meteorological data were not available. A preliminary validation was implemented to verify the MSG pixel average SSM in the REMEDHUS area with the average SSM calculated from the site measurements. The results revealed a significant R2 of 0.595 and an RMSE of 0.021 m3·m−3.

  10. Effect of heavy metals on soil mineral surfaces and bioretention pond performance

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2009-12-01

    Haibo Zhang and Mira S. Olson Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 As urban stormwater runoff flows across impervious surfaces, it collects and accumulates pollutants that are detrimental to the quality of local receiving water bodies. Heavy metal pollution, such as copper, lead and zinc, has been a concern in urban stormwater runoff. In addition, the presence of bacteria in stormwater has been frequently reported. The co-existence of both heavy metals and bacteria in stormwater and their complex interactions determine their transport and removal through bioretention pond. Stormwater runoff was sampled from a bioretention pond in Philadelphia, PA. The concentration of copper, lead and zinc were measured as 0.086ppm, 0.083ppm and 0.365ppm, respectively. Batch experiments were conducted with solutions of pure copper, lead and zinc, and with a synthetic stormwater solution amended with copper, lead and zinc. The solution was buffered to pH 7, within the range of the observed stormwater pH. In pure heavy metal solutions, the sorption of copper, lead and zinc onto soil are 96%, 99% and 85%, respectively. In synthetic stormwater containing nutrients and all three metals, the sorption of lead is 97%, while copper and zinc decrease to 29% and 71%, respectively. Mineralogy of a soil sample taken from the bioretention pond was analyzed using a scanning electron microscope (SEM) and compared before and after sorption experiments. Sorption and complexation of heavy metals is likely to change the mineralogy of soil particle surfaces, which will affect the attachment of bacteria and therefore its transport through soil. This study will benefit long-term predictions of the performance of bioretention ponds for urban stormwater runoff treatment. Keyword: Heavy metal pollution, sorption, surface complexation, urban stormwater runoff, bioretention pond

  11. Stabilization of Desert Surfaces and Accumulation of Dust Under Biological Soil Crusts

    Science.gov (United States)

    Finstad, K. M.; Mcnicol, G.; Pfeiffer, M.; Amundson, R.

    2014-12-01

    Biological soil crusts (BSC) are known to play a critical role in the stabilization of desert surfaces by helping to protect sediment from wind and water erosion and aiding in the trapping of airborne particles. The crusts are often composed of cyanobacteria, algae, and fungi, and occupy the upper few cm of a soil. Due to their high tolerance of desiccation and ability to utilize fog and dew sources, BSC are able to exist in environments that may otherwise be too dry for vascular plants. In the hyperarid Atacama Desert, decades or more between measurable precipitation events has created a landscape devoid of macroscopic life. While precipitation is rare, coastal fog occurs regularly and microbial communities capable of utilizing fog and dew water are able to persist. Here we found cyanobacteria and lichen living in association with a thin sulfate and dust crust (~2 cm) covering the surface of 'dust plateaus'. Topographically the region is highly irregular and part of a largely erosional landscape. We hypothesized that these flat-topped plateaus are accretionary features that have been able to maintain dust accumulation for thousands of years as a result of the surface crusts. To test this hypothesis we conducted radiocarbon analysis of crusts and soil profiles at two sites approximately 30 km apart, one in a high fog zone and another in lower fog frequency zone. The radiocarbon analysis shows that sediment has been accumulating in the 'plateaus' for the past 15,000 years and that biological activity and rates of C cycling in the crust increase with increasing fog frequency and intensity. The ages of organic material in the dust decrease monotonically with decreasing soil thickness, suggestive of progressive upward growth by dust accumulation. Our data indicate that the BSC are capable of surviving in hyperarid the Atacama Desert, a Mars analogue, through the utilization of fog water, and that their presence can leave a visible geomorphic imprint on the landscape.

  12. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    Science.gov (United States)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  13. The surface-pore integrated effect of soil organic matter on retention and transport of pharmaceuticals and personal care products in soils.

    Science.gov (United States)

    Qin, Qin; Chen, Xijuan; Zhuang, Jie

    2017-12-01

    This study examines a surface-pore integrated mechanism that allows soil organic matter (SOM) to influence the retention and transport of three representative pharmaceuticals and personal care products (PPCPs)-ibuprofen, carbamazepine, and bisphenol A-in agricultural soil. A series of sorption-desorption batch tests and breakthrough column experiments were conducted using manured and non-manured soils. Results show that SOM could substantially influence the environmental behaviors of PPCPs via two mechanisms: surface-coating and pore-filling. Surface-coating with molecular SOM decreases the sorption of dissociated PPCPs (e.g., ibuprofen) but increases the sorption of non-dissociated PPCPs (e.g., carbamazepine and bisphenol A), while pore-filling with colloidal SOM enhances the retention of all the PPCPs by providing nano-/micro-pores that limit diffusion. The higher retention and lower mobility of PPCPs in soil microaggregates than in bulk soils suggest that SOM content and SOM-altered soil pore structure could exert a coupled effect on PPCP retention. Differences in the elution of PPCPs with low surface tension solution (i.e., 20% ethanol) in the presence and absence of SOM indicate that PPCPs prefer to remain in SOM-filled pores. Overall, ibuprofen has a high environmental risk, whereas carbamazepine and bisphenol A could be readily retarded in agricultural soils (with a loamy clay texture). This study implies that SOM accrual (particularly pore-filling SOM) has a high potential for reducing the off-site risks of PPCPs by increasing soil nano-/micro-porosity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Anaerobic methane oxidation may be more prevalent in surface soils than was originally thought

    Science.gov (United States)

    Gauthier, Mathieu; Bradley, Robert L.; Šimek, Miloslav

    2013-04-01

    Anaerobic oxidation of methane (CH4) (AOM) is a process that was first reported to occur in deep anoxic marine sediments. In this environment, CH4 is oxidized with sulphate (SO42-) as the terminal electron acceptor. It is mediated by a syntrophic consortium formed by SO42- reducing bacteria and anaerobic CH4 oxidizing Archaea, or by the latter alone. Since this landmark discovery, AOM was found to occur in other environments including freshwater lake sediments and water columns, mud volcanoes, landfill leachate, deep buried Holocene sediments and hydrocarbon contaminated aquifers. All of these situations are very specific and point to AOM as being primarily occurring in highly reducing conditions. Thus, observations of AOM in surface soils with fluctuating REDOX conditions are relatively scarce, although a few independent studies have reported AOM in surface peatlands as well as in a forest soil. Furthermore, AOM may follow different pathways, such as via the coupled oxidation of CH4 and reduction of manganese (Mn(IV)) or iron (Fe(III)), or by a lone denitrifying species that converts nitrite to nitric oxide in order to generate O2 that is then used internally to oxidize CH4. Thus, the goal of our study was to determine whether AOM is more prevalent than was thought in hydromorphic surface soils across different environments, and whether the addition of NO3- or SO4= as alternative electron acceptors may stimulate the process. We collected samples from 3 peatland soils in Scotland, 2 acid-sulphate soils in Finland, and shore sediments of 15 drained fish ponds in the Czech Republic. Subsamples were incubated in the absence of O2 and amended with either NO3-, SO42-, or left unamended (control). The net flux of CH4 and CO2 were assessed by gas chromatography after 2, 20, 40 and 60 days. We also used a 13C-CH4 isotope dilution technique to determine gross production and consumption rates of CH4. We detected AOM in all of our soils, with oxidation rates ranging between 0

  15. Scope of the worldwide effort to regulate pesticide contamination in surface soils.

    Science.gov (United States)

    Jennings, Aaron A; Li, Zijian

    2014-12-15

    Regulating surface soil contamination is a worldwide problem. Many jurisdictions address this problem with regulatory guidance values (RGVs) that specify the maximum allowable soil concentration of contaminants. Pesticides are a particularly important class of soil contaminants because of their intentional toxicity and widespread application to home, garden, and agricultural soils. Pesticides are also difficult to regulate because they are marketed in thousands of products made from hundreds of potentially toxic chemicals. Worldwide, at least 174 jurisdictions from 54 United Nations member states have promulgated more than 19,400 pesticide RGVs. Values may be found for at least 739 pesticides, identified by unique Chemical Abstract Service numbers (CAS No.). Using CAS numbers helps to avoid confusion that may result from alternative product names, chemical nomenclature conventions, or flawed translations. Assembling the set of pesticide RGVs required translating guidance documents authored in 30 different languages. Results indicate that more than 100 RGVs have been promulgated for each of the 22 most frequently regulated pesticides including over 300 values for DDT. Data are presented on the number of pesticides typically addressed by a regulatory jurisdiction and on the size and variability of the RGV datasets for the 200 most frequently regulated pesticides.

  16. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Leila Hassan-Esfahani

    2015-03-01

    Full Text Available Many crop production management decisions can be informed using data from high-resolution aerial images that provide information about crop health as influenced by soil fertility and moisture. Surface soil moisture is a key component of soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface; however, high-resolution remotely sensed data is rarely used to acquire soil moisture values. In this study, an artificial neural network (ANN model was developed to quantify the effectiveness of using spectral images to estimate surface soil moisture. The model produces acceptable estimations of surface soil moisture (root mean square error (RMSE = 2.0, mean absolute error (MAE = 1.8, coefficient of correlation (r = 0.88, coefficient of performance (e = 0.75 and coefficient of determination (R2 = 0.77 by combining field measurements with inexpensive and readily available remotely sensed inputs. The spatial data (visual spectrum, near infrared, infrared/thermal are produced by the AggieAir™ platform, which includes an unmanned aerial vehicle (UAV that enables users to gather aerial imagery at a low price and high spatial and temporal resolutions. This study reports the development of an ANN model that translates AggieAir™ imagery into estimates of surface soil moisture for a large field irrigated by a center pivot sprinkler system.

  17. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  18. USE OF CATIONIC SURFACTANTS TO MODIFY SOIL SURFACES TO PROMOTE SORPTION AND RETARD MIGRATION OF HYDROPHOBIC ORGANIC COMPOUNDS

    Science.gov (United States)

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote adsorption of hydrophobic organic compounds (HOC). Batch and column experiments were performed to investigate this phenomenon with the cationic surfactant dodecylpyridinium (DP), a se...

  19. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  20. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  1. GEOEPIDERM – AN ECOLOGICAL CONCEPT THAT INTEGRATES SOIL COVER WITH ASSOCIATED LAND SURFACE COMPONENTS

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2008-10-01

    Full Text Available Based on the new concept of the “Epiderm of the Earth” introduced by the 2006 edition of the WRB-SR, the idea of “geoepiderm” has been developed. Besides its holistic meaning, by including both soil and non-soil materials found in the first 2 meters of the land surface, the term “geoepiderm” has a strong ecological sense, by suggesting similarity with the skin of the living organisms, as such, this concept is fully concordant with that of “Gaia” (Living Earth developed by James Lovelock. According to the main pedo-ecological characteristics of the soil and not soil coverings from the earth surface, ten kinds (classes of ‘geoepiderms” have been identified:1 – Protoderma (Entiderma– the primitive (emerging geoepiderm (mainly non-soil materials; five main subtypes: a Regoderma, b Leptoderma, c Areniderma, d Fluviderma and e Gleyoderma, were identified;2 – Cryoderma (Geliderma – geoepiderm of cold, mainly artic and subartic, regions with mean annual soil temperature <00C (often with perennial frozen subsoil - permafrost:3 – Arididerma – geoepiderm of arid regions and salt affected lands with limited or scarce available moisture; two subtypes: a Desertiderma, b Saliderma4 – Inceptiderma (or Juvenilederma – with 2 subtypes: a Cambiderma – a young (incipiently developed geoepiderm and b Andiderma, geoepiderm developed in volcanic materials;5 – Euderma – nutrient rich geoepiderm with two main subtypes: a Cherniderma (or Molliderma and b Luviderma (or Alfiderma;6 – Oligoderma – geoepiderm with low macro-nutrient and weatherable minerals content with 2 subtypes: a Podziderma (or Spodiderma and b Acriderma (or Ultiderma;7 – Ferriderma (Oxiderma or Senilederma – geoepiderm strongly weathered and with iron and aluminium hydroxides enrichment and low weatherable minerals reserve;8 – Vertiderma (Contractilederma – Contractile geoepiderm, developed from swelling clays;9 – Histoderma (Organiderma

  2. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region

    Science.gov (United States)

    Abu-hashim, Mohamed; Elsayed, Mohamed; Belal, Abd-ElAziz

    2016-02-01

    Soil organic carbon pool (SOCP) is affected by several factors particularly soil type, climate, topography, crop management, and anthropogenic factors. The study was carried out to clarify relationships between SOCP under different soil types and land-use changes in the Mediterranean region. Data of 26 pedons were investigated in Tanta catchment, middle Nile Delta, Egypt (30°45 N, 30°55 E), that the collected soil samples covered different soil types and land-uses. There were significant differences of SOCP among soils: loam and clay loams were rather similar. Clay soils were the most extensive and have mean SOCP of 4.08 ± 1.41 kg C m-2. The highest SOCP of 7.07 kg C m-2 was in clay loam soil associated with bare soil, while the lowest of 2.57 kg C m-2 in sandy clay loam soil associated with bare soil. Losing cropland showed highest increase from 1990 to 2015 with increasing urban encroachment by 15.3%. The overall average results of SOCP in cropland area showed 53.85 Mg C ha-1 under different soils. Losing the arable lands to urbanization resulted in a decrease of 285.421 Gg C of SOCP. With the decrease in SOCP sequestrated within the soil surface, carbon dioxide would be emitted to the atmosphere. The emitted CO2 resulted from losing the cropland equal to 1047.5 Gg CO2. Land-use changes have marked impact on surface SOCP and C sequestration.

  3. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  4. Degradation of the pesticide carbofuran on clay and soil surfaces upon sunlight exposure.

    Science.gov (United States)

    Mountacer, H; Atifi, A; Wong-Wah-Chung, P; Sarakha, M

    2014-03-01

    In the present study, the photolysis of carbofuran has been undertaken under sunlight conditions and at the surface of model supports such as clay films and different soils collected from two different sites in Morocco (Tirs and Dahs). In all conditions, an efficient degradation occurred owing to direct light absorption and also to photoinduced processes involving either clays or natural organic matter moities. On kaolin films, the photodegradation kinetics appears to follow a first-order process that clearly depends on the film thickness. The diffusion of carbofuran from the lower part to the illuminated surface was found to be negligible when compared to the photolysis process within the range of 20-70 μm. Thus, the photolysis rate constant at the surface of the solid support, k (0), was evaluated to be 7.0 × 10(-3) min(-1). Under these experimental conditions, the quantum yield was found equal to 2.1 × 10(-4). On soil surfaces, the disappearance rate constant was mainly attributed to photoinduced processes arising from natural organic matter. From the analytical point of view, the products were formed through (1) hydroxylation on the aromatic ring, (2) homolytic scission of the carbamate C-O bond leading to radical species formation, and (3) photohydrolysis of the carbamate C-O bond.

  5. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface.

    Science.gov (United States)

    Wu, Guozhong; Zhu, Xinzhe; Ji, Haoqing; Chen, Daoyi

    2015-01-01

    Molecular dynamic (MD) simulation was applied to evaluate the mobility, diffusivity and partitioning of SARA (saturates, aromatics, resins, asphaltenes) fractions of heavy crude oil on soil organic matter (SOM) coated quartz surface. Four types of SOM were investigated including Leonardite humic acid, Temple-Northeastern-Birmingham humic acid, Chelsea soil humic acid and Suwannee river fulvic acid. The SOM aggregation at oil-quartz interface decreased the adsorption of SARA on the quartz surface by 13-83%. Although the SOM tended to promote asphaltenes aggregation, the overall mobility of SARA was significantly greater on SOM-quartz complex than on pure quartz. Particularly, the diffusion coefficient of asphaltenes and resins increased by up to one-order of magnitude after SOM addition. The SOM increased the overall oil adsorption capacity but also mobilized SARA by driving them from the viscous oil phase and rigid quartz to the elastic SOM. This highlighted the potential of SOM addition for increasing the bioavailability of heavy crude oil without necessarily increasing the environmental risks. The MD simulation was demonstrated to be helpful for interpreting the role of SOM and the host oil phase for the adsorption and partitioning of SARA molecules, which is the key for developing more realistic remediation appraisal for heavy crude oil in soils.

  6. Effects of Spatial Sampling Interval on Roughness Parameters and Microwave Backscatter over Agricultural Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Matías Ernesto Barber

    2016-06-01

    Full Text Available The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm to small ones (1 mm, with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

  7. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  8. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  9. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    Science.gov (United States)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2016-12-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  10. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Science.gov (United States)

    Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael

    2017-08-01

    The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and

  11. Temperature and biological soil effects on the survival of selected foodborne pathogens on a mortar surface.

    Science.gov (United States)

    Allan, J T; Yan, Z; Genzlinger, L L; Kornacki, J L

    2004-12-01

    The survival of three foodborne pathogens (Listeria monocytogenes, Yersinia enterocolitica, and Salmonella) attached to mortar surfaces, with or without biological soil (porcine serum) and incubated at either 4 or 10 degrees C in the presence of condensate, was evaluated. Soiled and unsoiled coupons were inoculated by immersion into a five-strain cocktail (approximately 10(7) CFU/ml) of each organism type and evaluated. Coupons were incubated at 25 degrees C for 2 h to allow attachment of cells, rinsed to remove unattached cells, and incubated at either 4 or 10 degrees C at high humidity to create condensate on the surface. Sonication was used to remove the attached cells, and bacteria (CFU per coupon) was determined at 9 to 10 sampling periods over 120 h. Yersinia populations decreased more than 5 log units in the presence of serum in a 24-h period. Listeria and Salmonella had better survival on mortar in the presence of serum than Yersinia throughout the 120-h incubation period. Populations of L. monocytogenes declined more rapidly at 10 than at 4 degree C after 24 h. In general, differences in temperature did not affect the survival of Salmonella or Yersinia. Serum had a protective effect on the survival of all three organisms, sustaining populations at significantly (P 0.05) among the mean number (CFU per coupon) of L. monocytogenes, Y. enterocolitica, or Salmonella on initial attachment onto the mortar surfaces (unsoiled). The results indicate relatively rapid destruction of selected pathogenic bacteria on unsoiled mortar surfaces compared with those that contained biological soil, thus highlighting the need for effective cleaning to reduce harborage of these microbes in the food factory environment.

  12. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    Science.gov (United States)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  13. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2014-09-01

    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  14. THE SPATIAL VARIABILITY OF UREASE ACTIVITY OF SURFACE AGRICULTURAL SOILS WITHIN AN URBAN AREA

    OpenAIRE

    AŞKIN, Tayfun; KIZILKAYA, Ridvan

    2006-01-01

    Soil enzymes play a major role in the mineralization processes of organic materials. The soil enzymes originate from animal, plant and microbial sources and the resulting soil biological activity including the metabolic processes of all these organisms. Information on soil enzyme activities used to determine soil microbiological characteristics are very important for soil quality and healthy.

  15. THE SPATIAL VARIABILITY OF UREASE ACTIVITY OF SURFACE AGRICULTURAL SOILS WITHIN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    Tayfun AŞKIN

    2006-02-01

    Full Text Available Soil enzymes play a major role in the mineralization processes of organic materials. The soil enzymes originate from animal, plant and microbial sources and the resulting soil biological activity including the metabolic processes of all these organisms. Information on soil enzyme activities used to determine soil microbiological characteristics are very important for soil quality and healthy.

  16. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  17. Exploring the potential of near-surface geophysical methods to delineate a shallow hardpan in a southeastern U.S. sandy coastal plain soil

    Science.gov (United States)

    A hardpan, which is a dense soil layer near the ground surface, is an undesirable feature of many soils in the Southeast U.S., especially sandy Coastal Plain soils. Shallow hardpans restrict root growth and water penetration through the soil profile, in turn reducing the effective crop root zone and...

  18. Application of WMS Software in Micro-Siting of Wind Farms%WMS软件在风电场微观选址中的应用

    Institute of Scientific and Technical Information of China (English)

    王源; 刘玮; 王霁雪; 李伟宏

    2011-01-01

    Based on data of the first phase of Zhangbei Batou Wind Farm project, and by use of WMS, a wind site specification & wind turbine micro-siting software, this paper calculated the wind turbine micro —siting for wind farms to improve the layout program and to generate greater profits. The result suggests that applying MWS in the wind turbine micro-siting for Batou Wind Farm are both feasible and effective.%以张北坝头风电场一期工程为基础,采用WMS软件(风电场工程特性分析与微观选址软件)对风电机组进行微观选址计算,使风场有较优的布机方案和更好的经济效益,表明用WMS软件对坝头风电场进行微观选址是可行和有效的.

  19. A picture is worth a thousand data points: an imagery dataset of paired shrub-open microsites within the Carrizo Plain National Monument.

    Science.gov (United States)

    Noble, Taylor J; Lortie, Christopher J; Westphal, Michael; Butterfield, H Scott

    2016-09-27

    Carrizo Plain National Monument (San Joaquin Desert, California, USA) is home to many threatened and endangered species including the blunt-nosed leopard lizard (Gambelia sila). Vegetation is dominated by annual grasses, and shrubs such as Mormon tea (Ephedra californica), which is of relevance to our target species, the federally listed blunt-nosed leopard lizard, and likely also provides key ecosystem services. We used relatively nonintrusive camera traps, or trail cameras, to capture interactions between animals and these shrubs using a paired shrub-open deployment. Cameras were placed within the shrub understory and in open microhabitats at ground level to estimate animal activity and determine species presence. Twenty cameras were deployed from April 1st, 2015 to July 5th, 2015 at paired shrub-open microsites at three locations. Over 425,000 pictures were taken during this time, of which 0.4 % detected mammals, birds, insects, and reptiles including the blunt-nosed leopard lizard. Trigger rate was very high on the medium sensitivity camera setting in this desert ecosystem, and rates did not differ between microsites. Camera traps are an effective, less invasive survey method for collecting data on the presence or absence of desert animals in shrub and open microhabitats. A more extensive array of cameras within an arid region would thus be an effective tool to estimate the presence of desert animals and potentially detect habitat use patterns.

  20. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield

    Science.gov (United States)

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates—200, 250 and 300 m3/ha—and three drain ditch depths—10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0–1 m depth was 8.7–13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1–47.1%) and available K (by 5.0–21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4–22.1%) and available K (by 7.5–16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9–27.6% were found for the treatments compared to the control with a similar amount of applied water. PMID:27153110

  1. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  2. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields.

  3. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  4. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  5. Laboratory Scale Seismic Surface Wave Testing for the Determination of Soil Elastic Profiles

    Directory of Open Access Journals (Sweden)

    Aziman Madun

    2012-10-01

    Full Text Available Seismic surface wave testing is well-adapted to the study of elastic parameters and, hence, the elastic profile of soils in the field.  Knowledge of a ground’s stiffness profile enables the prediction of ground movement and, thus, the quality of the foundation.  The stiffness parameter obtained in this research corresponds to the measurement of the seismic surface wave phase velocity of materials, which relates to the very small strain shear modulus.  This paper describes a methodology for performing surface wave testing in the laboratory.  In comparison with field tests, a laboratory-scale experiment offers the advantage of allowing the process of data collection to be calibrated, and analytical studies can be carried out as the properties of the material under test are controllable and known a priori.  In addition, a laboratory scale experiment offers insight into the interaction between the seismic surface wave, the soil, the boundary and, hence, the constraints associated with the seismic surface wave technique.  Two simplified models of different sizes were developed using homogeneous remoulded Oxford Clay (from Midlands region of the UK.  The laboratory experimental methodology demonstrated that the seismic surface wave equipment used in the laboratory was directly influenced by the clay properties as well as the size of the test model.  The methodology also showed that the arrangement of the seismic source and the receivers had an impact on the range of reliable frequencies and wavelengths obtained.

  6. Spatial variability of organochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yan; GAO Ru-tai; HUANG Yuan-fang; JIA Xiao-hong; JIANG Shu-ren

    2007-01-01

    The spatial variability in the concentrations of 1,2,3,4,5,6-hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) in surface soils was studied on the basis of the analysis of 131 soil samples collected from the surface layer (0-20 cm depth) of the alluvial region of Beijing, China. The concentrations of total HCHs (including α-, β-, γ-, and δ-isomers) and total DDTs (i ncluding p,p'-DDT, p,p'-DDD, p,p'-DDE, and o,p'-DDT) in the surface soils tested were in the range from nondetectable to 31.72 μg/kg dry soil, with a mean value of 0.91, and from nondetectable to 5910.83 μg/kg dry soil, with a mean value of 32.13,respectively. It was observed that concentrations of HCHs in all soil samples and concentrations of DDTs in 112 soil samples were much lower than the first grade (50 μg/kg) permitted in "Environment quality standard for soils in China (GB15618-1995)". This suggests that the pollution due to organochlorine pesticides was generally not significant in the farmland soils in the Beijing alluvial region. In this study, the spatial distribution and trend of HCHs and DDTs were analyzed using Geostatistical Analyst and GS+(513).Spatial distribution indicated how these pesticides had been applied in the past. Trend analysis showed that the concentrations of HCHs,DDTs, and their related metabolites followed an obvious distribution trend in the surface soils from the alluvial region of Beijing.

  7. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  8. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  9. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance.

  10. Sound wave energy emitted by water drop during the splash on the soil surface

    Science.gov (United States)

    Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz

    2017-04-01

    A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016

  11. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  12. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Mingyong [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Tan Shuduan [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Dang Haishan [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2011-12-15

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20{sup o} (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: > Soil erosion processes with rare earth elements was conducted under natural rainfall. > Experimental setup developed here has seldom implemented in the world. > Sheet erosion is the main erosion type and main contributor to sediment loss. > Sediment source changed in different sections on the slope surface. > The primary sediment source area tended to move upslope as erosion progressed.

  13. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  14. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Science.gov (United States)

    Bartsch, A.; Balzter, H.; George, C.

    2009-10-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  15. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran.

    Science.gov (United States)

    Dehghani, Sharareh; Moore, Farid; Keshavarzi, Behnam; Hale, Beverley A

    2017-02-01

    In this study a total of 30 street dusts and 10 surface soils were collected in the central district of Tehran and analyzed for major potentially toxic metals. Street dust was found to be greatly enriched in Sb, Pb, Cu and Zn and moderately enriched in Cr, Mn, Mo and Ni. Contamination of Cu, Sb, Pb and Zn was clearly related to anthropogenic sources such as brake wear, tire dust, road abrasion and fossil fuel combustion. Spatial distribution of pollution load index in street dust suggested that industries located south-west of the city intensify street dust pollution. Microscopic studies revealed six dominant group of morphological structures in calculation of the exposurethe street dusts and surface soils, with respect to different geogenic and anthropogenic sources. The BCR (the European Community Bureau of Reference) sequential extraction results showed that Sb, Ni, Mo, As and Cr bonded to silicates and sulfide minerals were highly resistant to dissolution. In contrast, Zn, Cd, and Mn were mostly associated with the exchangeable phase and thus would be easily mobilized in the environment. Cu was the most abundant metal in the reducible fraction, indicating its adsorption to iron and manganese oxy-hydroxides. Pb was equally extracted from exchangeable and reducible fractions. Anthropogenic sources related to traffic apparently play a small role in Cr, Ni and Mo contamination and dispersed them as bioavailable forms but with reduced mobility and bioavailablity due to high potential of complexation and adsorption to organic matter and iron and manganese oxy-hydroxides. Calculated Hazard Index (HI) suggests ingestion as the most important pathway for the majority of PTMs in children and dermal contact as the main exposure route for Cr, Cd and Sb for adults. The HIs and fractionation pattern of elements revealed Pb as the sole element that bears potential health risk in street dust and surface soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Investigation on electromagnetic scattering from rough soil surface of layered medium using the small perturbation method

    Institute of Scientific and Technical Information of China (English)

    Ren Xin-Cheng; Guo Li-Xin

    2008-01-01

    Electromagnetic scattering from a rough surface of layered medium is investigated, and the formulae of the scattering coefficients for different polarizations are derived using the small perturbation method. A rough surface with exponential correlation function is presented for describing a rough soil surface of layered medium, the formula of its scattering coefficient is derived by considering the spectrum of the rough surface with exponential correlation function; the curves of the bistatic scattering coefficient of HH polarization with variation of the scattering angle are obtained by numerical calculation. The influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the roughness surface parameters and the frequency of the incident wave on the bistatic scattering coefficient is discussed. Numerical results show that the influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the rms and the correlation length of the rough surface, and the frequency of the incident wave on the bistatic scattering coefficient is very complex.

  17. Occurrence of agrochemicals in surface waters of shallow soils and steep slopes cropped to tobacco

    Directory of Open Access Journals (Sweden)

    Letícia Sequinatto

    2013-01-01

    Full Text Available Tobacco cultivation in shallow soils and steep landscape under intense use of agrochemicals contributes to environment degradation. In this study, we assessed the concentration of agrochemicals in draw wells used for human consumption and a creek in a small catchment predominantly cropped to tobacco. Chlorpyrifos, flumetralin, and iprodione were determined by gas chromatography with electron capture detection, while imidalcloprid, atrazine, simazine, and clomazone were quantified by high-performance liquid chromatography with UV detection. Considering all sampling sites, all agrochemicals were detected at least once, except for flumetralin. The occurrence of agrochemicals in tobacco crops is a consequence of their fast transfer to surface water.

  18. Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    L. Davison

    2007-07-31

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

  19. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    Science.gov (United States)

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan tropical environments.

  20. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  1. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China

    Institute of Scientific and Technical Information of China (English)

    ChaoFeng Fu; JingBo Zhao; FanMin Mei; TianJie Shao; Jun Zuo

    2015-01-01

    Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the south-eastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indi-cating that shrubs are more effective in inhibiting wind erosion in the sandy land area.

  2. Significance of frost action and surface soil characteristics to wind erosion at Rocky Flats, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Caine, N.

    1978-09-01

    This study of the potential links between soil freezing and wind erosion was conducted at Rocky Flats during 4 winters. Most of the study has involved the conditions leading to the growth of segregation ice in the surface soil and the ground heave which that produces. This occurs about 15 times in the average winter at Rocky Flats, always on a diurnal cycle. Such frost action is preferentially distributed in time and space and cannot be estimated from air temperatures alone. November and March are the months of most frequent frost heave, and then only in the days following precipitation or snowmelt. The most marked frost effects are found on exposed interfluve and hillcrest situations, where there are patches of bare soil. Almost no effects are found on the valley floors. Soil disturbance by segregation ice leads to a marked decrease in soil bulk density, and presumably in soil strength though this change has not been quantitatively defined. However, this does not lead to wind erosion of the soil at the study site because that surface is more influenced by the vegetation cover than by the soil characteristics.

  3. Environmental proteomics – what proteins from soil and surface water can tell us: a perspective

    Directory of Open Access Journals (Sweden)

    W. Schulze

    2004-07-01

    Full Text Available Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the DOC pool, and (2 identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  4. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    Science.gov (United States)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  5. Environmental proteomics what proteins from soil and surface water can tell us: a perspective

    Science.gov (United States)

    Schulze, W.

    2004-07-01

    Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOC pool, and (2) identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  6. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    Science.gov (United States)

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another.

  7. Evaluation of three constructed soil areas after surface coal mining in Lauro Muller, Santa Catarina State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.L.; Almeida, J.A.; Souza, L.S. [University of Estado Santa Catarina, Lages (Brazil)

    2003-12-01

    The present work evaluated chemical characteristics, clay content and mineralogy, and the spatial variability for some of these characteristics in three constructed soil areas after surface coal mining in Lauro Muller, Santa Catarina State, Brazil. The selected areas present differences in their topographic soil construction. The first area, Juliana Mine (MJ), was constructed in 1996 with materials that had been removed and stored separately before mining, as laid down in the rehabilitation plan. The second, Apertado Mine (MA), was constructed in 1996 with solum removed from an adjacent hilltop. The third area, Rio do Meio Mine (MRM), was only submitted to topographical reconstitution in 1983 with a mixture of coal pyrite residues and rock fragments from several soil layers. Soil samples were collected in a grid system, at three depths, and analyzed for pH, exchangeable Ca, Mg, K, Al and H + Al contents, and electric conductivity. Heavy metals and clay mineralogy were also analyzed in some selected samples. Representative analyses of pre-mining conditions, carried out in two soil profiles, were utilized for comparisons with the constructed soils. Values of the chemical soil characteristics and clay contents in all areas presented a high variability among the sampled points. The soil construction process utilized in MJ caused the highest uniformity of characteristics and provided the most adequate conditions for the establishment of vegetal species. In MA, the addition of pyrite coal material to the superficial soil is causing. a continuous soil acidification, as well as high salt concentrations. In the MRM area, which had been abandoned and exposed to pyrite coal deposition on the surface layer for an extended period, the soil is very acid and has already suffered intensive leaching of salts, Al, H + Al, and clay contents were the only tested variables that presented a defined model for semi-variance, with a range of 50-70 m.

  8. The Role of Iron-Bearing Minerals in NO 2 to HONO Conversion on Soil Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Mulu A.; Bish, David L.; Losovyj, Yaroslav; Engelhard, Mark H.; Raff, Jonathan D.

    2016-08-16

    Nitrous acid (HONO) accumulates in the nocturnal boundary layer where it is an important source of daytime hydroxyl radicals. Although there is clear evidence for the involvement of heterogeneous reactions of NO2 on surfaces as a source of HONO, mechanisms remain poorly understood. We used coated-wall flow tube measurements of NO2 reactivity on environmentally relevant surfaces [Fe (hydr)oxides, clay minerals, and soil from Arizona and the Saharan Desert] and detailed mineralogical characterization of substrates to show that reduction of NO2 by Fe-bearing minerals in soil can be a more important source of HONO than the putative NO2 hydrolysis mechanism. The magnitude of NO2-to-HONO conversion depends on the amount of Fe2+ present in substrates and soil surface acidity. Studies examining the dependence of HONO flux on substrate pH revealed that HONO is formed at soil pH < 5 from the reaction between NO2 and Fe2+(aq) present in thin films of water coating the surface, whereas in the range of pH 5–8 HONO stems from reaction of NO2 with structural iron or surface complexed Fe2+ followed by protonation of nitrite via surface Fe-OH2+ groups. Reduction of NO2 on ubiquitous Fe-bearing minerals in soil may explain HONO accumulation in the nocturnal boundary layer and the enhanced [HONO]/[NO2] ratios observed during dust storms in urban areas.

  9. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  10. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  11. Performance evaluation of WRF-Noah Land surface model estimated soil moisture for hydrological application: Synergistic evaluation using SMOS retrieved soil moisture

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika; Dai, Qiang

    2015-10-01

    This study explores the performance of soil moisture data from the global European Centre for Medium Range Weather Forecasts (ECMWF) ERA interim reanalysis datasets using the Weather Research and Forecasting (WRF) mesoscale numerical weather model coupled with the Noah Land surface model for hydrological applications. For evaluating the performance of WRF for soil moisture estimation, three domains are taken into account. The domain with best performance is used for estimating the soil moisture deficit (SMD). Further, several approaches are presented in this study to evaluate the efficiency of WRF simulated soil moisture for SMD estimation and compared against Soil Moisture and Ocean Salinity (SMOS) downscaled and non-downscaled soil moisture. In this study, the first approach is based on the empirical relationship between WRF soil moisture and the SMD on a continuous time series basis, while the second approach is focused on the vegetation cover impact on SMD retrieval, depicted in terms of growing and non-growing seasons. The linear growing and non-growing seasonal model in combination performs well with the NSE = 0.79, RMSE = 0.011 m; Bias = 0.24 m, in comparison to linear model (NSE = 0.70, RMSE = 0.013 m; Bias = 0.01 m). The performance obtained using WRF soil moisture is comparable to SMOS level 2 product but lower than the downscaled SMOS datasets. The results indicate that methodologies could be useful for modelers working in the field of soil moisture information system and SMD estimation at a catchment scale. The study could be useful for ungauged basins that pose a challenge to hydrological modeling due to unavailability of datasets for proper model calibration and validation.

  12. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  13. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  14. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  15. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils

    Institute of Scientific and Technical Information of China (English)

    Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE

    2008-01-01

    The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.

  16. Determination of Critical Slip Surface of Soil Slope by New Complex Method

    Institute of Scientific and Technical Information of China (English)

    Li Liang; Chi Shichun; Lin Gao

    2006-01-01

    A new complex method is presented considering not only the improvement upon the "bad "design point, but also the diversity of the newly generated complex, which is obtained by replacing the "bad "design point with the better design point located at the line between the "bad "design point and the centroid of the remaining design points of the old complex. The new complex method is apphed to searching for the critical slip surface of two non-homogeneous soil slopes. The comparison of the results obtained by the new complex method with that by the basic complex method shows that the new complex method is much more likely to find the true critical surface for the randomly generated initial complex.

  17. Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spataru, Sergiu;